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Abstract

Designing optimal treatment plans for patients with comorbidities requires accu-
rate cause-specific mortality prognosis. Motivated by the recent availability of
linked electronic health records, we develop a nonparametric Bayesian model for
survival analysis with competing risks, which can be used for jointly assessing a
patient’s risk of multiple (competing) adverse outcomes. The model views a pa-
tient’s survival times with respect to the competing risks as the outputs of a deep
multi-task Gaussian process (DMGP), the inputs to which are the patients’ covari-
ates. Unlike parametric survival analysis methods based on Cox and Weibull mod-
els, our model uses DMGPs to capture complex non-linear interactions between
the patients’ covariates and cause-specific survival times, thereby learning flexi-
ble patient-specific and cause-specific survival curves, all in a data-driven fashion
without explicit parametric assumptions on the hazard rates. We propose a varia-
tional inference algorithm that is capable of learning the model parameters from
time-to-event data while handling right censoring. Experiments on synthetic and
real data show that our model outperforms the state-of-the-art survival models.

1 Introduction

Designing optimal treatment plans for elderly patients or patients with comorbidities is a challenging
problem: the nature (and the appropriate level of invasiveness) of the best therapeutic intervention
for a patient with a specific clinical risk depends on whether this patient suffers from, or is suscep-
tible to other "competing risks" [1-3]. For instance, the decision on whether a diabetic patient who
also has a renal disease should receive dialysis or a renal transplant must be based on a joint prog-
nosis of diabetes-related complications and end-stage renal failure; overlooking the diabetes-related
risks may lead to misguided therapeutic decisions [1]. The same problem arises in nephrology,
where a typical patient’s competing risks are peritonitis, death, kidney transplantation and transfer
to haemodialysis [2]. An even more common encounter with competing risks realizes in oncology
and cardiovascular medicine, where the risk of a cardiac disease may alter the decision on whether a
cancer patient should undergo chemotherapy or a particular type of surgery [3]. Since conventional
methods for survival analysis, such as the Kaplan-Meier method and standard Cox proportional haz-
ards regression, are not equipped to handle competing risks, alternate variants of those methods that
rely on cumulative incidence estimators have been proposed and used in clinical research [1-7].

According to the most recent data brief by the Office of National Coordinator (ONC)1, electronic
health records (EHRs) are currently deployed in more than 75% of hospitals in the United States
[8]. The increasing availability of data in EHRs has stimulated a great deal of research efforts
that used machine learning to conduct clinical risk prognosis and survival analysis. In particular,

1https://www.healthit.gov/sites/default/files/briefs/

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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various recent works have proposed novel methods for survival analysis based on Gaussian
processes [9], "temporal" logistic regression [10], ranking [11], and deep neural networks [12].
All these works have were restricted to the conventional survival analysis problem in which
there is only one event of interest rather than a set of competing risks. (A detailed overview of
previous works is provided in Section 3.) The usage of machine learning to construct data-driven
survival models for patients with comorbidities is an important step towards precision medicine [13].

Contribution In the light of the discussion above, we develop a nonparametric Bayesian model for
survival analysis with competing risks using deep (multi-task) Gaussian processes (DMGPs) [15].
Our model relies on a novel conception of the competing risks problem as a multi-task learning prob-
lem; that is, we model the cause-specific survival times as the outputs of a random vector-valued
function [14], the inputs to which are the patients’ covariates. This allows us to learn a "shared
representation" of the patients’ survival times with respect to multiple related comorbidities. The
proposed model is Bayesian: we assign a prior distribution over a space of vector-valued functions of
the patients’ covariates [16], and update the posterior distribution given a (potentially right-censored)
time-to-event dataset. This process gives rise to patient-specific multivariate survival distributions,
from which a patient-specific, cause-specific cumulative incidence function can be easily derived.
Such a patient-specific cumulative incidence function serves as actionable information, based upon
which clinicians can design personalized treatment plans. Unlike many existing parametric survival
models, our model neither assumes a parametric form for the interactions between the covariates and
the survival times, nor does it restrict the distribution of the survival times to a parametric model.
Thus, it can flexibly describe non-proportional hazard rates with complex interactions between co-
variates and survival times, which are common in many diseases with heterogeneous phenotypes
(such as cardiovascular diseases [2]). Inference of patient-specific posterior survival distribution is
conducted via a variational Bayes algorithm; we use inducing variables to derive a variational lower
bound on the marginal likelihood of the observed time-to-event data [17], which we maximize using
the adaptive moment estimation algorithm [18]. We conduct a set of experiments on synthetic and
real data showing that our model outperforms state-of-the-art survival models.

2 Preliminaries

We consider a dataset D comprising survival (time-to-event) data for n subjects who have been
followed up for a finite amount of time. LetD = {Xi, Ti, ki}ni=1, where Xi ∈ X is a d-dimensional
vector of covariates associated with subject i, Ti ∈ R+ is the time until an event occurred, and
ki ∈ K is the type of event that occurred. The set K = {∅, 1, . . .,K} is a finite set of K mutually
exclusive, competing events that could occur to subject i, where ∅ corresponds to right-censoring.

For simplicity of exposition, we assume
that only one event occurs for every pa-
tient; this corresponds, for instance, to
the case when the events in K corre-
spond to deaths due to different causes.
This assumption does not simplify the
problem, in fact it implies the noniden-
tifiability of the event times’ distribu-
tion parameters [6, 7], which makes the
problem more challenging. Figure 1 de-
picts a time-to-event dataset D with pa-
tients dying due to either cancer or car-
diovascular diseases, or have their end-
points censored. Throughout this paper,
we assume independent censoring [1-7],
i.e. censoring times are independent of
clinical outcomes.
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Figure 1: Depiction for the time-to-event data.

Define a multivariate random variable T = (T 1, . . ., TK), where T k, k ∈ K, denotes the net sur-
vival time with respect to event k, i.e. the survival time of the subject given that only event k can
occur. We assume that T is drawn from a conditional density function that depends on the sub-
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ject’s covariates. For every subject i, we only observe the occurrence time for the earliest event, i.e.
Ti = min(T 1

i , . . ., T
K
i ) and ki = argminj T

j
i .

The cause-specific hazard function λk(t,X) represents the instantaneous risk of event k, and is
formally defined as λk(t,X) = limdt→0

1
dtP(t ≤ T k < t + dt, k |T k ≥ t,X) [6]. By the law of

total probability, the overall hazard function is given by λ(t,X) =
∑

k∈K λk(t,X). This leads to
the notion of a survival function S(t,X) = exp(

∫ t

0
λ(u,X)du), which captures the probability of

a subject surviving all types of risk events up to time t. The Cumulative Incidence Function (CIF),
also known as the subdistribution function [2-7], is the probability of occurrence of a particular
event in k ∈ K by time t, and is given by Fk(t,X) =

∫ t

0
λk(u,X)S(u,X)du. Our main goal is to

estimate the CIF function using the dataset D; through these estimates, treatment plans can be set
up for patients who suffer from comorbidities or are at risk of different types of diseases.

3 Survival Analysis using Deep Multi-task Gaussian Processes

We conduct patient-specific survival analysis by directly modeling the event times T as a function
of the patients’ covariates through the generative probabilistic model described hereunder.

Deep Multi-task Gaussian Processes (DMGPs) We assume that the net survival times for a pa-
tient with covariates X are generated via a (nonparametric) multi-output random function g(.),
i.e. T = g(X), and we use Gaussian processes to model g(.). A simple model of the form
g(X) = f(X) + ϵ, with f(.) being a Gaussian process and ϵ a Gaussian noise, would constrain
T to have a symmetric Gaussian distribution with a restricted parametric form conditional on X
[Sec. 2, 19]. This may not be a realistic construct for many settings in which the survival times
display an asymmetric distribution (e.g. cancer survival times [2]). To that end, we model g(.) as
a Deep multi-task Gaussian Process (DMGP) [15]; a multi-layer cascade of vector-valued Gaussian
processes that confer a greater representational power and produce outputs that are generally non-
Gaussian. In particular, we assume that the net survival times T are generated via a DMGP with
two layers as follows

T = fT (Z) + ϵT , ϵT ∼ N (0, σ2
T I),

Z = fZ(X) + ϵZ , ϵZ ∼ N (0, σ2
Z I), (1)

where σT and σZ are the noise variances at the two layers, fT (.) and fZ(.) are two Gaussian pro-
cesses with hyperparameters ΘT and ΘZ respectively, and Z is a hidden variable that the first layer
passes to the second. Based on (1), we have that g(X) = fT (fZ(X) + ϵZ) + ϵT . The model in (1)
resembles a neural network with two layers and an infinite number of hidden nodes in each layer,
but with an output that can be described probabilistically in terms of a distribution. We assume that
fT (.) has K outputs, whereas fZ(.) has Q outputs. The use of a Gaussian processes with two layers
allows us to jointly represent complex survival distributions and complex interactions with the co-
variates in a data-driven fashion, without the need to assume a predefined non-linear transformation
on the output space as it is the case in warped Gaussian processes [19-20].

A dataset D comprising n
i.i.d instances can be sampled
from our model as follows:

fZ ∼ GP(0,KΘZ ),

fT ∼ GP(0,KΘT
),

Zi ∼ N (fZ(Xi), σ
2
Z I),

Ti ∼ N (fT (Zi), σ
2
T I),

Ti = min(T 1
i , . . ., T

K
i ),

i ∈ {1, . . ., n}, where KΘ

is the Gaussian process kernel
with hyperparameters Θ.

... TfZ fT

Covariates Survival time

(Leaf node)(Parent node)

First Layer Second Layer

X Z

ΘTΘZ Competing
events
times

T

T 1
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Figure 2: Graphical depiction for the probabilistic model.

Figure 2 provides a graphical depiction for our model (observable variables are in double-circled
nodes); patient’s covariates are the parent node; the survival time is the leaf node.
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Survival Analysis as a Multi-task Learning Problem As can be seen in (1), the cause-specific net
survival times are viewed as the outputs of a vector-valued function g(.). This casts the competing
risks problem in a multi-task learning framework that allows finding a shared representation for the
subjects’ survival behavior with respect to multiple correlated comorbidities, such as renal failure,
diabetes and cardiac diseases [1-3]. Such a shared representation is captured via the kernel functions
for the two DMGP layers (i.e. KΘZ and KΘT ). For both layers, we assume that the kernels follow
an intrinsic coregionalization model [14, 16], i.e.

KΘZ (x, x
′) = AZ kZ(x, x

′), KΘT (x, x
′) = AT kT (x, x

′), (2)

where AZ ∈ RQ×Q
+ ,AT ∈ RK×K

+ are positive semi-definite matrices, kZ(x, x
′) and

kT (x, x
′) are radial basis functions with automatic relevance determination, i.e. kZ(x, x

′) =
exp

(
− 1

2 (x− x′)T R−1
Z (x− x′)

)
, RZ = diag(ℓ21,Z , ℓ

2
2,Z , . . . , ℓ

2
d,Z), with ℓj,Z being the length

scale parameter of the jth feature (kT (x, x′) can be defined similarly). Note that unlike regular
Gaussian processes, DMGPs are less sensitive to the selection of the parametric form of the ker-
nel functions [15]. This because the output of the first layer undergoes a transformation through a
learned nonparametric function fZ(.), and hence the "overall smoothness" of the function g(X) is
governed by an "equivalent data-driven kernel" function describing the transformation fT (fZ(.)).

Our model adopts a Bayesian approach to multi-task learning: it posits a prior distribution on the
multi-output function g(X), and then conducts the survival analysis by updating the posterior distri-
bution of the event times P(g(X) | D,ΘZ ,ΘT ) given the evidential data in the time-to-event dataset
D. The distribution P(g(X) | D,ΘZ ,ΘT ) does not commit to any predefined parametric form since
it is depends on a random variable transformation through a nonparametric function g(.). In Section
4, we propose an inference algorithm for computing the posterior distribution P(T | D,X∗,ΘZ ,ΘT )
for a given out-of-sample subject with covariates X∗. Once P(T |X∗,D) is computed, we can di-
rectly derive the CIF function Fk(t,X

∗) for all events k ∈ K as explained in Section 2. A pictorial
visualization of the survival analysis procedure assuming 2 competing risks is provided in Fig. 3.

Figure 3: Pictorial depiction for survival analysis with 2 competing risks using deep multi-task Gaussian
processes. The posterior distribution of T given D is displayed in the top left panel, and the corresponding
cumulative incidence functions for a particular patient with covariates X∗ is displayed in the bottom left panel.
The posterior distributions on the two DMGP layers conditional on their inputs are depicted on the right panels.

Related Works Standard survival modeling in the statistical and medical research literature is
largely based on either the nonparametric Kaplan-Meier estimator [21], or the (parametric) Cox
proportional hazard model [22]. The former is capable of learning flexible –and potentially non-
proportional– survival curves but fails to incorporate patients’ covariates, whereas the latter is capa-
ble of incorporating covariates, but is restricted to rigid parametric assumptions that impose propor-
tional hazard curves. These limitations seems to have been inherited by various recently developed
Bayesian nonparametric survival models. For instance, [24] develops a Bayesian survival model
based on a Dirichlet prior, and [23] develops a model based on Gaussian latent fields, and proposes
an inference algorithm that utilizes nested Laplace approximations; however, neither model incorpo-
rates the individual patient’s covariates, and hence both are restricted to estimating a population-level
survival curves which cannot inform personalized treatment plans. Contrarily, our model does not
suffer from any such limitations since it learns patient-specific, nonparametric survival curves by
adopting a Bayesian prior over a function space that takes the patients’ covariates as an input.
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A lot of interest has been recently devoted to the problem of survival analysis by the machine learn-
ing community. Recently developed survival models include random survival forests [26], deep
exponential families [12], dependent logistic regressors [10], ranking algorithms [11], and semi-
parametric Bayesian models based on Gaussian processes [9]. All of these methods are capable of
incorporating the individual patient’s covariates, but none of them has considered the problem of
competing risks. The problem of survival analysis with competing risks has been only addressed
through two classical parametric models: (1) the Fine-Gray model, which modifies the traditional
proportional hazard model by direct transformation of the CIF [4], and (2) the threshold regression
(multi-state) models, which directly model net survival times as the first hitting times of a stochastic
process (e.g. Weiner process) [25]. Unlike our model, both models are limited by strong parametric
assumptions on both the hazard rates, and the nature of the interactions between the patient covari-
ates and the survival curves. These limitations have been slightly alleviated in [19], which uses a
Gaussian process to model the interactions between survival times and covariates. However, this
model assumes a Gaussian distribution as a basis for an accelerated failure time model, which is
both unrealistic (since the distribution of survival times is often asymmetric), and also hinders the
nonparametric modeling of survival curves. The model in [19] can be ameliorated via a warped
Gaussian process that first transforms the survival times through a deterministic, monotonic non-
linear function, and then applies Gaussian process regression on the transformed survival times [20],
which would lead to more degrees of freedom in modeling the survival curves. Our model can be
thought of as a generalization of a warped Gaussian process in which the deterministic non-linear
transformation is replaced with another data-driven Gaussian process, which enables flexible non-
parametric modeling of the survival curves. In Section 5, we demonstrate the superiority of our
model via experiments on synthetic and real datasets.

4 Inference

As discussed in Section 3, conducting survival analysis requires computing the posterior probabil-
ity density dP(T∗ | D,X∗,ΘZ ,ΘT ) for a given out-of-sample point X∗ with T∗ = g(X∗). We
follow an empirical Bayes approach for updating the posterior on g(.). That is, we first tune the
hyperparameters ΘZ and ΘT using the offline dataset D, and then for any out-of-sample patient
with covariates X∗, we evaluate dP(T∗ | D,X∗,ΘZ ,ΘT ) by direct Monte Carlo sampling.

We calibrate the hyperparameters by maximizing the marginal likelihood dP(D |ΘZ ,ΘT ). Note
that for every subject i in D, we observe a "label" of the form (Ti, ki), indicating the type of event
that occurred to the subject along with the time of its occurrence. Since Ti is the smallest element in
T, then the label (Ti, ki) is informative of all the events (i.e. all the learning tasks) in K/{ki}; we
know that T j

i ≥ Ti,∀j ∈ K/{ki}. We also note that the subject’s data may be right-censored, i.e.
ki = ∅, which implies that T j

i ≥ Ti, ∀j ∈ K. Hence, the likelihood of the survival information in D
is

dP({Xi, Ti, ki}ni=1 |ΘZ ,ΘT ) ∝ dP({Ti}ni=1 | {Xi}ni=1,ΘZ ,ΘT ),
where Ti is a set of events given by

Ti =
{
{T ki

i = Ti, {T j
i ≥ Ti}j∈K/{ki}}, ki ̸= ∅,

{T j
i ≥ Ti}j∈K, ki = ∅.

(3)

We can write the marginal likelihood in (3) as the conditional density by marginalizing over the
conditional distribution of the hidden variable Zi as follows

dP({Ti}ni=1 | {Xi}ni=1,ΘZ ,ΘT ) =

∫
dP({Ti}ni=1 | {Zi}ni=1,ΘT ) dP({Zi}ni=1 | {Xi}ni=1,ΘZ).

(4)
Since the integral in (4) is intractable, we follow the variational inference scheme proposed in [15],
where we tune the hyperparameters by maximizing the following variational bound on (4):

F =

∫
Z,fz,fT

Q · log
(
dP({Ti}ni=1, {Zi}ni=1, {fz(Xi)}ni=1, {fT (Zi)}ni=1 | {Xi}ni=1,ΘZ ,ΘT )

Q

)
,

where Q is a variational distribution, and F ≤ log (dP({Ti}ni=1 | {Xi}ni=1,ΘZ ,ΘT )). Since the
event Ti happens with a probability that can be written in terms of a Gaussian density condi-
tional on fZ and fT , we can obtain a tractable version of the variational bound F by introduc-
ing a set of M pseudo-inputs to the two layers of the DMGP, with corresponding function val-
ues UZ and UT at the first and second layers [15, 17], and setting the variational distribution to
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Q = P(fT (Zi) |UT ,Zi) q(U
T ) q(Zi)P(fZ(Xi) |UZ ,Xi) q(U

Z), where q(Zi) is a Gaussian dis-
tribution, whereas q(UT ) and q(UZ) are free-form variational distributions. Given these settings,
the variational lower bound can be written as [Eq. 13, 15]

F = E
[
log(dP({Ti}ni=1 | {fT (Zi)}ni=1)) +

log(dP(UT ))

q(UT )

]
+ E

[
log(dP({Zi}ni=1 | {fZ(Xi)}ni=1)) +

log(dP(UZ))

q(UZ)

]
, (5)

where the first expectation is taken with respect to P(fT (Zi) |UT ,Zi) q(U
T ) q(Zi) whereas the

second is taken with respect to P(fZ(Xi) |UZ ,Xi) q(U
Z). Since all the densities involved in (5) are

Gaussian, F is tractable and can be written in closed-form. We use the adaptive moment estimation
(ADAM) algorithm to optimize F with respect to ΘT and ΘZ [18].

5 Experiments

In this Section, we validate our model by conducting a set of experiments on both a synthetic survival
model, and a real-world time-to-event dataset. In all experiments, we use the cause-specific concor-
dance index (C-index), recently proposed in [27], as a performance metric. The cause-specific
C-index quantifies the goodness of a model in ranking the subjects’ survival times with respect to
a particular cause/event based on their covariates: a higher C-index indicates a better performance.
Formally, we define the (time-dependent) C-index for a cause k ∈ K as follows [Sec. 2.3, 27]

Ck(t) := P(Fk(t,Xi) > Fk(t,Xj) | {ki = k} ∧ {Ti ≤ t} ∧ {Ti < Tj ∨ kj ̸= k}), (6)

where we have used the CIF Fk(t,X) as a natural choice for the prognostic score in [Eq. (2.3),
27]. The C-index defined in (6) corresponds to the probability that, for a time horizon t, a particular
survival analysis method prompts an assignment of CIF functions for subjects i and j that satisfy
Fk(t,Xi) > Fk(t,Xj), given that ki = k, Ti < Tj , and that subject i was not right-censored
by time t. A high C-index for cause k is achieved if the cause-specific CIF functions for a group
of subjects who encounter event k are likely to be "ordered" in accordance with the ordering of
their realized survival times. In all experiments, we estimate the C-index for the survival analysis
methods under consideration using the function cindex of the R-package pec2 [Sec. 3, 27].

We run the algorithm in Section 4 with Q = 3 outputs for the first layer of the DMGP, and we use
the default settings prescribed in [18] for the ADAM algorithm. We compare our model with four
benchmarks: the Fine-Gray proportional subdistribution hazards model (FG) [4, 28], the acceler-
ated failure time model using multi-task Gaussian processes (MGP) [19], the cause-specific Cox
proportional hazards model (Cox) [27, 28], and the threshold-regression (multi-state) first-time hit-
ting model with a multidimensional Wiener process (THR) [25]. The MGP benchmark is a special
case of our model with 1 layer and a deterministic linear transformation of the survival times to
Gaussian process outputs [Sec. 3, 19]. We run the FG and Cox benchmarks using the R libraries
cmprsk and survival, whereas for the THR benchmark, we use the R-package threg3.

5.1 Synthetic Data

The goal of this Section is to
demonstrate the ability of our
model to cope with highly het-
erogeneous patient cohorts;
we demonstrate this by run-
ning experiments on two syn-
thetic models with different
types of interactions between
survival times and covariates.

Model A Model B
Xi ∼ N (0, I), Xi ∼ N (0, I),

T 1
i ∼ exp(γT

1 Xi), T 1
i ∼ exp(cosh(γT

1 Xi)),
T 2
i ∼ exp(γT

2 Xi), T 2
i ∼ exp(|N (0, 1) + sinh(γT

2 Xi)|),
Ti = min{T 1

i , T
2
i }, Ti = min{T 1

i , T
2
i },

ki = argmink∈{1,2} T
k
i , ki = argmink∈{1,2} T

k
i ,

i ∈ {1, . . ., n}. i ∈ {1, . . ., n}.

In particular, we run experiments using the synthetic survival models A and B described above;
the two models correspond to two patient cohorts that differ in terms of patients’ heterogeneity. In

2https://cran.r-project.org/web/packages/pec/index.html
3https://cran.r-project.org/web/packages/threg/index.html
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model A, we assume that survival times are exponentially distributed with a mean parameter that
comprises a simple linear function of the covariates, whereas in model B, we assume that the survival
distributions are not necessarily exponential, and that their parameters depend on the covariates in
a nonlinear fashion through the sinh and cosh functions. Both models have two competing risks,
i.e. K = {∅, 1, 2}, and for both models we assume that each patient has d = 10 covariates that are
drawn from a standard normal distribution. The parameters γ1 and γ2 are 10-dimensional vectors,
the elements of which are drawn independently from a uniform distribution. Given a draw of γ1
and γ2, a dataset D with n subjects can be sampled using the models described above. We run
10,000 repeated experiments using each model, where in each experiment we draw a new γ1, γ2,
and a dataset D with 1000 subjects; we divide D into 500 subjects for training and 500 subjects
for out-of-sample testing. We compute the CIF function for the testing subjects via the different
benchmarks, and based on those functions we evaluate the cause-specific C-index for time horizons
[1, 2.5, 7.5, 10]. We average the C-indexes achieved by each benchmark over the 1000 experiments
and report the mean value and the 95% confidence interval at each time horizon. In all experiments,
we induce right-censoring on 100 subjects which we randomly pick from D; for a subject i, right-
censoring is induced by altering her survival time as follows: Ti ← uniform(0, Ti).
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Figure 4: Results for model A.
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Figure 5: Results for model B.
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Figure 6: Results for model B.

Fig. 4, 5, and 6 depict the cause-specific C-indexes for all the survival methods under consideration
when applied to the data generated by models A and B (error bars correspond to the 95% confidence
intervals). As we can see, the DMGP model outperforms all other benchmarks for survival data
generated by both models. For model A, we only depict C1(t) in Fig. 4 since the results on C2(t)
are almost identical due to the symmetry of model A with respect to the two competing risks. Fig. 4
shows that, for all time horizons, the DMGP model already confers a gain in the C-index even when
the data is generated by model A, which displays simple linear interactions between the covariates
and the parameters of the survival time distribution. Fig. 5 and 6 show that the performance gains
achieved by the DMGP are even larger under model B (for both C1(t) and C2(t)). This is because
model B displays a highly nonlinear relationship between covariates and survival times, and in
addition, it assumes a complicated form for the distributions of the survival times, all of which
are features that can be captured well by a DMGP but not by the other benchmarks which posit
strict parametric assumptions. The superiority of DMGPs to MGPs shows the value of the extra
representational power attained by adding multiple layers to conventional MGPs.

5.2 Real Data

More than 30 million patients in the U.S. are diagnosed with either cardiovascular disease (CVD) or
cancer [1, 2, 29]. Mounting evidence suggests that CVD and cancer share a number of risk factors,
and possess various biological similarities and (possible) interactions; in addition, many of the exist-
ing cancer therapies increase a patient’s risk for CVD [2, 29]. Therefore, it is important that patients
who are at risk of both cancer and CVD be provided with a joint prognosis of mortality due to the
two competing diseases in order to properly manage therapeutic interventions. This is a challenging
problem since CVD patient cohorts are very heterogeneous; CVD exhibits complex phenotypes for
which mortality rates can vary as much as 10-fold among patients in the same phenotype [1, 2]. The
goal of this Section is to investigate the ability of our model to accurately model survival of patients
in such a highly heterogeneous cohort, with CVD and cancer as competing risks.

We conducted experiments on a real-world patient cohort extracted from a publicly accessible dataset
provided by the Surveillance, Epidemiology, and End Results Program 4 (SEER). The extracted
cohort contains data on survival of breast cancer patients over the years from 1992-2007. The
total number of subjects in the cohort is 61,050, with a follow-up period restricted to 10 years.

4https://seer.cancer.gov/causespecific/
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The mortality rate of the subjects within the 10-year follow-up period is 25.56%. We divided the
mortality causes into: (1) death due to breast cancer (13.64%), (2) death due to CVD (4.62%), and
(3) death due to other causes (7.3%), i.e. K = {∅, 1, 2, 3}. Every subject is associated with 20
covariates including: age, race, gender, morphology information (Lymphoma subtype, histological
type, etc), diagnostic confirmation, therapy information (surgery, type of surgery, etc), tumor size
and type, etc. We divide the dataset into training and testing sets, and report the C-index results
obtained for all benchmarks via 10-fold cross-validation.
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Figure 7: Boxplot for the cause-specific C-indexes of various methods. The x-axis contains the methods’
names, and with each method, 3 boxplots corresponding to the C-indexes for the different causes are provided.

Fig. 7 depicts boxplots for the 10-year survival C-indexes (i.e. C1(10), C2(10) and C3(10)) of
all benchmarks for the 3 competing risks. With respect to predicting survival times due to "other
causes", the gain provided by DMGPs is marginal. We believe that this due to the absence of
the covariates that are predictive of mortality due to causes other than breast cancer and CVD in
the SEER dataset. The median C-index of our model is larger than all other benchmarks for all
causes. In terms of the median C-index, our model provides a significant improvement in predicting
breast cancer survival times while maintaining a decent gain in the accuracy of predicting survival
times of CVD as well. This implies that DMGPs, by virtue of our nonparametric multi-task learning
formulation, are capable of accurately (and flexibly) capturing the "shared representation" of the two
"correlated" risks of breast cancer and CVD as a function of their shared risk factors (hypertension,
obesity, diabetes mellitus, age, etc). As expected, since CVD is a phenotype-rich disease, predictions
of breast cancer survival are more accurate than those for CVD for all benchmarks.

The competing multi-task modeling benchmark, MGP, is inferior to our model as it restricts the
survival times to an exponential-like parametric distribution (See [Eq. 13, 19]). Contrarily, our
model allows for a nonparametric model of the survival curves, which appears to be crucial for
modeling breast cancer survival. This is evident in the boxplots of the cause-specific Cox benchmark,
which is the only benchmark that performs better on CVD than breast cancer. Since the Cox model
is restricted to a proportional hazard model with parametric, non-crossing survival curves, its poor
performance on predicting breast cancer survival suggests that breast cancer patients have crossing
survival curves, which signals the need for a nonparametric survival model [9]. This explains the
gain achieved by DMGPs as compared to MGPs (and all other benchmarks), which posit strong
parametric assumptions on the patients’ survival curves.

6 Discussion

The problem of survival analysis with competing risks has recently gained significant attention in
the medical community due to the realization that many chronic diseases possess a shared biology.
We have proposed a survival model for competing risks that hinges on a novel multi-task learning
conception of cause-specific survival analysis. Our model is liberated from the traditional parametric
restrictions imposed by previous models; it allows for nonparametric learning of patient-specific
survival curves and their interactions with the patients’ covariates. This is achieved by modeling the
patients’ cause-specific survival times as a function of the patients’ covariates using deep multi-task
Gaussian processes. Through the personalized actionable prognoses offered by our model, clinicians
can design personalized treatment plans that (hopefully) save thousands of lives annually.
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