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MAC layer jamming is a common attack on wireless networks, which is easy to launch by the attacker and which is very effective
in disrupting the service provided by the network. Most of the current MAC protocols for wireless networks, for example, IEEE
802.11, do not provide sufficient protection against MAC layer jamming attacks. In this paper, we first use a non-cooperative game
model to characterize the interactions among a group of self-interested regular users and a malicious user. It can be shown that
the Nash equilibrium of this game is either inefficient or unfair for the regular users. We introduce a policer (an intervention user)
who uses an intervention function to transform the original non-cooperative game into a new non-cooperative game augmented by
the intervention function, in which the users will adjust to play a Nash equilibrium of the augmented game. By properly designing
the intervention function, we show that the intervention user can effectively mitigate the jamming attacks from the malicious user,
and at the same time let the regular users choose more efficient transmission strategies. It is proved that any feasible point in the
rate region can be achieved as a Nash equilibrium of the augmented game by appropriately designing the intervention.

1. Introduction

Due to the broadcast nature of the wireless medium,
wireless networks are not only sensitive to the mutual
interferences among the legitimate (regular) users, but also
highly vulnerable to malicious attacks from adversarial
users. Malicious attacks are usually more detrimental than
interference from legitimate users because they intentionally
disrupt the network service. One of the most effective and
simple attacks on wireless networks is a Denial-of-Service
(DoS) or jamming attack [1]. These attacks from one or more
adversarial users make a network and its service unavailable
to the legitimate users. DoS attacks can be carried out at
different layers of the wireless networks. For example, a
DoS attack at the physical layer [2] can be launched by a
wireless jammer which sends high power signal to cause an
extremely low signal-to-interference and noise ratio (SINR)
at a legitimate user’s receiver. A MAC layer DoS attacker
[1, 3] can disrupt legitimate users’ packet transmission by
sending jamming packets to a contention-based network.
At the application layer, a brute force DoS attack [4] is to

flood a network with an overwhelming number of requests
of service.

In this paper, we will focus on mitigating MAC layer
DoS attacks, for the following reasons: (i) unlike a physical
layer jammer, a MAC layer jammer does not need special
hardware such as directional antenna or power amplifier,
hence it can be easily implemented and deployed; (ii) higher-
layer antijamming techniques will simply fail if MAC layer is
not well-protected from jamming attacks; most importantly,
(iii) the existing IEEE 802.11 MAC protocol, which is widely
adopted in most current wireless ad hoc networks, does not
provide sufficient protection to even simple and oblivious
jamming attacks, as shown in [5].

Various research works have been devoted to analyzing
the performance of wireless networks under MAC layer
jamming attacks, and designing new protocols to defend
against these attacks. The performance of the current 802.11
protocol under jamming attacks is analyzed in [5], and it
shows that 802.11 protocol is vulnerable even to simple
jamming schemes. The damages of various DoS attacks to
both TCP and UDP flows are also evaluated in [6]. In [7], a
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cross-layer protocol-hopping scheme is proposed to provide
resiliency to jamming attacks in wireless networks. However,
this approach can significantly complicate the protocols of
all the users. Optimal jamming attack and defense strategies
are developed in [1] by formulating a game between attacker
and defenders in wireless sensor networks. Reactive and
proactive jamming mitigation methods are compared in [8]
in multi-radio wireless networks using max-min game for-
mulation. There are also research works focusing on physical
layer jamming. For example, a nonzero-sum power-control
game between a legitimate user and a jammer is analyzed
in [2].

In this paper, we propose a novel method to mitigate
MAC layer jamming attacks in a contention-based (e.g.,
ALOHA) network. Unlike the above mentioned existing
techniques and protocols to combat MAC layer jamming,
which all require modifications to the protocol stack
or algorithms of existing legitimate users, our proposed
method introduces a new intervention user which allows
the legitimate users to keep their protocols unchanged.
The intervention user designs an intervention rule which
prescribes the desired transmission strategies of all the other
users in the network. The intervention rule is announced
to all the users or learned by them through repeated
interactions. After the legitimate and malicious users act, the
intervention is implemented according to their actions. The
objective of the intervention user is to appropriately shape
the incentive of both legitimate and malicious users such that
the legitimate users can achieve higher utilities. Our solution
does not require any assumption about the utility functions
of legitimate users, therefore it can be applied to networks
with various applications.

The idea of using an intervention user to networking
problems was first introduced in [9], where an intervention
function transforms a non-cooperative contention game
into an augmented game with intervention, and the Nash
equilibriums of the augmented game are shown to be more
efficient than the Nash equilibriums of the original game.
With similar network settings, the main difference between
this paper and [9] is that the users in [9] are all self-
interested, but they do not intend to decrease the utilities
of other users; however, in this work we consider a non-
cooperative game with malicious users, who intentionally
try to decrease the utilities of all the other users. This key
difference leads to some important distinctions between our
intervention function and the one in [9]. For example, in
[9] when all the other users transmit according to the target
strategies set by the intervention user, the intervention user
will not intervene; however, in our case with a malicious
user, the intervention user has to intervene even when its
target strategies are fulfilled by all the other users. In this
paper, we also show that a single intervention function can
intervene in order to shape the behavior of both the self-
interested regular users and malicious users. Hence, the
proposed solution can mitigate the adversarial attacks from
the malicious users, while at the same time help to avoid
network collapse caused by selfish behaviors of regular users.
Furthermore, we consider a multi-channel case in which
multiple malicious users may exist.

The rest of this paper is organized as follows. In
Section 2, the considered network setting is described and
the problem is formulated as a non-cooperative game, and
an intervention user is introduced to transform the original
game into an augmented game. Section 3 investigates the
benefit of introducing intervention user in the single channel
case, and it is shown that by using a properly designed
intervention function, any point in the feasible rate region
can be achieved as a Nash equilibrium of the augmented
game. The solution is extended to multi-channel case in
Section 4. Section 5 discussed the information requirement
for different users to play the original and also the augmented
game. Some illustrative numerical examples are given in
Sections 6 and 7 concludes the paper.

2. Problem Formulation

2.1. Network Setting. We consider a set &' = {1,2,...,N}
of users sharing a group of independent channels K =
{1,2,...,K}. The network is slotted and the time slots are
synchronized across all the channels [10]. For user n, we let
K, € K denote the set of channels it can access, and we
assume that these { K, },c., do not change over time. When
a user has traffic to transmit at the beginning of a time slot, it
will choose one of the channels it can access to transmit the
packet. We let P" (0 < P" < 1) be the probability that user
n has traffic to transmit at a certain time slot (or its traffic
load), and let p,x be the probability that user n transmits
on channel k. For simplicity, we let p, = (pu1>---> PnK)
the transmission strategy for user n, p = (p1,...,pn) be the
strategy profile of all the users, and p_, the strategy profile
for all the users in N other than user n. We denote £, as the
set of all possible transmission strategies of user n, that is,

an_{PH an,kspn;Pn,kZO (k7&‘7<”)} (1)

keK,

and £ as the set of all the possible strategy profiles across all
the users.

We assume that we have a slotted-ALOHA-type MAC
[11, 12]. Hence, a transmission is successful if and only if
there is only one user transmitting in a certain time slot.

The set of users N consists of both regular and malicious
users, and they have different interests. The users Nq =
{1,2,...,N — 1} are regular (i.e., legitimate) users, and user
w’s utility is defined as a function of its average throughput
(over all the channels), that is, the utility for user # is

“H(P) = Un( Z Pnk 1_[ (1 pm,k)))

ke X, m#n

(2)
forl<n<N -1,

where U, is an increasing function. As noted in [13], not
all network applications have concave utilities. For example,
delay-tolerant applications (also referred to as elastic traffic,
and including file transfer, email service, etc.) usually have
diminishing marginal improvement with increasing rate,
which results in concave utility functions; on the other
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hand, some applications (referred to as inelastic traffic,
and including real-time video transmission, online games,
etc.) have stringent delay deadlines and their performances
degrade greatly when the rate is below a certain threshold,
which makes their utilities nonconcave [13, 14]. Hence, we
do not make any further assumption about the concavity
of U,. Note that our assumptions for the regular user’s
utility function also includes the case of heterogeneous
regular users, in which regular users can have different utility
functions u, due to their applications, and so forth.

The user N is a malicious user whose objective is to
decrease the sum utility of all the regular users. Since the
utility functions of the regular users are usually unknown
to the malicious user, we assume that the malicious user
can only observe the sum throughput of all the regular
users (This can be done, as shown in [15], by listening
to the wireless medium and estimating the probability that
there is a successful transmission), and try to lower the sum
throughput by transmitting its jamming packets. We assume
the malicious user has a certain power budget PV, and hence
the set of all possible transmission strategies of the malicious
user can be defined as Py = {py | Zf:le,k < PN},
We also assume the malicious user has a transmission cost
which is linear to its total transmission power. Therefore,
we can define the utility of the malicious user similar to the
formulation in [2], as

uy (p) = UN(ZCIk(P—N)(l _PN,k)) - CN(ZPN,k)a (3)

k=1 k=1

where py = (pn,1>- .., pn,k) is the jamming strategy of the
malicious user, ¢y 1s the cost of user N for each unit of its
transmission, and gx(p-x) = Sy Pk Inetmsn (1= Prk)
is the sum-throughput of all the regular users over channel
k if there is no jamming attack. We note that the form of
function Uy depends on regular users’ utility functions. For
example, if there is only one regular user then the malicious
user can have Uy(r) = U;(rmax) — Ui(r), where rpay is
the maximum rate which the regular user can get. We can
find out that if U;(r) is concave then Uy(r) is a convex
function; if U;(r) is nonconcave, Uy(r) is also not convex.
Since we do not make any assumption about the concavity
of Uy, Uy can also be convex or non-convex, depending on
whether the malicious user models regular users traffic as
elastic or inelastic traffic. We also assume that Uy (r) satisfies
the following conditions in its domain (0, +c0):

(1) Un(r) is continuous and differentiable;

(2) Un(r) = 0 for any r = 0 and it is decreasing in r.

2.2. A Non-Cooperative Game Model. We use a non-
cooperative game model to characterize the behavior of
both the self-interested regular users and also the malicious
user. We define the non-cooperative game by the tuple
I' = (N, (P), (u,)), where N, £,, and u,, are defined as
in Section 2.1. It is easy to show that I' is a nonzero-sum
game (similar to the formulation in [2]), because of the
transmission cost of the malicious user.

Each user in the game T chooses its best-response
transmission strategy pER to maximize its utility by taking
all the other users’ transmission strategies p_, as given, that
is,

Py (p-n) = arg maxi, (P, P-n)
(4)
= argmaxU, Z Pk 1_[ (1= pmk)
Pn kex, m#n

for the regular users, and

PgR (p-n)

argmax uy (py.p-n)

arg@gX[UN (qu(pw) (1- PN,k)) —on (ZPNJ«)}
k=1 k=1
(5)

for the malicious user. The outcome of this non-cooperative
game can be characterized by the solution concept of Nash
equilibrium (NE), which is defined as any strategy profile

pNE = (pI'%,..., pN*) satisfying

Un (P§E>P§5) = Uy (Pn,plfﬁ), for any p, € P, n € N.
(6)

It is straightforward to verify that this definition is equivalent
to

pNE — pBR (pE’E), for any n € M. (7)

Note that the game we defined in the paper is generally
not zero-sum, because we do not make specific assumptions
about either the regular or malicious user’s utility function.
However, if their utility functions are chosen such that the
game is zero-sum, all the analysis and results still apply.
Hence if the game is zero-sum, it will just be a special case
of the game we defined.

Existing research has investigated the inefficiency of Nash
equilibrium in various networking problems [9, 16]. We will
next introduce an intervention user to transform the game I
into a new game which can yield higher utility for regular
users at its equilibriums. Later we will also discuss how
the same intervention user can mitigate the jamming effect
while simultaneously leading the regular users to play a more
efficient equilibrium.

2.3. A Non-Cooperative Game Augmented by an Intervention
User. We introduce an intervention user (user 0), which
has an intervention function ¢ : £ — Py, where P
is the set of all the possible transmission strategies of the
intervention user within its power budget P°, that is, £y =
{po | XkK:l pojk < PO}, We assume that user 0 can access
any channel in X, that is, Ko = K. The intervention user’s
transmission strategy (also referred to as intervention level) is
given by po = (po,1>---> Po,x) = g(p). Hence, the intervention
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TaBLE 1: The timing of the game with intervention user.

At the beginning of a time-slot

(a) the intervention user determines its intervention function g and announces it to all the regular and malicious users;

(b) knowing the intervention function, each user chooses its own transmission strategy;

(c) intervention user calculates its intervention level after observing all the users’ strategies;

During the time slot

(d) all the users transmit according to its selected strategy;
At the end of the time slot

(e) all the users payoffs are realized

function can be considered as a reaction to all the regular
and malicious users’ joint transmission strategy. The idea
of using intervention function in networking problems
was first investigated by [9], in which an intervention
user was introduced to prevent the regular users from
playing at inefficient Nash equilibriums in contention-based
networks. In this paper, besides enforcing the regular users to
behave less selfishly, the intervention user also prevents the
malicious user from jamming the regular users with a high
transmission rate.

In each time-slot, the new game augmented by an
intervention user is played as in Table 1. If the set-up time,
that is, the duration before (d), is negligibly short compared
to a time-slot, then the new utility functions of the regular
users can be defined in a similar way as u,, but taking the
intervention into account, that is,

len(P>g) = Un( Z Pn,k(l _Po,k) 1_[ (1 _Pm,k))> (8)

ke X, m#n
for 1 < n < N—1.Theintervention level py = (po,1>.. ., po,x)
is determined by intervention function g as
Po = (po>---» pox) = g(p). ©)

For the malicious user, we will have the following utility after
considering the intervention:

in (p,g) = Un (qu(PN) (1= png) (1= po,k))

k=1

K
— N (an,k) ((po,ts--->pox) = g(pN))-
k=1
(10)

The introduction of the intervention user (and its
intervention function g) transforms the game I' =
(N, (Py), (uy)) into a new game lN"g = (N, (Pn), (tin(p,£)))-
We call the game lN"g an non-cooperative game augmented by
an intervention function g. The intervention user has a target
strategy profile p, and its objective is to let all the other
players operate according to its target strategy, while applying
a minimal level of intervention. A strategy profile p™F is a
Nash equilibrium of the augmented game lN"g if

(BB 8) = i (s B8, W)

for any p, € Py, n € N.

TasLE 2: Key notations.

User 1, 2, ..., N — 1: regular users

User N: intervention user

User 0: intervention user

K =1{1,2,...,K}: set of channels

Pn: user n’s transmission strategy

uy,: user w’s utility function

g: P — Py intervention function

I = (N, (Pn), (u,)): the non-cooperative game
IN"g = (N, (P,), Uy): the augmented non-cooperative game
P: intervention user’s target strategy profile

In the following sections, we will show that with a properly
designed intervention function, the regular users can get
higher payoffs at an NE of game lN“g than at an NE of the
original game I’

We have summarized some key notations in this section
in Table 2.

3. The Single Channel Case

3.1. Using Intervention to Mitigate Malicious Jamming. We
first consider a single channel case (X = {1}) and assume
that the malicious and intervention user have P’ = PN =
1. The intervention user’s objective is to both mitigate
jamming as well as to enforce regular users to play a more
efficient equilibrium. Hence, we first assume that regular
users’ strategies are fixed and investigate how an intervention
user can mitigate the malicious jamming and how much
performance gain for the regular users can be achieved by
using intervention. In Section 3.2, we will discuss how the
intervention user can enforce the regular users to comply
with certain desirable target strategies.

Since we assume that all the regular users’ transmission
strategies are fixed as p-~ = {p1, p2,..., Pn—1}, we have the
malicious user’s utility (when there is no intervention) as

un(pn) = Un(q(p-~)(1 = pn)) — enpn (12)

with g(p_n) = S0} pn]_[%;ll,m?én (I — pm). For simplicity,
we will use from now on g instead of q(p-n) when there is
no ambiguity, and we also let y,(pn) = Un(q(p-~)(1—pn))-
Hence, the utility function can be rewritten as uy(py) =

Yq(PN) — cNDN.



EURASIP Journal on Wireless Communications and Networking 5

Elastic traffic

Inelastic traffic

Un
(3]
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(c)

Elastic traffic
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PN

(®)

Inelastic traffic

Yq
[\ 8]
w

o o0l 02 03 04 05 06 07 08 09 1
PN
(d)

F1GURE 1: Two examples of Uy (r) and y,(pn).

From the properties of Uy, we can easily verify that given
g, yq(pn) should satisfy the following properties over its
domain in its domain [0, 1]:

(1) y4(pn) is continuous and differentiable;

(2) yq4(pn) is increasing in py and Un(q) < y,(pn) <
Un(0) for any py € [0, 1];

(3) yq(pn) is concave (convex) if Uy(r) is concave
(convex).

In Figure 1, we give two examples of Uy(r) and its
corresponding y,(pn). (We let g = 0.9 in both examples.) If
the malicious user models the regular users’ traffic as elastic
traffic, both Uy(r) and y,(pn) will be convex functions
(Figures 1(a) and 1(b)); if it models regular users’ traffic as
inelastic, both Un(r) and y,(pn) are non-convex (Figures
1(c) and 1(d)).

Hence, given g, the malicious user’s optimal jamming
strategy when there is no intervention can be obtained by
solving the following optimization problem:

p = arg maxy, (py) — cpy
(13)
st. 0<py<L

Generally, this optimization problem is not convex because
we do not make any assumption about the concavity of
Un(r) and hence y,(pn) can be nonconcave. Therefore, an
explicit solution to (13) may not always exist. Fortunately,

our following results only require y,(pn) to be monotoni-
cally increasing, and hence they can be applied to networks
with either elastic or inelastic traffic.

Since the regular users’ transmission strategies are fixed,
the intervention function reduces to a function of py, that
is, po = g(pn) with g : [0,1] — [0, 1]. The malicious user’s
utility will be

N (pn>&) = Yqa(pn.g) — enpN (14)
with
Ya(pn>g) = Un(q(1 = pn) (1 —g(pN))). (15)

We note that the properties (3)—(5) y;(pn) are not necessar-
ily satisfied for y,(pn,g). For example, ¥,(pn,g) may not be
monotonically increasing in py.

The optimal strategy of the malicious user with interven-
tion function g is

pr(g) = arg IggX%(pN,g) —cpN
(16)
s.t. 0<py=<l1

We can have the following lemma which shows that given the
same q and py, the malicious user’s utility will not decrease
if an intervention function g is applied.

Lemma 1. For any fixed q and pn,q,pn € [0,1], and
any intervention function g, ys(pn) < Vq(pn.g) < yq(1).
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Conversely, for any function f(pn) that satisfies y,(pn) <
fpn) =< y4(1) for any 0 < py < 1, there exists an
intervention function g such that y,(pn,g) = f(pn).

Proof. Since Uy is decreasing and q(1 — 1) < q(1 — pn)(1 —
g(pn)) =< q(1 = pn), we have y,(pn) < Ya(pn,g) < yq(1).

For a function f(py) that satisfies y,(pn) < f(pn) <
y4(1) for any 0 < py < 1, since y,(pn) is monotonically
increasing in py, we can have py < y,'(f(pn)) < 1. Let the
intervention function be

1=y, ' (f(pn))
1-— PN ’
We can verify that y,(pn,g) = f(pn). O

glpn) =1- (17)

From Lemma 1 we can see that the intervention function
can reshape the utility of the malicious user, and if properly
designed, the intervention can suppress the level of attack
from the malicious user, that is, we can have pj(g) < px.
However, we note that at the same time the intervention
user will also decrease the throughput of the regular user
due to its own transmission. Hence, a problem that needs
to be answered is whether the intervention function can
really improve the regular users’ utility by suppressing the
malicious user?

Theorem 1. For any given q,c and Uy, and any py < py; there
exists an intervention function g(pn) which satisfies

(1) pR(g) = pns

(2) (1 - g(pX (N = pX(g)) > (1 = pR).

Proof. We let f(pn) be the following function:

_ 0 R

%(I()PN +yq(0)) 0= PN = PN)
(o)

= —Z ~ ~
Flpn) = 20PN 2 (o Be) vz P < pw < P

PN — PN

Yq(pn)> PN > P,

(18)

in which z = y,(p3) — c(p — pn) + € and ¢ is an arbitrarily
small positive number. It is easy to verify that for any 0 <
Py < L, y4(pn) < f(pn) < y4(1). Hence, from Lemma 1
we know there exists an intervention function g such that
Yq(pn>g) = f(pn). As shown in Figure 2 (the X-axis is
malicious user’s strategy py and Y-axis is its utility Uy),
Y4(pn»>g) designed by (18) is a piecewise linear function.
The intervention is applied when the malicious user jams the
channel with a probability lower than its optimal jamming
probability without intervention, which is py.

Now we check the utility function uy(pn,g) =
Yq(pNn>g) — cnpn to verify that with intervention function
g, the malicious user’s optimal strategy will be px(g) = pn.
First, since

2= 14(0) Yq(p) — c(pX — Pn) — y4(0)
ﬁN ﬁN

S }’q(ﬁN)A_ 4(0) S
PN

(19)

(%

Un(r) 5 Feasible region for y(pn) -
yon) o _es 2
U P ¢ P
,/I y(pn)
i N
/
V.
0 1

PN

FIGURE 2: An illustrative example of using intervention to suppress
malicious attacks.

we have #iy(pn,g) < tn(pn,g) for any 0 < py < pn.
Similarly, since (y4(pX) — 2)/(p5 — Pn) < ¢, we have
un(pn»g) < tin(pn,g) forany py < pn < p. For pn > pi,
we also have

un (pn,>g) = un(pn,g) < un(pig) (20)
= Un (pN-g) < tn(pn,g) < tin(pn,g).

Therefore, the optimal jamming strategy for the malicious
user is py(g) = pn.

Since y,(px(g),g) < yq(px), based on the monotonic
decreasing property of Uy, we have (1 — g(pfi(g))(1 —
Bo(g) > (1 - pi). O

The first part of Theorem 1 guarantees that for any py <
Py, there always exists an intervention function which makes
pn the optimal jamming strategy of the malicious user. The
second part of the theorem shows that any such intervention
functions would enable the regular users to experience a
higher throughput than the case without intervention, given
that the malicious user always takes its optimal jamming
strategy. If the malicious user does not take its optimal
strategy, it gets lower utility for itself. In Figure 2, we give
an illustrative example in which the intervention function is
constructed as in Theorem 1 to reshape the malicious user’s
utility function from y(py) to y(pn), and its optimal strategy
is changed from pj; to p5;. The second part of Theorem 1 can
also be interpreted as the following: if we let r = q(1 — py)
and 7 = q(1 — g(p&(g)))(1 — px(g)), we can find that
Un(r) > Uy(7), hence r < 7.

From Theorem 1, we know that there always exists an
intervention function that can increase the regular users’
sum throughput (and also individual regular user’s utility)
by suppressing the malicious user’s attack level to py;(g).
However, we are more interested in how the intervention
function should be designed such that the regular users’
utilities can be most improved. If we define the optimal
intervention function as

Zopt = arg mgaX((1 -g(Ppn(g)) (1 -p%(g)))
(21)
st pi(g) = argmaxiiy (pg),

then we can further have the following theorem.
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Theorem 2. Under the optimal intervention function gop:

(1) the malicious user’s optimal jamming strategy will be
ﬁ]tr(gopt) = 0;

(2) the regular users’ sum throughput is upper-bounded by
Uy' [Un(q(1 = pX)) = epi]-

If we let r*(py) = arg maxe(1 — g(pi))(1 — py), then
arg maxg: r* (py) = 0.

Proof. Since py(g) is the optimal jamming strategy with
intervention function g, we have

N (PR (2).8) = in (P 8)- (22)
Substituting (14) and (15) into (22), we have
Un(q(1—g(px(g)) (1= px(g))) — chi(g) o)
= Un(q(1 = pX)) — cpi

Hence, if we let 7(g) be the regular users’ sum throughput

under intervention function g, that is, 7(g) = q(1 —
g(pX))(1 = pYy), then
Un(7(g)) = Un(q(1 - pX)) —c(pk — PX(g)) "

> Un(q(1 - px)) — cp.

Noting that Uy is a monotonically decreasing function, we
prove that 7(g) is upper-bounded by Uy'[Un(q(1 — p)) —
cp¥], where Uy' is the inverse function of Uy. Moreover,
Px(g) = 0 is a necessary condition to achieve the upper-
bound. Hence, we must have py(gopt) = 0. O

From the proof of Theorem 2, we can also know that
one of the methods to construct the optimal intervention
function is to follow (18), and set py = 0. With such an
intervention function, the regular users’ sum throughput
can approach arbitrarily close to its upper-bound, which is
UN'[Un(gq(1 = p¥)) — cpi] as shown in Theorem 2.

In Figure 3, we give a numerical example to show the
improvement of the sum throughput of the regular users
by using the optimal intervention function to mitigate
jamming from the malicious user, under different values of
the malicious user’s cost c. We can see that in the low-cost
region, the network will be unavailable (zero throughput) to
any regular user when there is no intervention. However, the
regular user can still successfully access the channel when an
intervention user exists. Similar improvements can also be
observed as the cost of the malicious user increases.

3.2. Nash Equilibrium of the Game Augmented by an Inter-
vention User. In the previous subsection, we assumed that all
the regular users’ transmission strategies are fixed. However,
in many networking scenarios, users are self-interested, and
they choose their strategies in order to maximize their own
utilities. Many research works have shown that the selfish
behavior may result in extremely poor performance for
individual users. For example, as shown in [9], if each regular
user selfishly maximizes its own utility, then either every user

Sum throughput of regular users

0.1}

5 10 15 20 25 30

- - - w/o intervention

—— With intervention

FIGURE 3: Sum throughput of the regular users without and with
intervention.

has 0 throughput, or only one user has nonzero throughput.
Similar results for CSMA/CA networks are also shown in
[16].

In this subsection, each regular user is considered to
be self-interested and chooses its transmission strategy to
maximize its own utility. Hence we can use the non-
cooperative game I' = (N, (P,),(u,)) in Section 2.2 to
model this scenario. The Nash equilibriums of game I' must
satisfy the following property.

Proposition 1. If p = (p1,..., p~) is an NE of game T, then
at least one of the following two properties holds for p:

(1) the malicious user has px = 1 as its optimal jamming
strategy, that is,

Py = argmaxuy (p-n>pN) = 1s (25)

(2) py = arg maxy un(p-n,py) < 1, and at least one
regular user n has p, = 1.

Proof. If py = 1, then any transmission strategy p, gives 0
utility for regular user n, hence p = (p1,..., pn) is an NE as
long as py = arg max,, un(p-n, py) = L.

If py = arg max, un(p-n, py) < 1, suppose p, < 1 for
any 1 <n < N — 1, then user I’s optimal strategy should be
pi = arg max,, pi[1h_,(1 — p,) = 1, which contradicts with
the assumption that p, < 1 forany 1 < n < N — 1. Hence, if
PN = arg maxp, un(p-n, py) < 1, there must be at least one
regular user n which has p, = 1. O

Proposition 1 shows that, for regular users an NE of
the game T is either inefficient or unfair. If an NE satisfies
property 1, then every regular user gets zero utility because
the malicious user jams the channel with probability 1; if
an NE satisfies property 2, at most one regular user can get
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nonzero utility, and it still suffers from a certain level of
jamming from the malicious user.

To avoid these undesirable properties of Nash equilib-
rium, we can use an intervention user with its intervention
function g to transform the game T to an augmented
game [,. Unlike the reduced form intervention function
in the previous subsection, now we need an intervention
function which reacts to all the regular and malicious users’
transmission strategies, that is, po = g(p1, p2,- .., pn)-

The following theorem establishes the main result of
this section, which shows that for any strategy profile p =
(P1>---»pn-1,0) with p, > Oforany 1 < n < N — 1, we
can design an intervention function g such that p is a Nash
equilibrium of the augmented game I',.

Theorem 3. For any strategy profile p = (p1,..., Pn-1,0)
with p, > 0 forany 1 < n < N — 1, we can design an
intervention function g(p1, pa,... pN) = 1 — ]_[2;1(1 —2(Pn)),
in which g,(pn) = [1 - pn/ﬁn]é([x](l) = min(1, max(x,0)))
forl <n <N -1, and gn(pn) is constructed as in Theorem 1
with py = 0 as its target strategy, such that P is a Nash
equilibrium of game Ty, which is the augmented game with
intervention function g.

Proof. To prove that p is a Nash equilibrium of Ty, we just
need to check the optimal transmission strategy of each user
under intervention function g, if all the other users take
actions according to { p,}<p<n- For any regular user 1 < n <
N — 1, its optimal transmission strategy will be

pr=argmaxp, [ [ (1= ) (1= g(P1r..., pu Pn))

" m#n

1
12”:| 1_[ (1 - ﬁm) (26)
nlom+#n

arg mpax Pn |:2 -

= B
By using [x](l) = min(1, max(x,0)), we can finally reach that

P = Dn (27)

When p, = p, forany 1 <n < N -1, g(p1,p2---,PN) =
1= T, (1 = g(pa)) = g(pn). Hence the malicious user’s
optimal strategy will be Py, as proved in Theorem 1. O

Remark 1. In the above, we only consider a strategy profile
P =(P1,..., Pn-1,0) as the target strategy of the intervention
user. In fact, for p' = (p,..., Py_1> Py) With py # 0, there
still exists an intervention g such that p’ is a Nash equilibrium
of I,. However, as proved in Theorem 2, to maximize the
regular users’ utilities, the optimal intervention function
should have py = 0 as its target. Therefore, we only consider
these Nash equilibriums with py = 0.

Remark 2. p, is actually a dominant strategy for any
regular user # in game I'y (A transmission strategy p, is a
dominant strategy for user # in the game Ty if and only if
Un(P> P-n>g) = Un(py> p-n>g), for any feasible p;, and p_,.
By checking this definition with the intervention function in

Theorem 3, we can verify that p, is a dominant strategy for
any regular user n). (However, py = 0 is not necessarily a
dominant strategy for the malicious user N.) Hence, p =
(P1>...,PN-1,0) is the only NE of the game T,. Moreover,
if all the regular and malicious users start with an arbitrary
strategy profile p» at the beginning of the game (called
round 0) and the intervention function is also given at
this time, and each user takes its best-response strategy in
the next round, then the unique Nash equilibrium will be
reached in round 2. This is because any regular user n will
take its dominant strategy 17,, in round 1, and in round 2 the
malicious user will take ﬁN = 0 as its best-response to all the
regular users’ joint strategies {p1,..., Pn-1}.

Remark 3. In [9], the intervention user does not need to
intervene when its target strategies are fulfilled by all the
other users. However, in our setting with a malicious user, the
intervention user needs to implement its intervention even
when its target strategies are fulfilled, as shown in Theorem 3.

Note that we did not discuss the case of multiple
malicious users in a single channel. This is because: first, we
do not have a complete analysis of the scenario in which there
are multiple malicious users that are non-cooperative with
each other, because it requires an elaborate model of how
the non-cooperative malicious users decide to interact in the
presence of other malicious users; secondly, if these malicious
users are cooperative, that is, they have a common objective to
degrade the regular users’ throughput, this will be equivalent
to having a single malicious user. For instance, even if these
malicious users have a higher combined power budget, this
is analogous to the case of a single malicious user, because
there is only one channel. However, when there is more than
one channel, multiple malicious users have the ability to jam
multiple channels simultaneously. This is also why we will
consider multiple malicious users in a multi-channel case.

4, The Multichannel Case

4.1. Single Malicious User. We still first assume that the
regular users have agreed on choosing their transmission
strategies according to a certain transmission profile. We also
assume there is only one malicious user. The malicious and
intervention users have their power budgets as P’ = PN = 1,
and we assume that either of them can access at most one
channel in a certain time slot. We also assume that all the
channels are sorted such that q; = ¢, = --- = gk, where
qrk = ZI,L_II pn,kl_[%lll,m#n (1 = pmy) is the sum throughput
of all the regular users over channel k when there is no
malicious or intervention user.

The optimal jamming strategy of the malicious user
when there is no intervention is given by

K K
pi = arg maxUy (qu(l - PN,k)) —cN (an,k)~ (28)
N k=1 k=1

From this, it can be easily verified that the optimal
jamming strategy will only jam the channel with the highest
throughput, that is, p; = (pf1,0,...,0).
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Similar to the single channel case, we define yq(pn) =
Un(Sko1 k(1 — pivi) and Jy(paogn) = Un(Skoy el
pnk)(1 = gh(pn))), where @ = (q1,...,qx) and gu(py) =
(gI{,(pN),...,gﬁ(pN)). We have the following lemma to
determine the achievable region of the modified utility

function yq(pn,gn)-

Lemma 2. For any feasible py and intervention function g,
Ya(PN) < Yq(PN->€) < yq(pN); conversely, if a function f(pn)
satisfies yq(pn) < f(pN) < yq(pN), there exists a feasible
intervention function g such that yq(pn,g) = f(pn).

(An intervention function is feasible, if [[r_,g% (pn) < PN
for any py € Pn.)

Theorem 4. For any given q = (q1,...,9xk), ¢ and Uy, and
any 0 < py < py..» there exists an intervention function

an(pn) with gn(pn) = (g (PN)s - - - » g8 (Pn)), which satisfies
(1) Zszlﬁ;\kl,k = PN,
(2) S ae((1=gh BN (1= B 10) > Shoy k(1= pii -

Proof. For simplicity, we let ﬂ’ﬂ, = {py | pypk =0,k =
2,...,K} and denote any jamming strategy («,0,0,...,0) as
py(a). For example, we can write p}; as py (p51)-

We first construct f(py) for any py € Py

flpn € PN)

z - )’qA(lev(O)) »

N’1+yq(pll\](0)), OSPN,I SPN)

PN
= 1 yq(pn(pX)) — 2
PR - pn
)’q(PJI\J(PN,l)),

(png = PN)+2, PN < PN < PR

PN > ﬁN,
(29)

where z = un (py (pX))+cPn = Yq(Py (PR1)) = (PR —P).
For any py & Py, we let

oveon-s{i(Em)). o

k=1

Similar to the proof of Theorem 1 and also based on
Lemma 2, we can verify that there exists an intervention

function gy (pn) such that yq(pn,gn) = f(pwn), and under
this intervention function any jamming strategy py with

S K., PNk = Pw is an optimal strategy for the malicious user.

Similar to the single channel case, we can show in the
following corollary that the optimal intervention function
should have pj; = (0,0,...,0). O

Corollary 1. If we let the optimal intervention be

K
g* =arg mgaquk((l —g(ﬁf\k;,k)) (1 - ﬁ;\klk))
k=1 (31)

s.t. Py = arg max Uy (PN»>€)»

then we have Py = arg maxp, iy (pn,g*) = (0,...,0).

0 01 02 03 04 05 06 07 08 09 1
I'n

FIGURE 4: A sigmoid utility function.

The proof is similar to the proof of Theorem 2 and is
omitted here.

We note that the intervention function designed in
Theorem 4 requires that the intervention user monitors all
the channels and responds to the malicious user’s jamming
strategy (i.e., its jamming probabilities) over all the channels.
An alternative approach would be to deploy the intervention
function which we designed for the single channel case over
each channel. In this case, each intervention function only
monitors its own channel and also only intervenes in this
channel. Interestingly, by comparing these two approaches,
we can find that the former one requires a smaller power
budget for the intervention user, but the intervention user
needs to be capable of monitoring and intervening in all the
channels.

4.2. Multiple Malicious Users. We now consider a scenario
when there exist N, malicious users, who are cooperative
with each other to maximize their system utility, which is
defined the same as (3). Since all the malicious users are
cooperative, we can consider them as a fictitious malicious
user (still denoted as user N) but let its power budget be
PN = N,,, and py will be the joint effect of all the malicious
users. Hence, user N’s optimal jamming strategy will be

pi = arg max uy (pn)
PN

k=1

K K
o gat-p) o[ )
N(kzlq;( PNk CN ZPNk (32)

K
st.= > pnx <PV =N,
k=1

In this scenario, unlike in the single malicious user case
described in the previous subsection, an intervention user
with unit power budget, that is, P° = 1 may not be able
to enforce the malicious users to have py = (0,0,...,0)
as their optimal jamming strategy. Hence, in order to find
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the most energy-efficient intervention function, we need to
determine how large P° (this corresponds to the number of
intervention users if each of them has unit power budget)
should be in order to have an optimal intervention function
which enforces pj = (0,0,...,0).

First we note that the optimal jamming strategy
without intervention will be in the form of pf =
(1,...,1,pN 1, 0,...,0), with I — 1+ pyy < PN and 0 < pyy <
1. The following theorem gives the minimum value of P°
which can fully suppress the malicious users’ jamming, that
is, to have pi; = (0,...,0).

Theorem 5. For given q = (q1,...,9x), ¢ and Uy, if
the optimal jamming strategy without intervention is py, =
(L,...,1,pN1,0,..,0) for a certain PN > 1, then the minimum
PO that is required to have pj; = (0,..,0) can be determined by

Pl(')nin = ,] + ((AT - Zi:l qk)/qj+1), where

K
Ar = Z qk — U{,l
k=1
K
X (UN( > q+al —Pm)) —en(l-1 +pN,1)),
k=I+1

j
j=maxj’, s.t. > qi<Ar.
k=1
(33)

Proof. Since

K K
UN(ZQk<1 —p{{k)) > UN( > a+all _PN,Z))
k=1 (34)

k=I+1
— CN(l -1 +pN,I):
where p; = (pg1>--->Pox) = &Px)> from the monotonic

property of Uy, we know that

K K K
D aPor = Dk — Uﬁl[UN( > ak+ai(l PN,I))

k=1 k=1 k=I+1

—on(I-1+ PN,Z):|

= Ar.
(35)
We note that g1 > q» = - - - = gk, hence
X Ar =31 g
Prin = 2P0k =+ (o= %10 (36)
= 4j+1

with j = maxj’, st. 3/, qx < Ar. The minimum is
achieved when

(A" - zi:l qk)

* = O, b
Pos g (37)

for k < j, pijn =

_— .
Pox =0, fork>j+1. 0

4.3. Nash Equilibrium of the Augmented Game. Similar to the
main result (Theorem 3) we get in the single channel case, we
can also design an intervention function to mitigate jamming
attack and at the same time enforce self-interested regular
users to choose certain target strategies. The following
theorem is an extension of Theorem 3 to the multi-channel
case.

Theorem 6. Letp, = (p.,..., pX) be the target strategy for the
regular user n, and py = (0,...,0) the target strategy for the
malicious user N. If the intervention function g(p1,...,pN) =
@P1>--->PN)>-- > gk (P15 .., PN)) is designed as follows:

gk (p1s...

S (1 —gfv(pm)lﬁ([

n=1

’PN)

b
_ﬁ’r‘l] , Vli<k<K,

n_lo
(38)

where gﬁ,(pN) is designed as in Theorem 4, then (P1,...,Pn) is
a Nash equilibrium of the augmented game with intervention

g.

The proof is similar to Theorem 3, but we combine the
result from Theorem 4 and the complete proof is omitted
here. We note that when all the regular users fulfilled their
target strategies, then the intervention function reduces to
the one we designed in Theorem 4.

5. Information Requirements for
Playing the Game

When a user tries to maximize its own utility, it needs to
observe some information about all the other users before
making its decision. We will discuss different information
requirements for different users (regular, malicious and
intervention user), in both the game without and with
intervention. We first note that from user n’s point of view,
the channel observed at a certain time slot must be in one
of the following four states: idle (no user transmits); busy
(at least one other user transmits); success (only user n
transmits); fail (user n and at least one other user transmit).
We let pie, ps be the probabilities that user n observes the
channel k in idle and success states, respectively.

In the non-cooperative game I, a regular or malicious
user n € N only needs to know [, ,(1 — pmx) for every
channel k € K, in order to compute its best-response
strategy as in (4) or (5). For a certain channel k, similar
to [15], an estimation of [],, ,,(1 — pmx) can be obtained
by computing p;‘f]lf/ 1 = puk or pc/pnk, because p;‘f}f =
(1- pn,k)Hm%n(l - Pm,k) and Pi,?]ic = Pn,knm;tn(l - Pm,k)-

In the augmented game Ty with intervention function g,
the regular and malicious users need to know the interven-
tion function explicitly or implicitly in order to make their
best decisions. The intervention function can be explicitly
known by the users if it is part of the network protocol
or announced to them by the intervention user. If there is
no explicit knowledge of the intervention function at the
user side, it can still learn the intervention through repeated
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interactions with the intervention user [9]. However, if the
intervention function has a structure as g(p1, p2,..., pn) =
1 - Hle(l — gu(pn)) in Theorem 3, each user only needs
to know part of the intervention, that is, g,(p,) for user
n, and the communication overhead for announcing the
intervention function or the time required to learn it can
be greatly reduced. We also note that there is no need for
explicit information exchange among regular users. This also
helps to reduce the communication overhead in the network,
and eliminates the possibility of any information exchange
getting jammed.

The intervention user also needs to know some infor-
mation about the regular and malicious users in order to
compute the optimal intervention function and implement
it when other users take their transmission strategies. To
compute the optimal intervention function, the intervention
user needs to know the utility function of the malicious
user; to implement its intervention, it needs to know
each user’s transmission strategy p,. We assume that the
utility function of the malicious user is already available to
the intervention user from some previous modeling about
the malicious user’s behavior. To know the transmission
strategy pn, as in [15], the intervention user can decode
the successfully transmitted packet when there is only one
regular or malicious user transmitting, and identify the
sender. We let pi® be the probability that the intervention
user finds channel k is idle, and gi(n) is the probability
that user » has a successful transmission over channel k. We
can have pifl* = (1 = po)[Tyen(1 — pms) and qi(n) =
Pk (1 = pog) Tz u(1 = pmi), hence p,x can be computed
by puk = qr(n)/qr(n) + pé’?,ie, and p, can be obtained by
combining all the p,,x over different channels. Therefore, the
transmission strategy p, can be obtained by the intervention
user without any explicit message exchange.

6. Illustrative Results

We will give several illustrative results to show how much
the intervention user can help the regular users to improve
throughputs when there is one or multiple malicious jam-
ming users. The numerical results are computed based on
our previous analysis.

6.1. General Setting. To numerically show the rate regions
in different cases, we assume the regular users have sigmoid
utility functions as in Figure 4, that is, u,(r,) = 1/(1 +
e~*m=0) for 1 < n < N where r, is the throughput of user n.

This is a widely used utility function to model the
quality of service at different rates, as in [13, 17]. Hence, the
malicious user’s utility function can be defined by un(pn) =
un(1) — (1/(1 + e~ *@=px)=0)) — cpy in which q is the sum
throughput of the regular users, and ¢ is the transmission
cost.

6.2. Achievable Rate-Region for Two-User Single-Channel
Case, with or without Intervention. We first use a two-user
single-channel case to compare the achievable rate regions
of two regular users under different network settings. The
three cases being compared in Figure 5 are: (a) no malicious

user or intervention user; (b) one malicious user with
optimal jamming strategy; (c) the intervention user adopts
its optimal intervention function and the malicious user acts
with its optimal jamming strategy given the intervention
function.

In Figure 5, r; and r; are the rates (throughputs) of the
two regular users, respectively, and we set « = 6, 0 =
0.5, and ¢ = 0.5. In the first two cases (Figures 5(a) and
5(b)), we give both the rate region achieved by independent
random access (left), and the rate region of all the Nash
equilibriums (right). The independent access rate region in
Figure 5(a) is also shown by the dotted line in Figures 5(b)
and 5(c) for comparison. We can see from Figure 5(c) that
the optimal intervention can help the regular users achieve
a larger rate region compared to Figure 5(b). In [4], it was
shown that any point in the feasible region of Figure 5(a) can
be achieved by a properly designed intervention function.
This result can be extended to the case when there exists a
malicious jamming user. Based on Theorem 3 in Section 3.2,
we can also design an intervention function to enforce the
transmission strategies of both regular and malicious users,
hence any point in the rate region of Figure 5(c) can be
achieved at a Nash equilibrium of an augmented game with
a certain intervention function.

6.3. Sum Throughput of (N — 1) Regular Users Transmitting
with Probability 1/N — 1. Next, we compare the sum
throughput of all the (N —1) regular users when each of them
takes transmission strategy 1/(N — 1), thatis, p, = 1/(N — 1)
forany 1 < n < (N — 1). It is well known that such a
strategy profile achieves maximum sum throughput for (N —
1) users when there is no malicious jamming to the channel.
In Figure 6, we compare the sum throughputs between two
cases: when there is a malicious user but no intervention, and
when there are both malicious and intervention users.

We consider both convex and non-convex Uy(r) for the
malicious user. When modeling the regular users’ traffic as
elastic traffic, the malicious user will have a convex Uy(r); it
will have non-convex Uy(r) when modeling regular users’
traffic as inelastic. We also have two different numbers of
regular users, with N—1 = 3and N —1 = 30, respectively. We
can see that when the cost ¢ is low, the regular users cannot
get any successful transmission if there is no intervention.

We also note that when Un(r) is convex, there is
a threshold phenomenon: when the cost is below this
threshold, the jammer will jam the channel with probability
1, and if the cost is beyond the threshold, it will not jam
at all. This is because when Uy(r) is convex, the problem
in (13) becomes a maximization problem on a convex
function, which can only have its optimal solution at two
extreme points, that is, pjy = 1 or pgy = 0. However,
with the intervention user, the regular users’ sum throughput
increases as the malicious user’s cost increases, even in the
low-cost region where they cannot access the channel at all
without intervention user. When the cost becomes larger, the
sum throughput will eventually approach (1-1/(N—1))¥7",
because the malicious user becomes less likely to attack due
to the high cost.
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cost c.

6.4. An “Imperfect” Jammer—Considering Range Effect. In
Figure 7, we investigate the range effect in our setting.
Particularly, we consider the case when the jammer is further
away from the access point than the regular users. Due
to the signal strength degradation along the transmission
path, there is a small probability that its transmission cannot
jam the regular users. We let a be the probability a packet
transmitted by the malicious user can reach the access point,
and simulate with N —1 = 30 regular users. Each regular user

Sum throughput of regular users

0.05 | " -

01 02 03 04 05 06 07 08 09 1

1, w/o intervention
1, with intervention
= 0.95, w/o intervention
= 0.95, with intervention

|
|
R R R R

FIGURE 7: Sum throughput of all the regular users under “imper-
fect” jammer.

1.8

0
min

P

0.4 . . . . .

FIGURE 8: The minimum required P, to have optimal interven-
tion.

takes transmission strategy 1/(N — 1), that is, p, = 1/(N —
1), as in our previous setting. We compare an “imperfect”
jammer with « = 0.95 and a perfect jammer with « = 1,
as shown in Figure 7. We note that in either the case with an
intervention user or without an intervention user, the regular
users have higher sum throughput under an imperfect
jammer. Particularly, even when the cost is very low, the
jammer cannot totally block the regular users because « is
smaller than 1. However, when the cost becomes higher, the
jammer will become less likely to jam the regular users, hence
the regular users throughput becomes independent on « at
the high cost region.
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6.5. Power Budget Requirement for the Intervention User.
We also compute the power budget requirement for the
intervention user when there are multiple malicious users
in a multi-channel network. We assume there are 4 chan-
nels and 5 regular users. Each regular user has the same
transmission strategy as (1/5,1/5,1/5,1/5). The malicious
user’s utility is again assumed to be uy(py) = un(l) —
1/(1 + e~a0=p)=0)) — ¢py with transmission cost ¢ = 0.1.
According to Theorem 5, we compute the minimum power
budget of the intervention user in order to have optimal
intervention, that is, enforce the malicious users to not attack
at all. In Figure 8 we illustrate the minimum required P,
for different PN € [1,4] (PN corresponds to the number of
malicious users, or more generally the total power budget
of the malicious users. A PN larger than 4 is not necessary
because there are only 4 channels).

7. Conclusion

We investigated the problem of efficient channel access
when there is a malicious jammer who tries to intentionally
decrease all the regular users’ throughputs. Using a non-
cooperative game model, we showed that the regular users
have very poor performance at the Nash equilibriums
because of the jamming attacks and also their own selfish
transmissions. To better utilize the channel and mitigate
jamming attacks, we introduce an intervention user to
transform the original game into an augmented game with
an intervention function. The intervention function compels
the selfish regular users to behave cooperatively by punishing
their excessive access to the channel, and at the same time
suppresses the jammer by providing additional incentives
when it lowers its attacking level. It is shown that any point in
the feasible rate region can be achieved as a Nash equilibrium
of the augmented game with properly designed intervention
function. Future extensions of this work may include the
investigation of nonlinear cost for the malicious user and also
the effect of network topology on the design of intervention
function.
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