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1 Introduction

The Folk Theorem for infinitely repeated games with imperfect public monitor-
ing (Fudenberg, Levine, and Maskin (1994); henceforth FLM) implies that, un-
der technical (full-rank) conditions on the stage game, nearly efficient payoffs
can be supported in perfect public equilibrium (PPE) under the assumptions
that players are arbitrarily patient (i.e., the common discount factor tends to
1) and the monitoring structure is sufficiently rich. For general stage games,
the restriction to nearly efficient payoffs and the assumptions that players are
arbitrarily patient and that the monitoring structure is sufficiently rich are
all necessary: It is easy to construct stage games and imperfect monitoring
structures for which exactly efficient payoffs cannot be supported for any dis-
count factor (less than 1) and nearly efficient payoffs cannot be supported for
discount factors bounded away from 1. And Radner, Myerson, and Maskin
(1986) construct a repeated partnership scenario in which players see only
two signals – success or failure – and even nearly efficient payoffs cannot be
supported even when players are arbitrarily patient.

This paper shows that, for a large and important class of stage games,
exactly efficient payoffs are supportable in PPE even when the monitoring
structure is very limited. The stage games we consider are those that arise in
many common and important settings in which the actions of players interfere
with each other. The paradigmatic setting is that of sharing a resource that
can be efficiently accessed by only one player at a time – so that efficient
sharing requires alternation over time – but as we illustrate by examples,
the same interference phenomenon may be present in partnership games and
in contests (and surely in many other scenarios). We focus on monitoring
structures with only two signals, this is a restriction but it is stark and easy
to understand, and also very natural: in the partnership scenario of Radner,
Myerson, and Maskin (1986) for instance, the signal is the success or failure
of the partnership interaction. (As we discuss later, an additional reason for
focusing on simple monitoring structures is that the signal does not necessarily
arise directly from the actions of the players as in or from the interactions of
the players with the market as in Green and Porter (1984) but rather must
be provided by some outside agency, which may face constraints and costs on
what it can observe and what it can communicate to the players.) A feature
of our work that we think is important in any realistic setting is that it is
constructive: given an efficient target payoff profile, we explicitly identify the
degree of patience players must exhibit in order that the target payoff be
achievable in PPE and we provide a simple explicit algorithm that allows each
player to compute (based on public information) its equilibrium action in each
period. For games with two players, we show that the set of efficient payoffs
that can be supported as a PPE is independent of the discount factor provided
the discount factor is above some threshold.1

1 Mailath, Obara, and Sekiguchi (2002) establish a similar result for the repeated Pris-
oner’s Dilemma with perfect monitoring; Athey and Bagwell (2001) establish a similar re-
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We abstract what we see as the essential common features of a variety
of scenarios by two assumptions about the stage game. The first is that for
each player i there is a unique action profile ãi that i most prefers. (In the
resource sharing scenario, ãi would typically be the profile in which only player
i accesses the resource; in the partnership scenario it would typically be the
profile in which player i free rides.) The second is that for every action profile
a that is not in the set {ãi} of preferred action profiles the corresponding
utility profile u(a) lies below the hyperplane H spanned by the utility profiles
{u(ãi)}. (This corresponds to the idea that player actions interfere with each
other, rather than complementing each other.) As usual in this literature, we
assume that players do not observe the profile a of actions but rather only
some signal y ∈ Y whose distribution ρ(y|a) depends on the true profile a.
We depart from the literature by assuming that the set Y consists of only two
signals and that (profitable) single-player deviations from any of the preferred
action profiles ãi can be statistically distinguished from conformity with ãi

by altering the probability distribution on signals in the same direction. (But
we do not assume that different deviations from ãi can be distinguished from
each other.) For further comments, see the examples in Section 3.

To help understand the commonplace nature of our problem and assump-
tions, we offer three examples: a repeated partnership game, a repeated con-
test, and a repeated resource sharing game. In the repeated partnership game,
the signal arises from the state of the market. In the repeated contest, signals
arise from direct observation of the outcome of the contest or from informa-
tion provided by the agency that conducts the contest. In this setting there is
a natural choice of signal structures and hence of the amount of information
to provide, and this choice affects the possibility of efficient PPE. In the re-
peated resource sharing game, signals are provided by an outside agency. In
this setting there is again a natural choice of signal structures and the choice
affects the distribution of information provided but not the amount, and so has
quite a different effect on the possibility of efficient PPE. As we discuss, the
agency’s choice between signal structures will most naturally be determined
by the agency’s objectives; simulations show that different objectives are best
served by different signal structures.

Our constructions build on the framework of Abreu, Pearce, and Stacchetti
(1990) (hereafter APS) and in particular on the machinery of self-generating
sets. APS show that every payoff in a self-generating set can be supported
in a perfect public equilibrium, so it is no surprise that we prove our main
result (Theorem 1) by constructing appropriate self-generating sets of a par-
ticularly simple form. A technical result that seems of substantial interest in
itself (Theorem 2) provides necessary and sufficient conditions that sets of
this form be self-generating. Our construction provides an explicit algorithm
for computing PPE strategies using continuation values in the constructed
self-generating sets. Because all continuation payoffs lie in the specified self-

sult for equilibrium payoffs of two-player symmetric repeated Bertrand games. Mailath and
Samuelson (2006) present examples with restricted signal structures.
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generating set, the equilibria we construct have the property that each player is
guaranteed at least a specific security level following every history. Because all
continuation payoffs are efficient, the equilibria we construct are renegotiation-
proof following every history: players would never unanimously agree to follow
an alternative strategy profile. (Fudenberg, Levine, and Takahashi (2007) –
henceforth FLT – emphasize the same point.)

The literature on repeated games with imperfect public monitoring is quite
large – much too large to survey here; we refer instead to Mailath and Samuel-
son (2006) and the references therein. However, explicit comparisons with two
papers in this literature may be especially helpful. As we have noted, FLM
consider general stage games (subject to some technical conditions) but as-
sume that the monitoring structure is rich – in particular that there are many
signals – and only establish the existence of nearly-efficient PPE. Moreover,
FLM require discount factors arbitrarily close to 1 in order to obtain PPE
that are arbitrarily close to efficient. By contrast, we restrict to a (natural and
important) class of stage games , we require only two signals even if action
spaces are infinite, and we obtain exactly efficient PPE. FLT is much closer
to the present work. FLT fix Pareto weights λ1, . . . , λn for which the feasible
set X lies weakly below the hyperplane H = {x ∈ Rn :

∑
λixi = Λ}, so that

the intersection V = H ∩X consists of exactly efficient payoff vectors. As do
we, FLT ask what vectors in V can be achieved as a PPE of the infinitely
repeated game. They identify the largest (compact convex) set Q ⊂ V with
the property that every target vector v ∈ intQ (the relative interior of Q with
respect to H) can be achieved in a PPE of the infinitely repeated game for
some discount factor δ(v) < 1. However, for general stage games and general
monitoring structures, the set Q may be empty; FLT do not offer conditions
that guarantee that Q is not empty. Moreover (as do FLM), FLT focus on
what can be achieved when players are arbitrarily patient; even when Q is
not empty, they do not identify any PPE for any given discount factor δ < 1.
We give specific conditions that guarantee that Q is not empty and provide
explicit and computable PPE strategies for given discount factors. For games
with two players, FLT find a sufficient condition that there be no efficient PPE
for any discount factor; we find a (sharper) sufficient and necessary condition
and we show that the set of efficient payoffs that can be supported as a PPE
is independent of the discount factor provided the discount factor is above
some threshold. See Section 6 for additional comparisons with results in the
unpublished working paper version of FLT.

At the risk of repetition, we want to emphasize several features of our re-
sults. The first is that we do not assume discount factors are arbitrarily close
to 1; rather we give explicit sufficient conditions on the discount factors (and
on the other aspects of the environment) to guarantee the existence of PPE.
The importance of this seems obvious in all environments – especially since
the discount factor encodes both the innate patience of players and the prob-
ability that the interaction continues. The second is that we assume only two
signals, even when action spaces are infinite. Again, the importance of this
seems obvious in all environments, but especially in those in which signals are
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not generated by some exogenous process but must be provided. (In the latter
case it seems obvious – and in practice may be of supreme importance – that
the agency providing signals may wish or need to choose a simple information
structure that employs a small number of signals, saving on the cost of observ-
ing the outcome of play and on the cost of communicating to the agents. More
generally, there may be a trade-off between the efficiency obtainable with a
finer information structure and the cost of using that information structure.)
Finally, we provide a simple distributed algorithm that enables each player
to calculate its equilibrium play online, in real-time, period by period (not
necessarily at the beginning of the game).

Following this Introduction, Section 2 presents the formal model; Section 3
presents three examples that illustrate the model. Section 4 presents the main
theorem (Theorem 1) on supportability of efficient outcomes in PPE. Section
5 presents the more technical result (Theorem 2) characterizing efficient self-
generating sets. Section 6 specializes to the case of two players (Theorem 3).
Section 7 concludes. We relegate all proofs to the Appendix.

2 Model

We first describe the general structure of repeated games with imperfect pub-
lic monitoring; our description is parallel to that of FLM and Mailath and
Samuelson (2006) (henceforth MS). Following the description we formulate
the assumptions for the specific class of games we treat.

2.1 Stage Game

The stage game G is specified by :

– a set N = {1, . . . , n} of players
– for each player i

– a compact metric space Ai of actions
– a continuous utility function ui : A = A1 × . . . An → R

2.2 Public Monitoring Structure

The public monitoring structure is specified by

– a finite set Y of public signals
– a continuous mapping ρ : A→ ∆(Y )

As usual, we write ρ(y|a) for the probability that the public signal y is observed
when players choose the action profile a ∈ A.
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2.3 The Repeated Game with Imperfect Public Monitoring

In the repeated game, the stage game G is played in every period t = 0, 1, 2, . . ..
If Y is the set of public signals, then a public history of length t is a sequence
(y0, y1, . . . , yt−1) ∈ Y t. We write H(t) for the set of public histories of length

t, HT =
⋃T
t=0H(t) for the set of public histories of length at most T and

H =
⋃∞
t=0H(t) for the set of all public histories of all finite lengths. A private

history for player i includes the public history and the actions taken by player i,
so a private history of length t is a a sequence (a0

i , y
0; . . . , at−1

i , yt−1) ∈ At
i×Y t.

We write Hi(t) for the set of i’s private histories of length t, HTi =
⋃T
t=0Hi(t)

for the set of i’s private histories of length at most T and Hi =
⋃∞
t=0Hi(t) for

the set of i’s private histories of all finite lengths.

A pure strategy for player i is a mapping from all private histories into
player i’s set of actions σi : Hi → Ai. A public strategy for player i is a pure
strategy that is independent of i’s own action history; equivalently, a mapping
from public histories to i’s pure actions σi : H → Ai.

We assume as usual that all players discount future utilities using the
same discount factor δ ∈ (0, 1) and we use long-run averages: if {ut} is the
stream of expected utilities then the vector of long-run average utilities is
(1− δ)

∑∞
t=0 δ

tut. (Note that we do not discount date 0 utilities). A strategy
profile σ : H1×. . .×Hn → A induces a probability distribution over public and
private histories and hence over ex ante utilities. We abuse notation and write
u(σ) for the vector of expected (with respect to this distribution) long-run
average ex ante utilities when players follow the strategy profile σ.

As usual a strategy profile σ is an equilibrium if each player’s strategy is
optimal given the strategies of others. A strategy profile is a public equilibrium
if it is an equilibrium and each player uses a public strategy; it is a perfect
public equilibrium (PPE) if it is a public equilibrium following every public
history. Note that if the signal distribution ρ(y|a) has full support for every
action profile a then every public history always occurs with strictly positive
probability so perfect public equilibrium coincides with public equilibrium.
Keeping the stage game G and the monitoring structure Y, ρ fixed, we write
E(δ) for the set of long-run average payoffs that can be achieved in a PPE of
the infinitely repeated game when the discount factor is δ < 1.

2.4 Interpretation

We interpret payoffs in the stage game as ex ante payoffs. Note that this inter-
pretation allows for the possibility that each player’s ex post/realized payoff
depends on the actions of all players and the realization of the public signal –
and perhaps on the realization of some other random event (see the examples).
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Of course players do not observe ex ante payoffs – they observe only their own
actions and the public signal.2

In our formulation, which restricts players to use public strategies, we tac-
itly assume that players make no use of any information other than that pro-
vided by the public signal; in particular, players make no use of information
that might be provided by the realized utility they experience each period. As
discussed in FLM and MS, this assumption admits a number of possible in-
terpretations; one is that players do not observe their realized period utilities,
but only the total realized utility at the termination of the interaction.

It is important to keep in mind that if players other than player i use a
public strategy, then it is always a best response for player i to use a public
strategy (MS, Lemma 7.1.1). Moreover, requiring agents to use public strate-
gies in equilibrium but allowing arbitrary deviation strategies (as we do) means
that fewer outcomes can be supported in equilibrium than if we allowed agents
to use arbitrary strategies in equilibrium. Since our intent is to show that ef-
ficient outcomes can be supported, restricting to perfect public equilibrium
makes our task more difficult.

2.5 Games with Interference

To this point we have described a very general setting; we now impose ad-
ditional assumptions – first on the stage game and then on the information
structure – that we exploit in our results.

Set U = {u(a) ∈ Rn : a ∈ A} and let X = co(U) be the closed convex hull
of U . For each i set

ṽii = max
a∈A

ui(a)

ãi = arg max
a∈A

ui(a)

Compactness of the action space A and continuity of utility functions ui guar-
antee that U and X are compact, that ṽii is well-defined and that the arg max
is not empty. For convenience, we assume that the arg max is a singleton; i.e.,
the maximum utility ṽii for player i is attained at a unique strategy profile ãi.3

We refer to ãi as i’s preferred action profile and to ṽi = u(ãi) as i’s preferred
utility profile. In the context of resource sharing, ãi will be the (unique) action
profile at which agent i has optimal access to the resource and other players
have none; in some other contexts, ãi will be the (unique) action profile at
which i exerts effort and others players exert none. For this reason, we will
often say that i is active at the profile ãi and other players are inactive. (How-
ever we caution the reader that in the repeated partnership game of Example

2 Although it is often assumed that each player’s ex post/realized payoff depends only on
the its own action and the public signal, FLM explicitly allow for the more general setting
we consider here.

3 The assumption of uniqueness could be avoided, at the expense of some technical com-
plication.
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1, ãi is the action profile at which player i is free riding and his partner is
exerting effort.) Set Ã = {ãi} and Ṽ = {ṽi} and write V = co (Ṽ ) for the
convex hull of Ṽ . Note that X is the convex hull of the set of vectors that can
be achieved – for some discount factor – as long-run average ex ante utilities
of repeated plays of the game G (not necessarily equilibrium plays of course)
and that V is the convex hull of the set of vectors that can be achieved – for
some discount factor – as long-run average ex ante utilities of repeated plays
of the game G in which only actions in Ã are used. We refer to X as the set
of feasible payoffs and to V as the set of efficient payoffs.4

We abstract the motivating class of resource allocation problems by im-
posing a condition on the set of preferred utility profiles.

Assumption 1 The set {ṽi} of preferred utility vectors is a linearly indepen-
dent set and there are (Pareto) weights λ1, . . . , λn > 0 such that

∑
j λj ṽ

i
j = 1

for each i and
∑
j λjuj(a) < 1 for each a ∈ A,a /∈ Ã. (Thus the set

H = {x ∈ Rn :
∑
j λjxj = 1} is a hyperplane, payoffs in Ṽ lie in H and

all pure stragegy payoffs not in Ṽ lie strictly below H. That the sum
∑
j λj ṽ

i
j

is 1 is just a normalization.)

2.6 Assumptions on the Monitoring Structure

As noted in the Introduction, we assume there are only two signals and that
profitable deviations from the profiles ãi exist and are statistically detectable
in a particularly simple way.

Assumption 2 The set Y contains precisely two signals g, b (good, bad).

Assumption 3 For each i ∈ N and each j 6= i there is an action aj ∈ Aj
such that uj(aj , ã

i
−j) > uj(ã

i). Moreover,

aj ∈ Aj , uj(aj , ãi−j) > uj(ã
i)⇒ ρ(g|aj , ãi−j) < ρ(g|, ãij , , ãi−j)

That is, given that other players are following ãi, any strictly profitable
deviation by player j strictly reduces the probability that the good signal g
is observed and so strictly increases the probability that the bad signal b is
observed.5,6

4 This is a slight abuse of terminology. Assumption 1 below is that V is the intersection of
the set of feasible payoffs with a bounding hyperplane, so every payoff vector in V is Pareto
efficient and yields maximal weighted social welfare and other feasible payoffs yield lower
weighted social welfare – but other feasible payoffs might also be Pareto efficient.

5 The assumption that the same signals are good/bad independently of the identity of
the active player i is made only to reduce the notational burden. The interested reader will
easily check that all our arguments allow for the possibility that which signal is good and
which is bad depend on the identity of the active player.

6 The restriction to two signals is not entirely innocuous. If there were more than two
signals, the conditions identified in Theorem 2 will continue to be sufficient for a set to be
self-generating but may no longer be necessary. Moreover, exploiting a richer set of signals
may lead to a larger set of PPE; see the discussions following Examples 2 and 3.
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Table 1 Partnership Game – Realized Payoffs

g b

E g/2− e b/2− e
S g/2 b/2

Assumption 3 guarantees that all profitable single player deviations from
ãi alter the signal distribution in the same direction – although perhaps not
to the same extent. We allow for the possibility that non-profitable deviations
may not be detectable in the same way – perhaps not detectable at all.

3 Examples

The assumptions we have made – about the structure of the game and about
the information structure – are far from innocuous, but they apply in a wide
variety of interesting environments. Here we describe three simple examples
which motivate and illustrate the assumptions we have made and the conclu-
sions to follow.

The first example is a repeated partnership, very much in the spirit of an
example in MS (Section 7.2) but with a twist.

Example 1: Repeated Partnership

Each of two partners can choose to exert costly effort E or shirk S. Realized
output can be either Good g or Bad b (g > b > 0), and depends stochastically
on the effort of the partners. Realized indiviudal payoffs as a function of actions
and realized output are shown in Table 1.

In contrast to MS, we assume that if both players exert effort they interfere
with each other. Output follows the distribution

ρ(g|a) =


p if a = (E,S) or (S,E)

q if a = (E,E)

r if a = (S, S)

where p, q, r ∈ (0, 1) and p > q > r. The signal is most likely to be g (high
output) if exactly one partner exerts effort.

The ex ante payoffs can be calculated from the data above; it is convenient
to normalize so that the ex ante payoff to the player who exerts effort when
his partner shirks is 0: (1/2)[pg + (1− p)b]− e = 0. With this normalization,
the ex ante game matrix G is shown in Table 2; we assume parameters are
such that x > 2y > 0 > z (we leave it to the reader to calculate the values of
x, y, z in terms of output g, b and probabilities p, q, r).

It is easily checked that the stage game and monitoring structure satisfy
our assumptions: (S,E) is the preferred profile for ROW and (E,S) is the
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Table 2 Partnership Game – Ex Ante Payoffs

E S

E (z, z) (0, x)

S (x, 0) (y, y)

COL

ROW

feasible 
payoffs

(z, z)

(y, y)

(0, x)

(x, 0)

Fig. 1 Feasible Region for the Repeated Partnership Game

preferred profile for COL. Figure 1 shows the feasible region for the repeated
partnership game.7

As we will show in Section 6, we can completely characterize the most
efficient outcomes that can be achieved in a PPE. For x ≤ 2p/(p−r)y, there is
no efficient PPE payoff for any discount factor δ ∈ (0, 1). For x > 2p/(p− r)y,
set

δ∗ =
1

1 +

(
x− p

p−r ·2y
x+ 1−p

p−r ·2y

)
It follows from Theorem 3 that if δ ≥ δ∗ then

E(δ) = {(v1, v2) : v1 + v2 = x; vi ≥ p/(p− r)y}

Note that the set of efficient PPE outcomes does not increase as δ → 1; patience
is rewarded – but only up to a point.

If we identify the monitoring technology with the probabilities p, q, r we
should note that different monitoring technologies provide different informa-
tion, but that there may not be any natural ordering in the sense of Blackwell
informativeness (for instance, if we are given alternative probabilities p′, q′, r′

with |p − .5| < |p′ − .5| but |r − .5| > |r′ − .5| then the monitoring technolo-
gies are not comparable in the sense of Blackwell informativeness), so that the
results of Kandori Kandori (1992) do not apply.

7 Note that if x < 2y then the the stage game fails Assumption 1; in particular, some
payoffs in the convex hull of the preferred profiles (E,S), (S,E) are not Pareto optimal.
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Example 2: Repeated Contest
In each period, a set of n ≥ 2 players competes for a single indivisible prize

that each of them values at R > 0. Winning the competition depends (stochas-
tically) on the effort exerted by each player. Each agent’s effort interferes with
the effort of others and there is always some probability that no one wins (the
prize is not awarded) independently of the choice of effort levels. The set of i’s
effort levels/actions is Ai = [0, 1]. If a = (ai) is the vector of effort levels then
the probability agent i wins the competition and obtains the prize is

Prob(i wins|a) = ai

η − κ∑
j 6=i

aj

+

where η, κ ∈ (0, 1) are parameters, and (·)+ , max{·, 0}. That η < 1 reflects
that there is always some probability the prize is not awarded; κ measures the
strength of the interference. Notice that competition is destructive: if more
than one agent exerts effort that lowers the probability that anyone wins.
Utility is separable in reward and effort; effort is costly with constant marginal
cost c > 0. To avoid trivialities and conform with our Assumptions we assume
Rη > c, (η + κ)2 < 4κ, and κ > η

2 .
We assume that, at the end of each period of play, players observe (or are

told) only whether or not the prize was awarded (but not to whom). So the
signal space is Y = {g, b}, where g is interpreted as the announcement that
the prize was awarded and b is interpreted as the announcement that the prize
was not awarded.8

The ex ante expected utilities for the stage game G are given by

ui(a) = ai

η − κ∑
j 6=i

aj

+

R− cai

The signal distribution is defined by

ρ(g|a) =
∑
i

ai

η − κ∑
j 6=i

aj

+

Straightforward calculations show our assumptions are satisfied. Player i’s
preferred action profile ãi has ãii = 1 and ãij = 0 for j 6= i: i exerts maximum
effort, others exert none. Note that this does not guarantee that i wins the
prize – the prize may not be awarded – but the effort profiles ãi are precisely
those that maximize the probability that someone wins the prize.

We have assumed that, in each period, players learn whether or not some-
one wins the competition but do not learn the identity of the winner. We might

8 Note that realized payoffs depend on who actually wins the prize, not only on the profile
of actions and the announcement.



12 M. van der Schaar, Y. Xiao, and W. Zame

consider an alternative monitoring structure in which the players do learn the
identity of the winner. To see why this matters, suppose that a strategy profile
σ calls for ãi to be played after a particular history. If all players follow σ then
only player i exerts non-zero effort so only two outcomes can occur: either
player i wins or no one wins. If player j 6= i deviates by exerting non-zero
effort, a third outcome can occur: j wins. With either monitoring structure, it
is possible for the players to detect (statistically) that someone has deviated –
the probability that someone wins goes down – but with the second monitor-
ing structure it is also possible for the players to detect (statistically) who has
deviated – because the probability that the deviator wins becomes positive.
Hence, with the first monitoring structure all deviations must be “punished”
in the same way, but with the second monitoring structure, “punishments” can
be tailored to the deviator. If punishments can be “tailored” to the deviator
then punishments can be more severe; if punishments can be more severe it
may be possible to sustain a wider range of PPE. In short: the monitoring
structure matters.

But the monitoring structure is not arbitrary: players will not learn the
identity of the winner unless they can observe it directly – which might or
might not be possible in a given scenario – or they are informed of it by an
outside agency – which requires the outside agency to reveal additional infor-
mation. This is information the agency conducting the contest would possess
– but whether or not this is the information the agency would wish – or be
permitted – to reveal would seem to depend on the environment. A similar
point is made more sharply in the final example below.

Example 3: Repeated Resource Sharing

We consider a very common communication scenario. N ≥ 3 users (players)
send information packets through a common server. The server has a nominal
capacity of χ > 0 (packets per unit time) but the capacity is subject to random
shocks so the actually realized capacity in a given period is χ − ε, where the
random shock ε is distributed in some interval [0, ε̄] with (known) uniform
distribution ν. In each period, each player chooses a packet rate (packets per
unit time) ai ∈ Ai = [0, χ]. This is a well-studied problem; assuming that the
players’ packets arrive according to a Poisson process, the whole system can
be viewed as what is known as an M/M/1 queue; see Bharath-Kumar and
Jaffe (1981) for instance. It follows from the standard analysis that if ε is the
realization of the shock then packet deliveries will be subject to a delay of

D(a, ε) =

{
1/(χ− ε−

∑N
i=1 ai) if

∑N
i=1 ai < χ− ε

∞ if
∑N
i=1 ai ≥ χ− ε

Given the delay D, each player’s realized utility is its “power” – the ratio of
the p-th power of its own packet rate to the delay:

u∗i (a, D) = api /D
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The exponent p > 0 is a parameter that represents trade-off between rate and
delay.9 (If delay is infinite utility is 0.)

The server is monitored by an agency that does not observe packet rates
but can measure the delay; however, measurement is costly and subject to
error. We assume the agency reports to the players, not the measured delay,
but whether it is above or below a chosen threshold D0. Thus Y = {g, b} where
g is interpreted as “delay was low (below D0)” and b is interpreted as “delay
was high (above D0).”

Each player i’s ex-ante payoff is

ui(a) =


api (χ− ε̄

2 −
∑
aj) if

∑
aj ≤ χ− ε̄

api (χ−
∑
aj)

χ−
∑
aj

2ε̄ if χ− ε̄ <
∑
aj < χ

0 otherwise

and the distribution of signals is

ρ(g|a) =

∫ χ−
∑
aj− 1

D0

0

d ν(x) =
[χ−

∑
aj − 1

D0
]ε̄0

ε̄
,

where [x]ba , min{max{x, a}, b} is the projection of x in the interval [a, b] and
all summations are taken over the range j = 1, . . . , N . As noted, g is the “good”
signal: deviation from any preferred action profile increases the probability of
realized delay, hence increases the probability of measured delay, and reduces
the probability that reported delay will be below the chosen threshold.

Because players do not observe delay directly, the signal of delay must
be provided. It is natural to suppose this signal is provided by some agency,
which must choose the technology by which it observes delay and the threshold
D0 “low delay” and “high delay”. These choices will presumably be made
according to some objective – but different objectives will lead to different
choices of D0 and there is no “obviously correct” objective.10 (It is important
to note that a higher/lower threshold D0 does not correspond to more/less
information, so the choice of D0 is not the choice of how much information to
reveal.)

This can be seen clearly in numerical results for a special case. Set capacity
χ = 1 and ε̄ = 0.3. We consider two possible objectives.

– The agency chooses the threshold D0 to minimize the discount factor δ for
which some efficient sharing can be supported in a PPE.

– The agency chooses the threshold D0 to maximize the set of efficient pay-
offs that can be supported in PPE for some discount factor δ. This is a
somewhat imprecise objective; to make it precise, set

V (η) = {v ∈ V : vi ≥ ηṽ for each i}

9 In order to guarantee our assumptions are satisfied we assume ε̄ ≤ 2
2+p

χ.
10 Presumably the agency would prefer a more accurate measurement technology – but

such a technology would typically be more costly to employ.
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Fig. 2 Largest Achievable Fraction 1− η as a Function of Threshold D0.

where ṽ is the utility of each player’s most preferred action and η ∈ [0, 1].
Note that V (η) ⊂ V (η′) if η′ < η so to maximize the set of efficient payoffs
that can be supported in PPE for some discount factor δ, the agency should
choose D0 so that V (η) ⊂ E(δ) for some δ and the smallest possible η.

Figures 2 and 3 (which are generated from simulations) display the re-
lationship between the threshold D0, the smallest δ and the smallest η for
several values of the exponent p. The tension between the criteria for choosing
the threshold D0 can be seen most clearly when p = 1.2: to make it easiest to
achieve many efficient outcomes the agency should choose a small threshold,
but to make it easiest to achieve some efficient outcome the agency should
choose a large threshold.

We noted in Example 1 that different monitoring structures provide dif-
ferent information, but that there may not be any natural ordering in the
sense of Blackwell informativeness, so that the results of Kandori (1992) do
not apply. In the current Example, note that a different choices of threshold
D0 yield different information, but that higher thresholds are neither more nor
less informative in the sense of Blackwell.

A final remark about this Example may be useful. We have assumed
throughout that players do not condition on their realized utility but it is
worth noting that in this case, even if players did condition on their real-
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Fig. 3 Smallest Achievable Discount Factor δ as a Function of Threshold D0

ized utility monitoring would still be imperfect. While players who transmit
(choose packet rates greater than 0) could back out realized delay, players who
do not transmit cannot back out realized delay and must therefore rely on the
announcement of delay to know how to behave in the next period. Hence these
announcements serve to keep players on the same informatonal page.

4 Perfect Public Equilibria

From this point on, we consider a fixed stage game G and monitoring struc-
ture Y, ρ and maintain the notation and assumptions of Section 2. For fixed
δ ∈ (0, 1) we write E(δ) for the set of (long-run average) payoffs that can be
achieved in a PPE when the discount factor is δ. Our goal is to find conditions
– on payoffs, signal probabilities and discount factor – that enable us to con-
struct PPE that achieve efficient payoffs with some degree of sharing among
all players. In other words, we are interested in conditions that guarantee that
E(δ) ∩ intV 6= ∅.

In order to write down the conditions we need, we first introduce some
notions and notations. The first notions are two measures of the profitability
of deviations; these play a prominent role in our analysis. Given i, j ∈ N with
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i 6= j set:

α(i, j) = sup
{ uj(aj , ã

i
−j)− uj(ãi)

ρ(b|aj , ãi−j)− ρ(b|ãi)
:

aj ∈ Aj , uj(aj , ãi−j) > uj(ã
i)
}

β(i, j) = inf
{ uj(aj , ã

i
−j)− uj(ãi)

ρ(b|aj , ãi−j)− ρ(b|ãi)
:

aj ∈ Aj , uj(aj , ãi−j) ≤ uj(ãi), ρ(b|aj , ãi−j) < ρ(b|ãi)
}

Note that uj(aj , ã
i
−j)−uj(ãi) is the gain or loss to player j from deviating

from i’s preferred action profile ãi and ρ(b|aj , ãi−j) − ρ(b|ãi) is the increase
or decrease in the probability that the bad signal occurs (equivalently, the
decrease or increase in the probability that the good signal occurs) following
the same deviation. In the definition of α(i, j) we consider only deviations
that are strictly profitable; by assumption, such deviations exist and strictly
increase the probability that the bad signal occurs. In view of Assumption 3,
α(i, j) is strictly positive. In the definition of β(i, j) we consider only deviations
that are unprofitable and strictly decrease the probability that the bad signal
occurs, so β(i, j) is the infimum of non-negative numbers and so is necessarily
+∞ (if the infimum is over the empty set) or finite and non-negative.

To gain some intuition, think about how player j could gain by deviating
from ãi. On the one hand, j could gain by deviating to an action that increases
its current payoff. By assumption, such a deviation will increase the probability
of a bad signal; assuming that a bad signal leads to a lower continuation
utility, whether such a deviation will be profitable will depend on the current
gain and on the change in probability; α(i, j) represents a measure of net
profitability from such deviations. On the other hand, player j could also gain
by deviating to an action that decreases its current payoff but also decreases
the probability of a bad signal, and hence leads to a higher continuation utility.
β(i, j) represents a measure of net profitability from such deviations.

The measures α, β yield inequalities that must be satisfied in order that
there be any efficient PPE. Here and throughout, we write intV for the interior
of V relative to the hyperlplane spanned by {ṽi}.

Proposition 1 Fix δ ∈ (0, 1). If E(δ) ∩ intV 6= ∅ then

α(i, j) ≤ β(i, j)

for every i, j ∈ N, j 6= i.

Proposition 2 Fix δ ∈ (0, 1). If E(δ) ∩ intV 6= ∅ then

ṽii − ui(ai, ãi−i) ≥
1

λi

∑
j 6=i

λj α(i, j)
[
ρ(b|ai, ãi−i)− ρ(b|ãi)

]
for every i ∈ N and for all ai ∈ Ai.
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The import of Propositions 1 and 2 is that if any of these inequalities fail
then efficient payoff vectors with some degree of sharing can never be achieved
in PPE, no matter what the discount factor is.11

We need two further pieces of notation. define

δ∗ ,

1 +

1−
∑
i

λivi

∑
i

[
λiṽii +

∑
j 6=i

λj α(i, j) ρ(b|ãi)

]
− 1


−1

For each i, set

vi = max
j 6=i

(
ṽji + α(j, i)[1− ρ(b|ãj)]

)
A straightforward but messy computation shows that vi is at least player i’s
minmax payoff.

Theorem 1 Fix v ∈ intV . If

(i) for all i, j ∈ N , i 6= j: α(i, j) ≤ β(i, j)
(ii) for all i ∈ N , ai ∈ Ai:

ṽii − ui(ai, ãi−i) ≥
1

λi

∑
j 6=i

λj α(i, j)
[
ρ(b|ai, ãi−i)− ρ(b|ãi)

]
(iii) for all i ∈ N : vi > vi
(iv) δ ≥ δ∗

then v can be supported in a PPE of G∞(δ).12,13

The proof of Theorem 1 is explicitly constructive: we provide a simple ex-
plicit algorithm that computes a PPE strategy profile that achieves v. Given
the various parameters of the environment (game payoffs, information struc-
ture, discount factor) and the target vector v, the algorithm takes as input in

11 Proposition 1 might seem somewhat mysterious: α is a measure of the current gain to
deviation and β is a measure of the future gain to deviation; there seems no obvious reason
why PPE should necessitate any particular relationship between α and β. As the proof will
show, this relationship arises from the efficiency of payoffs in V and the assumption that
there are only two signals. Taken together, these enable us to identify a crucial quantity (a
weighted difference of continuation values) that, at any PPE, must lie (weakly) above α and
(weakly) below β; in particular it must be the case that α lies weakly below β.
12 As we have noted, vi is at least player i’s minmax payoff, so (iii) implies that v dominates

the minmax vector, which is of course the familiar necessary condition for achievability in
any equilibrium.
13 Again, we write intV for the interior of V relative to the hyperlplane spanned by {ṽi}.
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Table 3 The algorithm used by each player.

Input: The current continuation payoff v(t) ∈ Vµ
For each j

Calculate the indicator dj(v(t))

Find the player i with largest indicator (if a tie, choose largest i)

i = maxj
{

arg maxj∈N dj(v(t))
}

Player i is active; chooses action ãii
Players j 6= i are inactive; choose action ãij
Update v(t+ 1) as follows:

if yt = g then

vi(t+ 1) = ṽii + (1/δ)(vi(t)− ṽii)− (1/δ − 1)(1/λi)
∑
j 6=i λjα(i, j)ρ(b|ãi)

vj(t+ 1) = ṽij + (1/δ)(vj(t)− ṽij) + (1/δ − 1)α(i, j)ρ(b|ãi)
for all j 6= i

if yt = b then

vi(t+ 1) = ṽii + (1/δ)(vi(t)− ṽii) + (1/δ − 1)(1/λi)
∑
j 6=i λjα(i, j)ρ(g|ãi)

vj(t+ 1) = ṽij + (1/δ)(vj(t)− ṽij)− (1/δ − 1)α(i, j)ρ(g|ãi)
for all j 6= i

period t a current ‘continuation’ vector v(t) and computes, for each player j,
a score dj(v(t)) defined as follows:

dj(v(t)) =
λj [vj(t)− vj ]

λj [ṽ
j
j − vj(t)] +

∑
k 6=j λk α(j, k)ρ(b|ãj)

.

(We initialize the algorithm by setting v(0) = v.) Note that each player can
compute every score dj from the current continuation vector v(t) and the
various parameters. Having computed the entire score vector, d(v(t)), the al-
gorithm finds the player i∗ whose score dj(v(t)) is greatest. (In case of ties,
we arbitrarily choose the player with the largest index.) The current action
profile is i∗’s preferred action profile ãi

∗
. The algorithm then computes the

next period continuation vector as a function of which signal in Y is realized.
Some intuition may be useful. Each player’s score dj(v(t)) represents the

distance from that player’s current cumulative payoff to that player’s target
payoff, with appropriate weights. The player whose score is greatest is therefore
the player who is ‘most deserving’ of play in the current period following its
preferred action profile. The ‘appropriate weights’ reflect both the payoffs in
the stage game and the monitoring structure, and are chosen to yield a strategy
profile that is a PPE and also achieves the desired target payoff vector.

5 Self-Generating Sets

Our approach to Theorem 1 is to identify a class of sets that are natural can-
didates for self-generating sets in the sense of APS, show that the Conditions
we have are sufficient for these sets to be self-generating, and then show that
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the desired target vector lies in one of these sets. In fact, we show that the
Conditions are also necessary for these sets to be self-generating; since this
seems of some interest in itself, we present it as a separate Theorem.

We begin by recalling some notions from APS. Fix a subset W ⊂ co(U)
and a target payoff v ∈ co(U). The target payoff v can be decomposed with
respect to the set W and the discount factor δ < 1 if there exist an action
profile a ∈ A and continuation payoffs γ : Y →W such that

– v is the (weighted) average of current and continuation payoffs when players
follow a

v = (1− δ)u(a) + δ
∑
y∈Y

ρ(y|a)γ(y)

– continuation payoffs provide no incentive to deviate: for each j and each
aj ∈ Aj

vj ≥ (1− δ)uj(aj ,a−j) + δ
∑
y∈Y

ρ(y|aj ,a−j)γj(y)

Write B(W, δ) for the set of target payoffs v ∈ co(U) that can be decomposed
with respect to W for the discount factor δ. The set W is self-generating if
W ⊂ B(W, δ); i.e., every target vector in W can be decomposed with respect
to W .

By assumption, V lies in the bounding hyperplane H. Hence if we write
v ∈ V as a convex combination v = ax+(1−a)x′ with x, x′ ∈ co(U) then both
x, x′ ∈ V . In particular, if it is possible to decompose v ∈ V with respect to
any set and any discount factor, then the utility u(a) of the associated action
profile a and the continuation payoffs must lie in V , and so the associated
action profile a must lie in Ã. Because we are interested in efficient payoffs
we can therefore restrict our search for self-generating sets to subsets W ⊂ V .
In order to understand which sets W ⊂ V can be self-generating, we need to
understand how players might profitably gain from deviating from the current
recommended action profile. Because we are interested in subsets W ⊂ V , the
current recommended action profile will always be ãi for some i, so we need to
ask how a player j might profitably gain from deviating from ãi. As we have
already noted, when i is the active player, a profitable deviation for player j 6= i
might occur in one of two ways: j might gain by choosing an action aj 6= ãij
that increases j’s current payoff or by choosing an action aj 6= ãij that alters
the signal distribution in such a way as to increase j’s future payoff. Because
ãi yields i its best current payoff, a profitable deviation by i might occur only
by choosing an action that that alters the signal distribution in such a way as
to increase i’s future payoff. In all cases, the issue will be the net of the current
gain/loss against the future loss/gain.

We focus attention on sets of the form

Vµ = {v ∈ V : vi ≥ µi for each i}

where µ ∈ Rn. We assume throughout that µi > maxj 6=i ṽ
j
i and Vµ 6= ∅. This

guarantees that when Vµ is not empty, we have Vµ ⊂ intV ; see Figure 4.
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Fig. 4 µ = (1/2, 1/2, 1/2)

The following result shows that the four conditions we have identified (on
µ, the payoff structure, the information structure Y, ρ and the discount factor
δ) are both necessary and sufficient that such a set Vµ be self-generating.

Theorem 2 Fix the stage game G, the monitoring structure Y, ρ, the discount
factor δ and the vector µ with µi > maxj 6=i ṽ

j
i for all i ∈ N . Suppose that Vµ

has a non-empty interior. In order that the set Vµ be self-generating, it is
necessary and sufficient that the following four conditions be satisfied.

(i) for all i, j ∈ N , i 6= j: α(i, j) ≤ β(i, j)
(ii) for all i ∈ N , ai ∈ Ai:

ṽii − ui(ai, ãi−i) ≥
1

λi

∑
j 6=i

λj α(i, j)
[
ρ(b|ai, ãi−i)− ρ(b|ãi)

]
(iii) for all i ∈ N : µi ≥ vi
(iv) the discount factor δ satisfies

δ ≥ δµ ,

1 +

1−
∑
i

λiµi

∑
i

[
λiṽii +

∑
j 6=i

λj α(i, j) ρ(b|ãi)

]
− 1


−1

One way to contrast our approach with that of FLM is to think about
the constraints that need to be satisfied to decompose a given target payoff
v with respect to a given set Vµ. By definition we must find a current action
profile a and continuation payoffs γ. The achievability condition (that v is
the weighted combination of the utility of the current action profile and the
expected continuation values) yields a family of linear equalities. The incentive
compatibility conditions (that players must be deterred from deviating from
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a) yields a family of linear inequalities. In the context of FLM, satisfying all
these linear inequalities simultaneously requires a large and rich collection of
signals so that many different continuation payoffs can be assigned to different
deviations. Because we have only two signals, we are only able to choose two
continuation payoffs but still must satisfy the same family of inequalities – so
our task is much more difficult. It is this difficulty that leads to the Conditions
in Theorem 2.

Note that δµ is decreasing in µ. Since Condition 3 puts an absolute lower
bound on µ and Condition 4 puts an absolute lower bound on δµ this means
that there is a µ∗ such that Vµ∗ is the largest self-generating set (of this form)
and δµ∗ is the smallest discount factor (for which any set of this form can
be self-generating). This may seem puzzling – increasing the discount factor
beyond a point makes no difference – but remember that we are providing
a characterization of self-generating sets and not of PPE payoffs. However,
as we shall see in Theorem 3, for the two-player case, we do obtain a com-
plete characterization of (efficient) PPE payoffs and we demonstrate the same
phenomenon.

6 Two Players

Theorem 2 provides a complete characterization of self-generating sets that
have a special form. If there are only two players then maximal self-generating
sets – the set of all PPE – have this form and so it is possible to provide a
complete characterization of PPE under the additional assumption that the
monitoring structure has full support. We focus on what seems to be the most
striking finding: either there are no efficient PPE outcomes at all for any
discount factor δ < 1 or there is a discount factor δ∗ < 1 with the property
that any target payoff in V that can be achieved as a PPE for some δ can
already be achieved for every δ ≥ δ∗.14

Theorem 3 If N = 2 (two players) and the monitoring structure has full
support (i.e. 0 < ρ(g|a) < 1 for each action profile a), then either

(i) no efficient payoff can be supported in a PPE for any discount factor
δ < 1 or

(ii) there exist µ∗1, µ
∗
2 and a discount factor δ∗ < 1 such that if δ∗ ≤ δ < 1

then the set of payoff vectors that can be supported in a PPE when the
discount factor is δ is precisely

E = {v ∈ V : vi ≥ µ∗i for i = 1, 2}

The proof yields explicit (messy) expressions for µ∗1, µ
∗
2 and δ∗.

14 The results of Theorem 3 suggest comparison with Proposition 4.11 in an unpublished
Working Paper version of FLT. Part 1 of Proposition 4.11 provides sufficient conditions that
there be no PPE; Theorem 3 is sharper. Part 2 of of Proposition 4.11 assumes that the
monitoring structure satisfies “perfect detectability” which seems to require more than two
signals, and in any case is not satisfied in our setting.
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7 Conclusion

This paper contributes to the literature on repeated games with imperfect
public monitoring. It makes stronger assumptions about the stage game and
the monitoring structure than are common in the literature (the closest com-
parisons are Fudenberg, Levine, and Maskin (1994) and Fudenberg, Levine,
and Takahashi (2007)) and uses those stronger assumptions to make stronger
conclusions about efficient PPE. In particular, it proves bounds on the patience
players must possess (i.e. on the discount factor) in order that specific efficient
outcomes be supportable in PPE and it provides explicit constructions of PPE
strategies that support these outcomes.

Clearly there is more to be done in a variety of directions. The monitoring
structure has an enormous influence on the structure of efficient PPE (and
of PPE more generally). If we view the signal/monitoring structure as the
choice made by some agency then (as Example 3 suggests), we might view
the interaction as being among n+ 1 players: an agency that acts only at the
beginning and sets the signal/monitoring structure, which forms part of the
“rules” that govern the interaction of the remaining n players, who interact
repeatedly in the stage game. van der Schaar, Xiao, and Zame (2013) indicates
a few tentative steps in this direction.

Appendix

Proof of Proposition 1 Fix an active player i and an inactive player j. Set

A(i, j) =
{
aj ∈ Aj : uj(aj , ã

i
−j) > uj(ã

i)
}

B(i, j) =
{
aj ∈ Aj : uj(aj , ã

i
−j) ≤ uj(ãi), ρ(b|aj , ãi−j) < ρ(b|ãi)

}
If either of A(i, j) or B(i, j) is empty then α(i, j) ≤ β(i, j) by default, so
assume in what follows that neither of A(i, j), B(i, j) is empty.

Fix a discount factor δ ∈ (0, 1) and let σ be PPE that achieves an efficient
payoff. Assume that i is active following some history: σ(h) = ãi for some h.
Because σ achieves an efficient payoff, we can decompose the payoff v following
h as the weighted sum of the current payoff from ãi and the continuation payoff
assuming that players follow σ; because σ is a PPE, the incentive compatibility
condition for all players j must obtain. Hence for all aj ∈ Aj we have

vj = (1− δ)uj(ãi) + δ
∑
y∈Y

ρ(y|ãi)γj(y)

≥ (1− δ)uj(aj , ãi−j) + δ
∑
y∈Y

ρ(y|aj , ãi−j)γj(y), (1)

Substituting probabilities for the good and bad signals yields

vj = (1− δ)uj(ãi) + δ
[
ρ(g|ãi)γj(g) + ρ(b|ãi)γj(b)

]
≥ (1− δ)uj(aj , ãi−j) + δ

[
ρ(g|aj , ãi−j)γj(g) + ρ(b|aj , ãi−j)γj(b)

]
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Rearranging yields[
ρ(b|aj , ãi−j)− ρ(b|ãi)

][
γj(g)− γj(b)

][ δ

1− δ
]
≥
[
uj(aj , ã

i
−j)− uj(ãi)

]
Now suppose j 6= i is an inactive player. If aj ∈ A(i, j) then ρ(yib|aj , ãi−j) −
ρ(yib|ãi) > 0 (by Assumption 3) so[

γj(g)− γj(b)
][ δ

1− δ
]
≥

uj(aj , ã
i
−j)− uj(ãi)

ρ(b|aj , ãi−j)− ρ(b|ãi)
(2)

If aj ∈ B(i, j) then ρ(yib|aj , ãi−j)− ρ(yib|ãi) < 0 (by definition) so

[
γj(g)− γj(b)

][ δ

1− δ
]
≤

uj(aj , ã
i
−j)− uj(ãi)

ρ(b|aj , ãi−j)− ρ(b|ãi)
(3)

Taking the sup over aj ∈ A(i, j) in (2) and the inf over aj ∈ B(i, j) in (3)
yields α(i, j) ≤ β(i, j) as desired.

Finally, if E(δ) ∩ intV 6= ∅, to achieve any efficient equilibrium payoff in
intV , every player i must be active following some history. Hence, we must
have α(i, j) ≤ β(i, j) for any i, j ∈ N , i 6= j. ut

Proof of Proposition 2 As above, we assume i is active following the
history h and that v is the payoff following h. Fix ai ∈ Ai. By definition,
ui(ã

i) ≥ ui(ai, ãi−i). With respect to probabilities, there are two possibilities.
If ρ(b|ai, ãi−i) ≤ ρ(b|ãi) then we immediately have

ṽii − ui(ai, ãi−i) ≥
1

λi

∑
j 6=i

λjα(i, j)[ρ(b|ai, ãi−i)− ρ(b|ãi)]

because the left-hand side is non-negative and the right-hand side is non-
positive (α(i, j) is positive due to Assumption 3). If ρ(b|ai, ãi−i) > ρ(b|ãi) we
proceed as follows.

We begin with (1) but now we apply it to the active user i, so that for all
ai ∈ Ai we have

vi = (1− δ)ui(ãi) + δ
[
ρ(g|ãi)γi(g) + ρ(b|ãi)γi(b)

]
≥ (1− δ)ui(ai, ãi−i) + δ

[
(ρ(g|ai, ãi−i)γi(g) + ρ(b|ai, ãi−i)γi(b)

]
Rearranging yields

γi(g)− γi(b) ≥
[

1− δ
δ

] [
ui(ai, ã

i
−i)− ui(ãi)

ρ(b|ai, ãi−i)− ρ(b|ãi)

]
Because continuation payoffs are in V , which lies in the hyperplane H, the
continuation payoffs for the active user can be expressed in terms of the con-
tinuation payoffs for the inactive users as

γi(y) =
1

λi

1−
∑
j 6=i

λjγj(y)


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Hence

γi(g)− γi(b) = − 1

λi

∑
j 6=i

λj [γj(g)− γj(b)]

Applying the incentive compatibility constraints for the inactive users implies
that for each aj ∈ A(i, j) we have

γj(g)− γj(b) ≥
[

1− δ
δ

][
uj(aj , ã

i
−j)− uj(ãi)

ρ(b|aj , ãi−j)− ρ(b|ãi)

]
In particular

γj(g)− γj(b) ≥
[

1− δ
δ

]
α(i, j)

and hence

γi(g)− γi(b) ≤ −
1

λi

[
1− δ
δ

]∑
j 6=i

λjα(i, j)


Putting these all together, canceling the factor [1−δ]/δ and remembering that
we are in the case ρ(b|ai, ãi−i) > ρ(b|ãi) yields

ṽii − ui(ai, ãi−i) ≥
1

λi

∑
j 6=i

λjα(i, j)[ρ(b|ai, ãi−i)− ρ(b|ãi)]

which is the desired result. Again, if E(δ) ∩ intV 6= ∅, every player i must
be active after some history to achieve some PPE payoff in intV . Hence, the
above inequality must hold for every i ∈ N . ut

Proof of Theorem 1 Theorem 1 is a straightforward consequence of The-
orem 2. Specifically, for any v ∈ intV that satisfies vi > vi for all i ∈ N , we
define the set

Vv = {v ∈ V : vi ≥ vi for each i}.

Clearly, Vv contains v. Since vi > vi for all i ∈ N , Vv has a non-empty interior.

From the definition that vi = maxj 6=i

(
ṽji + α(j, i)[1− ρ(b|ãj)]

)
, we know that

vi > maxj 6=i ṽ
j
i , because α(j, i) > 0 (due to Assumption 3) and 1−ρ(b|ãj) > 0

(due to Assumption 3, we have 1 − ρ(b|ãj) = ρ(g|ãj) > ρ(g|ai, ãj−i) ≥ 0,

where ai is the action such that ui(ai, ã
j
−i) > ui(ã

j)). Hence, Vv must be in
the interior of V .

When the sufficient conditions in Theorem 1 hold, Theorem 2 guarantees
that the set Vv is a self-generating set for any discount factor δ ≥ δ∗. Hence,
the target payoff v ∈ Vv can be achieved in a PPE for any discount factor
δ ≥ δ∗. ut

Proof of Theorem 2 We first prove that the four conditions are necessary.
Assume that Vµ is a self-generating set; we verify Conditions (i)-(iv) in turn.

Since we focus on µ that sastisfies µi > maxj 6=i ṽ
j
i , we have Vµ ⊂ intV . Since
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Vµ ⊆ E(δ), E(δ)∩ intV must be non-empty. Hence, Propositions 1 and 2 yield
Conditions (i) and (ii).

Now we derive Condition (iii). To do this, we suppose i is active and ex-
amine the decomposition of the inactive player j’s payoff in greater detail.
Because µj > ṽij and vj ≥ µj for every v ∈ Vµ we certainly have vj > ṽij . We
can write j’s incentive compatibility condition as

vj = (1− δ) · ṽij + δ ·
∑
y∈Y

ρ(y|ãi) · γj(y) (4)

≥ (1− δ) · uj(aj , ãi−j) + δ ·
∑
y∈Y

ρ(y|aj , ãi−j) · γj(y).

From the equality constraint in (4), we can solve for the discount factor δ as

δ =
vj − ṽij∑

y∈Y γj(y)ρ(y|ãi)− ṽij

(Note that the denominator can never be zero and the above equation is well
defined, because vj > ṽij implies that

∑
y∈Y γj(y)ρ(y|ãi) > ṽij .) We can then

eliminate the discount factor δ in the inequality of (4). Since vj > ṽij , we
can obtain equivalent inequalities, depending on whether aj is a profitable or
unprofitable current deviation):

– If uj(aj , ã
i
−j) > ṽij then

vj ≤
∑
y∈Y

γj(y)
[(

1−
vj − ṽij

uj(aj , ãi−j)− ṽij

)
ρ(y|ãi)

+
vj − ṽij

uj(aj , ãi−j)− ṽij
ρ(y|aj , ãi−j)

]
(5)

– If uj(aj , ã
i
−j) < ṽij then

vj ≥
∑
y∈Y

γj(y)
[(

1−
vj − ṽij

uj(aj , ãi−j)− ṽij

)
ρ(y|ãi)

+
vj − ṽij

uj(aj , ãi−j)− ṽij
ρ(y|aj , ãi−j)

]
(6)
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For notational convenience, write the coefficient of γj(g) in the above in-
equalities as

cij(aj , ã
i
−j) ,

(
1−

vj − ṽij
uj(aj , ãi−j)− ṽij

)
ρ(g|ãi)

+

(
vj − ṽij

uj(aj , ãi−j)− ṽij

)
ρ(g|aj , ãi−j)

= ρ(g|ãi) + (vj − ṽij)

(
ρ(g|aj , ãi−j)− ρ(g|ãi)
uj(aj , ãi−j)− ṽij

)

= ρ(g|ãi)− (vj − ṽij)

(
ρ(b|aj , ãi−j)− ρ(b|ãi)
uj(aj , ãi−j)− ṽij

)
According to (5), if uj(aj , ã

i
−j) > ṽij then

cij(aj , ã
i
−j) · γj(g) +

[
1− cij(aj , ãi−j)

]
γj(b) ≤ vj (7)

Since γj(g) > γj(b), this is true if and only if

κ+
ij · γj(g) + (1− κ+

ij) · γj(b) ≤ vj , (8)

where κ+
ij , sup{cij(aj , ãi−j) : aj ∈ Aj : uj(aj , ã

i
−j) > ṽij}. (Fulfilling the in-

equalities (7) for all aj such that uj(aj , ã
i
−j) > uj(ã

i) is equivalent to fulfilling
the single inequality (8). If (8) is satisfied, then the inequalities (7) are satis-
fied for all aj such that uj(aj , ã

i
−j) > uj(ã

i) because γj(g) > γj(b) and κ+
ij ≥

cij(aj , ã
i
−j) for all aj such that uj(aj , ã

i
−j) > uj(ã

i). Conversely, if the inequal-

ities (7) are satisfied for all aj such that uj(aj , ã
i
−j) > uj(ã

i) and (8) were vio-

lated, so that κ+
ij ·γj(g)+(1−κ+

ij)·γj(b) > vj , then we can find a κ′ij < κ+
ij such

that κ′ij ·γj(g)+(1−κ′ij) ·γj(b) > vj . Based on the definition of the supremum,

there exists at least a a′j such that uj(a
′
j , ã

i
−j) > uj(ã

i) and cij(a
′
j , ã

i
−j) > c′ij ,

which means that cij(a
′
j , ã

i
−j) · γj(g) + (1 − cij(a

′
j , ã

i
−j)) · γj(b) > vj . This

contradicts the fact that the inequalities (8) are fulfilled for all aj such that
uj(aj , ã

i
−j) > uj(ã

i).)

Similarly, according to (6), for all aj such that uj(aj , ã
i
−j) < ṽij , we must

have
cij(aj , ã

i
−j)γj(g) + [1− cij(aj , ãi−j)]γj(b) ≥ vj .

Since γj(g) > γj(b), the above requirement is fulfilled if and only if

κ−ij · γj(g) + (1− κ−ij) · γj(b) ≥ vj ,

where κ−ij , inf
{
cij(aj , ã

i
−j) : aj ∈ Aj , uj(aj , ãi−j) < ṽij

}
. Hence, the decom-

position (4) for user j 6= i can be simplified as:

ρ(g|ãi) · γj(g) + [1− ρ(g|ãi)]γj(b) = ṽij +
vj − ṽij
δ

κ+
ij γj(g) + (1− κ+

ij) · γj(b) ≤ vj

κ−ij γj(g) + (1− κ−ij) · γj(b) ≥ vj (9)
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Keep in mind that the various continuation values γ and the expressions
κ+
ij , κ

−
ij depend on vj ; where necessary we write the dependence explicitly.

Note that there could be many γj(g) and γj(b) that satisfy (9). For a given
discount factor δ, we call all the continuation payoffs that satisfy (9) feasible –
but whether particular continuation values lie in Vµ depends on the discount
factor.

We assert that κ+
ij(µj) ≤ 0 for all i ∈ N and for all j 6= i. To see this, we

look at a payoff profile v̂i defined as

v̂ij =

{
µj if j 6= i

1
λi

(
1−

∑
k 6=i λkµk

)
if j = i

.

We can prove that the payoff profile v̂i indeed lies in Vµ. In fact, the de-
sired payoff profile v̂i is the maximizer of the following optimization problem:
maxv∈Vµ vi. Since Vµ is compact, the solution to the optimization problem
maxv∈Vµ vi exists. Suppose that the solution is v∗ 6= v̂i, namely there exists a
j 6= i such that v∗j > µj . Then we can define a vector v′ with a slightly lower
payoff for player j and a slightly larger payoff for player i, namely:

v′j = v∗j − ε, v′i = v∗i +
λj
λi
ε, v′k = v∗k, ∀k 6= i, j.

Clearly, we have v′ ∈ H. Since Vµ ⊂ intV , we can find a small enough ε
such that v′ ∈ V and that v′j ≥ µj . Hence, v′ is in Vµ, and has a higher
payoff for player i. This is contradictory to the fact that v∗ is the solution
to the problem maxv∈Vµ vi. Hence, the maximizer of maxv∈Vµ vi must be v̂i.
Therefore, we must have v̂i ∈ Vµ.

Since v̂i ∈ Vµ, the payoff profile v̂i must be decomposable. Observe that
in the payoff profile v̂i, all the players j 6= i get the lowest possible payoffs µj
in Vµ, and player i gets the highest possible payoff in Vµ. As a result, v̂i is
necessarily decomposed by ãi. We look at the following constraint for player
j 6= i in (9):

κ+
ij γj(g) + (1− κ+

ij) γj(b) ≤ µj .

Suppose that κ+
ij(µj) > 0. Since player j has a currently profitable deviation

from ãi, we must set γj(g) > γj(b). Then to satisfy the above inequality,
we must have γj(b) < µj . In other words, when κ+

ij(µj) > 0, all the feasible
continuation payoffs of player j must be outside Vµ. This contradicts the fact
that Vµ is self-generating so the assertion follows.
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The definition of κ+
ij(µj) and the fact that κ+

ij(µj) ≤ 0 entail that

κ+
ij(µj) = sup

aj∈A(i,j)

{
ρ(g|ãi)− (µj − ṽij)

[
ρ(b|aj , ãi−j)− ρ(b|ãi)
uj(aj , ãi−j)− ṽij

]}

= ρ(g|ãi)− (µj − ṽij) inf
aj∈A(i,j)

[
ρ(b|aj , ãi−j)− ρ(b|ãi)
uj(aj , ãi−j)− ṽij

]

= ρ(g|ãi)− (µj − ṽij)

 1

supaj∈A(i,j)

(
uj(aj ,ãi−j)−ṽij

ρ(b|aj ,ãi−j)−ρ(b|ãi)

)


= ρ(g|ãi)− (µj − ṽij)
[

1

α(i, j)

]
≤ 0

This provides a lower bound on µj :

µj ≥ ṽij + α(i, j)ρ(g|ãi) = ṽij + α(i, j)[1− ρ(b|ãi)]

This bound must hold for every i ∈ N and every j 6= i. Hence, we have

µj ≥ max
i 6=j

(
ṽij + α(i, j)[1− ρ(b|ãi)]

)
which is Condition (iii).

Now we derive Condition (iv), the necessary condition on the discount
factor. The minimum discount factor δµ required for Vµ to be a self-generating
set solves the optimization problem

δµ = max
v∈Vµ

δ subject to v ∈ B(Vµ, δ)

where B(Vµ, δ) is the set of payoff profiles that can be decomposed on Vµ under
discount factor δ. Since B(Vµ; δ) = ∪i∈NB(Vµ, δ, ã

i), where B(Vµ, δ, ã
i) is the

set of payoff profiles that can be decomposed on Vµ by ãi under discount factor
δ, the above optimization problem can be reformulated as

δµ = max
v∈Vµ

min
i∈N

δ subject to v ∈ B(Vµ, δ, ã
i). (10)

To solve the optimization problem (10), we explicitly express the constraint
v ∈ B(Vµ, δ, ã

i) using the results derived above.
Some intuition may be useful. Suppose that i is active and j is an inactive

player. Recall that player j’s feasible γj(g) and γj(b) must satisfy (9). There
are many γj(g) and γj(b) that satisfy (9). In Fig. 5, we show the feasible
continuation payoffs that satisfy (9) when κ+

ij(vj) ≤ 0. We can see that all the
continuation payoffs on the heavy line segment are feasible. The line segment
is on the line that represents the decomposition equality ρ(g|ãi) · γj(g) + (1−
ρ(g|ãi)) ·γj(b) = ṽij +

vj−ṽij
δ , and is bounded by the IC constraint on currently
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Decomposition equality

IC constraint
(currently profitable deviation)

IC constraint
(currently unprofitable deviation)

Feasible 
continuation 
payoffs

Fig. 5 Illustrations of the feasible continuation payoffs when κ+ij ≤ 0. γ̄j =

1
λj

(
1−

∑
k 6=j λkµk

)
.

profitable deviations κ+
ij ·γj(g)+(1−κ+

ij) ·γj(b) ≤ vj and the IC constraint on

currently unprofitable deviations κ−ij · γj(g) + (1− κ−ij) · γj(b) ≥ vj . Among all
the feasible continuation payoffs, denoted γ′(y), we choose the one, denoted
γ∗(y), such that for all j 6= i, γ∗j (g) and γ∗j (b) make the IC constraint on
currently profitable deviations in (9) binding. This is because under the same
discount factor δ, if there is any feasible continuation payoff γ′(y) in the self-
generating set, the one that makes the IC constraint on currently profitable
deviations binding is also in the self-generating set. The reason is that, as can
be seen from Fig. 5, the continuation payoff γ∗j (y) that makes the IC constraint
binding has the smallest γ∗j (g) = min γ′j(g) and the largest γ∗j (b) = max γ′j(b).
Formally we establish the following Lemma.

Lemma 1 Fix a payoff profile v and a discount factor δ. Suppose that v is
decomposed by ãi. If there are any feasible continuation payoffs γ′(g) ∈ Vµ and
γ′(b) ∈ Vµ that satisfy (9) for all j 6= i, then there exist feasible continuation
payoffs γ∗(g) ∈ Vµ and γ∗(b) ∈ Vµ such that the IC constraint on currently
profitable deviations in (9) is binding for all j 6= i.

Proof Given feasible continuation payoffs γ′(g) ∈ Vµ and γ′(b) ∈ Vµ, we con-
struct γ∗(g) ∈ Vµ and γ∗(b) ∈ Vµ that are feasible and make the IC constraint
on currently profitable deviations in (9) binding for all j 6= i.

First, define γ∗j (g) and γ∗j (b), ∀j 6= i as the solutions to the decomposition
equality and the binding IC constraint on currently profitable deviations in
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(9):

ρ(g|ãi) · γj(g) + [1− ρ(g|ãi)]γj(b) = ṽij +
vj − ṽij
δ

κ+
ij γj(g) + (1− κ+

ij) · γj(b) = vj

We have shown that κ+
ij ≤ 0. Hence, γ∗j (g) and γ∗j (g) exist and are unique. In

addition, we have[
ρ(g|ãi) · γ∗j (g) + [1− ρ(g|ãi)]γ∗j (b)

]
−
[
κ+
ij γ
∗
j (g) + (1− κ+

ij) · γ
∗
j (b)

]
=
[
ρ(g|ãi)− κ+

ij

]
·
[
γ∗j (g)− γ∗j (b)

]
= (vj − ṽij) ·

(
1

δ
− 1

)
> 0

⇒
[
ρ(g|ãi)− κ+

ij

]
·
[
γ∗j (g)− γ∗j (b)

]
> 0

⇒ γ∗j (g) > γ∗j (b)

Second, we show that γ∗j (g) and γ∗j (b) must satisfy the IC constraint on
currently unprofitable deviations in (9):

κ−ij γj(g) + (1− κ−ij) · γj(b) ≥ vj

Since there exist feasible γ′j(g) and γ′j(b), and since we have shown that γ′j(g) >
γ′j(b), we have

κ−ij γ
′
j(g) + (1− κ−ij) · γ

′
j(b) ≥ κ+

ij γ
′
j(g) + (1− κ+

ij) · γ
′
j(b)

⇒
[
κ−ij − κ

+
ij

]
·
[
γ′j(g)− γ′j(b)

]
≥ 0

⇒ κ−ij ≥ κ
+
ij

Hence, we must have

κ−ij γ
∗
j (g) + (1− κ−ij) · γ

∗
j (b) ≥ κ+

ij γ
∗
j (g) + (1− κ+

ij) · γ
∗
j (b) = vj

Finally, we show that γ∗(y) ∈ Vµ. For this, we need to prove that γ∗j (g) ≤
γ′j(g) and γ∗j (b) ≥ γ′j(b). We prove this by contradiction. Suppose that there
exist γ′j(g) and γ′j(b) that satisfy (9) and γ′j(g) = γ∗j (g)− ζ with ζ > 0. Based
on the decomposition equality, we have

γ′j(b) = γ∗j (b) +

(
ρ(g|ãi)

1− ρ(g|ãi)

)
ζ

We can see that the IC constraint on currently profitable deviations is violated:

κ+
ij γ
′
j(g) + (1− κ+

ij) γ
′
j(b)

= κ+
ij γ
∗
j (g) + (1− κ+

ij) γ
∗
j (b) +

[
−κ+

ij ζ + (1− κ+
ij)

(
ρ(g|ãi)

1− ρ(g|ãi)

)
ζ

]
= vj + (1− κ+

ij)

[
ρ(g|ãi)

1− ρ(g|ãi)
−

κ+
ij

1− κ+
ij

]
ζ

> vj
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where the last inequality results from κ+
ij ≤ 0. Hence, we have γ∗j (g) ≤ γ′j(g)

and γ∗j (b) ≥ γ′j(b) for all γ′j(g) and γ′j(b) that satisfy (9).
Now we can prove that γ∗(y) ∈ Vµ. For this, we need to show that γ∗j (g) ≥

µj and γ∗j (b) ≥ µj for all j ∈ N . For j 6= i, we have γ∗j (g) ≥ γ∗j (b) ≥ γ′j(b) ≥ µj .
For i, we have

γ∗i (g) =
1

λi

1−
∑
j 6=i

λjγ
∗
j (g)

 ≥ 1

λi

1−
∑
j 6=i

λjγ
′
j(g)

 = γ′i(g) ≥ µi

This proves the lemma.

Using this Lemma, we can calculate the continuation payoffs of the inactive
player j 6= i:

γj(g) =

(
1
δ (1− κ+

ij)− [1− ρ(g|ãi)]
)
vj − ( 1

δ − 1)(1− κ+
ij)ṽ

i
j

ρ(g|ãi)− κ+
ij

=
vj
δ
−
(

1− δ
δ

)
ṽij +

(
1− δ
δ

)
[1− ρ(g|ãi)]α(i, j),

γj(b) =

[
ρ(g|ãi)− 1

δκ
+
ij

]
vj + ( 1

δ − 1)κ+
ij ṽ

i
j

ρ(g|ãi)− κ+
ij

=
vj
δ
−
(

1− δ
δ

)
ṽij −

(
1− δ
δ

)
ρ(g|ãi)α(i, j).

The active player’s continuation payoffs can be determined based on the
inactive players’ continuation payoffs since γ(y) ∈ V . We calculate the active
player i’s continuation payoffs as

γi(g) =
vi
δ
−
(

1− δ
δ

)
ṽii −

(
1− δ
δ

)
[1− ρ(g|ãi)] 1

λi

∑
j 6=i

λjα(i, j),

γi(b) =
vi
δ
−
(

1− δ
δ

)
ṽii +

(
1− δ
δ

)
ρ(g|ãi) 1

λi

∑
j 6=i

λjα(i, j)

Hence, the constraint v ∈ B(Vµ, δ, ã
i) on discount factor δ is equivalent to

γ(y) ∈ Vµ for all y ∈ Y ⇔ γi(y) ≥ µi for all i ∈ N, y ∈ Y

Since κ+
ij(µj) ≤ 0, we have γj(y) ≥ vj for all y ∈ Y , which means that

γj(y) ≥ µj for all y ∈ Y . Hence, we only need the discount factor to have the
property that γi(y) ≥ µi for all y ∈ Y . Since γi(g) < γi(b), we need γi(g) ≥ µi,
which leads to

δ ≥ 1

1 + λi(vi − µi)/
[
λi(ṽii − vi) +

∑
j 6=i λj · (1− ρ(g|ãi))α(i, j)

] .
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Hence, the optimization problem (10) is equivalent to

δ(µ) = max
v∈Vµ

min
i∈N

xi(v) (11)

where

xi(v) ,
1

1 + λi(vi − µi)/
(
λi(ṽii − vi) +

∑
j 6=i λj [1− ρ(g|ãi)]α(i, j)

)
Since xi(v) is decreasing in vi, the payoff v∗ that maximizes mini∈N xi(v) must
satisfy xi(v

∗) = xj(v
∗) for all i and j. Now we find the payoff v∗ such that

xi(v
∗) = xj(v

∗) for all i and j.
Define

z ,
λi(v

∗
i − µi)

λi(ṽii − v∗i ) +
∑
j 6=i

λj [1− ρ(g|ãi)]α(i, j)

Then we have

λi(1 + z)v∗i = λi(µi + zṽii)− z
∑
j 6=i

λj [1− ρ(g|ãi)]α(i, j)

from which it follows that

z =

1−
∑
i

λiµi

∑
i

(
λiṽii +

∑
j 6=i

λj [1− ρ(g|ãi)]α(i, j)

)
− 1

Hence, the minimum discount factor is δ(µ) = 1
1+z ; substituting the definition

of z yields Condition (iv). This completes the proof that these Conditions 1-4
are necessary for Vµ to be a self-generating set.

It remains to show that these necessary Conditions are also sufficient.
Specifically, we aim to show that under Conditions (i)-(iv), we can decom-
pose each payoff profile v ∈ Vµ.

For convenience, we summarize how we decompose any v ∈ Vµ as follows.
We first find the active player i according to

i = max
j

{
arg max

j∈N
dj(v)

}
,

where

dj(v) =
λj [vj − µj ]

λj [ṽ
j
j − vj ] +

∑
k 6=j λk α(j, k)ρ(b|ãj)

.

Then we assign the continuation payoff vectors γ(y) as follows:

γi(g) = ṽii + (1/δ)(vi(t)− ṽii)− (1/δ − 1)(1/λi)
∑
j 6=i

λjα(i, j)ρ(b|ãi),

γj(g) = ṽij + (1/δ)(vj(t)− ṽij) + (1/δ − 1)α(i, j)ρ(b|ãi),∀j 6= i,
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and

γi(b) = ṽii + (1/δ)(vi(t)− ṽii) + (1/δ − 1)(1/λi)
∑
j 6=i

λjα(i, j)ρ(g|ãi),

γj(b) = ṽij + (1/δ)(vj(t)− ṽij)− (1/δ − 1)α(i, j)ρ(g|ãi),∀j 6= i.

We need to verify that under Conditions (i)-(iv), the above continuation
payoff vectors γ(g) and γ(b) satisfy 1) the decomposition equalities, 2) the
incentive compatibility constraints, and 3) that γ(g) ∈ Vµ and γ(b) ∈ Vµ.

It is straightforward to check that the decomposition equalities are satisfied.
The incentive compatibility constraints for the inactive players j reduce to
Condition (i), and those for the active player i reduce to Condition (ii).

We proceed to verify that γ(g) ∈ Vµ and γ(b) ∈ Vµ. It is straightforward
to verify that γ(g) ∈ V and γ(b) ∈ V . We only need to show γj(g) ≥ µj and
γj(b) ≥ µj for all j ∈ N . Since α(i, j) > 0, we can observe that γj(g) > γj(b)
for all j 6= i and γi(g) < γi(b). Hence, it suffices to show γj(b) ≥ µj for all
j 6= i and γi(g) ≥ µi.

For any inactive player j, we have

γj(b) ≥ µj
⇔ ṽij + (1/δ)(vj(t)− ṽij)− (1/δ − 1)α(i, j)ρ(g|ãi) ≥ µj
⇔ (1/δ)vj(t)− µj ≥ (1/δ − 1)ṽij + (1/δ − 1)α(i, j)ρ(g|ãi)
⇐ (1/δ)µj − µj ≥ (1/δ − 1)ṽij + (1/δ − 1)α(i, j)ρ(g|ãi)
⇔ µj ≥ ṽij + α(i, j)ρ(g|ãi)
⇐ Condition (iii).
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For the active player i, we have

γi(g) ≥ µi
⇔ ṽii + (1/δ)(vi(t)− ṽii)− (1/δ − 1)(1/λi)

∑
j 6=i

λjα(i, j)ρ(b|ãi) ≥ µi

⇔ (1/δ)

vi(t)− ṽii − (1/λi)
∑
j 6=i

λjα(i, j)ρ(b|ãi)


≥ µi − ṽii − (1/λi)

∑
j 6=i

λjα(i, j)ρ(b|ãi)

⇔ δ ≥
ṽii − vi(t) + (1/λi)

∑
j 6=i λjα(i, j)ρ(b|ãi)

ṽii − µi + (1/λi)
∑
j 6=i λjα(i, j)ρ(b|ãi)

⇔ δ ≥ 1

1 + λi(vi(t)− µi)/
[
λi(ṽii − vi(t)) +

∑
j 6=i λjα(i, j)ρ(b|ãi)

]
⇐ δµ ≥

1

1 + λi(vi(t)− µi)/
[
λi(ṽii − vi(t)) +

∑
j 6=i λjα(i, j)ρ(b|ãi)

]
⇔ δµ ≥

1

1 + di(v(t))
.

According to the first half of the proof about necessity, the above δµ in Con-
dition (iv) is calcualted by solving the optimization problem (11), which is
equivalent to

δµ = max
v∈Vµ

min
j∈N

1

1 + dj(v)
.

From the above, we have δµ ≥ minj∈N
1

1+dj(v) for any v ∈ Vµ. Under the

given v, the active player i is chosen such that di(v) is the largest (i.e. 1
1+di(v)

is the smallest). Hence, we have δµ ≥ minj∈N
1

1+dj(v) = 1
1+di(v) . This yields

γi(g) ≥ µi. ut

Proof of Theorem 3 Propositions 1, 2 show that Conditions (i), (ii) in
Theorem 2 are necessary conditions for the existence of an efficient PPE for any
discount factor. Suppose therefore that Conditions (i), (ii) are satisfied. It is
easily checked that the following definitions of µ∗1, µ

∗
2 guarantee that Condition

(iii) of Theorem 2 are satisfied:

µ∗1 = ṽ2
1 + α(2, 1)

[
1− ρ(b|ã2)

]
, µ∗2 = ṽ1

2 + α(1, 2)
[
1− ρ(b|ã1)

]
.

Finally, if

δ ≥ δ∗ ,

(
1 +

1− λ1µ
∗
1 − λ2µ

∗
2∑

i

[
λiṽii + λ−iα(i,−i)ρ(b|ãi)

]
− 1

)−1

,
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then Condition (iv) of Theorem 2 is also satisfied. It follows from Theorem
2 that for each δ ≥ δ∗, Vµ∗ is a self-generating set, so every target vector in
Vµ∗ can be achieved in a PPE. Hence E(δ) ⊃ Vµ∗ for every δ ∈ [δ∗, 1). To
see that Vµ∗ = E(δ) for every δ ∈ [δ∗, 1), simply note that for each δ the
set E(δ) is closed and convex, hence an interval, hence of the form Vµ for
some µ. However, Condition (iii) of Theorem 2 guarantees that µ ≥ µ∗ which
completes the proof. ut

References

Abreu D, Pearce D, Stacchetti E (1990) Toward a theory of discounted re-
peated games with imperfect monitoring. Econometrica 58(5):1041–1063

Athey S, Bagwell K (2001) Optimal collusion with private information. RAND
Journal of Economics 32(3):428–465

Bharath-Kumar K, Jaffe JM (1981) A new approach to
performance-oriented flow control. IEEE Transactions on Com-
munications 29(4):427–435, DOI 10.1016/j.geb.2006.11.002, URL
http://www.sciencedirect.com/science/article/pii/S0899825606001825

Fudenberg D, Levine DK, Maskin E (1994) The folk theorem with imperfect
public information. Econometrica 62(5):997–1039

Fudenberg D, Levine DK, Takahashi S (2007) Perfect public equilibrium when
players are patient. Games and Economic Behavior 61(1):27 – 49

Green EJ, Porter RH (1984) Noncooperative collusion under imperfect price
information. Econometrica 52(1):87–100

Kandori M (1992) The use of information in repeated games with imperfect
monitoring. Review of Economic Studies 59:581–593

Mailath G, Samuelson L (2006) Repeated Games and Reputations: Long-run
Relationships. Oxford University Press, Oxford, U.K.

Mailath G, Obara I, Sekiguchi T (2002) The maximum efficient equilibrium
payoff in the repeated prisoners’ dilemma. Games and Economic Behavior
40(1):99–122

Radner R, Myerson R, Maskin E (1986) An example of a repeated partnership
game with discounting and with uniformly inefficient equilibria. Review of
Economic Studies 53(1):59 – 69

van der Schaar M, Xiao Y, Zame WR (2013) Designing efficient
resource sharing for impatient players using limited monitoring.
Http://arxiv.org/abs/1309.0262


