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1 Appendix

1.1 Appendix A

In this section, we define the belief update expressions that are required in Algorithm 1. Compute the
belief updates ∀~s, l ∈ S̃ × {0, 1}

Θ(b, z)[~s, l] =
Pr(~s, l, z|x)

Pr(z|x)
=

∑
l̃ Pr(~s, l, z, l̃|x)∑

~s

∑
l̃ Pr(~s, l, z, l̃|x)

=

∑
l̃ b(~s, l̃)Pr(z|~s)Pr(l|l̃, z, x)∑

~s∈S̃
∑
l̃ b(~s, l̃)Pr(z|~s, x)Pr(l|l̃, z, x)

(1)

Φ(b, y, τ̃ , τ, t)[~s, l] =
Pr(~s, l, y, τ̃ |τ, t, x)∑
~s,l Pr(~s, l, y, τ̃ |τ, t, x)

=
Pr(~s, l, y, τ̃ |τ, t, x)∑
~s,l Pr(~s, l, y, τ̃ |τ, t, x)

=
b(~s, l)Pr(y, τ̃ |~s, τ, t, x)∑
~s,l b(~s, l)Pr(y, τ̃ |~s, τ, t, x)

(2)

For all τ̃ ≤ τ we have

Pr(y, τ̃ |~s, τ, t, x) = Pr({Y (s) ≤ ỹ; ∀s ≤ t+ τ̃}, Y (t+ τ̃) = y|~s, τ, t, x) (3)

For all τ̃ ≥ τ we have

Pr(y, τ̃ |~s, τ, t, x) = 0 (4)

max
τ

[∑
~s,l,z

b(~s, l)Pr(z|~s)
[
C̃(~s, t, z)

]
+δ

∑
z,τ̃ ,y

max
α

∑
~s,l,l̃

b(~s, l)α[~s, l̃]Pr(z|~s, x)Pr(l̃|l, z, x)Pr(y, τ̃ |~s, τ [z], x)
]

(5)

max
τ

[∑
~s,l,z

b(~s, l)Pr(z|~s)
[
C̃(~s, t, z) + δ

∑
τ̃ ,y,l̃

α∗[~s, l̃]Pr(l̃|l, z, x)Pr(y, τ̃ |~s, τ [z], x)
]

(6)

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Algorithm 1 Constructing the Belief Sets
r = 0T a T dimensional zero vector, B̄ is the array to store the belief vectors that can be achieved
at the T time instances
Sample K iid samples of the trajectory Pr(~s|x) to form the set S̃
For each ~s ∈ S̃
B̄[1, 0](~s, l = 0) = Pr(~s)/Pr(S̃)
End
For each ~s ∈ S̃

For t = 1 : T
Sample a ∼ Bernoulli(p) (if the patient arrives in that time slot a = 1 or not a = 0)
Sample z ∼ Pr(z|~s, x, a), If a = 0 (patient does not arrive), then z = ∅
B̄[j, t] = Θ(B̄[j, t− 1], z, t) (See equation (1))
Sample τ ∼ Multi[1, ..., T − t− 1]
Sample y, τ̃ ∼ Pr(y, τ̃ |~s, t, τ, x) (See equation (3) and equation (4))
B̂ = Φ(B̄[j, t], y, τ̃ , τ, t) (See equation (2))
B̄[j +K + r(t+ τ̃), t+ τ̃ ] = B̂
r(t+ τ̃) = r(t+ τ̃) + 1

End
j = j + 1
End
Copy belief vectors at time t to the belief at t+ 1.
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Algorithm 2 Approximate Policy Computation Part
Function: TPBVI
FUNCTION INPUT: Sets Γ(q),∀q > t,
For each τ ∈ {1, ..., T − t− 1}
For each z ∈ Z

For each (τ̃ , y) ∈ {t+ 1, .., t+ τ} × Y
For each α ∈ Γ(t+ τ̃)

For each ~s, l ∈ S̃ × {0, 1}
θ[~s, l] =

∑
l̃α[~s, l]Pr(l̃|l, z)Pr(y, τ̃ |~s, τ, x)

θ[~s, l] = θ[~s, l]Pr(z| ~s, x)
End

Γ
(
t, z, τ, τ̃ , y

)
= Γ

(
t, z, τ, τ̃ , y

)
∪ {θ}

End
End

End
End
For each belief point b ∈ B̄[, t]
For each z ∈ Z

For each τ ∈ {1, ..., T − t− 1}
ζ =

∑
y

∑
τ̃ arg max

α∈Γ
(
t,z,τ,τ̃ ,y

)[α]
′
b

Γ(t, z, τ) = Γ(t, z, τ) ∪ ζ
End

End
End
For each belief point b ∈ B̄[, t]
For each z ∈ Z

{α′
, (τ)

′} = arg maxτ,α∈Γ(t,z,τ)

∑
~s,l

[
− C̃(~s, t, z, l) +α[~s, l])

]
b(~s, l)

Γ(t, z) = Γ(t, z) ∪α′

A(t, z) = A(t, z) ∪ (τ)
′

End
Γ(t) = Γ(t) + Γ(t, z)
End
FUNCTION OUTPUT: Γ(t), {Γ(t, z), ∀z}, {A(t, z),∀z}
Γ(t, z) is set of alpha vectors and each one of them is optimal for one of the beliefs in the set
B̄(, t), A(t, z) is the set of optimal actions corresponding to the alpha vectors in Γ(t, z)
For any belief b, z find the nearest point in B̄[, t] and use the corresponding alpha vector in Γ(t, z)
and the corresponding action A(t, z)
End
Γ(T + 1) = {0}
For each t = 0 to T − 1
Γ(T − t) = TPBVI({Γ(T − r)}−1≤r≤t−1)
End
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Algorithm 3 Exact Policy Computation Part
NOTATION: ⊕ is the Cartesian sum
FUNCTION EVI
FUNCTION INPUT: Sets Γ(q),∀q > t,, Γ(T + 1) = {0},
For each z ∈ Z
For each τ ∈ {1, ..., T − t− 1}

For each (τ̃ , y) ∈ {t+ 1, .., t+ τ} × Y
For each α ∈ Γ(t+ τ̃)

For each ~s, l
θ[~s, l] = −1

|Y||(τ−t)| C̃(~s, t, z, l) + δ
∑
l̃α[~s, l]Pr(l̃|l, z, x)Pr(y, τ̃ |~s, τ, x)

θ[~s, l] = θ[~s, l]Pr(z|~s, x)
End

Γ
(
t, z, τ, τ̃ , y

)
= Γ

(
t, z, τ, τ̃ , y

)
∪ {θ}

End

Γ(t, z, τ) = prune
(

Γ(t, z, τ)⊕ Γ
(
t, z, τ, τ̃ , y

))
End

Γ(t, z) = prune
(

Γ(t, z)⊕ Γ(t, z, τ)

)
End

Γ(t) = prune
(

Γ(t)⊕ Γ(t, z)

)
End
OUTPUT: Γ(t), {Γ(t, z),∀z ∈ Z},
For optimal action at belief b at time t following observation z choose the optimal alpha vector
from Γ(t, z) and choose the action corresponding to the alpha vector selected
Γ(T + 1) = {0}
For each t = 0 to T − 1
Γ(T − t) = EVI({Γ(T − r)}−1≤r≤t−1)
End

In Algorithm 3, the prune function is taken from [21].
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Figure 1: Graphical model for the screening setting

1.2 Appendix B

Graphical Model.

We define a random variable V (t), where V (t) = 1 indicates that the patient visits the clinician in time
slot t and is zero otherwise. We define the realization of the visit trajectory as ~v = [v(1), ..., v(T )].
Let the screening policy be π. Next, we define the joint distribution of all the random variables that
appear in the model.

The joint distribution of the state trajectory ~s, the external information process trajectory ~y, the visit
trajectory ~v, the test outcome trajectory ~z is given as

Pr
(
~s, ~y,~v, ~z

∣∣∣x) =Pr
(
~s
∣∣∣x)Pr(~y∣∣∣~s, x)Pr(~v, ~z∣∣∣~s, ~y, x)

Pr
(
~s
∣∣∣x)ΠtPr

(
y(t)

∣∣∣~s(t), x)ΠtPr
(
v(t)

∣∣∣~v(t− 1), ~z(t− 1), ~y, ~s, π
)
Pr
(
z(t)

∣∣∣v(t), ~s
)

(7)

We simplify Pr
(
~y
∣∣∣~s) as Pr

(
~y
∣∣∣~s) = ΠtPr

(
y(t)

∣∣∣~s, x), where Π is the product operator and

Pr
(
y(t)

∣∣∣~s, x) is the probability of Y (t) = y(t) conditional on the entire state trajectory. We
assumed that the observations y(t) conditional on state trajectory through ~s(t) is independent of other
random variables in the model. Therefore, Pr

(
y(t)

∣∣∣~s, x) = Pr
(
y(t)

∣∣∣~s(t), x).

We simplify Pr
(
~v, ~z
∣∣∣~s, ~y, x) as Pr

(
~v, ~z
∣∣∣~s, ~y, x) = ΠtPr

(
v(t)

∣∣∣~v(t − 1), ~z(t −

1), ~y, ~s, π
)
Pr
(
z(t)

∣∣∣v(t), ~s
)

where Pr
(
v(t)

∣∣∣~v(t − 1), ~z(t − 1), ~y, ~s, π
)

is the probability of
visit in time t conditional on visit indicator in time t − 1, the test outcomes through time t − 1,
the entire external information process trajectory, the state trajectory ~s and the policy π and
Pr
(
z(t)

∣∣∣v(t), ~s(t)
)

is the probability of test outcome conditional on visit and the state trajectory.
Note that z(t)’s value when there is a visit depends only on the state trajectory through time t. If there
is no visit, then z(t) = ∅. It is easy to simplify Pr

(
v(t)

∣∣∣~v(t− 1), ~z(t− 1), ~y, ~s, π
)

. Based on all the
observations until time t − 1 the policy π would have recommended a next screening time. If the
next screening time is not t, then Pr

(
v(t) = 1

∣∣∣~v(t− 1), ~z(t− 1), ~y, ~s, π
)

= Pr
(
Y (t) > ỹ

∣∣∣~s, x).

If the screening time is t, then Pr
(
v(t) = 1

∣∣∣~v(t− 1), ~z(t− 1), ~y, ~s, π
)

= 1
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1.3 Appendix C

Sufficient statistic for the history: In this section, our aim is to show that instead of considering the
entire history the clinician can only use the belief that we constructed in Section 3.

The history through time t when the patient arrives can be written as h(t) =
[
z(t), y(t), {y(r) ≤

ỹ}t−1
r=t−τ̃ , τ̃ , τ(t−τ̃), h(t−τ̃)

]
, where z(t) is the test outcome at time t, y(t) is the external observation

at time t, and τ(t− τ̃) was the prescribed arrival time in the last arrival which occurred at time t− τ̃ .

Write the probability that the patient’s state trajectory is ~s, the diagnosis state l (the diagnosis state
corresponds to the state after the observation z(t) in time slot t), conditioned on the history h(t) as
Pr(~s, l|h(t)). Next, we describe how to compute Pr(~s, l|h(t)) in terms of the probability distribution
Pr(~s, l̃|h(t− τ̃)).

Pr
(
~s, l, v

∣∣∣h(t)
)

=
Pr
(
~s, l, z(t), y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃

∣∣∣τ(t− τ̃), h(t− τ̃)
)

Pr
(
z(t), y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃

∣∣∣τ(t− τ̃), h(t− τ̃)
)

=

∑
l̃ Pr

(
~s, l̃, l, z(t), y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃

∣∣∣τ(t− τ̃), h(t− τ̃)
)

Pr
(
z(t), y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃

∣∣∣h(t− τ̃)
)

∑
l̃ Pr

(
~s, l̃
∣∣∣h(t− τ̃)

)
Pr
(
y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃

∣∣∣~s, τ(t− τ̃)
)
Pr
(
z(t)|~s

)
Pr
(
l|l̃, z(t)

)
Pr
(
z(t), y(t)

∣∣∣h(t− τ̃)
)

(8)

In the above equation, Pr
(
l|l̃, z(t)

)
is the probability of the new diagnosis state conditional on the

existing diagnosis state. If the existing diagnosis state is 1, then the new diagnosis state has to be 1. If
the existing diagnosis state is 0, then the new diagnosis state is 1 if z ∈ Z+ and 0 otherwise.

By definition the belief at time t is Pr(~s, l|h(t)), which we write as b̂ and we write Pr(~s, l|h(t− τ̃))
as b.

b̂(~s, l) =

∑
l̃ b(~s, l)Pr

(
y(t), {y(r) ≤ ỹ}t−1

r=t−τ̃

∣∣∣~s, τ(t− τ̃)
)
Pr
(
z(t)

∣∣∣~s)Pr(l∣∣∣l̃, z(t))
Pr
(
z(t), y(t)

∣∣∣h(t− τ̃)
) (9)

From the above equation, we can conclude that keeping a track of beliefs is sufficient as the previous
belief can be used to compute the new belief (combined with the distributions over the observations).
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1.4 Appendix D

Proof of Lemma 1.

We re-write the value function defined for time slot t, which is also a decision epoch (the patient
arrives in this slot and test is done) in equation (3) in the main text below.

V (b, t) = max
τ

[
−
∑
~s,l,z

b(~s, l)Pr(z|~s, x)
[
C̃(~s, t, z, l)

]
+
∑
z,τ̃ ,y

Pr(z, y, τ̃
∣∣b, τ , x)V

(
b̂, t+ τ̃

)]
(10)

where b̂(~s, l) = Pr
(
~s, l
∣∣∣b, τ , y, z, τ̃ , x) = Pr(~s,l,y,z,τ̃ |b,τ )

Pr(y,z,τ̃ |b,τ ) . Note that l in the above equation is the
diagnosis state before the test outcome z is observed.

Pr(~s, l, y, z, τ̃ |b, τ ) is the probability that the patient’s trajectory is ~s, the test outcome in time slot t
is z, the external information on patient’s next arrival, which occurs τ̃ time slots later is y conditioned
on the recommendation plan τ . We simplify Pr(~s, l, y, z, τ̃ |b, τ , t) as

Pr
(
~s, l, y, z, τ̃

∣∣∣b, τ , t) =
∑
l̃

Pr
(
~s, l̃, l, y, z, τ̃

∣∣∣b, τ , t) =
∑
l̃

b(~s, l̃)Pr
(
l, y, z, τ̃

∣∣∣~s, l̃, τ , t)
We simplify Pr(l, y, z, τ̃ |~s, l̃, τ , t) as

Pr(l, y, z, τ̃ |~s, l̃, τ , t) = Pr(z|~s, l̃, τ , t)Pr(l|l̃, z, τ , t, ~s)Pr(y, τ̃ |z,~s, τ , l, l̃, t)
= Pr(z|~s)Pr(l|l̃, z)Pr(y, τ̃ |z,~s, τ , t)

(11)

where Pr(l|l̃, z) is the transition probability from current diagnosis label l̃ to the new label l following
the observation z. If the patient is diagnosed to be unhealthy, then the diagnosis label continues to
be one. If the patient is not diagnosed, then the label turns to one from zero as soon as the patient
is diagnosed. Formally stated, Pr(l = 0|l̃ = 0, z) = 0,∀z ∈ Z+, Pr(l = 0|l̃ = 0, z) = 1,∀z ∈
[Z+]c, Pr(l = 0|l̃ = 1, z) = 0,∀z ∈ Z . In the above equation (11), we wrote Pr(z|~s, l̃, τ , t) =
Pr(z|~s); this is true because the test outcome is independent of whether the patient has been diagnosed
or not, the recommendation plan and the time. We also state Pr(l|l̃, z, τ , t, ~s) = Pr(l|l̃, z) where we
use the condition that l is independent of τ , t, ~s conditional on l̃, z (this follows from the definition of
l). Also, if the state trajectory, the recommended time of next arrival, and the current time are known,
then the distribution of external information at next arrival time and next arrival time is completely
specified by Pr(y, τ̃ |z,~s, τ , t) and whether the patient has been diagnosed or not does not enter
the external information process Pr(y, τ̃ |z,~s, τ , l, l̃, t) = Pr(y, τ̃ |z,~s, τ , t) (this follows from the
definition of external information process).

For all τ̃ ≤ τ (z) we have

Pr(y, τ̃ |z,~s, τ , t) = Pr
({
Y (s) ≤ ỹ; t < ∀s ≤ t+ τ̃

}
, Y (t+ τ̃) = y

∣∣∣~s) (12)

For τ̃ > τ (z)
Pr(y, τ̃ |z,~s, τ , t) = 0 (13)

Thus we can write the updated belief as

b̂(~s, l̃) =
Pr(~s, l̃, y, z, τ̃ |b, τ )

Pr(y, z, τ̃ |b, τ )
=

∑
l b(~s, l)Pr(l̃, y, z, τ̃ |~s, l, τ , t)

Pr(y, z, τ̃ |b, τ )
=

∑
l b(~s, l)Pr(z|~s)Pr(l̃|l, z)Pr(y, τ̃ |z,~s, τ , t)

Pr(y, z, τ̃ |b, τ )
(14)

In this proof uptil now we have computed the expression for b̂.

We will use principle of induction to prove the above result. The claim in the Lemma holds for the
value function in time slot T + 1 as it is defined to be identically zero. Next, we assume that the
condition in the Lemma holds for all r > t. Therefore, we can write

V (b̂, t+τ̃) = max
α∈Γ(t+τ̃)

∑
~s,l̃

α[~s, l̃]b̂(~s, l̃) = max
α∈Γ(t+τ̃)

∑
~s,l̃,l

α
[
~s, l̃
]b(~s, l)Pr(z|~s)Pr(l̃|l, z)Pr(y, τ̃ ∣∣z,~s, τ , t+ τ̃

)
Pr
(
y, z, τ̃

∣∣b, τ)
(15)
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Suppose that each α ∈ Γ(t+ t̃) is indexed. Henceforth, we also write the index of α in superscript
as well, i.e. αk. Define a function k̃ : ∆× T × T × Y × T → Z as follows.

k̃(b, τ , τ̃ , y, t, z) = arg max
k

∑
~s,l,l̃

αk
[
~s, l̃
]
b
(
~s, l
)
Pr
(
z
∣∣~s)Pr(l̃∣∣l, z)Pr(y, τ̃ ∣∣z,~s, τ , t+ τ̃

)
(16)

Substituting (15) and (16) into (10) we obtain

V (b, t) = max
τ

[∑
~s,l,z

b
(
~s, l
)
Pr
(
z
∣∣~s)[C̃(~s, t, z, l)]+

∑
z,τ̃ ,y

∑
~s,l,l̃

αk̃[~s, l]b
(
~s, l
)
Pr
(
z
∣∣~s)Pr(l̃∣∣l, z)Pr(y, τ̃ ∣∣z,~s, τ , t+ τ̃

)]

max
τ

[∑
~s,l,z

b
(
~s, l
)
Pr
(
z
∣∣~s)[C̃(~s, t, z, l)+

∑
τ̃ ,y,l̃

αk̃
[
~s, l̃
]
Pr
(
l̃|l, z

)
Pr
(
y, τ̃
∣∣z,~s, τ , t+ τ̃

)]]

max
τ

[ ∑
~s,l,z,τ̃ ,y,l̃

b
(
~s, l
)
Pr
(
z
∣∣~s)[C̃(~s, t, z, l) 1

ω
+αk̃

[
~s, l
]
Pr
(
l̃
∣∣l, z)Pr(y, τ̃ ∣∣z,~s, τ , t+ τ̃

)]]
(17)

where ω is the total possible combinations of τ̃ , y and l̃. In the above (17), we only use k̃ instead of
the entire function k̃(b, τ , τ̃ , y, t, z) for clearer notation.

Observe that the function k̃(b, τ , τ̃ , y, t, z) can take finitely many values. Therefore, for a fixed combi-
nation of values z, τ̃ , y the spaceB is thus partitioned into regions where k̃(b, τ , τ̃ , y, t, z) takes a fixed
value. Hence, the term

[
C̃
(
~s, t, z, l

)
1
ω +αk̃

[
~s, l
]
Pr
(
l̃|l, z

)
Pr
(
y, τ̃
∣∣z,~s, τ , t+τ̃)] takes a fixed value

in each partition as well and this is true of ∀~s, l. Finally, we can create a common refinement of the
partitions such that the

∑
z,τ̃ ,y Pr

(
z
∣∣~s)[C̃(~s, t, z, l) 1

ω +αk̃
[
~s, l
]
Pr
(
l̃|l, z

)
Pr
(
y, τ̃
∣∣z,~s, τ , t+ τ̃

)]
is fixed for each partition. Therefore, we have so far that the term inside (17) is piecewise linear. The
first term inside (17) is convex (since it is linear). The second term inside (17) is convex because of
the definition of (16). Thus, the term inside the max operator (17) is piecewise linear and convex.
The maximum of piecewise linear and convex functions is also piecewise linear and convex. This
proves the result.
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1.5 Appendix E

Proof of Proposition 1. We first re-write the expression for the cost incurred in a time slot below

C̃(~s, t, z, l) =


wC(t− tD; tD) + (1− w)δtI(z 6= ∅) t ≤ T, l = 0, z ∈ Z+

wC(T − tD; tD) t = T, l = 0

(1− w)δtI(z 6= ∅) otherwise
(18)

We substitute C(t− tD; tD) = c(t− tD)δtD to obtain

C̃(~s, t, z, l) =


wc(t− tD)δtD + (1− w)δtI(z 6= ∅) t ≤ T, l = 0, z ∈ Z+

wc(t− tD)δtD t = T, l = 0

(1− w)δtI(z 6= ∅) otherwise
(19)

Define another function Ĉ as follows.

Ĉ(~s, t, z, l) =


wc(t− tD)δt + (1− w)δtI(z 6= ∅) t ≤ T, l = 0, z ∈ Z+

wc(t− tD)δt t = T, l = 0

(1− w)δtI(z 6= ∅) otherwise
(20)

Next, we derive an upper bound on time to detection td in terms of the time of incidence tD. Disease
starts at tD and the next screening has to occur at time at most tD + W . Since there are no false
positives and false negatives the patient is detected in the next screening. Therefore, we have
tD ≤ td ≤ tD +W .

We derive an upper bound on the difference between Ĉ and C̃ as

C̃(~s, t, z, l)− Ĉ(~s, t, z, l) ≤ (δTD − δtd)(c(td − tD))

≤ δTD (1− δW )(c(W ))

≤ (1− δW )(c(W ))

(21)

We require that C̃(~s, t, z, l)− Ĉ(~s, t, z, l) ≤ κ. It is sufficient to bound (1− δW )(c(W )) ≤ κ =⇒
δ ≥ (1− κ

c(W ) )1/W . Henceforth, we assume that δ ≥ δ∗ = (1− κ
c(W ) )1/W . Therefore, we have

Ĉ(~s, t, z, l) ≤ C̃(~s, t, z, l) ≤ Ĉ(~s, t, z, l) + κ (22)

∀~s, t, z, l. It can be shown that the solutions to (??) with Ĉ instead of C̃ only differ by κ (at most).
Let the optimal policy and the corresponding optimal value when cost is C̃ be given as π1 and C1(π1)
(C2(π2)). From (22) we have

C2(π1) ≤ C1(π1) ≤ C2(π1) + κ

C2(π2) ≤ C1(π2) ≤ C2(π2) + κ
(23)

From the definition of C1 and C2 the following can be derived

C2(π2) ≤ C1(π1) ≤ C2(π1) + κ ≤ C2(π2) + κ (24)

Next, we will use Ĉ instead of C̃. Define a function C̄(~s, t, z, s) = Ĉ(~s,t,z,l)
δt .

We write the value function for the modified objective as

V̄ (b, t) = max
τ

[∑
~s,l,z

b(~s, l)Pr(z|~s)
[
C̄(~s, t, z, l)

]
+ δ

∑
z,τ̃ ,y

Pr(z, y, τ̃
∣∣b, τ )V̄

(
b̂, t+ τ̃

)]
(25)

If T is sufficiently large, then the difference between the value function of the finite horizon and the
infinite horizon version of the problem can be made as small as desired.
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The maximum difference between the value function computed upto the infinite horizon versus one
that is truncated at time T is δT (1/(1− δ) + c(W )). Suppose we want to bound the difference by η.

If δT (1/(1− δ) + c(W )) ≤ η =⇒ δT ≤ η(1− δ) + c(W )η. If T ≥ max{ log( η
2+η )

log(δ) ,
log( η

2c(W )
)

log(δ) },
then the difference is bounded by η. Let us consider the infinite horizon for V̄ above. We will
construct the proof for the infinite horizon version of the problem and then use the above observation
to extend the proof to finite horizon.

From equation (25), we can define an operator given as Φt defined as follows.

Φt(V ) = max
τ

[∑
~s,l,z

b(~s, l)Pr(z|~s)
[
C̄(~s, t, z, l)

]
+ δ

∑
z,τ̃ ,y

Pr(z, y, τ̃
∣∣b, τ )V

(
γ(b, y, z, τ )

)]
(26)

where γ is the belief update operator that can be defined based on the equation (14) in the proof
of Lemma 1. Based on standard arguments used to show that a Bellman operator is a contraction
mapping [21], we can show that the above operator is a contraction mapping as well with a contraction
factor δ.

Similarly, we define an operator Φ̃t associated with our algorithm. Our algorithm takes alpha vectors
as input and generates a new set of alpha vectors. Since the set of alpha vectors define the value
function (see Lemma 1), we can view the proposed procedure to be an operator that maps a value
function to another value function. Define the error introduced by one iteration of the approximate
backup Φ̃tV

B(:, t) as ε = maxb∈∆ |Φ̃tV B̄(b)− ΦtV
B̄(b)|. Note that the backup at time t will use

B̄[; t] as the input vector of beliefs. Define the density δB̄[t] of a set of points B̄[t] to be the maximum
distance from any belief in the simplex ∆ to a belief in the set B̄[t].

δB̄[t] = max
b
′∈∆

min
b∈B̄[t]

||b− b
′
||1 (27)

We now compute the maximum value ε. Let b
′
∈ ∆ be the point where proposed procedure makes

the largest error and let b ∈ B̄[t] be the closest 1-norm sampled belief to b
′
. Let α be the vector

maximal at b (this vector is generated by the backup at b because we assume that the value function in
the future time slot computed b is known thus there is no error at b) and let α

′
be the vector maximal

at b
′
. Therefore,

ε ≤ [α
′
]
′
b

′
− [α]b

′

= [α
′
]
′
b

′
− [α]b

′
+ [α

′
]
′
b− [α

′
]
′
b

≤ [α
′
]
′
b

′
− [α]b

′
+ [α]

′
b− [α

′
]
′
b

= [(α
′
−α)]

′
(b− b

′
)

≤ ||[(α
′
−α)]

′
||∞||(b− b

′
)||1

In the last equation above, we use Holder’s inequality. Note that ||[(α′ − α)]
′ ||∞ represents the

maximum difference in the costs that are achieved starting from a certain state and is given as ζ . Note
that ζ <∞ because the total number of time slots is finite and the costs in each decision epoch are
bounded. Thus we can write the above inequality as

ε ≤ ζδB̄[t] (28)

We now proceed to the overall error introduced by the Algorithm.

εt = ||V B̄[t]( , t)− V ( , t)||∞
= ||Φ̃tV B̄[t+1]( , t+ 1)− ΦV ( , t)||∞
= ||Φ̃tV B̄[t+1]( , t+ 1)− ΦtV

B̄[t+1]( , t+ 1) + ΦtV
B̄[t+1]( , t+ 1)− ΦV ( , t)||∞

≤ ||Φ̃tV B̄[t+1]( , t+ 1)− ΦtV
B̄[t+1]( , t+ 1)||∞ + ||ΦtV B̄[t+1]( , t+ 1)− ΦV ( , t)||∞

≤ ζδB̄[t] + δεt+1

= ζδB̄[t] + δζδB̄[t+1] + δ2εt+2

= ζΩ(B̄)
1

1− δ

10



The above result can be extended to the finite horizon case. If T is sufficiently large, then the value
function achieved by the proposed policy and the exact policy will be close to V B̄[t](, t) and V (, t)
respectively. If δB̄ is sufficiently small, then the proposed and the exact optimal policy will achieve
very similar value function.

If the approximation error goes to zero, then the value function of the proposed and the exact optimal
policy are the same. Based on the assumption that there is a unique optimal solution to (3), we can
see that the proposed and the exact optimal policies will also be identical.
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1.6 Appendix F

Proof for Theorem 1.

In Lemma 1 we showed that V (b, t) can be written as maxαα
∗b. Since we are considering the space

of models in this Theorem, we will define the value function on the space L. Following Lemma 1 we
can write

V ((b,m), t) = max
k
α(k,m)∗b (29)

where (b,m) ∈ L and α(k,m) is the kth alpha vector for modelm. We can assume that the same
indexing is used for the alpha vectors across all the models. (Also, based on the definition of alpha
vectors the total number of alpha vectors is the same across all the models.)

Consider a fixed belief b and a fixed model m. a∗((b,m), t) is the unique maximizer (except for
a set of measure zero of models m; this is based on the assumption). Let k∗(m, b) corresponds
to the index of the corresponding optimal alpha vector. (Here we have assumed that the index
k∗(m, b) is unique, but this assumption can be relaxed.) Based on the assumption that for a fixed
m b, a∗((b,m), t) is a unique maximizer (except for a set of measure zero of modelsm), we can
conclude that the α(k∗(m, b),m)∗b is strictly better than other [α(k,m)∗b, ;∀k 6= k∗(m, b). Note
that there may existm, b for which the maximizer k∗(m, b) is not unique. The measure of such a
set is zero (as it will amount to finding m, b such that α(k∗(m, b),m)∗b = α(k,m)∗b for some
k 6= k∗(m, b)), thus we can exclude these points.

If all the probability distributions defined in the model are continuous in m, then α(k,m) is a
continuous vector valued function of m for all k as well. Therefore, the condition α(k,m)∗b has
to be strictly better than α(k,m)∗b, ∀k 6= k∗(m, b) in a neighborhood of m. In fact, due to the
continuity of α(k,m)∗b in b, this has to hold true for a neighborhood in the joint space L. This
implies that the optimal action a∗ stays fixed in the neighborhood as well. This proves the result.
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Table 1: Comparison of the proposed policy with biennial policy.

Risk
Group

Metrics DPSCREEN with
self-detection

Proposed w/o self-
detection

Biennial

Low E[N |R], E[∆|R], E[∆|R,D] 0.21, 0.29,12.36 0.42, 0.29, 12.36 0.5, 0.29, 12.36
High E[N |R], E[∆|R], E[∆|R,D] 0.22, 0.90, 12.13 0.38, 0.90,12.13 0.5, 0.88,11.8

1.7 Appendix G

Further details on illustrative experiments:

Mammogram output: The outcome of a mammogram is given in the form of a BIRADS (Breast
Imaging Report and Data System) score {1, 2, 3, 4, 4A, 4B, 4C, 5, 6}, The outcome was considered
positive if the BIRADS scores is 4 or above, in which case a biopsy was performed.

Model Estimation: We use independent normal priors for the parameters of the functions pin(x)
and ptr(x). We compute the posterior (up to a constant) of the parameters in terms of the likelihood
of the observed data (described above). We estimate the posterior distribution using the Metropolis
Hastings method with a Gaussian random walk as the proposal distribution.

Comparisons with Biennial Policies In Table 3 we compare the performance of DPSCREEN (with
and without self-examination) for Low and High risk groups against the current clinical policy of
biennial screening. For both risk groups, the proposed policy achieves approximately the same
expected delay as the benchmark policy while doing many fewer tests (in expectation). With self-
examinations, the expected reduction in number of screens is 56-58% (depending on risk group); even
without self-detection, the expected reduction in number of screens is 16-24% percent (depending on
risk group).
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