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Abstract— Content caching in small base stations or wirelessAQ:1 1

infostations is considered to be a suitable approach to improving2

the efficiency in wireless content delivery. Placing the optimal3

content into local caches is crucial due to storage limitations, but4

it requires knowledge about the content popularity distribution,5

which is often not available in advance. Moreover, local content6

popularity is subject to fluctuations, since mobile users with7

different interests connect to the caching entity over time.8

Which content a user prefers may depend on the user’s context.9

In this paper, we propose a novel algorithm for context-aware10

proactive caching. The algorithm learns context-specific content11

popularity online by regularly observing context information of12

connected users, updating the cache content and observing cache13

hits subsequently. We derive a sublinear regret bound, which14

characterizes the learning speed and proves that our algorithm15

converges to the optimal cache content placement strategy in16

terms of maximizing the number of cache hits. Furthermore, our17

algorithm supports service differentiation by allowing operators18

of caching entities to prioritize customer groups. Our numerical19

results confirm that our algorithm outperforms state-of-the-art20

algorithms in a real world data set, with an increase in the21

number of cache hits of at least 14%.22

Index Terms— Wireless networks, caching at the edge, cache23

content placement, online learning.24

I. INTRODUCTION25

W IRELESS networks have been experiencing a steepAQ:2 26

increase in data traffic in recent years [2]. With the27

emergence of smart mobile devices with advanced multimedia28

capabilities and the trend towards high data rate applications,29

such as video streaming, especially mobile video traffic is30

expected to increase and to account for the majority of31

mobile data traffic within the next few years [2]. However,32

despite recent advances in cellular mobile radio networks,33

these networks cannot keep up with the massive growth of34
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mobile data traffic [3]. As already investigated for wired 35

networks [4], content caching is envisioned to improve the 36

efficiency in wireless content delivery. This is not only due 37

to decreasing disk storage prices, but also due to the fact that 38

typically only a small number of very popular contents account 39

for the majority of data traffic [5]. 40

Within wireless networks, caching at the edge has been 41

extensively studied [1], [6]–[19]. At the radio access network 42

level, current approaches comprise two types of wireless local 43

caching entities. The first type are macro base stations (MBSs) 44

and small base stations (SBSs) that are implemented in 45

wireless small cell networks, dispose of limited storage capac- 46

ities and are typically owned by the mobile network opera- 47

tor (MNO). The second type are wireless infostations with 48

limited storage capacities that provide high bandwidth local 49

data communication [16], [17], [20], [21]. Wireless infosta- 50

tions could be installed in public or commercial areas and 51

could use Wi-Fi for local data communication. They could 52

be owned by content providers (CPs) aiming at increasing 53

their users’ quality of experience. Alternatively, third parties 54

(e.g., the owner of a commercial area) could offer caching 55

at infostations as a service to CPs or to the users [17]. Both 56

types of caching entities store a fraction of available popular 57

content in a placement phase and serve local users’ requests 58

via localized communication in a delivery phase. 59

Due to the vast amount of content available in multi- 60

media platforms, not all available content can be stored in 61

local caches. Hence, intelligent algorithms for cache content 62

placement are required. Many challenges of cache content 63

placement concern content popularity. Firstly, optimal cache 64

content placement primarily depends on the content popularity 65

distribution, however, when caching content at a particular 66

point in time, it is unclear which content will be requested 67

in future. Not even an estimate of the content popularity 68

distribution might be at hand. It therefore must be computed 69

by the caching entity itself [1], [13]–[19], which is not only 70

legitimate from an overhead point of view, since else a periodic 71

coordination with the global multimedia platform would be 72

required. More importantly, local content popularity in a 73

caching entity might not even replicate global content popular- 74

ity as monitored by the global multimedia platform [22]–[24]. 75

Hence, caching entities should learn local content popularity 76

for a proactive cache content placement. Secondly, different 77

content can be favored by different users. Consequently, local 78

content popularity may change according to the different 79

preferences of fluctuating mobile users in the vicinity of a 80
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caching entity. Therefore, proactive cache content placement81

should take into account the diversity in content popularity82

across the local user population. Thirdly, the users’ preferences83

in terms of consumed content may differ based on their84

contexts, such as their location [24], personal characteristics85

(e.g., age [25], gender [26], personality [27], mood [28]),86

or their devices’ characteristics [29]. Hence, cache content87

placement should be context-aware by taking into account88

that content popularity depends on a user’s context. Thereby,89

a caching entity can learn the preferences of users with dif-90

ferent contexts. Fourthly, while its typical goal is to maximize91

the number of cache hits, cache content placement should also92

take into account the cache operator’s specific objective.93

In particular, appropriate caching algorithms should be capable94

of incorporating business models of operators to offer service95

differentiation to their customers, e.g., by optimizing cache96

content according to different prioritization levels [30], [31].97

For example, if users with different preferences are98

connected to a caching entity, the operator could prioritize99

certain users by caching content favored by these users.100

Moreover, certain CPs’ content could be prioritized in caching101

decisions.102

In this paper, we propose a novel context-aware proactive103

caching algorithm, which for the first time jointly considers104

the above four aspects. Firstly, instead of assuming a priori105

knowledge about content popularity, which might be externally106

given or estimated in a separate training phase, our algorithm107

learns the content popularity online by observing the users’108

requests for cache content. Secondly, by explicitly allowing109

different content to be favored by different users, our algorithm110

is especially suitable for mobile scenarios, in which users with111

different preferences arrive at the wireless caching entity over112

time. Thirdly, we explicitly model that the content popularity113

depends on a user’s context, such as his/her personal character-114

istics, equipment, or external factors, and propose an algorithm115

for content caching that learns this context-specific content116

popularity. Using our algorithm, a caching entity can proac-117

tively cache content for the currently connected users based on118

what it has previously learned, instead of simply caching the119

files that are popular “on average”, across the entire population120

of users. The learned cache content placement strategy is121

proven to converge to the optimal cache content placement122

strategy which maximizes the expected number of cache hits.123

Fourthly, the algorithm allows for service differentiation by124

customer prioritization. The contributions of this paper are as125

follows:126

• We present a context-aware proactive caching algorithm127

based on contextual multi-armed bandit optimization.128

Our algorithm incorporates diversity in content popularity129

across the user population and takes into account the130

dependence of users’ preferences on their context.131

Additionally, it supports service differentiation by132

prioritization.133

• We analytically bound the loss of the algorithm compared134

to an oracle, which assumes a priori knowledge about135

content popularity. We derive a sublinear regret bound,136

which characterizes the learning speed and proves that137

our algorithm converges to the optimal cache content138

placement strategy which maximizes the expected 139

number of cache hits. 140

• We present additional extensions of our approach, such 141

as its combination with multicast transmissions and the 142

incorporation of caching decisions based on user ratings. 143

• We numerically evaluate our caching algorithm based 144

on a real world data set. A comparison shows that by 145

exploiting context information in order to proactively 146

cache content for currently connected users, our 147

algorithm outperforms reference algorithms. 148

The remainder of the paper is organized as follows. 149

Section II gives an overview of related works. In Section III, 150

we describe the system model, including an architecture 151

and a formal problem formulation. In Section IV, we pro- 152

pose a context-aware proactive caching algorithm. Theoretical 153

analysis of regret and memory requirements are provided in 154

Sections V and VI, respectively. In Section VII, we propose 155

some extensions of the algorithm. Numerical results are pre- 156

sented in Section VIII. Section IX concludes the paper. 157

II. RELATED WORK 158

Practical caching systems often use simple cache replace- 159

ment algorithms that update the cache continuously during 160

the delivery phase. Common examples of cache replacement 161

algorithms are Least Recently Used (LRU) or Least Frequently 162

Used (LFU) (see [32]). While these simple algorithms do 163

not consider future content popularity, recent work has been 164

devoted to developing sophisticated cache replacement algo- 165

rithms by learning content popularity trends [33], [34]. 166

In this paper, however, we focus on cache content place- 167

ment for wireless caching problems with a placement phase 168

and a delivery phase. We start by discussing related work 169

that assumes a priori knowledge about content popularity. 170

Information-theoretic gains achieved by combining caching 171

at user devices with a coded multicast transmission in the 172

delivery phase are calculated in [7]. The proposed coded 173

caching approach is optimal up to a constant factor. Content 174

caching at user devices and collaborative device-to-device 175

communication are combined in [8] to increase the efficiency 176

of content delivery. In [9], an approximation algorithm for 177

uncoded caching among SBSs equipped with caches is given, 178

which minimizes the average delay experienced by users that 179

can be connected to several SBSs simultaneously. Building 180

upon the same caching architecture, in [10], an approxima- 181

tion algorithm for distributed coded caching is presented for 182

minimizing the probability that moving users have to request 183

parts of content from the MBS instead of the SBSs. In [11], 184

a multicast-aware caching scheme is proposed for minimizing 185

the energy consumption in a small cell network, in which 186

the MBS and the SBSs can perform multicast transmissions. 187

The outage probability and average content delivery rate in 188

a network of SBSs equipped with caches are analytically 189

calculated in [12]. 190

Next, we discuss related work on cache content placement 191

without prior knowledge about content popularity. A com- 192

parison of the characteristics of our proposed algorithm with 193

related work of this type is given in Table I. Driven by a 194
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TABLE I

COMPARISON WITH RELATED WORK ON LEARNING-BASED CACHING WITH PLACEMENT AND DELIVERY PHASE

proactive caching paradigm, [13] and [14] propose a caching195

algorithm for small cell networks based on collaborative196

filtering. Fixed global content popularity is estimated using197

a training set and then exploited for caching decisions to198

maximize the average user request satisfaction ratio based on199

their required delivery rates. While their approach requires

AQ:3

200

a training set of known content popularities and only learns201

during a training phase, our proposed algorithm does not need202

a training phase, but learns the content popularity online,203

thus also adapting to varying content popularities. In [15],204

using a multi-armed bandit algorithm, an SBS learns a fixed205

content popularity distribution online by refreshing its cache206

content and observing instantaneous demands for cached files.207

In this way, cache content placement is optimized over time to208

maximize the traffic served by the SBS. The authors extend209

their framework for a wireless infostation in [16] and [17]210

by additionally taking into account the costs for adding files211

to the cache. Moreover, they provide theoretical sublinear212

regret bounds for their algorithms. A different extension of213

the multi-armed bandit framework is given in [18], which214

exploits the topology of users’ connections to the SBSs by215

incorporating coded caching. The approach in [18] assumes216

a specific type of content popularity distribution. Since in217

practice the type of distribution is unknown a priori, such an218

assumption is restrictive. In contrast, our proposed algorithm is219

model-free since it does not assume a specific type of content220

popularity distribution. Moreover, in [15]–[18], the optimal221

cache content placement strategy is learned over time based222

only on observations of instantaneous demands. In contrast,223

our proposed algorithm additionally takes diversity of content224

popularity across the user population into account and exploits225

users’ context information. Diversity in content popularity226

across the user population is for example taken into account227

in [19], but again without considering the users’ contexts.228

Users are clustered into groups of similar interests by a spectral229

clustering algorithm based on their requests in a training phase.230

Each user group is then assigned to an SBS which learns the231

content popularity of its fixed user group over time. Hence,232

in [19], each SBS learns a fixed content popularity distribution233

under the assumption of a stable user population, whereas234

our approach allows reacting to arbitrary arrivals of users235

preferring different content.236

In summary, compared to related work on cache content237

placement (see Table I), our proposed algorithm for the first238

time jointly learns the content popularity online, allows for239

diversity in content popularity across the user population,240

takes into account the dependence of users’ preferences on241

their context and supports service differentiation. Compared 242

to our previous work [1], we now take into account context 243

information at a single user level, instead of averaging context 244

information over the currently connected users. This enables 245

more fine-grained learning. Additionally, we incorporate ser- 246

vice differentiation and present extensions, e.g., to multicast 247

transmission and caching decisions based on user ratings. 248

We model the caching problem as a multi-armed bandit 249

problem. Multi-armed bandit problems [35] have been applied 250

to various scenarios in wireless communications before [36], 251

such as cognitive jamming [37] or mobility management [38]. 252

Our algorithm is based on contextual multi-armed bandit 253

algorithms [39]–[42]. The closest related work is [42], in 254

which several learners observe a single context arrival in each 255

time slot and select a subset of actions to maximize the sum of 256

expected rewards. While [42] considers multiple learners, our 257

system has only one learner – the caching entity selecting a 258

subset of files to cache in each time slot. Compared to [42], we 259

extended the algorithm in the following directions: We allow 260

multiple context arrivals in each time slot, and select a subset 261

of actions which maximize the sum of expected rewards given 262

the context arrivals. In the caching scenario, this translates 263

to observing the contexts of all currently connected users 264

and caching a subset of files which maximize the sum of 265

expected numbers of cache hits given the users’ contexts. 266

In addition, we enable each arriving context to be annotated 267

with a weight, so that if different contexts arrive within the 268

same time slot, differentiated services can be provided per 269

context, by selecting a subset of actions which maximize the 270

sum of expected weighted rewards. In the caching scenario, 271

this enables the caching entity to prioritize certain users when 272

selecting the cache content, by placing more weight on files 273

that are favored by prioritized users. Moreover, we enable each 274

action to be annotated with a weight, such that actions can be 275

prioritized for selection. In the caching scenario, this enables 276

the caching entity to prioritize certain files when selecting the 277

cache content. 278

III. SYSTEM MODEL 279

A. Wireless Local Caching Entity 280

We consider a wireless local caching entity that can either 281

be an SBS equipped with a cache in a small cell network or 282

a wireless infostation. The caching entity is characterized by 283

a limited storage capacity and a reliable backhaul link to the 284

core network. In its cache memory, the caching entity can 285

store up to m files from a finite file library F containing 286
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Fig. 1. System model.

|F | ∈ N files, where we assume for simplicity that all files287

are of the same size. Users located in the coverage area can288

connect to the caching entity. The set of currently connected289

users may change dynamically over time due to the users’290

mobility. At most Umax ∈ N users can be simultaneously291

connected to the caching entity. To inform connected users292

about available files, the caching entity periodically broadcasts293

the information about the current cache content [15]–[17]. If a294

user is interested in a file that the caching entity stored in its295

cache, the user’s device requests the file from the caching296

entity and is served via localized communication. In this case,297

no additional load is put on neither the macro cellular network298

nor the backhaul network. If the file is not stored in the299

caching entity, the user’s device does not request the file300

from the caching entity. Instead, it requests the file from the301

macro cellular network by connecting to an MBS. The MBS302

downloads the file from the core network via its backhaul303

connection, such that in this case, load is put on both the304

macro cellular as well as the backhaul network. Hence, the305

caching entity can only observe requests for cached files,306

i.e., cache hits, but it cannot observe requests for non-cached307

files, i.e., cache misses. Note that this restriction is specific308

to wireless caching and is usually not used in wired caching309

scenarios. In this way, the caching entity is not congested by310

cache misses [15]–[17], but learning content popularity is more311

difficult. Fig. 1 shows an illustration of the considered system312

model.313

In order to reduce the load on the macro cellular network314

and the backhaul network, a caching entity might aim at315

optimizing the cache content such that the traffic it can serve316

is maximized, which corresponds to maximizing the number317

of cache hits. For this purpose, the caching entity should learn318

which files are most popular over time.319

B. Service Differentiation320

Maximizing the number of cache hits might be an adequate321

goal of cache content placement in case of an MNO operating322

an SBS, one reason being net neutrality restrictions. However,323

the operator of an infostation, e.g., a CP or third party operator,324

may want to provide differentiated services to its customers325

(those can be both users and CPs). For example, if users326

with different preferences are connected to an infostation, the327

operator can prioritize certain users by caching content favored328

TABLE II

EXAMPLES OF CONTEXT DIMENSIONS

by these users. In this case, a cache hit by a prioritized user 329

is associated with a higher value than a cache hit by a regular 330

user. For this purpose, we consider a finite set S of service 331

types. For service type s ∈ S, let vs ≥ 1 denote a fixed and 332

known weight associated with receiving one cache hit by a 333

user of service type s. Let vmax := maxs∈S vs . The weights 334

might be selected based on a pricing policy, e.g., by paying a 335

monthly fee, a user can buy a higher weight. Alternatively, the 336

weights might be selected based on a subscription policy, e.g., 337

subscribers might obtain priority compared to one-time users. 338

Yet another prioritization might be based on the importance 339

of users in terms of advertisement or their influence on the 340

operator’s reputation. Finally, prioritization could be based 341

on usage patterns, e.g., users might indicate their degree of 342

openness in exploring other than their most preferred content. 343

Taking into account the service weights, the caching entity’s 344

goal becomes to maximize the number of weighted cache hits. 345

Clearly, the above service differentiation only takes effect if 346

users with different preferences are present, i.e., if content 347

popularity is heterogeneous across the user population. 348

Another service differentiation can be applied in case of a 349

third party operator whose customers are different CPs. The 350

operator may want to prioritize certain CPs by caching their 351

content. In this case, each content is associated with a weight. 352

Here, we consider a fixed and known prioritization weight 353

w f ≥ 1 for each file f ∈ F and let wmax := max f ∈F w f . 354

The prioritization weights can either be chosen individually 355

for each file or per CP. 356

The case without service differentiation, where the goal is 357

to maximize the number of (non-weighted) cache hits, is a 358

special case, in which there is only one service type s with 359

weight vs = 1 and the prioritization weights satisfy w f = 1 360

for all f ∈ F . While we refer to the more general case in the 361

subsequent sections, this special case is naturally contained in 362

our analysis. 363

C. Context-Specific Content Popularity 364

Content popularity may vary across a user population since 365

different users may prefer different content. A user’s prefer- 366

ences might be linked to various factors. We refer to such 367

factors as context dimensions and give some examples in 368

Table II. Relevant personal characteristics may, for example, 369

be demographic factors (e.g., age, gender), personality, or 370

mood. In addition, a user’s preferences may be influenced by 371
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Fig. 2. Context-aware proactive caching architecture.

user equipment, such as the type of device used to access and372

consume the content (e.g., smart phone, tablet), as well as373

its capabilities, or its battery status. Besides, external factors374

may have an impact on a user’s preferences, such as the user’s375

location, the time of day, the day of the week, and the taking376

place of events (e.g., soccer match, concert). Clearly, this377

categorization is not exhaustive and the impact of each single378

context dimension on content popularity is unknown a priori.379

Moreover, a caching entity may only have access to some of380

the context dimensions, e.g., due to privacy reasons. However,381

our model does not rely on specific context dimensions; it382

can use the information that is collected from the user. If the383

caching entity does have access to some relevant context384

dimensions, these can be exploited to learn context-specific385

content popularity.386

D. Context-Aware Proactive Caching Architecture387

Next, we describe the architecture for context-aware proac-388

tive caching, which is designed similarly to an architecture389

presented in [33]. An illustration of the context-aware proac-390

tive caching architecture is given in Fig. 2. Its main building391

blocks are the Local Cache, a Cache Management entity,392

a Learning Module, a Storage Interface, a User Interface,393

and a Context Monitor. The Cache Management consists of394

a Cache Controller and a Request Handler. The Learning395

Module contains a Decision Engine, a Learning Database, and396

a Context Database. The workflow consists of several phases397

as enumerated in Fig. 2 and is described below.398

• Initialization399

(1) The Learning Module is provided with the goal of400

caching (i.e., maximize number of cache hits or achieve401

operator-specific goal). It fixes the appropriate periodicity402

of context monitoring and cache refreshment. Then, it403

informs the Cache Management and the Context Monitor404

about the periodicity.405

• Periodic Context Monitoring and Cache Refreshment406

(2) The Context Monitor periodically gathers context407

information by accessing information about currently408

connected users available at the User Interface and409

optionally by collecting additional information from410

Fig. 3. Sequence of operations of context-aware proactive caching in time
slot t .

external sources (e.g., social media platforms). If different 411

service types exist, the Context Monitor also retrieves 412

the service types of connected users. (3) The Context 413

Monitor delivers the gathered information to the Context 414

Database in the Learning Module. (4) The Decision 415

Engine periodically extracts the newly monitored context 416

information from the Context Database. (5) Upon com- 417

parison with results from previous time slots as stored in 418

the Learning Database, (6) the Decision Engine decides 419

which files to cache in the coming time slot. (7) The 420

Decision Engine instructs the Cache Controller to refresh 421

the cache content accordingly. (8) The Cache Controller 422

compares the current and the required cache content and 423

removes non-required content from the cache. If some 424

required content is missing, the Cache Controller directs 425

the Storage Interface to fetch the content from storage 426

servers and to store it into the local cache. (9) Then, 427

the Cache Controller informs the User Interface about 428

the new cache content. (10) The User Interface pushes 429

the information about new cache content to currently 430

connected users. 431

• User Requests 432

(11) When a user requests a cached file, the User Interface 433

forwards the request to the Request Handler. The Request 434

Handler stores the request information, retrieves the file 435

from the local cache and serves the request. 436

• Periodic Learning 437

(12) Upon completion of a time slot, the Request Han- 438

dler hands the information about all requests from that 439

time slot to the Learning Module. The Learning Module 440

updates the Learning Database with the context informa- 441

tion from the beginning of the time slot and the number 442

of requests for cached files in that time slot. 443

E. Formal Problem Formulation 444

Next, we give a formal problem formulation for context- 445

aware proactive caching. The caching system operates in 446

discrete time slots t = 1, 2, ..., T , where T denotes the 447

finite time horizon. As illustrated in Fig. 3, each time slot t 448

consists of the following sequence of operations: (i) The 449

context of currently connected users and their service types 450

are monitored. Let Ut be the number of currently connected 451

users. We assume that 1 ≤ Ut ≤ Umax and we specifically 452

allow the set of currently connected users to change in between 453

the time slots of the algorithm, so that user mobility is taken 454

into account. Let D be the number of monitored context 455

dimensions per user. We denote the D-dimensional context 456

space by X . It is assumed to be bounded and can hence be 457

set to X := [0, 1]D without loss of generality. Let xt,i ∈ X 458



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

be the context vector of user i observed in time slot t . Let459

xt = (xt,i)i=1,...,Ut be the collection of contexts of all users460

in time slot t . Let st,i ∈ S be the service type of user i in461

time slot t and let st = (st,i )i=1,...,Ut be the collection of462

service types of all users in time slot t . (ii) The cache content463

is refreshed based on the contexts xt, the service types st and464

their service weights, the file prioritization weights w f , f ∈ F ,465

and knowledge from previous time slots. Then, connected466

users are informed about the current cache content, which is467

denoted by Ct = {ct,1, ..., ct,m}. (iii) Until the end of the time468

slot, users can request currently cached files. Their requests469

are served. The demand dct, j (xt,i , t) of each user i = 1, ..., Ut470

for each cached file ct, j ∈ Ct , j = 1, ..., m, in this time slot471

is observed, i.e., the number of cache hits for each cached file472

is monitored.473

The number of times a user with context vector x ∈ X474

requests a file f ∈ F within one time slot is a random variable475

with unknown distribution. We denote this random demand476

by d f (x) and its expected value by μ f (x) := E(d f (x)).477

The random demand is assumed to take values in [0, Rmax],478

where Rmax ∈ N is the maximum possible number of479

requests a user can submit within one time slot. This explicitly480

incorporates that a user may request the same file repeatedly481

within one time slot. In time slot t , the random variables482

(d f (xt,i))i=1,..,Ut , f ∈F , are assumed to be independent, i.e., the483

requests of currently connected users and between different484

files are independent of each other. Moreover, each random485

variable d f (xt,i) is assumed to be independent of past caching486

decisions and previous demands.487

The goal of the caching entity is to select the cache488

content in order to maximize the expected cumulative number489

of (weighted) cache hits up to the finite time horizon T .490

We introduce a binary variable yt, f , which describes if file f491

is cached in time slot t , where yt, f = 1, if f ∈ Ct , and 0492

otherwise. Then, the problem of cache content placement can493

be formally written as494

max
T∑

t=1

∑

f ∈F

yt, f w f

Ut∑

i=1

vst,i μ f (xt,i)495

s.t.
∑

f ∈F

yt, f ≤ m, t = 1, ..., T,496

yt, f ∈ {0, 1}, f ∈ F, t = 1, ..., T . (1)497

Let us now first assume that the caching entity had a priori498

knowledge about context-specific content popularity like an499

omniscient oracle, i.e., suppose that for each context vector500

x ∈ X and for each file f ∈ F , the caching entity would501

know the expected demand μ f (x) = E(d f (x)). In this case,502

problem (1) corresponds to an integer linear programming503

problem. The problem can be decoupled into T independent504

sub-problems, one for each time slot t . Each sub-problem is505

a special case of the knapsack problem [43] with a knapsack506

of capacity m and with items of non-negative profit and unit507

weights. Hence, its optimal solution can be easily computed508

in a running time of O(|F | log(|F |)) as follows. In time509

slot t , given the contexts xt and the service types st, the510

optimal solution is given by ranking the files according to their511

(weighted) expected demands and by selecting the m highest 512

ranked files. We denote these top-m files for pair (xt, st) by 513

f ∗
1 (xt, st), f ∗

2 (xt, st), ..., f ∗
m (xt, st) ∈ F . Formally, for j = 514

1, ..., m, they satisfy 1
515

f ∗
j (xt, st)∈ argmax

f ∈F\(⋃ j−1
k=1 { f ∗

k (xt,st)})
w f

Ut∑

i=1

vst,i μ f (xt,i), 516

(2) 517

where
⋃0

k=1{ f ∗
k (xt, st)} := ∅. We denote by C∗

t (xt, st) := 518⋃m
k=1{ f ∗

k (xt, st)} an optimal choice of files to cache in time 519

slot t . Consequently, the collection 520

(C∗
t (xt, st))t=1,...,T (3) 521

is an optimal solution to problem (1). Since this solution can 522

be achieved by an omniscient oracle under a priori knowledge 523

about content popularity, we call it the oracle solution. 524

However, in this paper we assume that the caching entity 525

does not have a priori knowledge about content popularity. 526

In this case, the caching entity cannot simply solve problem (1) 527

as described above, since the expected demands μ f (x) = 528

E(d f (x)) are unknown. Hence, the caching entity has to learn 529

these expected demands over time by observing the users’ 530

demands for cached files given the users’ contexts. For this 531

purpose, over time, the caching entity has to find a trade- 532

off between caching files about which little information is 533

available (exploration) and files of which it believes that they 534

will yield the highest demands (exploitation). In each time 535

slot, the choice of files to be cached depends on the history of 536

choices in the past and the corresponding observed demands. 537

An algorithm which maps the history to the choices of files 538

to cache is called a learning algorithm. The oracle solution 539

given in (3) can be used as a benchmark to evaluate the loss 540

of learning. Formally, the regret of learning with respect to 541

the oracle solution is given by 542

R(T ) =
T∑

t=1

m∑

j=1

Ut∑

i=1

vst,i

(
w f ∗

j (xt,st) E
(

d f ∗
j (xt,st)(xt,i)

)
543

− E
(
wct, j dct, j (xt,i , t)

))
, (4) 544

where dct, j (xt,i , t) denotes the random demand for the cached 545

file ct, j ∈ Ct of user i with context vector xt,i at time t . Here, 546

the expectation is taken with respect to the choices made by 547

the learning algorithm and the distributions of the demands. 548

IV. A CONTEXT-AWARE PROACTIVE 549

CACHING ALGORITHM 550

In order to proactively cache the most suitable files given 551

the context information about currently connected users, the 552

caching entity should learn context-specific content popularity. 553

Due to the above formal problem formulation, this prob- 554

lem corresponds to a contextual multi-armed bandit prob- 555

lem and we can adapt and extend a contextual learning 556

algorithm [41], [42] to our setting. Our algorithm is based 557

1Several files may have the same expected demands, i.e., the optimal set of
files may not be unique. This is also captured here.
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on the assumption that users with similar context information558

will request similar files. If this natural assumption holds true,559

the users’ context information together with their requests560

for cached files can be exploited to learn for future caching561

decisions. For this purpose, our algorithm starts by partitioning562

the context space uniformly into smaller sets, i.e., it splits563

the context space into parts of similar contexts. Then, the564

caching entity learns the content popularity independently in565

each of these sets of similar contexts. The algorithm operates566

in discrete time slots. In each time slot, the algorithm first567

observes the contexts of currently connected users. Then, the568

algorithm selects which files to cache in this time slot. Based569

on a certain control function, the algorithm is either in an570

exploration phase, in which it chooses a random set of files571

to cache. Theses phases are needed to learn the popularity572

of files which have not been cached often before. Otherwise,573

the algorithm is in an exploitation phase, in which it caches574

files which on average were requested most when cached in575

previous time slots with similar user contexts. After caching576

the new set of files, the algorithm observes the users’ requests577

for these files. In this way, over time, the algorithm learns578

context-specific content popularity.579

The algorithm for selecting m files is called Context-580

Aware Proactive Caching with Cache Size m (m-CAC) and its581

pseudocode is given in Fig. 4. Next, we describe the algorithm582

in more detail. In its initialization phase, m-CAC creates a583

partition PT of the context space X = [0, 1]D into (hT )D sets,584

that are given by D-dimensional hypercubes of identical size585

1
hT

×. . .× 1
hT

. Here, hT is an input parameter which determines586

the number of sets in the partition. Additionally, m-CAC keeps587

a counter N f,p(t) for each pair consisting of a file f ∈ F and588

a set p ∈ PT . The counter N f,p(t) is the number of times in589

which file f ∈ F was cached after a user with context from590

set p was connected to the caching entity up to time slot t591

(i.e., if 2 users with context from set p are connected in one592

time slot and file f is cached, this counter is increased by 2).593

Moreover, m-CAC keeps the estimated demand d̂ f,p(t) up to594

time slot t of each pair consisting of a file f ∈ F and a set595

p ∈ PT . This estimated demand is calculated as follows: Let596

E f,p(t) be the set of observed demands of users with context597

from set p when file f was cached up to time slot t . Then,598

the estimated demand of file f in set p is given by the sample599

mean d̂ f,p(t) := 1
|E f,p (t)|

∑
d∈E f,p(t) d .2,3

600

In each time slot t , m-CAC first observes the number of601

currently connected users Ut , their contexts xt = (xt,i)i=1,...,Ut602

and the service types st = (st,i )i=1,...,Ut . For each context603

vector xt,i , m-CAC determines the set pt,i ∈ PT , to which the604

context vector belongs, i.e., such that xt,i ∈ pt,i holds. The605

collection of these sets is given by pt = (pt,i)i=1,...,Ut . Then,606

the algorithm can either be in an exploration phase or in an607

exploitation phase. In order to determine the correct phase in608

the current time slot, the algorithm checks if there are files that609

2The set E f,p(t) does not have to be stored since the estimated demand
d̂ f,p (t) can be updated based on d̂ f,p(t −1), N f,p (t −1) and on the observed
demands at time t .

3Note that in the pseudocode in Fig. 4, the argument t is dropped from
counters N f,p (t) and d̂ f,p (t) since previous values of these counters do not
have to be stored.

Fig. 4. Pseudocode of m-CAC.

have not been explored sufficiently often. For this purpose, the 610

set of under-explored files Fue
pt

(t) is calculated based on 611

Fue
pt

(t) := ∪Ut
i=1 Fue

pt,i
(t) 612

:= ∪Ut
i=1{ f ∈ F : N f,pt,i (t) ≤ K (t)}, (5) 613

where K (t) is a deterministic, monotonically increasing con- 614

trol function, which is an input to the algorithm. The control 615

function has to be set adequately to balance the trade-off 616

between exploration and exploitation. In Section V, we will 617

select a control function that guarantees a good balance in 618

terms of this trade-off. 619

If the set of under-explored files is non-empty, m-CAC 620

enters the exploration phase. Let u(t) be the size of the set of 621

under-explored files. If the set of under-explored files contains 622

at least m elements, i.e., u(t) ≥ m, the algorithm randomly 623

selects m files from Fue
pt

(t) to cache. If the set of under- 624

explored files contains less than m elements, i.e., u(t) < m, it 625
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selects all u(t) files from Fue
pt

(t) to cache. Since the cache is626

not fully filled by u(t) < m files, (m − u(t)) additional files627

can be cached. In order to exploit knowledge obtained so far,628

m-CAC selects (m − u(t)) files from F \ Fue
pt

(t) based on a629

file ranking according to the estimated weighted demands, as630

defined by the files f̂1,pt ,st(t), ..., f̂m−u(t),pt,st (t) ∈ F \ Fue
pt

(t),631

which satisfy for j = 1, ..., m − u(t):632

f̂ j,pt,st (t)∈ argmax

f ∈F\(Fue
pt

(t)∪
j−1⋃
k=1

{ f̂k,pt ,st (t)})
w f

Ut∑

i=1

vst,i d̂ f,pt,i (t).633

(6)634

If the set of files defined by (6) is not unique, ties are broken635

arbitrarily. Note that by this procedure, even in exploration636

phases, the algorithm additionally exploits, whenever the num-637

ber of under-explored files is smaller than the cache size.638

If the set of under-explored files Fue
pt

(t) is empty, m-CAC639

enters the exploitation phase. It selects m files from F based on640

a file ranking according to the estimated weighted demands,641

as defined by the files f̂1,pt,st (t), ..., f̂m,pt ,st (t) ∈ F , which642

satisfy for j = 1, ..., m:643

f̂ j,pt,st (t)∈ argmax
f ∈F\

(⋃ j−1
k=1 { f̂k,pt ,st (t)}

) w f

Ut∑

i=1

vst,i d̂ f,pt,i (t). (7)644

If the set of files defined by (7) is not unique, ties are again645

broken arbitrarily.646

After selecting the subset of files to cache, the algorithm647

observes the users’ requests for these files in this time slot.648

Then, it updates the estimated demands and the counters of649

cached files.650

V. ANALYSIS OF THE REGRET651

In this section, we give an upper bound on the regret R(T )652

of m-CAC in (4). The regret bound is based on the natural653

assumption that expected demands for files are similar in654

similar contexts, i.e., that users with similar characteristics655

are likely to consume similar content. This assumption is656

realistic since the users’ preferences in terms of consumed657

content differ based on the users’ contexts, so that it is658

plausible to divide the user population into segments of users659

with similar context and similar preferences. Formally, the660

similarity assumption is captured by the following Hölder661

condition.662

Assumption 1: There exists L > 0, α > 0 such that for all663

f ∈ F and for all x, y ∈ X , it holds that664

|μ f (x) − μ f (y)| ≤ L||x − y||α,665

where || · || denotes the Euclidean norm in R
D.666

Assumption 1 is needed for the analysis of the regret, but667

it should be noted that m-CAC can also be applied if this668

assumption does not hold true. However, a regret bound might669

not be guaranteed in this case.670

The following theorem shows that the regret of m-CAC671

is sublinear in the time horizon T , i.e., R(T ) = O(T γ )672

with γ < 1. This bound on the regret guarantees that the673

algorithm has an asymptotically optimal performance, since674

then limT →∞ R(T )
T = 0 holds. This means, that m-CAC 675

converges to the oracle solution strategy. In other words, 676

m-CAC converges to the optimal cache content placement 677

strategy, which maximizes the expected number of cache hits. 678

In detail, the regret of m-CAC can be bounded as follows for 679

any finite time horizon T . 680

Theorem 1 (Bound for R(T)): Let K (t) = t
2α

3α+D log(t) and 681

hT = 
T
1

3α+D �. If m-CAC is run with these parameters and 682

Assumption 1 holds true, the leading order of the regret R(T ) 683

is O
(
vmaxwmaxmUmax Rmax|F |T 2α+D

3α+D log(T )
)

. 684

The proof can be found in our online appendix [44]. The 685

regret bound given in Theorem 1 is sublinear in the time 686

horizon T , proving that m-CAC converges to the optimal 687

cache content placement strategy. Additionally, Theorem 1 is 688

applicable for any finite time horizon T , such that it provides 689

a bound on the loss incurred by m-CAC for any finite number 690

of cache placement phases. Thus, Theorem 1 characterizes 691

m-CAC’s speed of convergence Furthermore, Theorem 1 692

shows that the regret bound is a constant multiple of the regret 693

bound in the special case without service differentiation, in 694

which vmax = 1 and wmax = 1. Hence, the order of the regret 695

is O
(

T
2α+D
3α+D log(T )

)
in the special case as well. 696

VI. MEMORY REQUIREMENTS 697

The memory requirements of m-CAC are mainly determined 698

by the counters kept by the algorithm during its runtime 699

(see also [41]). For each set p in the partition PT and 700

each file f ∈ F , the algorithm keeps the counters N f,p 701

and d̂ f,p. The number of files is |F |. If m-CAC runs with the 702

parameters from Theorem 1, the number of sets in PT is upper 703

bounded by (hT )D = 
T
1

3α+D �D ≤ 2DT
D

3α+D . Hence, the 704

required memory is upper bounded by |F |2DT
D

3α+D and is thus 705

sublinear in the time horizon T . This means, that for T → ∞, 706

the algorithm would require infinite memory. However, for 707

practical approaches, only the counters of such sets p have 708

to be kept to which at least one of the connected users’ 709

context vectors has already belonged to. Hence, depending 710

on the heterogeneity in the connected users’ context vectors, 711

the required number of counters that have to be kept can be 712

much smaller than given by the upper bound. 713

VII. EXTENSIONS 714

A. Exploiting the Multicast Gain 715

So far, we assumed that each request for a cached file is 716

immediately served by a unicast transmission. However, our 717

algorithm can be extended to multicasting, which has been 718

shown to be beneficial in combination with caching [7], [11]. 719

For this purpose, to extend our algorithm, each time slot t 720

is divided into a fixed number of intervals. In each interval, 721

incoming requests are monitored and accumulated. At the 722

end of the interval, requests for the same file are served 723

by a multicast transmission. In order to exploit knowledge 724

about content popularity learned so far, a request for a file 725

with low estimated demand could, however, still be served 726

by a unicast transmission. In this way, unnecessary delays 727

are prevented in cases in which another request and thus a 728
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multicast transmission are not expected. Moreover, service729

differentiation could be taken into account. For example, high-730

priority users could be served by unicast transmissions, such731

that their delay is not increased due to waiting times for732

multicast transmissions.733

B. Rating-Based Context-Aware Proactive Caching734

So far, we considered cache content placement with respect735

to the demands d f (x) in order to maximize the number of736

(weighted) cache hits. However, a CP operating an infostation737

might want to cache not only content that is requested often,738

but which also receives high ratings from the users. Consider739

the case that after consumption users rate content in a range740

[rmin, rmax] ⊂ R+. For a context x , let r f (x) be the random741

variable describing the rating of a user with context x if he742

requests file f and makes a rating thereafter. Then, we define743

the random variable744

d̃ f (x) := r f (x)d f (x), (8)745

which combines the demand and the rating for file f of746

a user with context x . By carefully designing the range of747

ratings, the CP chooses the trade-off between ratings and748

cache hits. Now, we can apply m-CAC with respect to749

d̃ f (x). In this case, m-CAC additionally needs to observe750

the users’ ratings in order to learn content popularity in751

terms of ratings. If the users’ ratings are always avail-752

able, Theorem 1 applies and provides a regret bound of753

O
(
vmaxwmaxrmaxmUmax Rmax|F |T 2α+D

3α+D log(T )
)

.754

However, users might not always reveal a rating after755

consuming a content. When a user’s rating is missing, we756

assume that m-CAC does not update the counters based on this757

user’s request. This may result in a higher required number of758

exploration phases. Hence, the regret of the learning algorithm759

is influenced by the users’ willingness to reveal ratings of760

requested content. Let q ∈ (0, 1) be the probability that a user761

reveals his rating after requesting a file. Then, the regret of762

the learning algorithm is bounded as given below.763

Theorem 2(Bound for R(T ) for Rating-Based Caching764

With Missing Ratings): Let K (t) = t
2α

3α+D log(t) and hT =765


T
1

3α+D �. If m-CAC is run with these parameters with respect766

to d̃ f (x), Assumption 1 holds true for d̃ f (x) and a user reveals767

his rating with probability q, the leading order of the regret768

R(T ) is O
(

1
q vmaxwmaxrmaxmUmax Rmax|F |T 2α+D

3α+D log(T )
)

.769

The proof can be found in our online appendix [44].770

Comparing Theorem 2 with Theorem 1, the regret of m-CAC771

is scaled up by a factor 1
q > 1 in case of rating-based caching772

with missing ratings. This factor corresponds to the expected773

number of requests until the caching entity receives one rating.774

However, the time order of the regret remains the same. Hence,775

m-CAC is robust under missing ratings in the sense that if776

some users refuse to rate requested content, the algorithm still777

converges to the optimal cache content placement strategy.778

C. Asynchronous User Arrival779

So far, we assumed that the set of currently connected users780

only changes in between the time slots of our algorithm.781

This means, that only those users connected to the caching 782

entity at the beginning of a time slot, will request files within 783

that time slot. However, if users connect to the caching entity 784

asynchronously, m-CAC should be adapted. If a user directly 785

disconnects after the context monitoring without requesting 786

any file, he should be excluded from learning. Hence, in 787

m-CAC, the counters are not updated for disconnecting users. 788

If a user connects to the caching entity after cache content 789

placement, his context was not considered in the caching 790

decision. However, his requests can be used to learn faster. 791

Hence, in m-CAC, the counters are updated based on this 792

user’s requests. 793

D. Multiple Wireless Local Caching Entities 794

So far, we considered online learning for cache content 795

placement in a single caching entity. However, real caching 796

systems contain multiple caching entities, each of which 797

should learn local content popularity. In a network of mul- 798

tiple caching entities, m-CAC could be applied separately 799

and independently by each caching entity. For the case that 800

coverage areas of caching entities overlap, in this subsection, 801

we present m-CACao, an extension of m-CAC to Context- 802

Aware Proactive Caching with Area Overlap. The idea of 803

m-CACao is that caching entities can learn content popularity 804

faster by not only relying on their own cache hits, but also 805

on cache hits at neighboring caching entities with overlapping 806

coverage area. For this purpose, the caching entities overhear 807

cache hits produced by users in the intersection to neighboring 808

coverage areas. 809

In detail, m-CAC is extended to m-CACao as follows: The 810

context monitoring and the selection of cache content works as 811

in m-CAC. However, the caching entity not only observes its 812

own cache hits (line 21 in Fig. 4), but it overhears cache hits at 813

neighboring caching entities of users in the intersection. Then, 814

the caching entity not only updates the counters of its own 815

cached files (lines 22-26 in Fig. 4), but it additionally updates 816

the counters of files of which it overheard cache hits at neigh- 817

boring caches. This helps the caching entity to learn faster. 818

VIII. NUMERICAL RESULTS 819

In this section, we numerically evaluate the proposed learn- 820

ing algorithm m-CAC by comparing its performance to several 821

reference algorithms based on a real world data set. 822

A. Description of the Data Set 823

We use a data set from MovieLens [45] to evaluate 824

our proposed algorithm. MovieLens is an online movie 825

recommender operated by the research group GroupLens 826

from the University of Minnesota. The MovieLens 1M 827

DataSet [46] contains 1000209 ratings of 3952 movies. These 828

ratings were made by 6040 users of MovieLens within the 829

years 2000 to 2003. Each data set entry consists of an 830

anonymous user ID, a movie ID, a rating (in whole numbers 831

between 1 and 5) and a timestamp. Additionally, demo- 832

graphic information about the users is given: Their gender, 833

age (in 7 categories), occupation (in 20 categories) as well 834
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Fig. 5. Number of content requests in used data set as a function of time
slots. Time slots at an hourly basis.

as their Zip-code. For our numerical evaluations, we assume835

that the movie rating process in the data set corresponds to836

a content request process of users connected to a wireless837

local caching entity (see [33], [34] for a similar approach).838

Hence, a user rating a movie at a certain time in the data set839

for us corresponds to a request to either the caching entity840

(in case the movie is cached in the caching entity) or to the841

macro cellular network (in case the movie is not cached in842

the caching entity). This approach is reasonable since users843

typically rate movies after watching them.844

In our simulations, we only use the data gathered within the845

first year of the data set, since around 94% of the ratings were846

provided within this time frame. Then, we divide a year’s time847

into 8760 time slots of one hour each (T = 8760), assuming848

that the caching entity updates its cache content at an hourly849

basis. Then, we assign the requests and corresponding user850

contexts to the time slots according to their timestamps and851

we interpret each request as if it was coming from a separate852

user. At the beginning of a time slot, we assume to have access853

to the context of each user responsible for a request in the854

coming time slot. Fig. 5 shows that the corresponding content855

request process is bursty and flattens out towards the end. As856

context dimensions, we select the dimensions gender and age.4857

B. Reference Algorithms858

We compare m-CAC with five reference algorithms. The859

first algorithm is the omniscient Oracle, which has complete860

knowledge about the exact future demands. In each time slot,861

the oracle selects the optimal m files that will maximize the862

number of cache hits in this time slot.5863

The second reference algorithm is called m-UCB, which864

consists of a variant of the UCB algorithm. UCB is a classical865

learning algorithm for multi-armed bandit problems [35],866

which has logarithmic regret order. However, it does not take867

into account context information, i.e., the logarithmic regret is868

with respect to the average expected demand over the whole869

4We neglect the occupation as context dimension since by mapping them
to a [0,1] variable, we would have to classify which occupations are more
and which are less similar to each other.

5Note that this oracle yields even better results than the oracle used as a
benchmark to define the regret in (4). In the definition of regret, the oracle only
exploits knowledge about expected demands, instead of exact future demands.

context space. While in classical UCB, one action is taken in 870

each time slot, we modify UCB to take m actions at a time, 871

which corresponds to selecting m files. 872

The third reference algorithm is the m-ε-Greedy. This is 873

a variant of the simple ε-Greedy [35] algorithm, which does 874

not consider context information. The m-ε-Greedy caches a 875

random set of m files with probability ε ∈ (0, 1). With 876

probability (1 − ε), the algorithm caches the m files with 877

highest to m-th highest estimated demands. These estimated 878

demands are calculated based on previous demands for cached 879

files. 880

The fourth reference algorithm is called m-Myopic. This 881

is an algorithm taken from [15], which is investigated since 882

it is comparable to the well-known Least Recently Used 883

algorithm (LRU) for caching. m-Myopic only learns from one 884

time slot in the past. It starts with a random set of files and in 885

each of the following time slots discards all files that have not 886

been requested in the previous time slot. Then, it randomly 887

replaces the discarded files by other files. 888

The fifth reference algorithm, called Random, caches a 889

random set of files in each time slot. 890

C. Performance Measures 891

The following performance measures are used in our analy- 892

sis. The evolution of per-time slot or cumulative number of 893

cache hits allows comparing the absolute performance of the 894

algorithms. A relative performance measure is given by the 895

cache efficiency, which is defined as the ratio of cache hits 896

compared to the overall demand, i.e., 897

cache efficiency in % = cache hits

cache hits + cache misses
· 100. 898

The cache efficiency describes the percentage of requests 899

which can be served by cached files. 900

D. Results 901

In our simulations, we set ε = 0.09 in m-ε-Greedy, which is 902

the value at which heuristically the algorithm on average per- 903

formed best. In m-CAC, we set the control function to K (t) = 904

c · t 2α
3α+D log(t) with c = 1/(|F |D).6 The simulation results are 905

obtained by averaging over 100 runs of the algorithms. First, 906

we consider the case without service differentiation. The long- 907

term behavior of m-CAC is investigated with the following 908

scenario. We assume that the caching entity can store 909

m = 200 movies out of the |F | = 3952 available movies. 910

Hence, the cache size corresponds to about 5% of the file 911

library size. We run all algorithms on the data set and study 912

their results as a function of time, i.e., over the time slots 913

t = 1, ..., T . Fig. 6(a) and 6(b) show the per-time slot and the 914

cumulative numbers of cache hits up to time slot t as a function 915

of time, respectively. Due to the bursty content request process 916

(compare Fig. 5), also the number of cache hits achieved by 917

the different algorithms is bursty over time. As expected, the 918

Oracle gives an upper bound to the other algorithms. Among 919

the other algorithms, m-CAC, m-ε-Greedy and m-UCB clearly 920

6Compared to the control function in Theorem 1, the additional factor
reduces the number of exploration phases which allows for better performance.
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Fig. 6. Time evolution of algorithms for m = 200.

outperform m-Myopic and Random. This is due to the fact921

that these three algorithms learn from the history of observed922

demands, while m-Myopic only learns from one time slot in923

the past and Random does not learn at all. It can be observed924

that m-ε-Greedy shows a better performance than m-UCB,925

even though it uses a simpler learning strategy. Overall, m-926

CAC outperforms the other algorithms by additionally learning927

from context information. At the time horizon, the cumulative928

number of cache hits achieved by m-CAC is 1.146, 1.377,929

3.985 and 5.506 times higher than the ones achieved by930

m-ε-Greedy, m-UCB, m-Myopic and Random, respectively.931

Next, we investigate the impact of the cache size m by932

varying it between 50 and 400 files, which corresponds to933

between 1.3% and 10.1% of the file library size, which is934

a realistic assumption. All remaining parameters are kept as935

before. Fig. 7 shows the overall cache efficiency achieved936

at the time horizon T as a function of cache size, i.e., the937

cumulative number of cache hits up to T is normalized by938

the cumulative number of requests up to T . The overall939

cache efficiency of all algorithms is increasing with increasing940

cache size. Moreover, the results indicate that again m-CAC941

and m-ε-Greedy slightly outperform m-UCB and clearly942

outperform m-Myopic and Random. Averaged over the range943

of cache sizes, the cache efficiency of m-CAC is 28.4%, com-944

pared to an average cache efficiency of 25.3%, 21.4%, 7.76%945

Fig. 7. Overall cache efficiency at T as a function of cache size m.

Fig. 8. Cumulative number of weighted cache hits for m = 200 as a function
of time.

and 5.69% achieved by m-ε-Greedy, m-UCB, m-Myopic and 946

Random, respectively. 947

Now, we consider a case of service differentiation, in which 948

two different service types 1 and 2 with weights v1 = 5 and 949

v2 = 1 exist. Hence, service type 1 should be prioritized due 950

to the higher value it represents. We randomly assign 10% of 951

the users to service type 1 and classify all remaining users as 952

service type 2. Then, we adjust each algorithm to take into 953

account service differentiation by incorporating the weights 954

according to the service types. Fig. 8 shows the cumulative 955

number of weighted cache hits up to time slot t as a function of 956

time. At the time horizon, the cumulative number of weighted 957

cache hits achieved by m-CAC is 1.156, 1.219, 3.914 and 958

5.362 times higher than the ones achieved by m-ε-Greedy, 959

m-UCB, m-Myopic and Random, respectively. A comparison 960

with Fig. 6(b) shows that the behavior of the algorithms is 961

similar to the case without service differentiation. 962

Finally, we investigate the extension to multiple caching 963

entities and compare the performance of the proposed algo- 964

rithms m-CAC and m-CACao. We consider a scenario with 965

two caching entities and divide the data set as follows: 966

A fraction o ∈ [0, 0.3] of randomly selected requests is 967

considered to be made in the intersection of the two cov- 968

erage areas. We use the parameter o as a measure of the 969

overlap between the caching entities. The remaining requests 970

are randomly assigned to either one of the caching entities. 971
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Fig. 9. Cumulative number of cache hits at T as a function of the overlap
parameter o.

These requests are considered to be made by users solely972

connected to one caching entity. Then, on the one hand we run973

m-CAC separately on each caching entity and on the other974

hand we run m-CACao on both caching entities. Fig. 9 shows975

the cumulative number of cache hits achieved in sum by the976

two caching entities at the time horizon T as a function of977

the overlap parameter o. As expected, m-CAC and m-CACao978

perform identically for non-overlapping coverage areas. With979

increasing overlap, the number of cache hits achieved by980

both m-CAC and m-CACao increases. The reason is that981

users in the intersection can more likely be served since they982

have access to both caches. Hence, even though the caching983

entities do not coordinate their cache content, more cache984

hits occur. For up to 25% of overlap (o ≤ 0.25), m-CACao985

outperforms m-CAC. Clearly, m-CACao performs better since986

by overhearing cache hits at the neighboring caching entity,987

both caching entities learn content popularity faster. For very988

large overlap (o > 0.25), m-CAC yields higher numbers of989

cache hits. The reason is that when applying m-CACao in case990

of a large overlap, neighboring caching entities overhear such a991

large number of cache hits, that they learn very similar content992

popularity distributions. Hence, over time it is likely that their993

caches contain the same files. In contrast, applying m-CAC,994

a higher diversity in cache content is maintained over time.995

Clearly, further gains in cache hits could be achieved by jointly996

optimizing the cache content of all caching entities. However,997

this would either require coordination among the caching998

entities or a central planner deciding on the cache content999

of all caching entities, which results in a high communication1000

overhead. In contrast, our heuristic algorithm m-CACao does1001

not require additional coordination or communication and1002

yields good results for small overlaps.1003

IX. CONCLUSION1004

In this paper, we presented a context-aware proactive1005

caching algorithm for wireless caching entities based on1006

contextual multi-armed bandits. To cope with unknown and1007

fluctuating content popularity among the dynamically arriving1008

and leaving users, the algorithm regularly observes context1009

information of connected users, updates the cache content and1010

subsequently observes cache hits. In this way, the algorithm 1011

learns context-specific content popularity online, which allows 1012

for a proactive adaptation of cache content according to fluc- 1013

tuating local content popularity. We derived a sublinear regret 1014

bound, which characterizes the learning speed and proves that 1015

our proposed algorithm converges to the optimal cache content 1016

placement strategy, which maximizes the expected number of 1017

cache hits. Moreover, the algorithm supports customer priori- 1018

tization and can be combined with multicast transmissions and 1019

rating-based caching decisions. Numerical studies showed that 1020

by exploiting context information, our algorithm outperforms 1021

state-of-the-art algorithms in a real world data set. 1022
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Context-Aware Proactive Content Caching With
Service Differentiation in Wireless Networks
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Abstract— Content caching in small base stations or wirelessAQ:1 1

infostations is considered to be a suitable approach to improving2

the efficiency in wireless content delivery. Placing the optimal3

content into local caches is crucial due to storage limitations, but4

it requires knowledge about the content popularity distribution,5

which is often not available in advance. Moreover, local content6

popularity is subject to fluctuations, since mobile users with7

different interests connect to the caching entity over time.8

Which content a user prefers may depend on the user’s context.9

In this paper, we propose a novel algorithm for context-aware10

proactive caching. The algorithm learns context-specific content11

popularity online by regularly observing context information of12

connected users, updating the cache content and observing cache13

hits subsequently. We derive a sublinear regret bound, which14

characterizes the learning speed and proves that our algorithm15

converges to the optimal cache content placement strategy in16

terms of maximizing the number of cache hits. Furthermore, our17

algorithm supports service differentiation by allowing operators18

of caching entities to prioritize customer groups. Our numerical19

results confirm that our algorithm outperforms state-of-the-art20

algorithms in a real world data set, with an increase in the21

number of cache hits of at least 14%.22

Index Terms— Wireless networks, caching at the edge, cache23

content placement, online learning.24

I. INTRODUCTION25

W IRELESS networks have been experiencing a steepAQ:2 26

increase in data traffic in recent years [2]. With the27

emergence of smart mobile devices with advanced multimedia28

capabilities and the trend towards high data rate applications,29

such as video streaming, especially mobile video traffic is30

expected to increase and to account for the majority of31

mobile data traffic within the next few years [2]. However,32

despite recent advances in cellular mobile radio networks,33

these networks cannot keep up with the massive growth of34
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mobile data traffic [3]. As already investigated for wired 35

networks [4], content caching is envisioned to improve the 36

efficiency in wireless content delivery. This is not only due 37

to decreasing disk storage prices, but also due to the fact that 38

typically only a small number of very popular contents account 39

for the majority of data traffic [5]. 40

Within wireless networks, caching at the edge has been 41

extensively studied [1], [6]–[19]. At the radio access network 42

level, current approaches comprise two types of wireless local 43

caching entities. The first type are macro base stations (MBSs) 44

and small base stations (SBSs) that are implemented in 45

wireless small cell networks, dispose of limited storage capac- 46

ities and are typically owned by the mobile network opera- 47

tor (MNO). The second type are wireless infostations with 48

limited storage capacities that provide high bandwidth local 49

data communication [16], [17], [20], [21]. Wireless infosta- 50

tions could be installed in public or commercial areas and 51

could use Wi-Fi for local data communication. They could 52

be owned by content providers (CPs) aiming at increasing 53

their users’ quality of experience. Alternatively, third parties 54

(e.g., the owner of a commercial area) could offer caching 55

at infostations as a service to CPs or to the users [17]. Both 56

types of caching entities store a fraction of available popular 57

content in a placement phase and serve local users’ requests 58

via localized communication in a delivery phase. 59

Due to the vast amount of content available in multi- 60

media platforms, not all available content can be stored in 61

local caches. Hence, intelligent algorithms for cache content 62

placement are required. Many challenges of cache content 63

placement concern content popularity. Firstly, optimal cache 64

content placement primarily depends on the content popularity 65

distribution, however, when caching content at a particular 66

point in time, it is unclear which content will be requested 67

in future. Not even an estimate of the content popularity 68

distribution might be at hand. It therefore must be computed 69

by the caching entity itself [1], [13]–[19], which is not only 70

legitimate from an overhead point of view, since else a periodic 71

coordination with the global multimedia platform would be 72

required. More importantly, local content popularity in a 73

caching entity might not even replicate global content popular- 74

ity as monitored by the global multimedia platform [22]–[24]. 75

Hence, caching entities should learn local content popularity 76

for a proactive cache content placement. Secondly, different 77

content can be favored by different users. Consequently, local 78

content popularity may change according to the different 79

preferences of fluctuating mobile users in the vicinity of a 80

1536-1276 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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caching entity. Therefore, proactive cache content placement81

should take into account the diversity in content popularity82

across the local user population. Thirdly, the users’ preferences83

in terms of consumed content may differ based on their84

contexts, such as their location [24], personal characteristics85

(e.g., age [25], gender [26], personality [27], mood [28]),86

or their devices’ characteristics [29]. Hence, cache content87

placement should be context-aware by taking into account88

that content popularity depends on a user’s context. Thereby,89

a caching entity can learn the preferences of users with dif-90

ferent contexts. Fourthly, while its typical goal is to maximize91

the number of cache hits, cache content placement should also92

take into account the cache operator’s specific objective.93

In particular, appropriate caching algorithms should be capable94

of incorporating business models of operators to offer service95

differentiation to their customers, e.g., by optimizing cache96

content according to different prioritization levels [30], [31].97

For example, if users with different preferences are98

connected to a caching entity, the operator could prioritize99

certain users by caching content favored by these users.100

Moreover, certain CPs’ content could be prioritized in caching101

decisions.102

In this paper, we propose a novel context-aware proactive103

caching algorithm, which for the first time jointly considers104

the above four aspects. Firstly, instead of assuming a priori105

knowledge about content popularity, which might be externally106

given or estimated in a separate training phase, our algorithm107

learns the content popularity online by observing the users’108

requests for cache content. Secondly, by explicitly allowing109

different content to be favored by different users, our algorithm110

is especially suitable for mobile scenarios, in which users with111

different preferences arrive at the wireless caching entity over112

time. Thirdly, we explicitly model that the content popularity113

depends on a user’s context, such as his/her personal character-114

istics, equipment, or external factors, and propose an algorithm115

for content caching that learns this context-specific content116

popularity. Using our algorithm, a caching entity can proac-117

tively cache content for the currently connected users based on118

what it has previously learned, instead of simply caching the119

files that are popular “on average”, across the entire population120

of users. The learned cache content placement strategy is121

proven to converge to the optimal cache content placement122

strategy which maximizes the expected number of cache hits.123

Fourthly, the algorithm allows for service differentiation by124

customer prioritization. The contributions of this paper are as125

follows:126

• We present a context-aware proactive caching algorithm127

based on contextual multi-armed bandit optimization.128

Our algorithm incorporates diversity in content popularity129

across the user population and takes into account the130

dependence of users’ preferences on their context.131

Additionally, it supports service differentiation by132

prioritization.133

• We analytically bound the loss of the algorithm compared134

to an oracle, which assumes a priori knowledge about135

content popularity. We derive a sublinear regret bound,136

which characterizes the learning speed and proves that137

our algorithm converges to the optimal cache content138

placement strategy which maximizes the expected 139

number of cache hits. 140

• We present additional extensions of our approach, such 141

as its combination with multicast transmissions and the 142

incorporation of caching decisions based on user ratings. 143

• We numerically evaluate our caching algorithm based 144

on a real world data set. A comparison shows that by 145

exploiting context information in order to proactively 146

cache content for currently connected users, our 147

algorithm outperforms reference algorithms. 148

The remainder of the paper is organized as follows. 149

Section II gives an overview of related works. In Section III, 150

we describe the system model, including an architecture 151

and a formal problem formulation. In Section IV, we pro- 152

pose a context-aware proactive caching algorithm. Theoretical 153

analysis of regret and memory requirements are provided in 154

Sections V and VI, respectively. In Section VII, we propose 155

some extensions of the algorithm. Numerical results are pre- 156

sented in Section VIII. Section IX concludes the paper. 157

II. RELATED WORK 158

Practical caching systems often use simple cache replace- 159

ment algorithms that update the cache continuously during 160

the delivery phase. Common examples of cache replacement 161

algorithms are Least Recently Used (LRU) or Least Frequently 162

Used (LFU) (see [32]). While these simple algorithms do 163

not consider future content popularity, recent work has been 164

devoted to developing sophisticated cache replacement algo- 165

rithms by learning content popularity trends [33], [34]. 166

In this paper, however, we focus on cache content place- 167

ment for wireless caching problems with a placement phase 168

and a delivery phase. We start by discussing related work 169

that assumes a priori knowledge about content popularity. 170

Information-theoretic gains achieved by combining caching 171

at user devices with a coded multicast transmission in the 172

delivery phase are calculated in [7]. The proposed coded 173

caching approach is optimal up to a constant factor. Content 174

caching at user devices and collaborative device-to-device 175

communication are combined in [8] to increase the efficiency 176

of content delivery. In [9], an approximation algorithm for 177

uncoded caching among SBSs equipped with caches is given, 178

which minimizes the average delay experienced by users that 179

can be connected to several SBSs simultaneously. Building 180

upon the same caching architecture, in [10], an approxima- 181

tion algorithm for distributed coded caching is presented for 182

minimizing the probability that moving users have to request 183

parts of content from the MBS instead of the SBSs. In [11], 184

a multicast-aware caching scheme is proposed for minimizing 185

the energy consumption in a small cell network, in which 186

the MBS and the SBSs can perform multicast transmissions. 187

The outage probability and average content delivery rate in 188

a network of SBSs equipped with caches are analytically 189

calculated in [12]. 190

Next, we discuss related work on cache content placement 191

without prior knowledge about content popularity. A com- 192

parison of the characteristics of our proposed algorithm with 193

related work of this type is given in Table I. Driven by a 194
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TABLE I

COMPARISON WITH RELATED WORK ON LEARNING-BASED CACHING WITH PLACEMENT AND DELIVERY PHASE

proactive caching paradigm, [13] and [14] propose a caching195

algorithm for small cell networks based on collaborative196

filtering. Fixed global content popularity is estimated using197

a training set and then exploited for caching decisions to198

maximize the average user request satisfaction ratio based on199

their required delivery rates. While their approach requires

AQ:3

200

a training set of known content popularities and only learns201

during a training phase, our proposed algorithm does not need202

a training phase, but learns the content popularity online,203

thus also adapting to varying content popularities. In [15],204

using a multi-armed bandit algorithm, an SBS learns a fixed205

content popularity distribution online by refreshing its cache206

content and observing instantaneous demands for cached files.207

In this way, cache content placement is optimized over time to208

maximize the traffic served by the SBS. The authors extend209

their framework for a wireless infostation in [16] and [17]210

by additionally taking into account the costs for adding files211

to the cache. Moreover, they provide theoretical sublinear212

regret bounds for their algorithms. A different extension of213

the multi-armed bandit framework is given in [18], which214

exploits the topology of users’ connections to the SBSs by215

incorporating coded caching. The approach in [18] assumes216

a specific type of content popularity distribution. Since in217

practice the type of distribution is unknown a priori, such an218

assumption is restrictive. In contrast, our proposed algorithm is219

model-free since it does not assume a specific type of content220

popularity distribution. Moreover, in [15]–[18], the optimal221

cache content placement strategy is learned over time based222

only on observations of instantaneous demands. In contrast,223

our proposed algorithm additionally takes diversity of content224

popularity across the user population into account and exploits225

users’ context information. Diversity in content popularity226

across the user population is for example taken into account227

in [19], but again without considering the users’ contexts.228

Users are clustered into groups of similar interests by a spectral229

clustering algorithm based on their requests in a training phase.230

Each user group is then assigned to an SBS which learns the231

content popularity of its fixed user group over time. Hence,232

in [19], each SBS learns a fixed content popularity distribution233

under the assumption of a stable user population, whereas234

our approach allows reacting to arbitrary arrivals of users235

preferring different content.236

In summary, compared to related work on cache content237

placement (see Table I), our proposed algorithm for the first238

time jointly learns the content popularity online, allows for239

diversity in content popularity across the user population,240

takes into account the dependence of users’ preferences on241

their context and supports service differentiation. Compared 242

to our previous work [1], we now take into account context 243

information at a single user level, instead of averaging context 244

information over the currently connected users. This enables 245

more fine-grained learning. Additionally, we incorporate ser- 246

vice differentiation and present extensions, e.g., to multicast 247

transmission and caching decisions based on user ratings. 248

We model the caching problem as a multi-armed bandit 249

problem. Multi-armed bandit problems [35] have been applied 250

to various scenarios in wireless communications before [36], 251

such as cognitive jamming [37] or mobility management [38]. 252

Our algorithm is based on contextual multi-armed bandit 253

algorithms [39]–[42]. The closest related work is [42], in 254

which several learners observe a single context arrival in each 255

time slot and select a subset of actions to maximize the sum of 256

expected rewards. While [42] considers multiple learners, our 257

system has only one learner – the caching entity selecting a 258

subset of files to cache in each time slot. Compared to [42], we 259

extended the algorithm in the following directions: We allow 260

multiple context arrivals in each time slot, and select a subset 261

of actions which maximize the sum of expected rewards given 262

the context arrivals. In the caching scenario, this translates 263

to observing the contexts of all currently connected users 264

and caching a subset of files which maximize the sum of 265

expected numbers of cache hits given the users’ contexts. 266

In addition, we enable each arriving context to be annotated 267

with a weight, so that if different contexts arrive within the 268

same time slot, differentiated services can be provided per 269

context, by selecting a subset of actions which maximize the 270

sum of expected weighted rewards. In the caching scenario, 271

this enables the caching entity to prioritize certain users when 272

selecting the cache content, by placing more weight on files 273

that are favored by prioritized users. Moreover, we enable each 274

action to be annotated with a weight, such that actions can be 275

prioritized for selection. In the caching scenario, this enables 276

the caching entity to prioritize certain files when selecting the 277

cache content. 278

III. SYSTEM MODEL 279

A. Wireless Local Caching Entity 280

We consider a wireless local caching entity that can either 281

be an SBS equipped with a cache in a small cell network or 282

a wireless infostation. The caching entity is characterized by 283

a limited storage capacity and a reliable backhaul link to the 284

core network. In its cache memory, the caching entity can 285

store up to m files from a finite file library F containing 286



IEE
E P

ro
of

4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

Fig. 1. System model.

|F | ∈ N files, where we assume for simplicity that all files287

are of the same size. Users located in the coverage area can288

connect to the caching entity. The set of currently connected289

users may change dynamically over time due to the users’290

mobility. At most Umax ∈ N users can be simultaneously291

connected to the caching entity. To inform connected users292

about available files, the caching entity periodically broadcasts293

the information about the current cache content [15]–[17]. If a294

user is interested in a file that the caching entity stored in its295

cache, the user’s device requests the file from the caching296

entity and is served via localized communication. In this case,297

no additional load is put on neither the macro cellular network298

nor the backhaul network. If the file is not stored in the299

caching entity, the user’s device does not request the file300

from the caching entity. Instead, it requests the file from the301

macro cellular network by connecting to an MBS. The MBS302

downloads the file from the core network via its backhaul303

connection, such that in this case, load is put on both the304

macro cellular as well as the backhaul network. Hence, the305

caching entity can only observe requests for cached files,306

i.e., cache hits, but it cannot observe requests for non-cached307

files, i.e., cache misses. Note that this restriction is specific308

to wireless caching and is usually not used in wired caching309

scenarios. In this way, the caching entity is not congested by310

cache misses [15]–[17], but learning content popularity is more311

difficult. Fig. 1 shows an illustration of the considered system312

model.313

In order to reduce the load on the macro cellular network314

and the backhaul network, a caching entity might aim at315

optimizing the cache content such that the traffic it can serve316

is maximized, which corresponds to maximizing the number317

of cache hits. For this purpose, the caching entity should learn318

which files are most popular over time.319

B. Service Differentiation320

Maximizing the number of cache hits might be an adequate321

goal of cache content placement in case of an MNO operating322

an SBS, one reason being net neutrality restrictions. However,323

the operator of an infostation, e.g., a CP or third party operator,324

may want to provide differentiated services to its customers325

(those can be both users and CPs). For example, if users326

with different preferences are connected to an infostation, the327

operator can prioritize certain users by caching content favored328

TABLE II

EXAMPLES OF CONTEXT DIMENSIONS

by these users. In this case, a cache hit by a prioritized user 329

is associated with a higher value than a cache hit by a regular 330

user. For this purpose, we consider a finite set S of service 331

types. For service type s ∈ S, let vs ≥ 1 denote a fixed and 332

known weight associated with receiving one cache hit by a 333

user of service type s. Let vmax := maxs∈S vs . The weights 334

might be selected based on a pricing policy, e.g., by paying a 335

monthly fee, a user can buy a higher weight. Alternatively, the 336

weights might be selected based on a subscription policy, e.g., 337

subscribers might obtain priority compared to one-time users. 338

Yet another prioritization might be based on the importance 339

of users in terms of advertisement or their influence on the 340

operator’s reputation. Finally, prioritization could be based 341

on usage patterns, e.g., users might indicate their degree of 342

openness in exploring other than their most preferred content. 343

Taking into account the service weights, the caching entity’s 344

goal becomes to maximize the number of weighted cache hits. 345

Clearly, the above service differentiation only takes effect if 346

users with different preferences are present, i.e., if content 347

popularity is heterogeneous across the user population. 348

Another service differentiation can be applied in case of a 349

third party operator whose customers are different CPs. The 350

operator may want to prioritize certain CPs by caching their 351

content. In this case, each content is associated with a weight. 352

Here, we consider a fixed and known prioritization weight 353

w f ≥ 1 for each file f ∈ F and let wmax := max f ∈F w f . 354

The prioritization weights can either be chosen individually 355

for each file or per CP. 356

The case without service differentiation, where the goal is 357

to maximize the number of (non-weighted) cache hits, is a 358

special case, in which there is only one service type s with 359

weight vs = 1 and the prioritization weights satisfy w f = 1 360

for all f ∈ F . While we refer to the more general case in the 361

subsequent sections, this special case is naturally contained in 362

our analysis. 363

C. Context-Specific Content Popularity 364

Content popularity may vary across a user population since 365

different users may prefer different content. A user’s prefer- 366

ences might be linked to various factors. We refer to such 367

factors as context dimensions and give some examples in 368

Table II. Relevant personal characteristics may, for example, 369

be demographic factors (e.g., age, gender), personality, or 370

mood. In addition, a user’s preferences may be influenced by 371
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Fig. 2. Context-aware proactive caching architecture.

user equipment, such as the type of device used to access and372

consume the content (e.g., smart phone, tablet), as well as373

its capabilities, or its battery status. Besides, external factors374

may have an impact on a user’s preferences, such as the user’s375

location, the time of day, the day of the week, and the taking376

place of events (e.g., soccer match, concert). Clearly, this377

categorization is not exhaustive and the impact of each single378

context dimension on content popularity is unknown a priori.379

Moreover, a caching entity may only have access to some of380

the context dimensions, e.g., due to privacy reasons. However,381

our model does not rely on specific context dimensions; it382

can use the information that is collected from the user. If the383

caching entity does have access to some relevant context384

dimensions, these can be exploited to learn context-specific385

content popularity.386

D. Context-Aware Proactive Caching Architecture387

Next, we describe the architecture for context-aware proac-388

tive caching, which is designed similarly to an architecture389

presented in [33]. An illustration of the context-aware proac-390

tive caching architecture is given in Fig. 2. Its main building391

blocks are the Local Cache, a Cache Management entity,392

a Learning Module, a Storage Interface, a User Interface,393

and a Context Monitor. The Cache Management consists of394

a Cache Controller and a Request Handler. The Learning395

Module contains a Decision Engine, a Learning Database, and396

a Context Database. The workflow consists of several phases397

as enumerated in Fig. 2 and is described below.398

• Initialization399

(1) The Learning Module is provided with the goal of400

caching (i.e., maximize number of cache hits or achieve401

operator-specific goal). It fixes the appropriate periodicity402

of context monitoring and cache refreshment. Then, it403

informs the Cache Management and the Context Monitor404

about the periodicity.405

• Periodic Context Monitoring and Cache Refreshment406

(2) The Context Monitor periodically gathers context407

information by accessing information about currently408

connected users available at the User Interface and409

optionally by collecting additional information from410

Fig. 3. Sequence of operations of context-aware proactive caching in time
slot t .

external sources (e.g., social media platforms). If different 411

service types exist, the Context Monitor also retrieves 412

the service types of connected users. (3) The Context 413

Monitor delivers the gathered information to the Context 414

Database in the Learning Module. (4) The Decision 415

Engine periodically extracts the newly monitored context 416

information from the Context Database. (5) Upon com- 417

parison with results from previous time slots as stored in 418

the Learning Database, (6) the Decision Engine decides 419

which files to cache in the coming time slot. (7) The 420

Decision Engine instructs the Cache Controller to refresh 421

the cache content accordingly. (8) The Cache Controller 422

compares the current and the required cache content and 423

removes non-required content from the cache. If some 424

required content is missing, the Cache Controller directs 425

the Storage Interface to fetch the content from storage 426

servers and to store it into the local cache. (9) Then, 427

the Cache Controller informs the User Interface about 428

the new cache content. (10) The User Interface pushes 429

the information about new cache content to currently 430

connected users. 431

• User Requests 432

(11) When a user requests a cached file, the User Interface 433

forwards the request to the Request Handler. The Request 434

Handler stores the request information, retrieves the file 435

from the local cache and serves the request. 436

• Periodic Learning 437

(12) Upon completion of a time slot, the Request Han- 438

dler hands the information about all requests from that 439

time slot to the Learning Module. The Learning Module 440

updates the Learning Database with the context informa- 441

tion from the beginning of the time slot and the number 442

of requests for cached files in that time slot. 443

E. Formal Problem Formulation 444

Next, we give a formal problem formulation for context- 445

aware proactive caching. The caching system operates in 446

discrete time slots t = 1, 2, ..., T , where T denotes the 447

finite time horizon. As illustrated in Fig. 3, each time slot t 448

consists of the following sequence of operations: (i) The 449

context of currently connected users and their service types 450

are monitored. Let Ut be the number of currently connected 451

users. We assume that 1 ≤ Ut ≤ Umax and we specifically 452

allow the set of currently connected users to change in between 453

the time slots of the algorithm, so that user mobility is taken 454

into account. Let D be the number of monitored context 455

dimensions per user. We denote the D-dimensional context 456

space by X . It is assumed to be bounded and can hence be 457

set to X := [0, 1]D without loss of generality. Let xt,i ∈ X 458
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be the context vector of user i observed in time slot t . Let459

xt = (xt,i)i=1,...,Ut be the collection of contexts of all users460

in time slot t . Let st,i ∈ S be the service type of user i in461

time slot t and let st = (st,i )i=1,...,Ut be the collection of462

service types of all users in time slot t . (ii) The cache content463

is refreshed based on the contexts xt, the service types st and464

their service weights, the file prioritization weights w f , f ∈ F ,465

and knowledge from previous time slots. Then, connected466

users are informed about the current cache content, which is467

denoted by Ct = {ct,1, ..., ct,m}. (iii) Until the end of the time468

slot, users can request currently cached files. Their requests469

are served. The demand dct, j (xt,i , t) of each user i = 1, ..., Ut470

for each cached file ct, j ∈ Ct , j = 1, ..., m, in this time slot471

is observed, i.e., the number of cache hits for each cached file472

is monitored.473

The number of times a user with context vector x ∈ X474

requests a file f ∈ F within one time slot is a random variable475

with unknown distribution. We denote this random demand476

by d f (x) and its expected value by μ f (x) := E(d f (x)).477

The random demand is assumed to take values in [0, Rmax],478

where Rmax ∈ N is the maximum possible number of479

requests a user can submit within one time slot. This explicitly480

incorporates that a user may request the same file repeatedly481

within one time slot. In time slot t , the random variables482

(d f (xt,i))i=1,..,Ut , f ∈F , are assumed to be independent, i.e., the483

requests of currently connected users and between different484

files are independent of each other. Moreover, each random485

variable d f (xt,i) is assumed to be independent of past caching486

decisions and previous demands.487

The goal of the caching entity is to select the cache488

content in order to maximize the expected cumulative number489

of (weighted) cache hits up to the finite time horizon T .490

We introduce a binary variable yt, f , which describes if file f491

is cached in time slot t , where yt, f = 1, if f ∈ Ct , and 0492

otherwise. Then, the problem of cache content placement can493

be formally written as494

max
T∑

t=1

∑

f ∈F

yt, f w f

Ut∑

i=1

vst,i μ f (xt,i)495

s.t.
∑

f ∈F

yt, f ≤ m, t = 1, ..., T,496

yt, f ∈ {0, 1}, f ∈ F, t = 1, ..., T . (1)497

Let us now first assume that the caching entity had a priori498

knowledge about context-specific content popularity like an499

omniscient oracle, i.e., suppose that for each context vector500

x ∈ X and for each file f ∈ F , the caching entity would501

know the expected demand μ f (x) = E(d f (x)). In this case,502

problem (1) corresponds to an integer linear programming503

problem. The problem can be decoupled into T independent504

sub-problems, one for each time slot t . Each sub-problem is505

a special case of the knapsack problem [43] with a knapsack506

of capacity m and with items of non-negative profit and unit507

weights. Hence, its optimal solution can be easily computed508

in a running time of O(|F | log(|F |)) as follows. In time509

slot t , given the contexts xt and the service types st, the510

optimal solution is given by ranking the files according to their511

(weighted) expected demands and by selecting the m highest 512

ranked files. We denote these top-m files for pair (xt, st) by 513

f ∗
1 (xt, st), f ∗

2 (xt, st), ..., f ∗
m (xt, st) ∈ F . Formally, for j = 514

1, ..., m, they satisfy 1
515

f ∗
j (xt, st)∈ argmax

f ∈F\(⋃ j−1
k=1 { f ∗

k (xt,st)})
w f

Ut∑

i=1

vst,i μ f (xt,i), 516

(2) 517

where
⋃0

k=1{ f ∗
k (xt, st)} := ∅. We denote by C∗

t (xt, st) := 518⋃m
k=1{ f ∗

k (xt, st)} an optimal choice of files to cache in time 519

slot t . Consequently, the collection 520

(C∗
t (xt, st))t=1,...,T (3) 521

is an optimal solution to problem (1). Since this solution can 522

be achieved by an omniscient oracle under a priori knowledge 523

about content popularity, we call it the oracle solution. 524

However, in this paper we assume that the caching entity 525

does not have a priori knowledge about content popularity. 526

In this case, the caching entity cannot simply solve problem (1) 527

as described above, since the expected demands μ f (x) = 528

E(d f (x)) are unknown. Hence, the caching entity has to learn 529

these expected demands over time by observing the users’ 530

demands for cached files given the users’ contexts. For this 531

purpose, over time, the caching entity has to find a trade- 532

off between caching files about which little information is 533

available (exploration) and files of which it believes that they 534

will yield the highest demands (exploitation). In each time 535

slot, the choice of files to be cached depends on the history of 536

choices in the past and the corresponding observed demands. 537

An algorithm which maps the history to the choices of files 538

to cache is called a learning algorithm. The oracle solution 539

given in (3) can be used as a benchmark to evaluate the loss 540

of learning. Formally, the regret of learning with respect to 541

the oracle solution is given by 542

R(T ) =
T∑

t=1

m∑

j=1

Ut∑

i=1

vst,i

(
w f ∗

j (xt,st) E
(

d f ∗
j (xt,st)(xt,i)

)
543

− E
(
wct, j dct, j (xt,i , t)

))
, (4) 544

where dct, j (xt,i , t) denotes the random demand for the cached 545

file ct, j ∈ Ct of user i with context vector xt,i at time t . Here, 546

the expectation is taken with respect to the choices made by 547

the learning algorithm and the distributions of the demands. 548

IV. A CONTEXT-AWARE PROACTIVE 549

CACHING ALGORITHM 550

In order to proactively cache the most suitable files given 551

the context information about currently connected users, the 552

caching entity should learn context-specific content popularity. 553

Due to the above formal problem formulation, this prob- 554

lem corresponds to a contextual multi-armed bandit prob- 555

lem and we can adapt and extend a contextual learning 556

algorithm [41], [42] to our setting. Our algorithm is based 557

1Several files may have the same expected demands, i.e., the optimal set of
files may not be unique. This is also captured here.
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on the assumption that users with similar context information558

will request similar files. If this natural assumption holds true,559

the users’ context information together with their requests560

for cached files can be exploited to learn for future caching561

decisions. For this purpose, our algorithm starts by partitioning562

the context space uniformly into smaller sets, i.e., it splits563

the context space into parts of similar contexts. Then, the564

caching entity learns the content popularity independently in565

each of these sets of similar contexts. The algorithm operates566

in discrete time slots. In each time slot, the algorithm first567

observes the contexts of currently connected users. Then, the568

algorithm selects which files to cache in this time slot. Based569

on a certain control function, the algorithm is either in an570

exploration phase, in which it chooses a random set of files571

to cache. Theses phases are needed to learn the popularity572

of files which have not been cached often before. Otherwise,573

the algorithm is in an exploitation phase, in which it caches574

files which on average were requested most when cached in575

previous time slots with similar user contexts. After caching576

the new set of files, the algorithm observes the users’ requests577

for these files. In this way, over time, the algorithm learns578

context-specific content popularity.579

The algorithm for selecting m files is called Context-580

Aware Proactive Caching with Cache Size m (m-CAC) and its581

pseudocode is given in Fig. 4. Next, we describe the algorithm582

in more detail. In its initialization phase, m-CAC creates a583

partition PT of the context space X = [0, 1]D into (hT )D sets,584

that are given by D-dimensional hypercubes of identical size585

1
hT

×. . .× 1
hT

. Here, hT is an input parameter which determines586

the number of sets in the partition. Additionally, m-CAC keeps587

a counter N f,p(t) for each pair consisting of a file f ∈ F and588

a set p ∈ PT . The counter N f,p(t) is the number of times in589

which file f ∈ F was cached after a user with context from590

set p was connected to the caching entity up to time slot t591

(i.e., if 2 users with context from set p are connected in one592

time slot and file f is cached, this counter is increased by 2).593

Moreover, m-CAC keeps the estimated demand d̂ f,p(t) up to594

time slot t of each pair consisting of a file f ∈ F and a set595

p ∈ PT . This estimated demand is calculated as follows: Let596

E f,p(t) be the set of observed demands of users with context597

from set p when file f was cached up to time slot t . Then,598

the estimated demand of file f in set p is given by the sample599

mean d̂ f,p(t) := 1
|E f,p (t)|

∑
d∈E f,p(t) d .2,3

600

In each time slot t , m-CAC first observes the number of601

currently connected users Ut , their contexts xt = (xt,i)i=1,...,Ut602

and the service types st = (st,i )i=1,...,Ut . For each context603

vector xt,i , m-CAC determines the set pt,i ∈ PT , to which the604

context vector belongs, i.e., such that xt,i ∈ pt,i holds. The605

collection of these sets is given by pt = (pt,i)i=1,...,Ut . Then,606

the algorithm can either be in an exploration phase or in an607

exploitation phase. In order to determine the correct phase in608

the current time slot, the algorithm checks if there are files that609

2The set E f,p(t) does not have to be stored since the estimated demand
d̂ f,p (t) can be updated based on d̂ f,p(t −1), N f,p (t −1) and on the observed
demands at time t .

3Note that in the pseudocode in Fig. 4, the argument t is dropped from
counters N f,p (t) and d̂ f,p (t) since previous values of these counters do not
have to be stored.

Fig. 4. Pseudocode of m-CAC.

have not been explored sufficiently often. For this purpose, the 610

set of under-explored files Fue
pt

(t) is calculated based on 611

Fue
pt

(t) := ∪Ut
i=1 Fue

pt,i
(t) 612

:= ∪Ut
i=1{ f ∈ F : N f,pt,i (t) ≤ K (t)}, (5) 613

where K (t) is a deterministic, monotonically increasing con- 614

trol function, which is an input to the algorithm. The control 615

function has to be set adequately to balance the trade-off 616

between exploration and exploitation. In Section V, we will 617

select a control function that guarantees a good balance in 618

terms of this trade-off. 619

If the set of under-explored files is non-empty, m-CAC 620

enters the exploration phase. Let u(t) be the size of the set of 621

under-explored files. If the set of under-explored files contains 622

at least m elements, i.e., u(t) ≥ m, the algorithm randomly 623

selects m files from Fue
pt

(t) to cache. If the set of under- 624

explored files contains less than m elements, i.e., u(t) < m, it 625
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selects all u(t) files from Fue
pt

(t) to cache. Since the cache is626

not fully filled by u(t) < m files, (m − u(t)) additional files627

can be cached. In order to exploit knowledge obtained so far,628

m-CAC selects (m − u(t)) files from F \ Fue
pt

(t) based on a629

file ranking according to the estimated weighted demands, as630

defined by the files f̂1,pt ,st(t), ..., f̂m−u(t),pt,st (t) ∈ F \ Fue
pt

(t),631

which satisfy for j = 1, ..., m − u(t):632

f̂ j,pt,st (t)∈ argmax

f ∈F\(Fue
pt

(t)∪
j−1⋃
k=1

{ f̂k,pt ,st (t)})
w f

Ut∑

i=1

vst,i d̂ f,pt,i (t).633

(6)634

If the set of files defined by (6) is not unique, ties are broken635

arbitrarily. Note that by this procedure, even in exploration636

phases, the algorithm additionally exploits, whenever the num-637

ber of under-explored files is smaller than the cache size.638

If the set of under-explored files Fue
pt

(t) is empty, m-CAC639

enters the exploitation phase. It selects m files from F based on640

a file ranking according to the estimated weighted demands,641

as defined by the files f̂1,pt,st (t), ..., f̂m,pt ,st (t) ∈ F , which642

satisfy for j = 1, ..., m:643

f̂ j,pt,st (t)∈ argmax
f ∈F\

(⋃ j−1
k=1 { f̂k,pt ,st (t)}

) w f

Ut∑

i=1

vst,i d̂ f,pt,i (t). (7)644

If the set of files defined by (7) is not unique, ties are again645

broken arbitrarily.646

After selecting the subset of files to cache, the algorithm647

observes the users’ requests for these files in this time slot.648

Then, it updates the estimated demands and the counters of649

cached files.650

V. ANALYSIS OF THE REGRET651

In this section, we give an upper bound on the regret R(T )652

of m-CAC in (4). The regret bound is based on the natural653

assumption that expected demands for files are similar in654

similar contexts, i.e., that users with similar characteristics655

are likely to consume similar content. This assumption is656

realistic since the users’ preferences in terms of consumed657

content differ based on the users’ contexts, so that it is658

plausible to divide the user population into segments of users659

with similar context and similar preferences. Formally, the660

similarity assumption is captured by the following Hölder661

condition.662

Assumption 1: There exists L > 0, α > 0 such that for all663

f ∈ F and for all x, y ∈ X , it holds that664

|μ f (x) − μ f (y)| ≤ L||x − y||α,665

where || · || denotes the Euclidean norm in R
D.666

Assumption 1 is needed for the analysis of the regret, but667

it should be noted that m-CAC can also be applied if this668

assumption does not hold true. However, a regret bound might669

not be guaranteed in this case.670

The following theorem shows that the regret of m-CAC671

is sublinear in the time horizon T , i.e., R(T ) = O(T γ )672

with γ < 1. This bound on the regret guarantees that the673

algorithm has an asymptotically optimal performance, since674

then limT →∞ R(T )
T = 0 holds. This means, that m-CAC 675

converges to the oracle solution strategy. In other words, 676

m-CAC converges to the optimal cache content placement 677

strategy, which maximizes the expected number of cache hits. 678

In detail, the regret of m-CAC can be bounded as follows for 679

any finite time horizon T . 680

Theorem 1 (Bound for R(T)): Let K (t) = t
2α

3α+D log(t) and 681

hT = 
T
1

3α+D �. If m-CAC is run with these parameters and 682

Assumption 1 holds true, the leading order of the regret R(T ) 683

is O
(
vmaxwmaxmUmax Rmax|F |T 2α+D

3α+D log(T )
)

. 684

The proof can be found in our online appendix [44]. The 685

regret bound given in Theorem 1 is sublinear in the time 686

horizon T , proving that m-CAC converges to the optimal 687

cache content placement strategy. Additionally, Theorem 1 is 688

applicable for any finite time horizon T , such that it provides 689

a bound on the loss incurred by m-CAC for any finite number 690

of cache placement phases. Thus, Theorem 1 characterizes 691

m-CAC’s speed of convergence Furthermore, Theorem 1 692

shows that the regret bound is a constant multiple of the regret 693

bound in the special case without service differentiation, in 694

which vmax = 1 and wmax = 1. Hence, the order of the regret 695

is O
(

T
2α+D
3α+D log(T )

)
in the special case as well. 696

VI. MEMORY REQUIREMENTS 697

The memory requirements of m-CAC are mainly determined 698

by the counters kept by the algorithm during its runtime 699

(see also [41]). For each set p in the partition PT and 700

each file f ∈ F , the algorithm keeps the counters N f,p 701

and d̂ f,p. The number of files is |F |. If m-CAC runs with the 702

parameters from Theorem 1, the number of sets in PT is upper 703

bounded by (hT )D = 
T
1

3α+D �D ≤ 2DT
D

3α+D . Hence, the 704

required memory is upper bounded by |F |2DT
D

3α+D and is thus 705

sublinear in the time horizon T . This means, that for T → ∞, 706

the algorithm would require infinite memory. However, for 707

practical approaches, only the counters of such sets p have 708

to be kept to which at least one of the connected users’ 709

context vectors has already belonged to. Hence, depending 710

on the heterogeneity in the connected users’ context vectors, 711

the required number of counters that have to be kept can be 712

much smaller than given by the upper bound. 713

VII. EXTENSIONS 714

A. Exploiting the Multicast Gain 715

So far, we assumed that each request for a cached file is 716

immediately served by a unicast transmission. However, our 717

algorithm can be extended to multicasting, which has been 718

shown to be beneficial in combination with caching [7], [11]. 719

For this purpose, to extend our algorithm, each time slot t 720

is divided into a fixed number of intervals. In each interval, 721

incoming requests are monitored and accumulated. At the 722

end of the interval, requests for the same file are served 723

by a multicast transmission. In order to exploit knowledge 724

about content popularity learned so far, a request for a file 725

with low estimated demand could, however, still be served 726

by a unicast transmission. In this way, unnecessary delays 727

are prevented in cases in which another request and thus a 728
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multicast transmission are not expected. Moreover, service729

differentiation could be taken into account. For example, high-730

priority users could be served by unicast transmissions, such731

that their delay is not increased due to waiting times for732

multicast transmissions.733

B. Rating-Based Context-Aware Proactive Caching734

So far, we considered cache content placement with respect735

to the demands d f (x) in order to maximize the number of736

(weighted) cache hits. However, a CP operating an infostation737

might want to cache not only content that is requested often,738

but which also receives high ratings from the users. Consider739

the case that after consumption users rate content in a range740

[rmin, rmax] ⊂ R+. For a context x , let r f (x) be the random741

variable describing the rating of a user with context x if he742

requests file f and makes a rating thereafter. Then, we define743

the random variable744

d̃ f (x) := r f (x)d f (x), (8)745

which combines the demand and the rating for file f of746

a user with context x . By carefully designing the range of747

ratings, the CP chooses the trade-off between ratings and748

cache hits. Now, we can apply m-CAC with respect to749

d̃ f (x). In this case, m-CAC additionally needs to observe750

the users’ ratings in order to learn content popularity in751

terms of ratings. If the users’ ratings are always avail-752

able, Theorem 1 applies and provides a regret bound of753

O
(
vmaxwmaxrmaxmUmax Rmax|F |T 2α+D

3α+D log(T )
)

.754

However, users might not always reveal a rating after755

consuming a content. When a user’s rating is missing, we756

assume that m-CAC does not update the counters based on this757

user’s request. This may result in a higher required number of758

exploration phases. Hence, the regret of the learning algorithm759

is influenced by the users’ willingness to reveal ratings of760

requested content. Let q ∈ (0, 1) be the probability that a user761

reveals his rating after requesting a file. Then, the regret of762

the learning algorithm is bounded as given below.763

Theorem 2(Bound for R(T ) for Rating-Based Caching764

With Missing Ratings): Let K (t) = t
2α

3α+D log(t) and hT =765


T
1

3α+D �. If m-CAC is run with these parameters with respect766

to d̃ f (x), Assumption 1 holds true for d̃ f (x) and a user reveals767

his rating with probability q, the leading order of the regret768

R(T ) is O
(

1
q vmaxwmaxrmaxmUmax Rmax|F |T 2α+D

3α+D log(T )
)

.769

The proof can be found in our online appendix [44].770

Comparing Theorem 2 with Theorem 1, the regret of m-CAC771

is scaled up by a factor 1
q > 1 in case of rating-based caching772

with missing ratings. This factor corresponds to the expected773

number of requests until the caching entity receives one rating.774

However, the time order of the regret remains the same. Hence,775

m-CAC is robust under missing ratings in the sense that if776

some users refuse to rate requested content, the algorithm still777

converges to the optimal cache content placement strategy.778

C. Asynchronous User Arrival779

So far, we assumed that the set of currently connected users780

only changes in between the time slots of our algorithm.781

This means, that only those users connected to the caching 782

entity at the beginning of a time slot, will request files within 783

that time slot. However, if users connect to the caching entity 784

asynchronously, m-CAC should be adapted. If a user directly 785

disconnects after the context monitoring without requesting 786

any file, he should be excluded from learning. Hence, in 787

m-CAC, the counters are not updated for disconnecting users. 788

If a user connects to the caching entity after cache content 789

placement, his context was not considered in the caching 790

decision. However, his requests can be used to learn faster. 791

Hence, in m-CAC, the counters are updated based on this 792

user’s requests. 793

D. Multiple Wireless Local Caching Entities 794

So far, we considered online learning for cache content 795

placement in a single caching entity. However, real caching 796

systems contain multiple caching entities, each of which 797

should learn local content popularity. In a network of mul- 798

tiple caching entities, m-CAC could be applied separately 799

and independently by each caching entity. For the case that 800

coverage areas of caching entities overlap, in this subsection, 801

we present m-CACao, an extension of m-CAC to Context- 802

Aware Proactive Caching with Area Overlap. The idea of 803

m-CACao is that caching entities can learn content popularity 804

faster by not only relying on their own cache hits, but also 805

on cache hits at neighboring caching entities with overlapping 806

coverage area. For this purpose, the caching entities overhear 807

cache hits produced by users in the intersection to neighboring 808

coverage areas. 809

In detail, m-CAC is extended to m-CACao as follows: The 810

context monitoring and the selection of cache content works as 811

in m-CAC. However, the caching entity not only observes its 812

own cache hits (line 21 in Fig. 4), but it overhears cache hits at 813

neighboring caching entities of users in the intersection. Then, 814

the caching entity not only updates the counters of its own 815

cached files (lines 22-26 in Fig. 4), but it additionally updates 816

the counters of files of which it overheard cache hits at neigh- 817

boring caches. This helps the caching entity to learn faster. 818

VIII. NUMERICAL RESULTS 819

In this section, we numerically evaluate the proposed learn- 820

ing algorithm m-CAC by comparing its performance to several 821

reference algorithms based on a real world data set. 822

A. Description of the Data Set 823

We use a data set from MovieLens [45] to evaluate 824

our proposed algorithm. MovieLens is an online movie 825

recommender operated by the research group GroupLens 826

from the University of Minnesota. The MovieLens 1M 827

DataSet [46] contains 1000209 ratings of 3952 movies. These 828

ratings were made by 6040 users of MovieLens within the 829

years 2000 to 2003. Each data set entry consists of an 830

anonymous user ID, a movie ID, a rating (in whole numbers 831

between 1 and 5) and a timestamp. Additionally, demo- 832

graphic information about the users is given: Their gender, 833

age (in 7 categories), occupation (in 20 categories) as well 834
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Fig. 5. Number of content requests in used data set as a function of time
slots. Time slots at an hourly basis.

as their Zip-code. For our numerical evaluations, we assume835

that the movie rating process in the data set corresponds to836

a content request process of users connected to a wireless837

local caching entity (see [33], [34] for a similar approach).838

Hence, a user rating a movie at a certain time in the data set839

for us corresponds to a request to either the caching entity840

(in case the movie is cached in the caching entity) or to the841

macro cellular network (in case the movie is not cached in842

the caching entity). This approach is reasonable since users843

typically rate movies after watching them.844

In our simulations, we only use the data gathered within the845

first year of the data set, since around 94% of the ratings were846

provided within this time frame. Then, we divide a year’s time847

into 8760 time slots of one hour each (T = 8760), assuming848

that the caching entity updates its cache content at an hourly849

basis. Then, we assign the requests and corresponding user850

contexts to the time slots according to their timestamps and851

we interpret each request as if it was coming from a separate852

user. At the beginning of a time slot, we assume to have access853

to the context of each user responsible for a request in the854

coming time slot. Fig. 5 shows that the corresponding content855

request process is bursty and flattens out towards the end. As856

context dimensions, we select the dimensions gender and age.4857

B. Reference Algorithms858

We compare m-CAC with five reference algorithms. The859

first algorithm is the omniscient Oracle, which has complete860

knowledge about the exact future demands. In each time slot,861

the oracle selects the optimal m files that will maximize the862

number of cache hits in this time slot.5863

The second reference algorithm is called m-UCB, which864

consists of a variant of the UCB algorithm. UCB is a classical865

learning algorithm for multi-armed bandit problems [35],866

which has logarithmic regret order. However, it does not take867

into account context information, i.e., the logarithmic regret is868

with respect to the average expected demand over the whole869

4We neglect the occupation as context dimension since by mapping them
to a [0,1] variable, we would have to classify which occupations are more
and which are less similar to each other.

5Note that this oracle yields even better results than the oracle used as a
benchmark to define the regret in (4). In the definition of regret, the oracle only
exploits knowledge about expected demands, instead of exact future demands.

context space. While in classical UCB, one action is taken in 870

each time slot, we modify UCB to take m actions at a time, 871

which corresponds to selecting m files. 872

The third reference algorithm is the m-ε-Greedy. This is 873

a variant of the simple ε-Greedy [35] algorithm, which does 874

not consider context information. The m-ε-Greedy caches a 875

random set of m files with probability ε ∈ (0, 1). With 876

probability (1 − ε), the algorithm caches the m files with 877

highest to m-th highest estimated demands. These estimated 878

demands are calculated based on previous demands for cached 879

files. 880

The fourth reference algorithm is called m-Myopic. This 881

is an algorithm taken from [15], which is investigated since 882

it is comparable to the well-known Least Recently Used 883

algorithm (LRU) for caching. m-Myopic only learns from one 884

time slot in the past. It starts with a random set of files and in 885

each of the following time slots discards all files that have not 886

been requested in the previous time slot. Then, it randomly 887

replaces the discarded files by other files. 888

The fifth reference algorithm, called Random, caches a 889

random set of files in each time slot. 890

C. Performance Measures 891

The following performance measures are used in our analy- 892

sis. The evolution of per-time slot or cumulative number of 893

cache hits allows comparing the absolute performance of the 894

algorithms. A relative performance measure is given by the 895

cache efficiency, which is defined as the ratio of cache hits 896

compared to the overall demand, i.e., 897

cache efficiency in % = cache hits

cache hits + cache misses
· 100. 898

The cache efficiency describes the percentage of requests 899

which can be served by cached files. 900

D. Results 901

In our simulations, we set ε = 0.09 in m-ε-Greedy, which is 902

the value at which heuristically the algorithm on average per- 903

formed best. In m-CAC, we set the control function to K (t) = 904

c ·t 2α
3α+D log(t) with c = 1/(|F |D).6 The simulation results are 905

obtained by averaging over 100 runs of the algorithms. First, 906

we consider the case without service differentiation. The long- 907

term behavior of m-CAC is investigated with the following 908

scenario. We assume that the caching entity can store 909

m = 200 movies out of the |F | = 3952 available movies. 910

Hence, the cache size corresponds to about 5% of the file 911

library size. We run all algorithms on the data set and study 912

their results as a function of time, i.e., over the time slots 913

t = 1, ..., T . Fig. 6(a) and 6(b) show the per-time slot and the 914

cumulative numbers of cache hits up to time slot t as a function 915

of time, respectively. Due to the bursty content request process 916

(compare Fig. 5), also the number of cache hits achieved by 917

the different algorithms is bursty over time. As expected, the 918

Oracle gives an upper bound to the other algorithms. Among 919

the other algorithms, m-CAC, m-ε-Greedy and m-UCB clearly 920

6Compared to the control function in Theorem 1, the additional factor
reduces the number of exploration phases which allows for better performance.
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Fig. 6. Time evolution of algorithms for m = 200.

outperform m-Myopic and Random. This is due to the fact921

that these three algorithms learn from the history of observed922

demands, while m-Myopic only learns from one time slot in923

the past and Random does not learn at all. It can be observed924

that m-ε-Greedy shows a better performance than m-UCB,925

even though it uses a simpler learning strategy. Overall, m-926

CAC outperforms the other algorithms by additionally learning927

from context information. At the time horizon, the cumulative928

number of cache hits achieved by m-CAC is 1.146, 1.377,929

3.985 and 5.506 times higher than the ones achieved by930

m-ε-Greedy, m-UCB, m-Myopic and Random, respectively.931

Next, we investigate the impact of the cache size m by932

varying it between 50 and 400 files, which corresponds to933

between 1.3% and 10.1% of the file library size, which is934

a realistic assumption. All remaining parameters are kept as935

before. Fig. 7 shows the overall cache efficiency achieved936

at the time horizon T as a function of cache size, i.e., the937

cumulative number of cache hits up to T is normalized by938

the cumulative number of requests up to T . The overall939

cache efficiency of all algorithms is increasing with increasing940

cache size. Moreover, the results indicate that again m-CAC941

and m-ε-Greedy slightly outperform m-UCB and clearly942

outperform m-Myopic and Random. Averaged over the range943

of cache sizes, the cache efficiency of m-CAC is 28.4%, com-944

pared to an average cache efficiency of 25.3%, 21.4%, 7.76%945

Fig. 7. Overall cache efficiency at T as a function of cache size m.

Fig. 8. Cumulative number of weighted cache hits for m = 200 as a function
of time.

and 5.69% achieved by m-ε-Greedy, m-UCB, m-Myopic and 946

Random, respectively. 947

Now, we consider a case of service differentiation, in which 948

two different service types 1 and 2 with weights v1 = 5 and 949

v2 = 1 exist. Hence, service type 1 should be prioritized due 950

to the higher value it represents. We randomly assign 10% of 951

the users to service type 1 and classify all remaining users as 952

service type 2. Then, we adjust each algorithm to take into 953

account service differentiation by incorporating the weights 954

according to the service types. Fig. 8 shows the cumulative 955

number of weighted cache hits up to time slot t as a function of 956

time. At the time horizon, the cumulative number of weighted 957

cache hits achieved by m-CAC is 1.156, 1.219, 3.914 and 958

5.362 times higher than the ones achieved by m-ε-Greedy, 959

m-UCB, m-Myopic and Random, respectively. A comparison 960

with Fig. 6(b) shows that the behavior of the algorithms is 961

similar to the case without service differentiation. 962

Finally, we investigate the extension to multiple caching 963

entities and compare the performance of the proposed algo- 964

rithms m-CAC and m-CACao. We consider a scenario with 965

two caching entities and divide the data set as follows: 966

A fraction o ∈ [0, 0.3] of randomly selected requests is 967

considered to be made in the intersection of the two cov- 968

erage areas. We use the parameter o as a measure of the 969

overlap between the caching entities. The remaining requests 970

are randomly assigned to either one of the caching entities. 971
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Fig. 9. Cumulative number of cache hits at T as a function of the overlap
parameter o.

These requests are considered to be made by users solely972

connected to one caching entity. Then, on the one hand we run973

m-CAC separately on each caching entity and on the other974

hand we run m-CACao on both caching entities. Fig. 9 shows975

the cumulative number of cache hits achieved in sum by the976

two caching entities at the time horizon T as a function of977

the overlap parameter o. As expected, m-CAC and m-CACao978

perform identically for non-overlapping coverage areas. With979

increasing overlap, the number of cache hits achieved by980

both m-CAC and m-CACao increases. The reason is that981

users in the intersection can more likely be served since they982

have access to both caches. Hence, even though the caching983

entities do not coordinate their cache content, more cache984

hits occur. For up to 25% of overlap (o ≤ 0.25), m-CACao985

outperforms m-CAC. Clearly, m-CACao performs better since986

by overhearing cache hits at the neighboring caching entity,987

both caching entities learn content popularity faster. For very988

large overlap (o > 0.25), m-CAC yields higher numbers of989

cache hits. The reason is that when applying m-CACao in case990

of a large overlap, neighboring caching entities overhear such a991

large number of cache hits, that they learn very similar content992

popularity distributions. Hence, over time it is likely that their993

caches contain the same files. In contrast, applying m-CAC,994

a higher diversity in cache content is maintained over time.995

Clearly, further gains in cache hits could be achieved by jointly996

optimizing the cache content of all caching entities. However,997

this would either require coordination among the caching998

entities or a central planner deciding on the cache content999

of all caching entities, which results in a high communication1000

overhead. In contrast, our heuristic algorithm m-CACao does1001

not require additional coordination or communication and1002

yields good results for small overlaps.1003

IX. CONCLUSION1004

In this paper, we presented a context-aware proactive1005

caching algorithm for wireless caching entities based on1006

contextual multi-armed bandits. To cope with unknown and1007

fluctuating content popularity among the dynamically arriving1008

and leaving users, the algorithm regularly observes context1009

information of connected users, updates the cache content and1010

subsequently observes cache hits. In this way, the algorithm 1011

learns context-specific content popularity online, which allows 1012

for a proactive adaptation of cache content according to fluc- 1013

tuating local content popularity. We derived a sublinear regret 1014

bound, which characterizes the learning speed and proves that 1015

our proposed algorithm converges to the optimal cache content 1016

placement strategy, which maximizes the expected number of 1017

cache hits. Moreover, the algorithm supports customer priori- 1018

tization and can be combined with multicast transmissions and 1019

rating-based caching decisions. Numerical studies showed that 1020

by exploiting context information, our algorithm outperforms 1021

state-of-the-art algorithms in a real world data set. 1022
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