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Abstract

Successfully recommending personalized course
schedules is a difficult problem given the diver-
sity of students knowledge, learning behaviour,
and goals. This paper presents personalized
course recommendation and curriculum design
algorithms that exploit logged student data. The
algorithms are based on the regression estima-
tor for contextual multi-armed bandits with a pe-
nalized variance term. Guarantees on the pre-
dictive performance of the algorithms are pro-
vided using empirical Bernstein bounds. We
also provide guidelines for including expert do-
main knowledge into the recommendations. Us-
ing undergraduate engineering logged data from
a post-secondary institution we illustrate the per-
formance of these algorithms.

1. Introduction

The goal of this paper is to provide algorithms for per-
sonalized course recommendation and curriculum design.
In an academic setting it is difficult to apply online re-
inforcement learning algorithms as this requires control-
ling the students actions. Standard methods for counterfac-
tual estimation can not be applied for course recommen-
dation as there is an extremely large number of counter-
factuals resulting from differences in students knowledge
backgrounds, learning behaviour, and learning goals. Miss-
ing data resulting from unobserved course schedules and
associated grades also impedes learning which courses to
recommend. These issues are also present for the opti-
mal design of curricula for students. This paper presents
two algorithms for personalized course recommendation
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and curriculum design that address these issues. The al-
gorithms only require logged student data (i.e. historical
data) mitigating the difficulties associated with online data
collection. The logged student data depends on the courses
taken, their difficulty, concepts taught and style in which
they were taught as well as the students preferences, abili-
ties, and knowledge, which are all evolving endogenously
as they take classes. Thus, our recommender algorithms
consider the evolving students characteristics when issuing
recommendations. The algorithms do not just learn the stu-
dents and courses characteristics and then match them; a
richer structure is exploited: the algorithms consider the
teaching style, course characteristics, as well as the stu-
dents evolving characteristics as they take classes. The al-
gorithms can also incorporate expert predictions for miss-
ing data resulting in refinement of course and curriculum
recommendations. Guaranteed bounds are provided for the
algorithms to ensure that reliable course recommendations
and curricula are computed. Note that the algorithms can
be used to identify curriculum gaps by detecting that cer-
tain students have difficulties and get low GPAs in certain
classes. Such findings can be brought to the attention of
administrators, who can add new classes or remedial mate-
rials to reinforce student learning.

Course recommendation and curriculum design can be nat-
urally formulated using contextual multi-armed bandits
(e.g. non-sequential, stateless Markov Decision Processes).
In contextual multi-armed bandits the logged historical data
consists of a collection of context, action, and reward tu-
ples. An example of a context, action, reward tuple is the
previous grade point average, the courses selected, and the
resulting cumulative grade received. To perform off-policy
evaluation we utilize the regression estimator introduced
in (Li et al., 2015) in combination with a penalized vari-
ance term. The three main contributions of the paper are
the finite bounds on the evaluations from the regression es-
timator, methods to incorporate missing data into the re-
gression estimator, and course recommendation and curric-
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ula design methods based on the regression estimator.
Evaluation Bounds: Using an extension of Bennet’s in-
equality (Anthony & Bartlett, 2009) we construct an up-
per bound for the evaluation of a finite number of course
scheduling policies. In the case of an infinite number of
policies, typical for policy optimization, it is useful to in-
troduce the generalization of the Vapnik-Chervonenkis di-
mension to real-valued functions known as the covering
number (Anthony & Bartlett, 2009; Bartlett et al., 1997,
Vovk et al., 2015; Bousquet et al., 2004). The covering
number provides a measure of the “complexity” of a class
of real-valued functions. As proven, the error in the off-
policy evaluation from the regression estimator is bounded
by the square-root of the finite-sample variance of the esti-
mator and the covering number.

Missing Data: Logged data may not contain a context-
action pair necessary to evaluate a policy. However, as we
show, domain knowledge can be effectively introduced into
the regression estimator to mitigate this issue with guaran-
teed bounds on the bias and variance of the estimator.
Recommendations: With the properties of the regression
estimator known, we construct penalized variance opti-
mization methods for course schedule recommendation and
curricula design using logged data. The design of curricula
involves the solutions from binary integer and convex non-
linear programs which can be solved numerically (Achter-
berg et al., 2008; Achterberg, 2009).

RELATED WORK

There is a substantial amount of literature on recommend-
ing relevant courses to students based on their associated
knowledge level, learning styles, and feedbacks (Lee &
Brunskill, 2012; Mandel et al., 2014; Shishehchi et al.,
2011; Chen et al., 2005; Klasnja-Milicevi¢ et al., 2011).
However, several unique features of the course sequence
recommendation problem make these approaches unsuit-
able. First, students vary tremendously in backgrounds,
knowledge and goals. Therefore a personalized course rec-
ommendation system is vital to effectively provide course
and curricula recommendations. Second, is the design of
curricula with specific course constraints. Traditional rec-
ommendation systems deal with the problem of recom-
mending a set of courses, however they do not consider
providing a sequence of courses. Third, several online rec-
ommendation algorithms require active interaction with the
student. However, in our setting only the logged data is
available. Fourth, we provide methods to include missing
data using the domain knowledge from the students or edu-
cators to evaluate a course schedule or curricula of interest.

To utilize logged data for course recommendations and
curriculum design requires an off-policy estimator (also
known as counterfactual estimation, covariate shift esti-
mation in supervised learning, or causal effect estimation

in statistics) that estimates how an unobserved policy per-
forms given an observed policy. Recently the regression
estimator (Li et al., 2015) has been introduced which sat-
isfies minimax optimality. A limitation with using this es-
timator directly for the optimal design of a policy, is that
no measure of variance is included for the policy evalu-
ation. Recently several off-policy evaluation techniques,
that include a variance reduction technique, have been pro-
posed including: truncated importance sampling (Ionides,
2008), doubly robust estimators (Dudik et al., 2011), and
the self-normalized estimator (Swaminathan & Joachims,
2015). In (Swaminathan & Joachims, 2015) the authors uti-
lize the theory in (Anthony & Bartlett, 2009) to construct
empirical Bernstein bound on the self-normalized estima-
tor. However, a limitation with these estimators is that they
contain are biased. In (Li et al., 2012) an unbiased estima-
tor is provided with variance penalization which assumes
that the reward can be represented by a generalized linear
model (e.g. linear, logistic probit) dependent on the action.
For specialized applications such as online news article rec-
ommendation systems these assumptions hold, however for
student course recommendations we must consider a less
restrictive assumption on the rewards. An additional limita-
tion with these estimators is that no guidelines are provided
for including missing data. We address all these issues to
provide reliable course and curricula recommendations to
students and educators.

2. Contextual Multi-Armed Bandits and
Logged Data

In this section we formulate the reinforcement learning pro-
cess of students who select between a set of courses to take
given their prior skill level in each course. The goal of
the student is to maximize their expected cumulative grade
for each course schedule selected. This type of repeated
actions-response can be formulated using contextual multi-
armed bandits (Langford & Zhang, 2008).

Consider a set of actions A = {1,2,..., A} representing
possible course selections. In each term ¢, the student
selects an action and receives an associated reward via the
following process:

1. The student is presented with a context x; € X with
X = {1,...,X} a finite set of states which account for
the previous grade and skill level of the student. x; can be
computed from their entry grade-point-average (GPA) or
scholastic assessment test (SAT) scores.

2. The student, given x4, then selects an action a; € A of
courses via the policy 7(a|x). That is a; ~ 7(a|z) where
m(alx) is a discrete probability distribution function over
the finite context-action space X’ x A.

3. Given the context x; and action a; the student re-
ceives a reward r, ~ P(r|a;,z;) where the reward is
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generated from some unknown family of distributions
{®(r|a,x)}acAzecx. For students the reward is the
cumulative grade from completing the courses a;.

At the completion of each term ¢ the following tuple is gen-
erated (x4, at, ¢ ). Note that each tuple (¢, a, 74 ) is gener-
ated by an i.i.d. process. After the completion of 7" terms,
the logged dataset D = {(z¢, as, 7¢) }i—, is generated using
the policy mp € II(X,.A) and reward distributions .

Given the logged dataset D, there are three main prob-
lems. First, given D from a policy mp, how to perform
off-policy evaluation. That is, using an unobserved policy
m € II(X,.A), it is desirable to have an estimate of the
expected reward of this policy:

03 = Eonn(z)rmd(laa) 7] M

The estimate of v given D is denoted by 9F. Important
properties of an estimator of v (1) include knowing if the
estimator is biased, the variance of the estimated value, and
a measure of the number of samples 7" in D necessary for
vg — 0. The second main problem is how to mitigate the
issue of missing data in D. If the expected reward is known
for a context-action pair (z, a) then we illustrate how inclu-
sion of this information into D effects the bias and finite-
sample variance of the off-policy estimator for ©F. The
third main problem is how to utilize results from the off-
policy estimator to provide course recommendations to stu-
dents, and design curricula for educators.

3. Off-Policy Evaluation with Missing Data

To reliably estimate a cumulative grade associated with a
new course scheduling policy 7 using the dataset D, we uti-
lize a combination of counterfactual estimation and missing
data inclusion. The algorithms are based on the off-policy
regression estimator in (Li et al., 2015) for computing 07
for an unobserved policy 7. We prove finite sample con-
vergence bounds for this estimator to ensure the results are
reliable. Additionally, methods are presented for including
missing data (z,a) ¢ D into the regression estimator for
unobserved course schedules.

3.1. Regression Estimator

The regression estimator presented in (Li et al., 2015) is
given by:

05 = Y _ ula)r(alz)i(z,a) (2)

_ Z;‘P:l oy =x,a; = a}ry
Zthl 1{z; = z,a; = a}
where p(-) is the context distribution, 7(+) is the policy,

7(-) is the expected reward, and 1{-} denotes the indica-
tor function. The parameter p(-) is the probability that a

7(x, a)

student has the historical performance x. 7(a|z) is the stu-
dents course scheduling policy given the performance .
7(x,a) is the estimated cumulative grade for the histori-
cal performance = and selected course schedule a. Given
a logged dataset D with observed course selection policy
Tp, the regression estimator (2) can be used to estimate
the value of a different course selection policy w. The off-
policy estimator (2) can be computed in O(T") time com-
plexity, is unbiased, and satisfies minmax optimality. The
minimax optimality condition states that E[(v} — 0F)?] is
bounded by some constant. Remarkably the estimator (2)
is likely to have a much smaller E[(v] — ©7F)?] compared
with popular off-policy estimators such as the propensity
score estimator (Bottou et al., 2013).

There are three limitations with using the regression esti-
mator for course recommendations and curriculum design.
First, the regression estimator (2) can not be used to eval-
uate a policy 7(z, a) that is dependent on a context-action
pair (x,a) ¢ D. For example, if D only contains informa-
tion for students that always select math courses, then the
regression estimator can not be used to estimate the perfor-
mance for a course selection policy that selects chemistry
courses. Second, no estimate of the variance of the estima-
tor is provided for a particular policy of interest 7. Third,
no estimate of how including missing data into the regres-
sion estimator impact the estimator’s bias or variance. In
the following sections we address these issues allowing the
regression estimator to be used for course recommenda-
tions and curriculum design using the dataset D.

3.2. Finite Sample Convergence

In this section we provide a method to estimate the num-
ber of samples 7" necessary to perform a reliable off-policy
evaluation using (2). This is challenging as the regression
estimator utilizes the logged data D generated from a pol-
icy mp € II that may be very different from the policy
m € II we are attempting to evaluate. As an example, if
the policy mp always recommends taking math courses,
then it is difficult to evaluate a policy = that always rec-
ommends chemistry courses. Two conditions are required
to provide a reliable evaluation of 7 using the information
in D. First, the course selection policy 7 can not deviate
significantly from the observed course selection policy 7p.
Second, there must be sufficient samples in D to reliably
estimate the value of m—that is, the variance associated with
the evaluation of 7 can not be too large.

To construct the off-policy bound we first define the func-
tion class Fi1 = {fr : X x A — [0, 1]} where each f;
represents a policy 7 € II and is given by:

fr(z,a) = Mf‘(x,a)w = Mu§(a,z). (3)

fi(x)7p(alz)
In (3) #(x,a) € [0,1] is the normalized expected re-
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ward, M = min{ji(z)7(a|z)}, and [i(x)7p(alz) =
S 1{a; = a,z; = x}/T. Using f, (3) and the the-
ory developed in (Maurer & Pontil, 2009), we bound the
variance of (2). The main idea in (Maurer & Pontil, 2009)
is to extend Bennet’s inequality (Anthony & Bartlett, 2009)
to upper bound the value of a random variable by an empir-
ically computed variance. The function f; (3) satisfies:

]Emw/t(~)Ea~7rD(~\ac) [ffr(xy (L)] = _]\4"[)?1;7
VIf(up)] = M*V{up) 4)

with E[-] the expected value and V(-] the variance. Notice
that (4) provides the key relations between the functions f
and the output of the regression estimator 93 (2) for off-
policy evaluation using D. Therefore if we bound the ex-
pected value of f, then we can bound the expected value
of 9F using (4) to make reliable course schedule and cur-
ricula recommendations.

Consider a student faced with the following dilemma. They
would like to select between two policies, the first m;
favours course schedules with a significant math compo-
nent, the second ms favours courses with a significant
chemistry component. How can the dataset D be utilized
to decide between these two policies. In this two policy
case, the finite function class is given by Fr1 = {fr,, [, :
X x A~ [0,1]}. For Fry, T > 2 and v > 0 we have
the following probabilistic bound on the estimated value of
policies 7; and 7a:

>

2V[ug) In(Fly 71 (2ol
]P) ™ < s Y 2l > 17
(%— ot T Tur-n) -

1 « 1« 2
Vup] = T—1 ; (u%(at,xt) —7 ;u%(aT,xT)) .
(5

The probabilistic relation (5) follows directly from (Theo-
rem 4 in (Maurer & Pontil, 2009)) using the function def-
inition (3), statistical relations (4), and the union bound
from probability. Eq. 5 is a particularly useful result as
it provides an empirical bound on the difference between
the expected and actual reward (v — ©7) based on the
number of samples 7" in D, and the empirical variance V[]
which is dependent on the policy . V[] in (5) encodes
the variation in the data—that is, if the student’s CGPA (i.e.
rewards) deviate significantly for different student histori-
cal performances = and course schedules a, or for the ratio
m(alx)/7p(alx) of student course scheduling policies, this
will result in a high variance. As such, to obtain a reason-
able estimate of a course scheduling policy 7 for such cases
requires numerous samples 7'. Given (5) and D the student
can reliably select the best policy 71 or 7o using the results
from the regression estimator (2).

Of importance to students and educators is to not only se-
lect between a finite number of policies, but to select opti-
mal policies from a continuum. That is, in optimal policy
selection problems it is desirable to find a policy m € II
where the policy set II is composed of an infinite number
of policies. Given that each 7 corresponds to a function
fr= (3), then the function class Fp; will contain an infinite
number of functions. Since the cardinality of the function
class Fp is uncountable we can not utilize (5) to bound the
estimated value of ©7. To mitigate this issue a different
measure of the capacity or complexity of Fj is required. A
commonly used measure of complexity for function classes
J is the uniform covering number N (g, Fr1, T) with ¢
the size of the e-cover, and 7' the number of samples (An-
thony & Bartlett, 2009; Bartlett et al., 1997; Vovk et al.,
2015; Bousquet et al., 2004).

Intuitively from the result in (5), of use for selecting be-
tween a finite number of policies, we expect that a similar
bound will result using the covering number Ao (-) when
selecting between an infinite number of policies. Such a
bound is provided by Theorem 1.

Theorem 1 Let uf,(a, x) be a random variable with T' i.i.d
samples in D. Then with probability 1 — v the random
vector (at, x¢) ~ mp, for a stochastic hypothesis class m €
11 with covering number C(I1) = N (1/T, F11,2T) and
T > 16, satisfies

S \/ 18 [um] In(10C(TT)/v) 15 In(10C(IT) /)
r=" T M(T —1)
(6)
O

Note that as a result of the combinatorial lemma by (Vapnik
& Chervonenkis, 2015; Sauer, 1972), the covering number
for the function class Fy increases at most polynomially
with T'. Several interesting insights are provided by Theo-
rem 1 for course and curricula recommendations. First, if
very few instances of a particular students historical perfor-
mance and course schedules (i.e. context-action pairs) are
present, then the maximum value of 7 € arg max{f)g :
7w € II} will significantly overestimate v} as 97 is up-
per bounded by the empirical variance in (6). Formally
if M < 1in (6) then T" > 1 for the regression esti-
mator (2) to reliably evaluate a course scheduling policy
m. Second, the difference v}, — 07 is dependent on the fi-
nite sample variance V[-] and the logarithm of the covering
number, also known as the entropy of the class Fr;. Quali-
tatively this is expected as the covering number encodes the
complexity of the function class. If 7p from D is signifi-
cantly different from the course scheduling policy 7 being
evaluated, this will introduce a large error in the estimated
value of 7 from (2). To restrict this possibility the con-
straint w(a, x)/%p(a, ) < [ can be applied for 8 € R.
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Note that the entropy of the function class Jij is depen-
dent on all 7 € II, however only the empirical variance
V-] and 9% in (6) are dependent on the specific policy 7
being evaluated. That is, as long as the course scheduling
policy 7 is similar to the observed course scheduling policy
7p, the accuracy of the off-policy evaluation 97 from the
regression estimator (2) is dependent on the sample size T’
and the empirical variance V[-]. The key insight from The-
orem 1 is that v}, < 0F + A\\/V[u}]/T for some constant
A € R.. For selecting optimal course scheduling policies
m € IL if \/V[uZ]/T is large then the regression estimator
likely overestimate the value of vj, therefore it is vital to
ensure this variance parameter is not too large.

3.3. Off-Policy Evaluation with Missing Data

In several real-world applications the dataset D will not
contain every context-action pair of interest. For exam-
ple if there are no examples in D of a particular course
schedule the student is interested in selecting. In such cases
the regression estimator (2) can not be used to evaluate
m(a|z) for (x,a) ¢ D as there is no observation of the
reward 7(a, x). In many cases however it is possible to es-
timate #(a, x), written 7(a, x), either from expert domain-
knowledge or can be inferred from a predictor. In this sec-
tion we construct mean and variance bounds on the esti-
mated reward from (2) when including 7(a, x) into the es-
timator.

Given the predicted CGPA 7(a,z) for an unobserved
course schedule and historical performance pair, Theo-
rem 2 characterizes the bias of 0g from (2) when including
this missing information into the estimator.

Theorem 2 Write 7(a,x) as the expected reward for the
unobserved context-action pair (a,x) ¢ D. Then for all
x € X and a € A the estimation of 0F, using (2) with the
dataset D U (a, x) satisfies:

Efog] _Ué—ZM

(alx)(1 — pla,z)T Ar(a, )

with p(a, x) the probability of observing the context-action
pair (x,a) and Ar(a,x) = (F(a,x) — 7(a, x)). O

As expected, Theorem 2 illustrates that if the predicted
CGPA 7(a, ) is equal to the actual CGPA r(a, x) then the
estimate 07 from (2) is not biased. If Ar(a,z) # 0 then
the incurred bias of (2) can be reduced by selecting a policy
that has a small probability of selecting the context-action
pair associated with the predicted CGPA 7(a, z). That is,
if the error Ar(a,x) is large, then select w(alz) < 1 to
reduced the bias of estimating 07 .

Given 7(a, ), the variance of ©F introduced by including
7 into (2) is given by Theorem 3.

Theorem 3 Write 7(a,x) as the expected reward for the
unobserved context-action pair (a,x) ¢ D. Then for all
x,y € X and a,b € A the estimation of 0F, using (2) with
the dataset D U (a, x) satisfies:

1{n(a,z) > 0}]
n(a,x)

Vivg] = Z(M(ﬂf) (alz))?c”(r)E]
Zu

where 0%(r) = V|[r|a, x| is the variance of the reward con-
ditional on the context-action pair. O

m(alx)1{n(a,z) > 0}Ar(a,x) + v3],

The parameter V[r|a, ] in Theorem 3 can be interpreted
as the uncertainty associated with the CGPA for the histor-
ical performance = and course schedule a. As expected,
if the course scheduling policy 7(a|x) places more weight
on course schedules with uncertain rewards then the vari-
ance of the regression estimator (2) increases. Addition-
ally, since E[-] o< (1 — (1 — p(a,x))T) in the first term, if
the probability of observing the historical performance and
course schedule is low (p(a, x) < 1), then this will also in-
crease the variance if the policy 7(a|z) place more weight
on (a,z). The second term in Theorem 3 illustrates the
variance introduced by using the estimated CGPA instead
of the observed CGPA. If every (a, x) is observed then the
variance of the second term is V[vj]. However, if (a,x)
is unobserved then the variance increase by a value pro-
portional to the error Ar(a, z) between the estimated and
actual CGPA, and the weight from the scheduling policy
m(a,x). Notice that, unlike the first term in Theorem 3 if
p(a, ) < 1 this will decrease the variance of 0.

Theorem 2 and Theorem 3, provide insight into how includ-
ing missing data into the estimator (2) increase the bias and
variance of 07. To reduce the bias and variance it is vital to
ensure that Ar(a,x) is minimized.

4. Student Recommendation and Curriculum
Design with Variance Penalization

This section presents methods for student course schedul-
ing and curricula design recommendations based on the re-
gression estimator (2).

4.1. Student Recommendation with Sample Variance
Mitigation

The objective of the student is to select courses in each term
that are likely to give the highest cumulative grade. That is,
the student should select the policy 7 to maximize v (1).
Using the logged dataset D and the regression estimator
(2) the student can evaluate an unobserved policy 7, yet if
we were to just maximize 07 as the objective, the expected
reward of 7 is likely to have a large variance (Theorem 1).
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To select a policy m € II that maximizes vg with a low
variance, we utilize the convex optimization problem:

M} )

* € argma {@’T*)\

well
A

st Y mlailr) =1 VzeX, Vie{l,.. A}
=1

m(a;|x) >0, w(a;|z) =0if 7p(a;|z) = 0.

Including the regularization term V[ is motivated by the
results of Theorem 1. The regularization term balances the
maximization of the expected policy v with the accuracy
of the estimated policy using the dataset D—formally it ac-
counts for the finite-sample variance associated with esti-
mating a policy 7. Notice that for 7 > v, the empir-
ical variance V[u%] monotonically increases for decreas-
ing A\. Therefore A can be selected by solving min{\ :

V[up] — V[uiP] < §} with & a design parameter.

4.2. Curriculum Design with Sample Variance
Mitigation

The objective of a curriculum designer is to ensure that stu-
dents gain sufficient knowledge in a short period of time.
Consider a curriculum designer that has a defined num-
ber of courses in each course category k € {1,2,..., K}
that must be taken to graduate. Algorithm 1 provides a
method that simultaneously ensures the educators course
constraints are met and that students achieve the highest
grade possible. The main idea is to construct personal-
ized curricula based on the logged dataset D. To graduate
students must complete a defined number courses in each
course category—c = [¢(1),...,¢(K)]. Given the dataset
D, Algorithm 1 constructs the optimal context distribution
() for a series of possible course graduation dates. Given
() for a new set of students, it is then possible to provide
the curriculum that ensures students graduate in 7" terms.

Algorithm 1 selects a course curriculum that reliably max-
imizes a students grades while ensuring the required num-
ber of courses are taken. Step 1 selects course sched-
ules that meet the required curriculum constraints by com-
puting all feasible solutions of a multidimensional Knap-
sack problem for each term of length 7. An exhaus-
tive search to solve this problem has time complexity
O(ATHL(K + 1)) with A the number of course schedules,
and K the number of course constraints. If we approxi-
mate the number of feasible solutions to within 1+e¢, (Dyer
et al., 1993) provide an algorithm with time complexity
T20(E+D)VA(log(A)*/*) =2 that is subexponential in A.
Additionally, Algorithm 1 can be redesigned to allow for
courses with general pre-requisites. If A; denotes the set
of pre-requisite courses necessary for a;, then the following

Algorithm 1 Curriculum Design Variance Penalization

Step 0:  Given the dataset D, select the desired number of
courses in each category ¢ € ZX and the number of
terms {71, 75, ..., Tc} for analysis.

Step 1: Compute all feasible course schedules a € D
that satisfy the course requirements ¢ by term 7, €
{T\,Ty,...,Tc}. Write b, € {0,1}4%T% as the bi-
nary variable indicating the feasible course schedule
for term 7. The total set of feasible course schedules
is given by:

T
M = {bc:;bc(ai;t)ni =c VYie{l,..., A},

be {0, 1}““}0 @®)

with n; = [n;(1),...,n;(K)] the number of courses
in each category associated with taking action a;.

Step 2:  For each feasible solution b, € M (8), compute
the optimal entrance distribution p* by solving the fol-
lowing convex nonlinear program:

M )\c V[’U/%] }

[h € arg max {@q) — T
m c

st Y p(z)=1 Vie{l,...,X} 9

using the dataset D, C D which contains course

schedules a; if be(a;;t) #0 Vte {1,...,T.}.

Step 3: Compute the value /; and variance ¥[u/;] for the
logging contextual distribution /i.

Step 4:  Select the course curricula {T7,7Ts,...,T¢}
with the highest policy value 0 and that have a suf-
ficiently low variance ¥[u/%] that is comparable with
the logged policy variance from Step 3.

constraint can be added to (8): Lﬁ Daea, bela;T)] =
be(aj;;t) V7 < t. Given the possible course curricula, the
objective is to compute the curriculum that maximizes the
students CGPA. Notice that the key feature of Algorithm 1
is that the entrance requirements, or historical grades ()
are optimized for each curriculum T, € {T1,...,7T¢c}.
Thus the course curricula T, € {T},...,T¢} are personal-
ized for a set of student with historical performance u(z).
To ensure that the results from the optimization of u(x)
(9) are reasonable, comparison is made between the logged
historical performance distribution and the optimally com-
puted distribution, as well as ensuring the empirical vari-
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ance V[u/,] is sufficiently low. If this is not satisfied then
a different . is required for curriculum 7, which can be
selected using the method for selecting A in (7).

5. Real-World Application of Student
Recommendation and Curriculum Design

In this section a real-world dataset for undergraduate en-
gineering students, from an accredited post-secondary in-
stitution, is used to study the performance of the student
recommender (7) and curriculum design (9) methods.

The logged dataset consists of course grades of 920
anonymized students that graduated between the year 2013
and 2015. The logged dataset also includes contextual in-
formation of the students including their Scholastic As-
sessment Test (SAT) scores for mathematics, verbal, com-
puters, writing and their high school grade-point-average
(GPA). We consider each SAT/GPA score to be either
above average or below average which results in a possi-
ble context set of z € X = {1,...,25}. We group all the
possible courses into the following K = 5 categories of
math, chemistry, physics, engineering, electives. If n is the
maximum number of courses in each category a student can
take per term, this results in n’* — 1 possible actions a € A.
Note that in real-world applications the cardinality of A
will be significantly less than n® — 1 as a result of course
schedule restrictions. The dataset D = {(zy, az,7¢) L is
generated by defining the rewards r; as the CGPA achieved
as a result of taking the context-action pair (a¢,x¢). The
dataset D contains A = 112 unique actions a, X = 28
unique contexts x, 965 unique context-action (z, a) pairs,
and a total of T = 10, 488 samples. Using the dataset D
we provide an optimal course selection strategy for students
using (7), and design curricula using Algorithm 1.

5.1. Course Schedule Evaluation with Missing Data

In this section we illustrate the impact of including missing
data into the regression estimator (2). From Fig. 1, the bias
of 07 increases as the probability of observing the context-
action pair (a,x) increases. This is expected from Theo-
rem 2 as the bias of the regression estimator (2) increases
as the probability of observing (a,z) ¢ D increase is if
the estimated CGPA is not equal to the actual CGPA. Addi-
tionally, the empirical variance of 07 also increases as the
p(a, z) increases. This is in agreement with the results in
Theorem 3 that illustrate that if the probability of observing
the missing pair (a, ) increases then the associated vari-
ance of 9% also increases. Note that for p(a,z) < 1073,
the empirical variance of 97 is small even though V{[r|a, z]
is large. From Theorem 3 this results as the course schedul-
ing policy 7(a|z) places a small weight on (a, x) therefore
the variance of 97 is negligibly effected.
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Figure 1. Computed off-policy value 0g and reward standard de-

viation \/V[r|a, z] vs. the probability of observing the context-

action pair (z,a) (i.e. p(x,a)). The dataset is composed of

(z,a) ¢ D with all entries (z, a, ) replaced with (z, a, ¥), where

7 is the mean value of the reward r. The solid line indicates the
policy value given all of D.

5.2. Personalized Student Recommendations

In this section we apply (7) to construct the optimal course
scheduling policy for students. The first step is to compute
the parameter A in (7) which balances the maximization
of grades with the reliability of the predicted grades. To
gain insight into a selection procedure for A, Fig. 2 plots
the optimal off-policy evaluation 0F and empirical vari-
ance V[uZ}] (5) for different values of 0 < A < 10. As
seen, for small values of A the computed policy is signifi-
cantly higher than the logged policy, however the reliability
of this off-policy estimate is low. For large values of A the
computed policy value is less than the logged policy—not a
useful off-policy evaluation. From the results in Fig. 2, the
value of ) that balances the value of the regression estima-
tor 9 (7) while ensuring a sufficiently low variance V[uZ]
(5)isgivenbya A = 1.

710%

] 101

Figure 2. Computed 0z using (7) for different values of A €
[0,10]. The black line indicates the value of 9F, the gray line
is the finite sample variance V[u}] (5), and the dotted line in-
dicates the value of 0 for the policy 7p. All computations are
performed using the dataset D defined in Sec. 5.

From Theorem 1 we know that the empirical variance
V]uZ] must be sufficiently low to obtain an accurate off-
policy estimate, however the ratio of the policies 7 /7 must

also not deviate significantly for an accurate course recom-
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mendation to be given by 07 (7). Fig. 3 plots the computed
policy * for A = 1, w for A = 0, and 7p. As seen from
Fig. 3, the optimization (7) with A = 1 ensures that the
estimated policy 7* does not deviate significantly from the
data generating policy 7p. In Fig. 3 we see that for A = 0
() the computed policy has a high 97, however it signif-
icantly deviates from 7p such that the estimate has a high
empirical variance. Additionally, with A = 1 the ratio 7 /7
does not deviate significantly between the unique context-
action pairs. Therefore the selection A = 1 ensures that
the optimization (7) can be utilized to recommend course
scheduling policies to students.
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0 200 400 600 800

Unique Context-Action Pairs
Figure 3. Computed policies 7 from the solution (7) for A = 1
(™), A = 0 (7), and the data generating policy (7p). All compu-
tations are performed using the dataset D defined in Sec. 5.

5.3. Curriculum Design with Personalized Student
Recommendations

In this section Algorithm 1 is used to design a course cur-
riculum composed of 3 math, 2 chemistry, 2 physics, 3 en-
gineering, and 1 elective course (i.e. ¢ = [3,2,2,3,1])
using the dataset D. In D there are a possible A = 112
unique course schedules, however several of these sched-
ules will not be feasible as entries in n;, the total num-
ber of each course associated with a,;, will be larger than
the entries in c. Therefore these can be removed from the
possible course schedules leaving a possible A = 61 to
construct the curriculum. Solving for all feasible course
schedules using Step 1 of Algorithm 1, the possible term
end dates are {3,4,5,6,7} to complete the ¢ courses. To
compute the optimal entrance requirements and curriculum
end date, we solve (9) for all possible course schedules and
term end dates from Step 1 of Algorithm 1. The variance
penalization minimization in (9) ensures that we do not es-
timate an optimal historical performance distribution (i.e.
entrance requirement) that has a high variance. From the
solution of (9), the optimal term end date is 7" = 6 which
has an expected CGPA of v}, = 3.71. If no optimization is
performed on the entrance requirements then the expected
CGPA is v, = 3.35. If T' = 7 is selected then the expected

CGPA is vq’l) = 3.30, therefore it is not always optimal to
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Figure 4. Comparison of the contextual distributions fip from D

and p* computed using Algorithm 1 with the parameters defined
in Sec. 5. The black squares indicate below average, and the white
squares above average for the 13 contexts for the 7" = 6 course
curriculum.

select the curriculum with the longest duration to maximize
the CGPA of students. Insight into how the entrance re-
quirements change for fip compare with p* is provided by
Fig. 4. Since the ratio p*/fip is sufficiently small, The-
orem 1 guarantees that we have maintained a sufficiently
low variance on our computed entrance distribution given
the observed entrance distribution jip to reliably estimate
the CGPA. From Fig. 4, the main difference between p*
and fip is related to the students that are below average in
mathematics and above average in all other courses. The
predominant characteristic of the entrance requirement jip
and p* is that students with above average mathematics
skills will perform better in the 7' = 6 curriculum com-
pared with students that are below average in mathematics.

6. Conclusion and Future Work

In this paper methods for computing personalized course
recommendations and curricula based on the logged data
of students are presented. Personalization is a key feature
of these methods as students vary tremendously in back-
grounds, knowledge, and goals. The methods do not re-
quire active interaction with the students. We provide data-
driven bounds to ensure that recommendations from the
methods are reasonable. Additionally, methods are pro-
vided to include missing data into the estimators of use
when domain knowledge is available. We illustrate the
performance of these methods using logged data from un-
dergraduate engineering students from an accredited post-
secondary institution. Extension of the current work in-
cludes extending the regression estimator to allow for se-
quential off-policy evaluations, applicable to several real-
world applications. To perform accurate evaluations, con-
fidence bounds can be constructed based on the extension
of covering numbers to sequential covering numbers.
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