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Abstract

Critically ill patients in regular wards are vulnerable to unanticipated clinical dete-
rioration which requires timely transfer to the intensive care unit (ICU). To allow
for risk scoring and patient monitoring in such a setting, we develop a novel Semi-
Markov Switching Linear Gaussian Model (SSLGM) for the inpatients’ physiol-
ogy. The model captures the patients’ latent clinical states and their corresponding
observable lab tests and vital signs. We present an efficient unsupervised learn-
ing algorithm that capitalizes on the informatively censored data in the electronic
health records (EHR) to learn the parameters of the SSLGM; the learned model is
then used to assess the new inpatients’ risk for clinical deterioration in an online
fashion, allowing for timely ICU admission. Experiments conducted on a het-
erogeneous cohort of 6,094 patients admitted to a large academic medical center
show that the proposed model significantly outperforms the currently deployed
risk scores such as Rothman index, MEWS, SOFA and APACHE.

1 The SSLGM Model

We focus on patients who are hospitalized and monitored in a regular ward in anticipation of po-
tential clinical deterioration that may require an ICU admission. Patients are monitored via a set of
M physiological streams (i.e. vital signs and lab tests) which manifest their latent clinical states.
The physiological measurements of every patient are gathered in discrete time steps t ∈ N (e.g.
one measurement every 4 hours), and clinicians assess the patient’s state –in real-time– accordingly.
At every time step t, a patient resides in 1 out of N possible clinical states; each state reflects a
certain level of severity of the patient’s clinical condition. State indexes reflect the levels of clinical
severity, i.e. state 1 is a clinical stability state in which a patient can be safely discharged from the
ward, whereas state N is a clinical deterioration state that requires transferring the patient urgently
to the ICU. The clinical state-space is defined as X = {1, . . ., N}; states are hidden, but manifest
themselves through the physiological measurements, which are modeled as follows [1]

Zt = AXtZt−1 +BXtet,

Yt = CXtZt +DXtwt,

where Zt ∈ RMz is an Mz-dimensional latent factor, Z1|X1 = x ∼ N (0,Σx), Yt ∈ RM is
a vector comprising the physiological data, Xt ∈ X is the patient’s latent state, and for every
x ∈ X , {Ax ∈ RMz×Mz , Cx ∈ RM×M} are the (stable) matrices describing the linear dynamics,
et, wt ∼ N (0, I) and Bx = diag(σ2

b1, . . ., σ
2
bMz

), dx = diag(σ2
d1, . . ., σ

2
dM ).

The clinical state sequence {Xt} follows a semi-Markovian model; semi-Markovianity eliminates
the unrealistic assumption of memoryless state transitions adopted by ordinary Markov chains. We
adopt an explicit-duration semi-Markov model for the state sequence {Xt} [2]. That is, the patient’s
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Figure 1: A clinical state model with 5 super-states.

state evolves through a sequence of super-states {Sn}, Sn ∈ X , ∀n, with each super-states lasting
for a random duration Tn which follows a distribution Tn|Sn = s ∼ f(Tn = τ |αs), where αs is the
parameter of the duration distribution f(.). We assume that f(.) is a negative binomial distribution;
the geometric distribution is a special case of the negative binomial distribution, and thus our model
encapsulates Markovian transitions as a special case. The patient’s state at time t takes a value
Xt = Sn as long as the time step t is occupied by the super-state duration Tn. The super-state
transition probabilities are time-homogeneous and are given by P(Sn+1 = j|Sn = i) = pij .

We assume that the super-states have a gambler’s ruin structure as shown in Figure 1, i.e. pij =
0, ∀|i − j| > 1, and p11 = pNN = 1. Such a structure is advantageous for the following reasons.
First, it adds a semantic ingredient to the states that facilitate their interpretability, i.e. state 1 is a
clinical stability (absorbing) state, state N is a clinical deterioration (absorbing) state, and all other
states are transient states with intermediate, monotonically increasing levels of clinically severity.
Second, such a structure facilitates unsupervised model learning when an informatively censored
dataset is available, i.e. if physiological observations are recorded until one of the absorbing states
materialize, and such state is declared in the dataset. The initial super-state probabilities are denoted
as {poi }Ni=1, where

∑N
i=1 p

o
i = 1. Every patient’s super-state sequence {Sn}Ns

n=1 comprises Ns

super-states that are terminated by an absorbing states, i.e. SNs ∈ {1, N}, and hence Ns the random
number of clinical state transitions that a patient experiences during her hospitalization.

We call the physiological model described above a Semi-Markov Switching Linear Gaussian Model
(SSLGM), and denote every instantiation of such a model as M(Θ) with the parameter set Θ given
by Θ = (X , {Σi, Ai, Bi, Ci, Di, αi}Ni=1, {poi }Ni=1, {pij}i,j∈X ).

In order to capture the heterogeneity of the patients’ population, we assume that the pa-
tients’ physiological data are drawn from a mixture of SSLGM models with G mix-
ture components, i.e. {Yt}|Q = q ∼

∑G
g=1 wg(q)M(Θg), where wg and Θg =

(X , {Σg
i , A

g
i , B

g
i , C

g
i , D

g
i , α

g
i }Ni=1, {p

o,g
i }Ni=1, {p

g
ij}i,j∈X ) are the mixture weight and the parame-

ter set for model g respectively, whereas Q is the patient’s baseline admission information, i.e. the
static information gathered about the patient upon admission to the ward, such as the age, gender,
ICD9 code, etc. We assume that wg(q) is a linear function of q for every g, and that the clinical
state-space X is shared among all the models.

2 The Backward Labeling EM Algorithm

In this section, we develop an algorithm for learning the mixture model {wg(q),M(Θg)}Gg=1
from an offline EHR dataset D. Real-time inference of the clinical state for a newly hospital-
ized patient is then carried out using forward filtering in an online fashion. The offline dataset
D = ({Yt}Jk

t=1, qk, Fk)
K
k=1 comprises the physiological data streams recorded for K previously

hospitalized patients, where Jk is the amount of time the patient was hospitalized in the ward, qk is
her admission information, and Fk is the clinicians’ intervention; Fk = 0 means that patient k was
discharged home, whereas Fk = 1 means that the patient was transferred to the ICU. We treat Fk as
a label for the absorbing state that has materialized for patient k (i.e. Fk = 0 corresponds to state 1
and Fk = 1 corresponds to state N ). Algorithm 1 encapsulates the pseudocode for both the learning
and inference algorithms. In these algorithms, we use the following divergence measure between
two segments X1 and X2 of lengths U1 and U2 in a time series [3]

Ê(X1, X2; ζ) =

U1∑
i=1

U2∑
j=1

2||X1,i −X2,i||ζ

U1U2
−

∑
1≤i≤k≤U1

||X1,i −X1,k||ζ(
U1

2

) −
∑

1≤j≤k≤U2

||X2,i −X2,k||ζ(
U2

2

) ,

where ζ ∈ (0, 2).
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Figure 2: Depiction for the operation of the backward labeling algorithm.

Algorithm 1 Offline Learning and Online Inference Algorithms

1: procedure BACKWARDLABELINGEM(D = ({Yt}Jk
t=1, qk, Fk)

K
k=1)

2: Detect the change points in ({Yt}Jk
t=1)

K
k=1 using the non-parametric E-divisive and E-Agglo

algorithms with the divergence measure Ê to obtain estimates for the number of super-states N̂k
s

and their durations ({T̂ k
n}

N̂k
s

n=1)
K
k=1.

3: Assign a label 1 to all the absorbing states (Ŝk
N̂k

s

= 1) for all patients with Fk = 0, and a

label N to all the absorbing states (Ŝk
N̂k

s

= N ) for all patients with Fk = 1.

4: Apply backward state labeling for the transient states ({Ŝk
n}

N̂k
s −1

n=1 )Kk=1.

5: Given the estimated semi-Markov process {(Ŝk
n, T̂

k
n )

N̂k
s

n=1}Kk=1, estimate the model parame-
ters (Θ̂g)

G
g=1 using the standard EM algorithm.

6: end procedure
7: procedure RISKSCORING((Y1, . . ., Yt), {ŵg(q),M(Θ̂g)}Gg=1)
8: Estimate the latent factor Ẑt using a Kalman filter via the estimated SSLGM parameters.
9: Estimate the state sequence {X̂τ}tτ=1 using a Rauch-Tung-Striebel (RTS) smoother.

10: Estimate the patient’s risk score R(t) = P(X∞ = N |Y1, . . ., Yt) using forward filtering for
the estimated super-states and their durations up to time t.

11: end procedure

The operation of the learning algorithms can be summarized as follows. Using the non-parametric
E-divisive and E-Agglo algorithms, we can detect the change points in every patient’s physiological
sequence {Y k

t }, and hence we can estimate the start and end times of every hidden super-state for
those patients. Conditioned on the super-state durations, the super-state transitions reduce to an
ordinary Markov process that is described by the Markov chain in Figure 1. Using the absorbing
state label for every patient and exploiting the gambler’s ruin transition structure, we can assign
a label to the last three states in every patient’s super-state sequence (e.g. the last three super-
state are states N − 2, N − 1 and N if Fk = 1 as shown in Figure 2). The preceding states
can then be labeled by creating conflict groups of potential states that could have materialized in a
certain time slot, and selecting the one for which the divergence measure between the observations
associated with that state with respect to a previously labeled state is minimized (e.g. in the conflict
group highlighted in Figure 2, we resolve the conflict by picking state N − 1 if the divergence
measure with the observations associated with the previous labeled state N − 1 at time slot Ns − 1
is minimized). This backward labeling procedure proceeds until all states are labeled, and hence the
SSLGM becomes a conditionally linear Gaussian model for which a direct application of the EM
algorithm can allow learning the model parameters [4]. Online risk scoring is achieved by estimating
the monitored patient’s latent states {X̂τ}tτ=1 using the RTS smoothing algorithm, mapping those
states to an estimated super-states sequence and durations, and then computing the probability of the
super-states sequence being absorbed in state N .
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Figure 3: Depiction for the operation of the inference and risk scoring algorithm.

3 Results

We evaluated the utility of our model by conducting experiments on a heterogeneous cohort of
6,094 patients admitted to a general medicine floor in a large academic medical center in the period
between March 2013 to February 2016. The cohort comprised patients with various ICD-9 codes
corresponding to a wide variety of medical conditions (e.g. pneumonia, hematologic malignancies,
sepsis, septicemia, etc). We trained a 3-state SSLGM model using a training set comprising the
patients admitted in the period between March 2013 and July 2015 (4936 patients). The learned
super-state transition parameters are po1 ≈ 0.44, po2 ≈ 0.54, po3 ≈ 0.02, p21 ≈ 0.94, p23 ≈ 0.06 and
the estimated duration distribution for state 2 is

f(Tn = k|Sn = 2) =
Γ(k + 1.4541)

k! · Γ(1.4541)
· (0.839)1.4541 · (0.161)k, k ∈ N.

Table 1: Performance of various risk scoring methods (†LR: logistic regression. §RF: random forest).
Method SSLGM Rothman MEWS SOFA APACHE LR† RF§

AUC (ICU) 0.47 0.25 0.18 0.13 0.13 0.27 0.36
AUC (ICU/discharge) 0.36 0.25 0.18 0.1 0.13 0.17 0.19

Table 1 demonstrates the AUC performance (TPR vs PPV) of the risk scoring methods based on the
SSLGM model versus those based on state-of-the-art critical care risk scoring systems (Rothman
index, MEWS, SOFA and APACHE), in addition to other benchmark algorithms (logistic regression
and random forest). All algorithms were tested on the most recent patient records (1155 patients ad-
mitted between July 2015 and February 2016). The SSLGM model outperforms the Rothman index
in predicting ICU admissions by 22%, and outperforms random forest by 11% (p-values < 0.01).
Similarly, the SSLGM model outperforms all other methods in predicting both ICU admissions and
discharges from the ward. Figure 3 depicts the operation of the inference algorithm for one clinically
deteriorating patient who ended up going to the ICU. As we can see, the proposed model predicts
clinical deterioration for this representative patient 20 hours prior to the patient decompensating and
requiring an emergent transfer to the ICU. The extra time afforded by this substantially earlier warn-
ing might allow the clinician sufficient time to prevent the patient from clinical deterioration The
average timeliness of the predictions issued by the SSLGM model is 8 hours for a TPR of 50% and
a PPV of 35%.
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