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Appendix A: Proof of Theorem 21

The Bayesian PEHE risk R(θ, f̂ ;D) for a point estimate f̂ is given by2

R(θ, f̂ ;D) = Eθ

[
L̂(f̂ ;Kθ,Y

(W),Y(1−W))
∣∣∣ D]

, (1)

where the expectation in (1) is taken with respect to Y(1−W)|D. The Bayesian risk in (1) can be3

written as4

R(θ, f̂ ;D) =

∫
L̂(f̂ ;Kθ,Y

(W),Y(1−W)) dPθ(Y
(1−W)|D). (2)

The loss function L̂ conditional on a realization of the counterfactual outcomes is given by5

L̂(f̂ ;Kθ,Y
(W),Y(1−W)) =

1

n

n∑
i=1

(
f̂T (Xi)e− (1− 2Wi)

(
Y

(1−Wi)
i − Y

(Wi)
i

))2

.

The optimal hyper-parameter and interpolant (f̂∗, θ∗) are obtained through the following optimiza-6

tion problem7

(f̂∗, θ∗) = argmin
f̂ ,θ

∫
1

n

n∑
i=1

(
f̂T (Xi)e− (1− 2Wi)

(
Y

(1−Wi)
i − Y

(Wi)
i

))2

dPθ(Y
(1−W )
i |D).

The optimization problem can solved separately for θ and f̂ ; we know from Theorem 1 that for any8

given θ, the optimal interpolant f̂ = Eθ[f | D]. Hence, the optimal hyper-parameter θ∗ can be found9

by solving the optimization problem10

θ∗ = argmin
θ

∫
1

n

n∑
i=1

(
Eθ[f

T (Xi) | D]e− (1− 2Wi)
(
Y

(1−Wi)
i − Y

(Wi)
i

))2

dPθ(Y
(1−W )
i |D).

The objective function above can be written as11

R =
1

n

n∑
i=1

∫ (
(1− 2Wi)

(
(Y

(Wi)
i − Eθ[fWi(Xi) | D])− (Y

(1−Wi)
i − Eθ[f1−Wi | D])

))2

dPθ(Y
(1−W )
i |D),

which can be reduced as follows12

R =
1

n

n∑
i=1

∫
(Y

(Wi)
i − Eθ[fWi(Xi) | D])2 dPθ(Y

(1−W )
i |D)︸ ︷︷ ︸

R1

+

∫
(Y

(1−Wi)
i − Eθ[f1−Wi | D])2 dPθ(Y

(1−W )
i |D)︸ ︷︷ ︸

R2

− 2

∫
(Y

(Wi)
i − Eθ[fWi(Xi) | D]) (Y

(1−Wi)
i − Eθ[f1−Wi | D]) dPθ(Y

(1−W )
i |D)︸ ︷︷ ︸

R3

(3)
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Note that since Y (Wi)
i = fWi(Xi)+ ϵi,Wi , then we have that Eθ[fWi(Xi) | D] = Eθ[Y

(Wi)
i | D] and13

Eθ[f1−Wi(Xi) | D] = Eθ[Y
(1−Wi)
i | D]. Therefore, we can evaluate the terms R1, R2 and R3 as14

follows15

R1 =
1

n

n∑
i=1

∫
(Y

(Wi)
i − Eθ[fWi(Xi) | D])2 dPθ(Y

(1−W )
i |D)

=
1

n

n∑
i=1

∫
(Y

(Wi)
i − Eθ[Y

(Wi)
i | D])2 dPθ(Y

(1−W )
i |D)

=
1

n
∥Y(W) − Eθ[f | D]∥22, (4)

and16

R2 =
1

n

n∑
i=1

∫
(Y

(1−Wi)
i − Eθ[f1−Wi | D])2 dPθ(Y

(1−W )
i |D)

=
1

n

n∑
i=1

∫
(Y

(1−Wi)
i − Eθ[Y

(1−Wi)
i | D])2 dPθ(Y

(1−W )
i |D)

=
1

n

n∑
i=1

Var[Y (1−Wi)
i | D ],

=
1

n
∥Var[Y(1−W) | D ]∥1, (5)

and17

R3 =
1

n

n∑
i=1

∫
(Y

(Wi)
i − Eθ[fWi | D])(Y

(1−Wi)
i − Eθ[f1−Wi | D]) dPθ(Y

(1−W )
i |D)

= 0. (6)

Therefore, θ∗ is found by minimizing ∥Y(W) − Eθ[f | D]∥22 + ∥Var[Y(1−W) | D ]∥1.18

Appendix B: Algorithmic Details19

In this Section, we present a routine, Initialize-hyperparameters, which uses the sample vari-20

ance and up-crossing rate of Y(W) to initialize hyperparameters θ. The hyperparameter initializa-21

tion procedure presented herein allows running our method without any user-defined inputs, which22

facilitates its usage by researchers conducting observational studies.23

Algorithm 1 Initialize-hyperparameters

1: Input: The factual outcomes Y(W)

2: Output: Initial hyperparameters θ0

3: Ỹ ← kNN(Y(W))

4: β2
00 ← 1

n0

∑
i:Wi=0(Y

(0)
i − 1

n0

∑
j:Wj=0 Y

(0)
j )2

5: β2
11 ← 1

n1

∑
i:Wi=1(Y

(1)
i − 1

n1

∑
j:Wj=1 Y

(1)
j )2

6: β01 ← 1
10
β00

7: β10 ← 1
10
β11

8: σ0 ← 1
n0

∑
i:Wi=0(Y

(0)
i − Ỹ

(0)
i )2

9: σ1 ← 1
n1

∑
i:Wi=1(Y

(1)
i − Ỹ

(1)
i )2

10: ρ0 ← 1
n

∑
i(Y

(0)
i − Ỹ

(0)
i )(Y

(1)
i − Ỹ

(1)
i )

11: ρ1 ← ρ0

12: ℓj,w ← e
− u2

2 β2
ww√

2π E[Nw
u ]

, j = 1, . . ., d, w ∈ {0, 1}
13: θ0 ← (β2

00, β
2
11, β01, β10, σ0, σ1, ρ0, ρ1, ℓ1,0, . . ., ℓd,0, ℓ1,1, . . ., ℓd,1)
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The procedure starts by obtaining k-nearest neighbor estimates of the factual and counterfactual24

outcomes (line 3), and then we obtain the noise, variance and correlation parameters (lines 4-11)25

using sample variance estimates. We set β01 and β10 as 1
10 of the values of β00 and β11, hence we26

initially bias each of the intrinsic coregionalization components to one of the potential outcomes27

surfaces. We use the up-crossing statistics (u is the threshold level and E[Nw
u ] is the up-crossing28

rate of response surface w) in order to estimate the length-scale parameters.29

Appendix C: The UNOS Dataset30

The UNOS dataset1 contains data on every organ transplant event occurring in the U.S. since 1987.31

We focused on cardiac patients who were wait-listed for a heart transplant; those comprise a cohort32

of 36,329 patients who never got a heart transplant, some of which have died during the follow-up33

period. We focus on the effect of Left Ventricular Assistance Devices (LVADs) on the survival of34

those patients. LVADs became approved as a solution for end-stage transplant-ineligible patients in35

2001, it then became approved by the FDA in 2002. Before 2005, most LVADs were adopting an36

inconvenient pulsatile technology, then after 2005 the continuous-flow technology became dominant37

in the market. Most patients in the cohort who received an LVAD implantation used HeartMate II38

LVADs, which is a continuous-flow technology. We extracted a cohort of patients who were wait-39

listed in the year 2010; this is because patients who received an LVAD in 2010 are guaranteed to40

have received a continuous-flow LVAD, and have been followed up for 6 years to assess their survival.41

Figures 1 and 1 depict the time-line of the development of LVADs in addition to its deployment over42

the years as estimated from the UNOS dataset.43

Figure 1: Time-line of LVAD deployment. Figure 2: LVAD implantation rates over time.

44

Patients in the wait-list are assigned priorities for receiving hearts from donors based on the UNOS45

coding criterea. The UNOS priority allocation scheme is provided in Table 1. Patients experiencing46

LVAD-related complications may be listed as Status 1A. Other patients supported by an LVAD are47

listed as Status 1B. Status 2 does not apply to patients with LVADs.48

Table 1: The UNOS priority allocation scheme.

Code Description
Status 1A Requires intensive care hospitalization, life-support measures,

certain cardiac supporting intravenous medications

Status 1B Dependent on intravenous medications or a mechanical-assist
device - in the hospital or at home.

Status 2 Stable on oral medications and able to wait at home.

Each patient is associated with 14 co-variates: age, height, weight, diabetes, previous transplants,49

ventilator assistance, ECMO assistance, creatinine, body mass index (BMI), VAD, total artificial50

heart, inotropic, blood group, and IABP life support. The cohort comprised 1,006 patients with 23251

patients receiving LVADs. The distribution of the patients’ features in the treated and control groups52

is provided in Table 2. A multivariate Hotelling T -squared test accepts the hypothesis that treated53

and control patients have different distributions (significance level=0.05, p-value < 0.001).54

1https://www.unos.org/data/
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Table 2: The feature distribution of the extracted patient cohort.

Mean (SD) Control Treated
Age 52 (12) 52 (11.6)

Weight 174.3 (10.2) 174.6 (10.3)

Height 86.18 (19.9) 90.8 (21.5)

Diabetes 30.6 (46.11) 33.5 (47.2)

Male % 74.7 (44) 67.7 (46.8)

Body Mass Index 28.23 (5.4) 29.55 (5.66)

Creatinine 1.5 (1.14) 1.3 (0.61)

Ventilator 6.8 (25) 5.58 (23)

ECMO 1.75 (12.6) 0.7 (8.3)

Appendix D: Benchmarks55

We compared our algorithm with the following benchmarks: ♣ Tree-based methods (BART [5],56

causal forests (CF) [4, 9], virtual-twin random forests (VTRF) [7], and counterfactual random forests57

(CFRF) [7]), ♠ Balancing counterfactual regression (Balancing linear regression (BLR) [6], bal-58

ancing neural networks (BNN) [6], and counterfactual regression with Wasserstein distance metric59

(CFRW) [8]), ⋆ Propensity-based and matching methods (k nearest-neighbor (kNN), matching-60

smoothing (MS) [10]), ♢ Doubly-robust methods (Targeted maximum likelihood (TML) [22]), and61

♡ Gaussian process-based methods (separate GP regression for treated and control with marginal62

likelihood maximization (GP)). For all benchmarks, we evaluate the PEHE via a Monte Carlo sim-63

ulation with 1000 realizations of both the IHDP and UNOS datasets, where in each experiment we64

run all the benchmarks with 60/20/20 train-validation-test splits. Counterfactuals are never made65

available to any of the benchmarks. In each of the 1000 experiments, the hyper-parameters of each66

benchmark where optimized using the training set. Details of the benchmarks are provided below.67

♣ Tree-based Methods68

The tree-based learning benchmarks comprised one Bayesian method (BART), and three frequentist69

methods (CF, VTRF, CFRF).70

• BART: We used the bart function from the in the R-package BayesTree2, with the default71

prior as in [5].72

• CF: We used the implementation in the R-package CausalTree3. We used the "double73

sample trees" configuration as it led to better performance compared to the "propensity74

trees" [9]. We use the validation set in each experiment to tune the number of trees in the75

forest and the minimum number of leaves using a surrogate loss PEHE function that uses76

the first nearest-neighbor as an estimate for the counterfactuals.77

• VTRF and CFRF: We used the R-package randomforestsrc4 for the implementation of78

both VTRF and CFRF. Again, we tuned the number of trees and leaves in the forest via the79

validation set, where in each experiment we tune the hyperparameters using a surrogate loss80

PEHE function that uses the first nearest-neighbor as an estimate for the counterfactuals.81

♠ Balancing Counterfactual Regression82

We used the Python code5 provided by the authors of [6] and [8].83

2https://cran.r-project.org/web/packages/BayesTree/index.html
3https://github.com/susanathey/causalTree
4https://cran.r-project.org/web/packages/randomForestSRC/index.html
5https://github.com/clinicalml/cfrnet
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• BLR: We ran the BLR based on the variable selection in [Sec. 3.1, 6]. The objective84

function in [Eq. 2, 6] is optimized using sub-gradient descent. We optimized the hyper-85

parameters in each of the 1000 experiments using grid search.86

• BNN: We used the BNN-2-2 configuration in [6]. BNN-2-2 comprises 2 fully-connected87

ReLU representation-only layers, 2 ReLU output layers after the treatment has been added,88

and a single linear output layer. The network is optimized via RM-SProp. We optimized89

the hyper-parameters (imbalance penalty and regularization parameter) in every experiment90

through the validation set using exhaustive search.91

• CFRW: We tuned the hyperparameters of CFRW with the Wasserstein distance metric92

using the validation set through a surrogate objective for the PEHE that uses the nearest93

neighbor factual outcome as a surrogate for the counterfactuals (See [Appendix C.1, 8]).94

♡ Gaussian Process-based Methods95

We fit two separate GP regression models for the treated and control populations, and estimate the96

treatment effects as their difference. We optimize the hyperparameters by maximizing the marginal97

likelihood through conjugate gradient descent [23].98
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