
Balancing Suspense and Surprise: Timely Decision
Making with Endogenous Information Acquisition

Ahmed M. Alaa
Electrical Engineering Department

University of California, Los Angeles
ahmedmalaa@ucla.edu

Mihaela van der Schaar
Electrical Engineering Department

University of California, Los Angeles
mihaela@ee.ucla.edu

Abstract

We develop a Bayesian model for decision-making under time pressure with en-
dogenous information acquisition. In our model, the decision-maker decides
when to observe (costly) information by sampling an underlying continuous-
time stochastic process (time series) that conveys information about the potential
occurrence/non-occurrence of an adverse event which will terminate the decision-
making process. In her attempt to predict the occurrence of the adverse event, the
decision-maker follows a policy that determines when to acquire information from
the time series (continuation), and when to stop acquiring information and make a
final prediction (stopping). We show that the optimal policy has a "rendezvous"
structure, i.e. a structure in which whenever a new information sample is gathered
from the time series, the optimal "date" for acquiring the next sample becomes
computable. The optimal interval between two information samples balances a
trade-off between the decision maker’s "surprise", i.e. the drift in her posterior
belief after observing new information, and "suspense", i.e. the probability that the
adverse event occurs in the time interval between two information samples. More-
over, we characterize the continuation and stopping regions in the decision-maker’s
state-space, and show that they depend not only on the decision-maker’s beliefs,
but also on the "context", i.e. the current realization of the time series.

1 Introduction

The problem of timely risk assessment and decision-making based on a sequentially observed time
series is ubiquitous, with applications in finance, medicine, cognitive science and signal processing
[1-7]. A common setting that arises in all these domains is that a decision-maker, provided with
sequential observations of a time series, needs to decide whether or not an adverse event (e.g.
financial crisis, clinical acuity for ward patients, etc) will take place in the future. The decision-
maker’s recognition of a forthcoming adverse event needs to be timely, for that a delayed decision
may hinder effective intervention (e.g. delayed admission of clinically acute patients to intensive
care units can lead to mortality [5]). In the context of cognitive science, this decision-making task is
known as the two-alternative forced choice (2AFC) task [15]. Insightful structural solutions for the
optimal Bayesian 2AFC decision-making policies have been derived in [9-16], most of which are
inspired by the classical work of Wald on sequential probability ratio tests (SPRT) [8].

In this paper, we present a Bayesian decision-making model in which a decision-maker adaptively
decides when to gather (costly) information from an underlying time series in order to accumulate
evidence on the occurrence/non-occurrence of an adverse event. The decision-maker operates under
time pressure: occurrence of the adverse event terminates the decision-making process. Our abstract
model is motivated and inspired by many practical decision-making tasks such as: constructing
temporal patterns for gathering sensory information in perceptual decision-making [1], scheduling
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lab tests for ward patients in order to predict clinical deterioration in a timely manner [3, 5], designing
breast cancer screening programs for early tumor detection [7], etc.

We characterize the structure of the optimal decision-making policy that prescribes when should
the decision-maker acquire new information, and when should she stop acquiring information and
issue a final prediction. We show that the decision-maker’s posterior belief process, based on which
policies are prescribed, is a supermartingale that reflects the decision-maker’s tendency to deny
the occurrence of an adverse event in the future as she observes the survival of the time series for
longer time periods. Moreover, the information acquisition policy has a "rendezvous" structure;
the optimal "date" for acquiring the next information sample can be computed given the current
sample. The optimal schedule for gathering information over time balances the information gain
(surprise) obtained from acquiring new samples, and the probability of survival for the underlying
stochastic process (suspense). Finally, we characterize the continuation and stopping regions in the
decision-maker’s state-space and show that, unlike previous models, they depend on the time series
"context" and not just the decision-maker’s beliefs.

Related Works Mathematical models and analyses for perceptual decision-making based
on sequential hypothesis testing have been developed in [9-17]. Most of these models use tools
from sequential analysis developed by Wald [8] and Shiryaev [21, 22]. In [9,13,14], optimal
decision-making policies for the 2AFC task were computed by modelling the decision-maker’s
sensory evidence using diffusion processes [20]. These models assume an infinite time horizon for
the decision-making policy, and an exogenous supply of sensory information.

The assumption of an infinite time horizon was relaxed in [10] and [15], where decision-making
is assumed to be performed under the pressure of a stochastic deadline; however, these deadlines
were considered to be drawn from known distributions that are independent of the hypothesis and the
realized sensory evidence, and the assumption of an exogenous information supply was maintained.
In practical settings, the deadlines would naturally be dependent on the realized sensory information
(e.g. patients’ acuity events are correlated with their physiological information [5]), which induces
more complex dynamics in the decision-making process. Context-based decision-making models
were introduced in [17], but assuming an exogenous information supply and an infinite time horizon.

The notions of “suspense" and “surprise" in Bayesian decision-making have also been recently
introduced in the economics literature (see [18] and the references therein). These models use
measures for Bayesian surprise, originally introduced in the context of sensory neuroscience [19],
in order to model the explicit preference of a decision-maker to non-instrumental information. The
goal there is to design information disclosure policies that are suspense-optimal or surprise-optimal.
Unlike our model, such models impose suspense (and/or surprise) as a (behavioral) preference of the
decision-maker, and hence they do not emerge endogenously by virtue of rational decision making.

2 Timely Decision Making with Endogenous Information Gathering

Time Series Model The decision-maker has access to a time-series X(t) modeled as a continuous-
time stochastic process that takes values in R, and is defined over the time domain t ∈ R+, with an
underlying filtered probability space (Ω,F , {Ft}t∈R+

,P). The process X(t) is naturally adapted to
{Ft}t∈R+ , and hence the filtration Ft abstracts the information conveyed in the time series realization
up to time t. The decision-maker extracts information from X(t) to guide her actions over time.

We assume that X(t) is a stationary Markov process1, with a stationary transition kernel
Pθ (X(t) ∈ A|Fs) = Pθ (X(t) ∈ A|X(s)) ,∀A ⊂ R, ∀s < t ∈ R+, where θ is a realization
of a latent Bernoulli random variable Θ ∈ {0, 1} (unobservable by the decision-maker), with
P(Θ = 1) = p. The distributional properties of the paths of X(t) are determined by θ, since the
realization of θ decides which Markov kernel (Po or P1) generates X(t). If the realization θ is equal
to 1, then an adverse event occurs almost surely at a (finite) random time τ , the distribution of which
is dependent on the realization of the path (X(t))0≤t≤τ .

The decision-maker’s ultimate goal is to sequentially observe X(t), and infer θ before the adverse
event happens; inference is obsolete if it is declared after τ . Since Θ is latent, the decision-maker is

1Most of the insights distilled from our results would hold for more general dependency structures. However,
we keep this assumption to simplify the exposition and maintain the tractability and interpretability of the results.
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Figure 1: An exemplary stopped sample path for Xτ (t)|Θ = 1, with an exemplary partition Pt.

unaware whether the adverse event will occur or not, i.e. whether her access to X(t) is temporary
(τ <∞ for θ = 1) or permanent (τ =∞ for θ = 0). In order to model the occurrence of the adverse
event; we define τ as an F-stopping time for the process X(t), for which we assume the following:

• The stopping time τ |Θ = 1 is finite almost surely, whereas τ |Θ = 0 is infinite almost
surely, i.e. P (τ <∞|Θ = 1) = 1, and P (τ =∞|Θ = 0) = 1.

• The stopping time τ |Θ = 1 is accessible2, with a Markovian dependency on history, i.e.
P (τ < t| Fs) = P (τ < t|X(s)) ,∀s < t, where P (τ < t|X(s)) is an injective map from
R to [0, 1] and P (τ < t|X(s)) is non-decreasing in X(s).

Thus, unlike the stochastic deadline models in [10] and [15], the decision deadline in our model (i.e.
occurrence of the adverse event) is context-dependent as it depends on the time series realization (i.e.
P (τ < t|X(s)) is not independent of X(t) as in [15]). We use the notation Xτ (t) = X(t ∧ τ),
where t ∧ τ = min{t, τ} to denote the stopped process to which the decision-maker has access.
Throughout the paper, the measures Po and P1 assign probability measures to the paths Xτ (t)|Θ = 0
and Xτ (t)|Θ = 1 respectively, and we assume that Po << P1

3.

Information The decision-maker can only observe a set of (costly) samples of Xτ (t) rather
than the full continuous path. The samples observed by the decision-maker are captured by
partitioning X(t) over specific time intervals: we define Pt = {to, t1, . . ., tN(Pt)−1}, with
0 ≤ to < t1 < . . . < tN(Pt)−1 ≤ t, as a size-N(Pt) partition of Xτ (t) over the interval [0, t], where
N(Pt) is the total number of samples in the partition Pt. The decision-maker observes the values
that Xτ (t) takes at the time instances in Pt; thus the sequence of observations is given by the process
X(Pt) =

∑N(Pt)−1
i=0 X(ti)δti , where δti is the Dirac measure. The space of all partitions over the

interval [0, t] is denoted by Pt = [0, t]N. We denote the probability measures for partitioned paths
generated under Θ = 0 and 1 with a partition Pt as P̃o(Pt) and P̃1(Pt) respectively.

Since the decision-maker observes Xτ (t) through the partition Pt, her information at time t is
conveyed in the σ-algebra σ(Xτ (Pt)) ⊂ Ft. The stopping event is observable by the decision-maker
even if τ /∈ Pτ . We denote the σ-algebra generated by the stopping event as St = σ

(
1{t≥τ}

)
.

Thus, the information that the decision-maker has at time t is expressed by the filtration F̃t =
σ(Xτ (Pt)) ∨ St. Hence, any decision-making policy needs to be F̃t-measurable.

Figure 1 depicts a Brownian path (a sample path of a Wiener process, which satisfies all the
assumptions of our model)4, with an exemplary partition Pt over the time interval [0, 1]. The
decision-maker observes the samples in X(Pt) sequentially, and reasons about the realization
of the latent variable Θ based on these samples and the process survival, i.e. at t = 0.2, the
decision-maker’s information resides in the σ-algebra σ(X(0), X(0.1), X(0.15)) generated
by the samples in P0.2 = {0, 0.1, 0.15}, and the σ-algebra generated by the process’ survival
S0.2 = σ(1{τ>0.2}).

2Our analyses hold if the stopping time is totally inaccessible.
3The absolute continuity of Po with respect to P1 means that no sample path of Xτ (t)|Θ = 0 should be

fully revealing of the realization of Θ.
4In Figure 1, the stopping event was simulated as a totally inaccessible first jump of a Poisson process.
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Policies and Risks The decision-maker’s goal is to come up with a (timely) decision θ̂ ∈ {0, 1},
that reflects her prediction for whether the actual realization θ is 0 or 1, before the process Xτ (t)
potentially stops at the unknown time τ . The decision-maker follows a policy: a (continuous-time)
mapping from the observations gathered up to every time instance t to two types of actions:

• A sensing action δt ∈ {0, 1}: if δt = 1, then the decision-maker decides to observe a new
sample from the running process Xτ (t) at time t.

• A continuation/stopping action θ̂t ∈ {∅, 0, 1}: if θ̂t ∈ {0, 1}, then the decision-maker
decides to stop gathering samples from Xτ (t), and declares a final decision (estimate) for
θ. Whenever θ̂t = ∅, the decision-maker continues observing Xτ (t) and postpones her
declaration for the estimate of θ.

A policy π = (πt)t∈R+
is a (F̃t-measurable) mapping rule that maps the information in F̃t to an

action tuple πt = (δt, θ̂t) at every time instance t. We assume that every single observation that the
decision-maker draws from Xτ (t) entails a fixed cost, hence the process (δt)t∈R+

has to be a point
process under any optimal policy5. We denote the space of all such policies by Π.

A policy π generates the following random quantities as a function of the paths Xτ (t) on the
probability space (Ω,F , {Ft}t∈R+ ,P):

1- A stopping time Tπ: The first time at which the decision-maker declares its estimate for θ, i.e.
Tπ = inf{t ∈ R+ : θ̂t ∈ {0, 1}}.
2- A decision (estimate of θ) θ̂π: Given by θ̂π = θ̂Tπ∧τ .
3- A random partition PπTπ : A realization of the point process (δt)t∈R+ , comprising a finite set of
strictly increasing F-stopping times at which the decision-maker decides to sample the path Xτ (t).

A loss function is associated with every realization of the policy π, representing the overall
cost incurred when following that policy for a specific path Xτ (t). The loss function is given by

` (π; Θ) , (C1 1{θ̂π=0,θ=1}︸ ︷︷ ︸
Type I error

+Co 1{θ̂π=1,θ=0}︸ ︷︷ ︸
Type II error

+Cd Tπ︸ ︷︷ ︸
Delay

)1{Tπ≤τ}+ Cr 1{Tπ>τ}︸ ︷︷ ︸
Deadline missed

+CsN(PπTπ∧τ )︸ ︷︷ ︸
Information

,

(1)
where C1 is the cost of type I error (failure to anticipate the adverse event), Co is the cost of type II
error (falsely predicting that an adverse event will occur), Cd is the cost of the delay in declaring the
estimate θ̂π , Cr is the cost incurred when the adverse event occurs before an estimate θ̂π is declared
(cost of missing the deadline), and Cs is the cost of every observation sample (cost of information).
The risk of each policy π is defined as its expected loss

R(π) , E [` (π; Θ)] , (2)

where the expectation is taken over the paths of Xτ (t). In the next section, we characterize the
structure of the optimal policy π∗ = arg infπ∈ΠR(π).

3 Structure of the Optimal Policy

Since the decision-maker’s posterior belief at time t, defined as µt = P(Θ = 1| F̃t), is an impor-
tant statistic for designing sequential policies [10, 21-22], we start our characterization for π∗ by
investigating the belief process (µt)t∈R+ .

3.1 The Posterior Belief Process

Recall that the decision-maker distills information from two types of observations: the realization
of the partitioned time series Xτ (Pt) (i.e. the information in σ(Xτ (Pt))), and 2) the survival of the
process up to time t (i.e. the information in St). In the following Theorem, we study the evolution of
the decision-maker’s beliefs as she integrates these pieces of information over time6.

5Note that the cost of observing any local continuous path is infinite, hence any optimal policy must have
(δt)t∈R+ being a point process to keep the number of observed samples finite.

6All proofs are provided in the supplementary material
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Figure 2: Depiction for exemplary belief paths of different policies under Θ = 1.

Theorem 1 (Information and beliefs). Every posterior belief trajectory (µt)t∈R+ associated with
a policy π ∈ Π that creates a partition Pπt ∈ Pt of Xτ (t) is a càdlàg path given by

µt =

{
1, for t ≥ τ(

1 + 1−p
p

dP̃o(Pπt )

dP̃1(Pπt )

)−1

, for 0 ≤ t < τ

where dP̃o(Pπt )

dP̃1(Pπt )
is the Radon–Nikodym derivative7 of the measure P̃o(Pπt ) with respect to P̃1(Pπt ),

and is given by the following elementary predictable process

1
dP̃o(Pπt )

dP̃1(Pπt )

=

N(Pπt )−1∑
k=1

P(X(Pπt )|Θ = 1)

P(X(Pπt )|Θ = 0)︸ ︷︷ ︸
Likelihood ratio

P(τ > t|σ(X(Pπt ),Θ = 1)︸ ︷︷ ︸
Survival probability

1{Pπt (k)≤t≤Pπt (k+1)},

for t ≥ Pπt (1), and pP(τ > t|Θ = 1) for t < Pπt (k). Moreover, the path (µt)t∈R+
has exactly

N(PπTπ∧τ ) + 1{τ<∞} jumps at the time indexes in Pπt∧τ ∪ {τ}. �

Theorem 1 says that every belief path is right-continuous with left limits, and has jumps at the time
indexes in the partition Pπt , whereas between each two jumps, the paths (µt)t∈[t1,t2), t1, t2 ∈ Pπt
are predictable (i.e. they are known ahead of time once we know the magnitudes of the jumps
preceding them). This means that the decision-maker obtains "active" information by probing
the time series to observe new samples (i.e. the information in σ(Xτ (Pt))), inducing jumps that
revive her beliefs, whereas the progression of time without witnessing a stopping event offers the
decision-maker "passive information" that is distilled just from the costless observation of process
survival information. Both sources of information manifest themselves in terms of the likelihood
ratio, and the survival probability in the expression of dP̃o(Pπt )

dP̃1(Pπt )
above.

In Figure 2, we plot the càdlàg belief paths for policies π1 and π2, where Pπ1 ⊂ Pπ2 (i.e. policy
π1 observe a subset of the samples observed by π2). We also plot the (predictable) belief path of
a wait-and-watch policy that observes no samples. We can see that π2, which has more jumps of
"active information", copes faster with the truthful belief over time. Between each two jumps, the
belief process exhibits a non-increasing predictable path until fed with a new piece of information.
The wait-and-watch policy has its belief drifting away from the prior p = 0.5 towards the wrong
belief µt = 0 since it only distills information from the process survival, which favors the hypothesis
Θ = 0. This discussion motivates the introduction of the following key quantities.

Information gain (surprise) It(∆t): The amount of drift in the decision-maker’s belief at time
t + ∆t with respect to her belief at time t, given the information available up to time t, i.e.
It(∆t) = (µt+∆t − µt) |F̃t.

Posterior survival function (suspense) St(∆t): The probability that a process generated
with Θ = 1 survives up to time t + ∆t given the information observed up to time t, i.e.
St(∆t) = P(τ > t + ∆t|F̃t,Θ = 1). The function St(∆t) is a non-increasing function in ∆t, i.e.
∂St(∆t)
∂∆t ≤ 0.

7Since we impose the condition Po << P1 and fix a partition Pt, then the Radon–Nikodym derivative exists.
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That is, the information gain is the amount of “surprise" that the decision-maker experi-
ences in response to a new information sample expressed in terms of the change in here belief, i.e.
the jumps in µt, whereas the survival probability (suspense) is her assessment for the risk of having
the adverse event taking places in the next ∆t time interval. As we will see in the next subsection,
the optimal policy would balance the two quantities when scheduling the times to sense Xτ (t).

We conclude our analysis for the process µt by noting that lack of information samples creates bias
towards the belief that Θ = 0 (e.g. see the belief path of the wait-and-watch policy in Figure 2). We
formally express this behavior in the following Corollary.

Corollary 1 (Leaning towards denial). For every policy π ∈ Π, the posterior belief process µt is a
supermartingale with respect to F̃t, where

E[µt+∆t|F̃t] = µt − µ2
tSt(∆t)(1− St(∆t)) ≤ µt, ∀∆t ∈ R+. �

Thus, unlike classical Bayesian learning models with a belief martingale [18, 21-23], the belief
process in our model is a supermartingale that leans toward decreasing over time. The reason for
this is that in our model, time conveys information. That is, unlike [10] and [15] where the decision
deadline is hypothesis-independent and is almost surely occurring in finite time for any path, in our
model the occurrence of the adverse event is itself a hypothesis, hence observing the survival of the
process is informative and contributes to the evolution of the belief. The informativeness of both the
acquired information samples and process survival can be disentangled using Doob decomposition,
by writing µt as µt = µ̃t +A(µt, St(∆t)), where µ̃t is a martingale, capturing the information gain
from the acquired samples, and A(µt, St(∆t)) is a predictable compensator process [23], capturing
information extracted from the process survival.

3.2 The Optimal Policy

The optimal policy π∗ minimizes the expected risk as defined in (1) and (2) by generating the tuple of
random processes (Tπ, θ̂π, P

π
t ) in response to the paths of Xτ (t) on (Ω,F , {Ft}t∈R+

,P) in a way
that "shapes" a belief process µt that maximizes informativeness, maintains timeliness and controls
cost. In the following, we introduce the notion of a "rendezvous policy", then in Theorem 2, we show
that the optimal policy π∗ complies with this definition.

Rendezvous policies We say that a policy π is a rendezvous policy, if the random partition PπTπ
constructed by the sequence of sensing actions (δπt )t∈[0,Tπ ], is a point process with predictable jumps,
where for every two consecutive jumps at times t and t

′
, with t

′
> t and t, t

′ ∈ PπTπ , we have that t
′

is F̃t-measurable.

That is, a rendezvous policy is a policy that constructs a sensing schedule (δπt )t∈[0,Tπ ],
such that every time t

′
at which the decision-maker acquires information is actually computable using

the information available up to time t, the previous time instance at which information was gathered.
Hence, the decision-maker can decide the next "date" in which she will gather information directly
after she senses a new information sample. This structure is a natural consequence of the information
structure in Theorem 1, since the belief paths between every two jumps are predictable, then they
convey no "actionable" information, i.e. if the decision-maker was to respond to a predictable belief
path, say by sensing or making a stopping decision, then she should have taken that decision right
before the predictable path starts, which leads her to better off by saving the delay cost Cd. We
denote the space of all rendezvous policies by Πr. In the following Theorem, we establish that the
rendezvous structure is optimal.

Theorem 2 (Rendezvous). The optimal policy π∗ is a rendezvous policy (π∗ ∈ Πr). �

A direct implication of Theorem 2 is that the time variable can now be viewed as a state
variable, whereas the problem is virtually solved in "discrete-time" since the decision-maker
effectively jumps from one time instance to another in a discrete manner. Hence, we alter the
definition of the action δt from an indicator variable that indicates sensing the time series at time t, to
a "rendezvous action" that takes real values, and specifies the time after which the decision-maker
would sense a new sample, i.e. if δt = ∆t, then the decision-maker gathers the new sample at t+ ∆t.

6



This transformation restricts our policy design problem to the space of rendezvous policies Πr, which
we know from Theorem 2 that it contains the optimal policy (i.e. π∗ = arg infπ∈ΠrR(π)).

Having established the result in Theorem 2, in the following Theorem, we characterize the optimal
policy π∗ in terms of the random process (Tπ∗ , θ̂π∗ , P

π∗

t ) using discrete-time Bellman optimality
conditions [24].

Theorem 3 (The optimal policy). The optimal policy π∗ is a sequence of actions (θ̂π
∗

t , δπ
∗

t )t∈R+
,

resulting in a random process (θ̂π∗ , Tπ∗ , P
π∗

Tπ∗
) with the following properties:

(Continuation and stopping)

1. The process (t, µt, X̄(Pπ
∗

t ))t∈R+
is a Markov sufficient statistic for the distribution of

(θ̂π∗ , Tπ∗ , P
π∗

Tπ∗
), where X̄(Pπ

∗

t ) is the most recent sample in the partition Pπ
∗

t , i.e.
X̄(Pπ

∗

t ) = X(t∗), t∗ = maxPπ
∗

t .

2. The policy π∗ recommends continuation, i.e. θ̂π
∗

t = ∅, as long as the belief µt ∈
C(t, X̄(Pπ

∗

t )), where C(t, X̄(Pπ
∗

t )), is a time and context-dependent continuation set with
the following properties: C(t′ , X) ⊂ C(t,X),∀t′ > t, and C(t,X ′) ⊂ C(t,X),∀X ′ > X .

(Rendezvous and decisions)

1. Whenever µt ∈ C(t, X̄(Pπ
∗

t )), and t ∈ Pπ∗Tπ∗ , then a rendezvous δπ
∗

t is set as follows

δπ
∗

t = arg infδ∈R+
((C1 − Co)P(It(δ) ≥ ηt) + C1) St(δ) + Cr (1− St(δ)),

where ηt = C1

Co+C1
− µt.

2. Whenever µt /∈ C(t, X̄(Pπ
∗

t )), then a decision θ̂π
∗

t = θ̂π∗ ∈ {0, 1} is issued, and is based
on a belief threshold as follows: θ̂π∗ = 1{

µt≥ C1
Co+C1

}. The stopping time is given by

Tπ∗ = inf{t ∈ R+ : µt /∈ C(t, X̄(Pπ
∗

t ))}. �

Theorem 3 establishes the structure of the optimal policy and its prescribed actions in the decision-
maker’s state-space. The first part of the Theorem says that in order to generate the random
tuple (Tπ∗ , θ̂π∗ , P

π∗

t ) optimally, we only need to keep track of the realization of the process
(t, µt, X̄(Pt))t∈R+

in every time instance. That is, an optimal policy maps the current belief, the
current time, and the most recently observed realization of the time series to an action tuple (θ̂πt , δ

π
t ),

i.e. a decision on whether to stop and declare an estimate for θ or sense a new sample. Hence, the
process (t, µt, X̄(Pt))t∈R+

represents the "state" of the decision-maker, and the decision-maker’s
actions can partially influence the state through the belief process, i.e. a decision on when to acquire
the next sample affects the distributional properties of the posterior belief. The remaining state
variables t and X(t) are beyond the decision-maker’s control.

We note that unlike the previous models in [9-16], with the exception of [17], a policy in our model
is context-dependent. That is, since the state is (t, µt, X̄(Pπt )) and not just the time-belief tuple
(t, µt), a policy π can recommend different actions for the same belief and at the same time but for
a different context. This is because, while µt captures what the decision-maker learned from the
history, X̄(Pπt ) captures her foresightedness into the future, i.e. it can be that the belief µt is not
decisive (e.g. µt ≈ p), but the context is "risky" (i.e. X̄(Pπt ) is large), which means that a potential
forthcoming adverse event is likely to happen in the near future, hence the decision-maker would
be more eager to make a stopping decision and declare an estimate θ̂π. This is manifested through
the dependence of the continuation set C(t, X̄(Pπt )) on both time and context; the continuation set is
monotonically decreasing in time due to the deadline pressure, and is also monotonically decreasing
in X̄(Pπt ) due to the dependence of the deadline on the time series realization.

The context dependence of the optimal policy is pictorially depicted in Figure 3 where we show two
exemplary trajectories for the decision-maker’s state, and the actions recommended by a policy π
for the same time and belief, but a different context, i.e. a stopping action recommended when X(t)
is large since it corresponds to a low survival probability, whereas for the same belief and time, a
continuation action can be recommended if X(t) is low since it is safer to keep observing the process
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for that the survival probability is high. Such a prescription specifies optimal decision-making in
context-driven settings such as clinical decision-making in critical care environment [3-5], where
a combination of a patient’s length of hospital stay (i.e. t), clinical risk score (i.e. µt) and current
physiological test measurements (i.e. X̄(Pπt )) determine the decision on whether or not a patient
should be admitted to an intensive care unit.

Policy π:
Stop and declare θ̂π

X(t)
θ̂π = 1

Policy π:
Continue sampling X

τ (t)

t

µt

Sample path 1

Sample path 2

µ̄

t̄

Figure 3: Context-dependence of the decision-making
policy π. For the same belief and time pair (µ̄, t̄), dif-
ferent actions are recommended in different contexts
(different sample paths).
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Figure 4: Surprise-suspense trade-off.

The second part of Theorem 3 says that whenever the optimal policy decides to stop gathering
information and issue a conclusive decision, it imposes a threshold on the posterior belief, based on
which it issues the estimate θ̂π∗ ; the threshold is C1

Co+C1
, and hence weights the estimates by their

respective risks. When the policy favors continuation, it issues a rendezvous action, i.e. the next time
instance at which information will be gathered. This rendezvous balances surprise and suspense: the
decision-maker prefers maximizing surprise in order to draw the maximum informativeness from
the costly sample it will acquire; this is captured in terms of the tail distribution of the information
gain P(It(δ) ≥ ηt). Maximizing surprise may increase suspense, i.e. the probability of process
termination, which is controlled by the survival function St(δ), and hence it can be that harvesting
the maximum informativeness entails a survival risk when Cr is high. Therefore, the optimal policy
selects a rendezvous δπ

∗

t that optimizes a combination of the survival risk survival, captured by the
cost Cr and the survival function St(∆t), and the value of information, captured by the costs Co, C1

and the information gain It(δ).

To get a feel of the surprise-suspense trade-off, we assume that Xτ (t)|Θ = 1 is a standard Brownian
motion, and the prior on Θ = 1 is p = 0.5, whereas the stopping time is the hitting time of a target
level η = 30. When should the decision-maker set the date for the first rendezvous? In Figure 4,
we plot the expected information gain from the first sample (E[ |Io(∆t)|| F̃o]) (solid line), and the
corresponding survival function So(∆t) (dotted line). It can be seen that the expected information
gain is maximum at t = 42, but with a 50% survival probability, hence depending on the costs Co,
C1 and Cr, the optimal policy may favor an earlier rendezvous (i.e. δπ

∗

o < 42) in order to keep
the survival probability within a reasonable limit and at the same time attain a reasonable level of
informativeness.

4 Conclusions

We developed a model for decision-making with endogenous information acquisition under time
pressure, where a decision-maker needs to issue a conclusive decision before an adverse event
(potentially) takes place. We have shown that the optimal policy has a "rendezvous" structure, i.e. the
optimal policy sets a "date" for gathering a new sample whenever the current information sample is
observed. The optimal policy selects the time between two information samples such that it balances
the information gain (surprise) with the survival probability (suspense). Moreover, we characterized
the optimal policy’s continuation and stopping conditions, and showed that they depend on the context
and not just on beliefs. Our model can help understanding the nature of optimal decision-making in
settings where timely risk assessment and information gathering is essential.
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