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Abstract

Predicated on the increasing abundance of electronic health records,
we investigate the problem of inferring individualized treatment e�ects
using observational data. Stemming from the potential outcomes model,
we propose a novel multi-task learning framework in which factual and
counterfactual outcomes are modeled as the outputs of a function in a
vector-valued reproducing kernel Hilbert space (vvRKHS). We develop a
nonparametric Bayesian method for learning the treatment e�ects using
a multi-task Gaussian process (GP) with a linear coregionalization kernel
as a prior over the vvRKHS. The Bayesian approach allows us to compute
individualized measures of con�dence in our estimates via pointwise cred-
ible intervals, which are crucial for realizing the full potential of precision
medicine. The impact of selection bias is alleviated via a risk-based em-

pirical Bayes method for adapting the multi-task GP prior, which jointly
minimizes the empirical error in factual outcomes and the uncertainty
in (unobserved) counterfactual outcomes. We conduct experiments on a
dataset for a randomized trial of an interventional social program for im-
proving cognitive skills of premature infants, and an observational dataset
for the survival bene�t of left ventricular assist devices in cardiac patients
wait-listed for a heart transplant. In both experiments, we show that our
method signi�cantly outperforms the state-of-the-art.

1 Introduction

Clinical trials entail enormous costs: the average costs of multi-phase trials in
vital therapeutic areas such as the respiratory system, anesthesia and oncology
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are $115.3 million, $105.4 million, and $78.6 million, respectively [1]. More-
over, due to the high costs and di�culty of patient recruitment, randomized
controlled trials often exhibit small sample sizes, which hinders the discovery of
heterogeneous therapeutic e�ects across di�erent patient subgroups [2]. With
the advent of electronic health records (EHRs), currently deployed in more than
75% of hospitals in the U.S. according to the latest ONC data brief1, there has
been a growing interest in using machine learning algorithms to infer heteroge-
neous treatment e�ects from the readily available observational EHR data. This
interest glints in recent initiatives, such as STRATOS [3], which focus on devel-
oping new methods for conducting retrospective cohort studies, in addition to
the various recent works on causal inference from observational data developed
by the machine learning community [4-11].

2 Problem Setup

We consider the setting in which a speci�c treatment is applied to a population
of subjects (patients), where each subject i possesses a d-dimensional feature

Xi ∈ X , and two potential outcomes Y
(1)
i , Y

(0)
i ∈ R that correspond to the

subject's response with and without the treatment, respectively. The potential

outcomes Y
(0)
i and Y

(1)
i are random variables that are drawn from a conditional

distribution P(Y (0)
i , Y

(1)
i |Xi = x). The causal e�ect of the treatment on every

individual subject manifests through the random variable (Y
(1)
i −Y

(0)
i ) |Xi = x.

Hence, we de�ne the individualized treatment e�ect (ITE) for subject i as the
expected e�ect of the treatment on that subject, i.e.

T (x) = E
[
Y

(1)
i − Y

(0)
i

∣∣∣ Xi = x
]
. (1)

Our goal is to e�ciently estimate the function T (x) from an observational

dataset, e.g. a retrospective cohort study [26, 34] or a hospital's electronic
health record [15]. A typical observational dataset D comprises n independent

and identically distributed samples of the random tuple {Xi,Wi,Wi Y
(Wi)
i +

(1 − Wi)Y
(1−Wi)
i }, where Wi ∈ {0, 1} is a treatment assignment indicator

that indicates whether or not subject i has received the treatment under con-

sideration. The outcomes Y
(Wi)
i and Y

(1−Wi)
i are known as the factual and

the counterfactual outcomes, respectively [6, 11]. Treatment assignments are
generally dependent on features, i.e. Wi ⊥̸⊥ Xi. The conditional distribu-
tion P(Wi = 1|Xi = x), also known as the propensity score of subject i [1,
7, 21], re�ects the underlying (unknown) policy for assigning the treatment
to subjects. Throughout this paper, we respect the standard assumptions of
unconfoundedness (or ignorability) and overlap [1, 3, 8, 12, 15, 32-34]. The
former posits that treatment assignments are independent of the outcomes con-

ditional on features, i.e. Y
(0)
i , Y

(1)
i ⊥⊥ Wi |Xi, whereas the latter requires that

1https://www.healthit.gov/sites/default/files/briefs/
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0 < P(Wi = 1|Xi = x) < 1, ∀x ∈ X . The setting described above is known as
the Rubin-Neyman causal model [22, 23, 36].

Individual-based causal inference using observational data is challenging.
Since we only observe one of the potential outcomes for every subject i, we

never observe the treatment e�ect Y
(1)
i −Y

(0)
i for any of the subjects, and hence

we cannot resort to standard supervised learning to estimate T (x). Moreover,
the dataset D exhibits selection bias, which may render the estimates of T (x)
inaccurate if the treatment assignment for individuals with Xi = x is strongly
biased (i.e. P(Wi = 1|Xi = x) is close to 0 or 1). Since our primary motivation
for addressing this problem comes from its application potential in precision
medicine, it is important to associate our estimate of T (.) with a pointwise mea-
sure of con�dence in order to properly guide therapeutic decisions for individual
patients.

3 Multi-task Learning for Causal Inference

Vector-valued Potential Outcomes Function We adopt the following signal-
in-white-noise model for the potential outcomes:

Y
(w)
i = fw(Xi) + ϵi,w, w ∈ {0, 1} (2)

where ϵi,w ∼ N (0, σ2
w) is a Gaussian noise variable. It follows from (2) that

E[Y (w)
i |Xi = x] = fw(x), and hence the ITE can be estimated as T̂ (x) =

f1(x)− f0(x). Previous works adopted two di�erent approaches for estimating
the ITE function T (x) usingD. The �rst approach learns two separate regression
models fw(.) : X → R, w ∈ {0, 1}, using data from treated and control groups,
and estimates the ITE as T̂ (x) = f1(x) − f0(x) [13, 25]. The second approach
learns one regression model that treats the treatment assignment as an input
feature, i.e. fw(x) = f(x,w), f(., .) : X × {0, 1} → R, and estimates the ITE
as T̂ (x) = f(x, 1) − f(x, 0) [11, 18, 23]. We depart from those approaches
by introducing a new regression model that learns a vector-valued potential

outcomes (PO) function f(.) : X → R2, with d inputs (features) and 2 outputs
(potential outcomes); the ITE estimate is the projection of the PO function on
the vector e = [−1 1]T , i.e. T̂ (x) = fT (x) e.

Consistent pointwise estimation of the ITE function T (x) generally requires
restricting the PO function f(x) to some regularity class [23]. To this end, we
model the PO function f(x) as belonging to a vector-valued Reproducing Kernel

Hilbert Space (vvRKHS) HK equipped with an inner product ⟨., .⟩HK
, and with

a reproducing kernel K : X ×X → R2×2, where K is a symmetric matrix-valued
function such that for any x, x′ ∈ X ,K(x, x′) is a positive semi-de�nite matrix
[2]. Our choice for the vvRKHS as a regularity class for f(x) is motivated by
its algorithmic advantages2; by virtue of the representer theorem, we know that

2Consistency of learning functions in the RKHS was studied in [Sec. 7.2.1, 15]. Selection of
the RKHS as a regularity class for the PO function f(x) is not limiting since di�erent selections
for the kernel K correspond to various familiar function spaces, including the Sobolev space
[19].

3



learning the in�nite-dimensional PO function entails estimating a �nite number
of coe�cients evaluated at the input points {Xi}ni=1 in D [22].

Multi-task Learning The vector-valued model for the PO function allows
conceptualizing causal inference as a multi-task learning problem. That is, the

observational dataset D = {Xi,Wi, Y
(Wi)
i }ni=1 can be though of as comprising

training data for two (related) learning tasks with target functions f0(.) and
f1(.), and with Wi acting as the "task index" for the ith training point [2, 5].
For an estimate f(x) of the PO function, the corresponding true loss functional
is given by

L(f) =
∫
x∈X

(
fT (x) e− T (x)

)2 · P(X = x) dx. (3)

The loss functional in (3), originally introduced in [9], is known as the precision
in estimating heterogeneous e�ects (PEHE), and is used to quantify the "good-
ness" of T̂ (x) in capturing the heterogeneity of the true ITE function T (x) [3, 9,
11, 18]. A conspicuous challenge that arises when learning the "PEHE-optimal"
PO function f is that we cannot compute the empirical PEHE for a particular

f ∈ HK since the treatment e�ect samples {Y (1)
i −Y

(0)
i }ni=1 are not available in

the observational data. On the other hand, using a loss function that evaluates
the squared losses of f0(x) and f1(x) separately (as in conventional multi-task
learning [Sec. 3.2, 2]) can be highly problematic: in the presence of a strong
selection bias, the empirical losses for f(.) with respect to factual outcomes may
not generalize to the counterfactual outcomes, leading to a large PEHE loss.

In order to establish a proxy for the empirical PEHE, we �rst consider an
"oracle" that has access to counterfactual outcomes. For such an oracle, the
�nite-sample empirical PEHE is

L̂(f ;K,Y(W),Y(1−W)) =
1

n

n∑
i=1

(
fT (Xi) e− (1− 2Wi)

(
Y

(1−Wi)
i − Y

(Wi)
i

))2

,

(4)

where Y(W) = [Y
(W1)
1 , . . . , Y

(Wn)
n ]T and Y(1−W) = [Y

(1−W1)
1 , . . . , Y

(1−Wn)
n ]T .

When Y(1−W) is accessible, estimating the PEHE-optimal PO function f(.)
becomes an ordinary supervised learning problem, the solution to which is given
by the following representer Theorem.

Theorem 1 (Representer Theorem for Oracle Causal Inference). For any

f∗ ∈ HK satisfying

f∗ = arg min
f∈HK

L̂(f ;K,Y(W),Y(1−W)) + λ ||f ||2HK
, λ ∈ R+, (5)

we have that T̂ ∗(.) = (f∗(.))
T
e ∈ span{K̃(., X1), . . . , K̃(., Xn)}, where K̃(., .) =

eT K(., .) e. That is, T̂ ∗(.) admits a representation T̂ ∗(.) =
∑n

i=1 αi K̃(., Xi),
α = [α1, . . . , αn]

T , where

α = (K̃(X,X) + nλ I)−1((1− 2W)⊙ (Y(1−W) −Y(W))), (6)

4



where ⊙ denotes component-wise product, K̃(X,X) = (K̃(Xi, Xj))i,j, W =
[W1, . . . ,Wn]

T . �
Theorem 1 follows from the generalized representer Theorem [22] (The proof

is provided in Appendix A), and it characterizes the PEHE-optimal interpolant
f∗(.) obtained via regularized empirical PEHE minimization by an oracle learner
that knows the counterfactual outcomes.

A Bayesian Perspective on Causal Inference Regularized empirical
risk minimization in vvRKHS is equivalent to Bayesian inference with a Gaus-
sian process (GP) prior [Sec. 2.2, 2]. Therefore, we can interpret T̂ ∗(.) as the
posterior mean of T (.) given a GP prior with a covariance kernel K̃. Since we
know from Theorem 1 that K̃ = eTKe, the GP prior on T (.) is equivalent to
a multi-task GP prior on the PO function f(.) with a kernel K. The Bayesian
view of the problem is advantageous for two reasons. First, it allows computing
individualized (pointwise) measures of uncertainty in T̂ (.) via posterior credible
intervals. Second, it allows reasoning about the unobserved counterfactual out-
comes in a Bayesian fashion, and hence provides a natural proxy for the oracle
learner's empirical PEHE in (4). In particular, we de�ne the Bayesian PEHE
risk R(θ, f ;D) for a PO function f(.) that belongs to a vvRKHS with kernel Kθ,
where θ ∈ Θ is a kernel hyper-parameter, as follows

R(θ, f ;D) = Eθ

[
L̂(f ;Kθ,Y

(W),Y(1−W))
∣∣∣ D]

, (7)

The expectation in (7) is taken with respect to Y(1−W)|D. The Bayesian PEHE
risk R(θ, f ;D) is simply the oracle learner's empirical loss in (4) marginalized
over the posterior distribution of the unobserved counterfactuals Y(1−W), and
hence it incorporates the posterior uncertainty in counterfactual outcomes with-
out explicit propensity modeling. The optimal interpolant f∗(.) that minimizes
the Bayesian PEHE risk is given in the following Theorem.

Theorem 2 (Risk-based Empirical Bayes). The minimizer (f∗, θ∗) of

R(θ, f ;D) is given by

f∗ = Eθ∗ [ f | D ], θ∗ = arg min
θ∈Θ

 ∥∥∥Y(W) − Eθ[ f | D ]
∥∥∥2
2︸ ︷︷ ︸

Empirical factual error

+
∥∥∥Varθ[Y(1−W) | D ]

∥∥∥
1︸ ︷︷ ︸

Posterior counterfactual variance

 ,

where Varθ[.|.] is the posterior variance and ∥.∥p is the p-norm. �
The proof is provided in Appendix B. Theorem 2 shows that model selection

(i.e. selecting the hyper-parameter θ) is instrumental in alleviating the impact
of selection bias. This is because, as the Theorem states, the optimal hyper-
parameter θ∗ minimizes the empirical squared loss of f∗ with respect to the
factual outcomes Y(W) with the posterior variance of the counterfactual out-
comes as a regularizer. Hence, when the observational data exhibits a signi�cant
selection bias, θ∗ will carve a kernel Kθ∗ that not only �ts the factual outcomes,
but also generalizes well to the unobserved counterfactuals. It comes as no
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surprise that f∗ = Eθ∗ [ f | D ]; that is, Eθ∗ [ f | D,Y(1−W) ] is equivalent to the
Oracle's solution in Theorem 1, and thus by the law of iterated expectations,
Eθ∗ [ f | D ] = Eθ∗ [Eθ∗ [ f | D,Y(1−W) ] | D ] is the oracle's solution marginalized
over the posterior distribution of counterfactual outcomes. The ITE estimate is
given by T̂ ∗(x) = Eθ∗ [ fT | D ]e.

The model selection approach suggested by Theorem 2 is known as the risk-
based empirical Bayes method [Sec. 2, 19], and it departs from likelihood-based

empirical Bayes (i.e. evidence maximization [5]) in that it calibrates the GP
prior so as to minimize the risk of the posterior mean Eθ∗ [ f | D ] (see [Eq. (1.5),
19]) rather than maximizing the likelihood of the observations. While none of
the two methods display a conclusive superiority to the other in ordinary non-
parametric regression, the risk-based method is clearly a more sensible approach
in our setting. This is because evidence maximization selects a kernel Kθ that
only �ts the factual outcomes, and hence may not necessarily lead to a good es-
timate of the treatment e�ect. Contrarily, the risk-based method penalizes the

factual empirical error (Y
(Wi)
i −Eθ[ f(Xi) | D ])2 for every subject i with the pos-

terior variance of her counterfactual outcome Varθ[Y
(1−Wi)
i | D ]; we might think

of this procedure as being a Bayesian analog for propensity score re-weighting [1,
4, 8], with the propensity score indirectly manifesting in the posterior variance
of the counterfactual outcome.

Figure 1: Pictorial depiction for model selection via risk-based empirical Bayes.

A Feature Space Interpretation

4 Causal Multi-task Gaussian Processes (CMGPs)

In this Section, we provide a recipe for causal inference using multi-task GPs.
Following the discussion in Section 2, we model the PO function f ∼ GP(0,Kθ)
as a random function drawn from a GP prior with d inputs and 2 outputs; hence
T (x) ∼ GP(0, K̃θ) is drawn from a single-output GP with K̃θ = eTKθ e. We
call this model a Causal Multi-task Gaussian Process (CMGP).
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Constructing the CMGP Kernel The two response surfaces f0(.) and
f1(.) may display di�erent levels of heterogeneity (smoothness), and may have
di�erent relevant features. This is often the case in medical settings where,
depending on the nature of the intervention, treated patient groups are generally
more likely to exhibit a more heterogeneous response surface as compared to
the control groups. Standard intrinsic coregionalization models for constructing
vector-valued kernels impose the same covariance parameters for all outputs [5],
which indeed limits the interaction between the treatment assignments and the
patients' features. To that end, we construct a linear model of coregionalization

(LMC) [2, 15], which mixes two intrinsic coregionalization models as follows

Kθ(x, x
′) = A0 k0(x, x

′) +A1 k1(x, x
′), (8)

where kw(x, x
′), w ∈ {0, 1}, is the radial basis function (RBF) with automatic rel-

evance determination, i.e. kw(x, x
′) = exp

(
−1

2 (x− x′)T R−1
w (x− x′)

)
, Rw =

diag(ℓ21,w, ℓ
2
2,w, . . . , ℓ

2
d,w), with ℓd,w being the length scale parameter of the dth

feature in kw(., .), whereas A0 and A1 are given by

A0 =

[
β2
00 ρ0
ρ0 β2

01

]
, A1 =

[
β2
10 ρ1
ρ1 β2

11

]
. (9)

The parameters (β2
ij)ij and (ρi)i determine the variances and correlations of

the two response surfaces f0(x) and f1(x). The LMC kernel introduces de-
grees of freedom that allow the two response surfaces to have di�erent covari-
ance functions and relevant features. When β00 >> β01 and β11 >> β10,
the length scale parameter ℓd,w can be interpreted as the relevance of the
dth feature to the response surface fw(.). The set of all hyper-parameters is
θ = (σ0, σ1,R0,R1,A0,A1).

Adapting the Prior via Risk-based Empirical Bayes Following The-
orem 2, we adapt the CMGP prior to the observations in D via risk-based
empirical Bayes. In order to avoid over�tting to the factual outcomes Y(W),
we evaluate the empirical error in factual outcomes via leave-one-out cross val-
idation (LOO-CV) with Bayesian regularization [16]; the regularized objective
function is thus given by R̂(θ;D) = η0 Q(θ) + η1 ∥θ∥22, where

Q(θ) =
∥∥∥Varθ[Y(1−W) | D ]

∥∥∥
1
+

n∑
i=1

(
Y

(Wi)
i − Eθ[f(Xi) | D−i]

)2

, (10)

and D−i is the dataset D with subject i removed, whereas η0 and η1 are the
Bayesian regularization parameters. For the second level of inference, we use
the improper Je�rey's prior as an ignorance prior for the regularization param-
eters, i.e. P(η0) ∝ 1

η0
and P(η1) ∝ 1

η1
. This allows us to integrate out the

regularization parameters [Sec. 2.1, 16], leading to a revised objective function
R̂(θ;D) = n log(Q(θ)) + (10 + 2 d) log(∥θ∥22) (See Appendix C for a detailed
analysis). It is important to note that LOO-CV with squared loss has often
been considered to be unfavorable in ordinary GP regression as it leaves one
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degree of freedom undetermined [Sec. 5.4.2, 5]; this problem does not arise in
our setting since the term

∥∥Varθ[Y(1−W) | D ]
∥∥
1
involves all the variance param-

eters, and hence the objective function R̂(θ;D) does not depend solely on the
posterior mean.

Causal Inference via CMGPs Algorithm 1 sums up the entire causal
inference procedure. It �rst invokes the routine Initialize-hyperparameters,
which uses the sample variance and up-crossing rate of Y(W) to initialize θ
(see Appendix D). Such an automated initialization procedure allows running
our method without any user-de�ned inputs, which facilitates its usage by re-
searchers conducting observational studies. (The only inputs to the algorithm
are the observational dataset D, and the desired Bayesian coverage rate γ.) Hav-
ing initialized θ (line 3), the algorithm �nds a locally optimal θ∗ using gradient
descent (lines 5-12), and then estimates the ITE function and the associated
credible intervals (lines 13-17). In Algorithm 1, X = [{Xi}Wi=0, {Xi}Wi=1]

T ,

Y = [{Y (Wi)
i }Wi=0, {Y (Wi)

i }Wi=1]
T , Σ = diag(σ2

0 In−n1 , σ
2
1 In1), n1 =

∑
i Wi,

erf(x) = 1√
π

∫ x

−x
e−y2

dy, and Kθ(x) = (Kθ(x,Xi))i.
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We use a re-parametrized ver-
sion of the Adaptive Moment
Estimation (ADAM) gradient
descent algorithm for optimiz-
ing θ [12]; we �rst apply a
transformation ϕ = exp(θ) to
ensure that all covariance pa-
rameters remain positive, and
then run ADAM to mini-
mize R̂(log(ϕt);D). (Analytic
expressions for the gradient
∇ϕR̂(log(ϕt);D) are provided in
Appendix D.) The ITE func-
tion is estimated as the poste-
rior mean of the CMGP (line
14). The credible interval Cγ(x)
with a Bayesian coverage of γ
for a subject with feature x is
de�ned as Pθ(T (x) ∈ Cγ(x)) =
γ, and is computed straightfor-
wardly using the error function
of the normal distribution (lines
15-17). The computational bur-
den of Algorithm 1 is domi-
nated by the O(n3) matrix in-
version in line 13; for large ob-
servational studies, this can be
ameliorated using conventional
sparse approximations [Sec. 8.4,
5].

Algorithm 1 Causal Inference via CMGPs

1: Input: Observational dataset D, Bayesian
coverage γ

2: Output: ITE function T̂ (x), credible inter-
vals Cγ(x)

3: θ ← Initialize-hyperparameters(D)
4: ϕ0 ← exp(θ), t← 0, mt ← 0, vt ← 0,
5: repeat

6: mt+1 ← β1 mt + (1 − β1) · ϕt ⊙
∇ϕR̂(log(ϕt);D)

7: vt+1 ← β2 vt + (1 − β2) · (ϕt ⊙
∇ϕR̂(log(ϕt);D))2

8: m̂t+1 ← mt/(1− βt
1), v̂t+1 ← vt/(1− βt

2)

9: ϕt+1 ← ϕt ⊙
exp

(
−η · m̂t+1/(

√
v̂t+1 + ϵ)

)
10: t← t+ 1
11: until convergence

12: θ∗ ← log(ϕt−1)
13: Λθ∗ ← (Kθ∗(X,X) +Σ)−1

14: T̂ (x)← (KT
θ∗(x)Λθ∗ Y)T e

15: V(x)← Kθ∗(x, x)−Kθ∗(x)Λθ∗ K
T
θ∗(x)

16: Î(x) ← erf−1(γ) (2eTV(x)e)
1
2

17: Cγ(x)← [T̂ (x)− Î(x), T̂ (x) + Î(x)]

5 Experiments

5.1 The Dataset

We evaluated the performance of our algorithm through the semi-simulated
dataset based on the Infant Health and Development Program (IHDP) intro-
duced in [12]. The IHDP is intended to enhance the cognitive and health status
of low birth weight, premature infants through pediatric follow-ups and parent
support groups. The semi-simulated dataset in [12] is based on covariates from
a real randomized experiment that evaluated the impact of the IHDP on the
subjects' IQ test scores at the age of three: selection bias is introduced by re-
moving a subset of the treated population. All outcomes (response surfaces)
are simulated. The response surface data generation process was not designed
to favor our method: we used the standard non-linear �Response Surface B"
setting in [12] (also used in [15]) to generate the response surfaces. The dataset
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Method CMGP BART RF CF k-NN BNN-2-2

PEHE 0.43 ± 0.1 1.7 ± 0.2 1.6 ± 0.1 2.3 ± 0.1 2.9 ± 0.2 1.9 ± 0.1

Table 1: Performance comparisons with standard causal inference benchmarks.

comprises 747 subjects (608 control and 139 treated), and there are 25 covariates
associated with each subject.

5.2 Benchmarks

We compared our algorithm to various state-of-the-art methods including BART
[12] (the winner of the Causal Inference Data Analysis Challenge at the 2016
Atlantic Causal Inference Conference), in addition to two recently developed
algorithms for estimating individualized treatment e�ects: Causal Forests (CF)
[24, 33] and Balancing Neural Networks (BNN) with the BNN-2-2 con�guration
(i.e. 2 output layers and 2 representation layers) [15]. We also compare our
method with a standard matching approach, k-nearest neighbor (k-NN) [26],
and classical direct modeling approaches that �t separate regression models
for the two potential outcomes using Random Forests (RF) [17] and Gaussian
Processes (GP) [19].

5.3 Evaluation Methodology and Criteria

We performed 10 held-out experiments to select the hyper-parameters of all the
algorithms under consideration, and 1000 experiments to evaluate the perfor-
mance of the algorithms. In each experiment, we draw new values for the two
potential outcomes of all subjects according to the �Response Surface B" model
in [12]. (The same evaluation setup was used in [12] and [15].) For BART, we
use the default prior as in [12]. We evaluated the performance of every algorithm
by measuring its Precision in Estimating Heterogeneous E�ects (PEHE) metric
introduced in [12]. This metric re�ects the accuracy of an algorithm in estimat-
ing the �heterogeneity" of a treatment's e�ect; it measures the accuracies of the
estimates for both the factual and the counter-factual outcomes. The PEHE
is computed as the root-mean-square error of the estimates for the treatment

e�ect as follows PEHE =
√

1
n

∑n
i=1((f̂1(xi)− f̂1(xi))− T (xi))2. The PEHE is

computable since we have simulated outcomes in our experiments, and hence
we have access to all the counter-factual outcomes.

5.4 Results

The results in Table 5.4 clearly demonstrate the signi�cant gains achieved by
CMGPs in terms of the accuracy in estimating the individualized treatment ef-
fects. As expected, the k-NN algorithm displays the worst performance since it
relies on a �xed, non-adaptive distance metric that fails to cope with the selec-
tion bias. The gain achieved by GPs with respect to the tree-based algorithms
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(RF, BART and CF) results from the fact that GPs assign a prior distribution
on a space of smooth functions (RHKS), whereas tree-based algorithms com-
pute their estimates by averaging many non-smooth functions. That is, trees
average many discontinuous functions, and these functions are all very coarse
zero-order-hold approximations for the true function, so they need a large num-
ber of samples to converge to the true function since the true response function
in any given practical setting is indeed smooth. In the Bayesian context, this
translates in the GP's posterior contraction rate being faster than that for tree-
based algorithms [25, 28, 29], and hence the estimated treatment e�ect function
T̂ (x) converges more quickly to the true function T (x) for a given x. Unlike
tree based methods, CMGPs estimate the kernel parameters �rst using empir-
ical Bayes and then �adapts" its prior to the data. (The kernel parameters
(length scale) determine the level of smoothness of the functions over which the
GP prior is placed.)
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