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OBJECTIVES
What is the optimal policy for Active sequential
hypothesis testing with an unknown deadline?

• Active: observations are costly

• Sequential: observable data is a time series

• Deadline: opportunities to observe may
end at an unknown, random time!

Many applications: Optimal policies for medi-
cal screening and diagnosis, cognitive alternative
choice tasks, financial investment policies!
Our focus: theoretical analysis for the structure
of the optimal policy.
Our framework: Bayesian sequential analysis.

RELATED WORK
• Sequential hypothesis testing (Wald 1947,

Shiryaev 1973)

• Quickest detection (Veeravalli 2001)

• Optimal experimentation (Smith 2001)

• Two-alternative forced choice (2AFC) task
(Frazier & Yu 2006)

• Adaptive sensing (Candes 2013)

Our model: Decide WHEN to sense a process,
WHEN to stop sensing and WHICH hypothesis
to accept under a deadline pressure.

MODEL
• Time series: an Observable stationary Markov process X(t). [Accessible via costly discrete samples]
• Hypotheses: X(t) is generated via the Markov kernel Pθ, θ ∈ {0, 1} is latent. [Binary hypothesis θ]
• Stopping time: If θ = 1, the process X(t) is stopped at an F-stopping time τ with a Markovian
stopping rule. If θ = 0, the process never stops. [Hypothesis θ = 1 models an adverse event]
• A decision-making policy π: a stopping time Tπ , a decision (estimate of θ) θ̂π , and a partitioning PπTπ
of Xτ (t), with a loss function:

` (π; Θ) , (C1 1{θ̂π=0,θ=1}︸ ︷︷ ︸
Type I error

+Co 1{θ̂π=1,θ=0}︸ ︷︷ ︸
Type II error

+Cd Tπ︸ ︷︷ ︸
Delay

)1{Tπ≤τ} + Cr 1{Tπ>τ}︸ ︷︷ ︸
Deadline missed

+CsN(PπTπ∧τ )︸ ︷︷ ︸
Information

• Risk of a policy π: R(π) , E [` (π; Θ)] , the optimal policy is π∗ = arg infπ∈ΠR(π).

•Optimal policy π∗ is computed via the Bellman
optimality condition.
• The decision-maker has two sources of infor-
mation that govern her beliefs at time t:
B Information conveyed in the realization X(Pt).
B Information conveyed in the process survival
up to time t.
• The decision-maker decides either to stop ob-
servations and declare a hypothesis θ̂, or con-
tinue observations and acquire a new sample at
a specific future date t+ δt.
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Figure 1: Exemplary sample path for X(t) and π.

POSTERIOR BELIEFS

• The posterior belief µt = P(Θ = 1| F̃t) is given
by

µt =

{
1, for t ≥ τ(

1 + 1−p
p

dP̃o(Pπt )

dP̃1(Pπt )

)−1

, for 0 ≤ t < τ

where dP̃o(Pπt )

dP̃1(Pπt )
depends on the likelihood ratio

P(X(Pπt )|θ = 1)

P(X(Pπt )|θ = 0)
,

and the posterior survival probability

P(τ > t|σ(X(Pπt ), θ = 1).

• The process survival biases the belief process
to the hypothesis θ = 0: for every policy π ∈ Π,
we have that

E[µt+∆t|Ft] ≤ µt, ∀∆t ∈ R+,

i.e. the belief process is a supermartingale.

CONCLUSIONS
We characterize the optimal policy (continuation, sampling and stopping conditions) for active sequen-
tial hypothesis testing with an uncertain deadline.
The optimal policy chooses sampling times to balance information gain (surprise) and survival proba-
bility (suspense).

STRUCTURE OF THE OPTIMAL POLICY
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The optimal policy π∗ generates a sequence of
actions (θ̂π

∗

t , δπ
∗

t ), with the following properties:

• (Sufficient statistics)
B The process (t, µt, X̄(Pπ

∗

t ))t∈R+
is a

Markov sufficient statistic for π∗, where
X̄(Pπ

∗

t ) is the most recent sample in Pπ
∗

t .

• (Continuation and stopping)
B The policy π∗ recommends continuation as
long as the belief µt is in a time and context-
dependent continuation set C(t, X̄(Pπ

∗

t )),

where C(t′ , X) ⊂ C(t,X),∀t′ > t.

• (Suspense and surprise)
B Whenever µt ∈ C(t, X̄(Pπ

∗

t )), the time
for acquiring a new sample δπ

∗

t is set as
follows δπ

∗

t = arg infδ∈R+E[f(It(δ), St(δ))],
where f(It(δ), St(δ)) is decreasing in It(δ)
and St(δ).

• (Decisions)
B The stopping time is given by Tπ∗ =
inf{t ∈ R+ : µt /∈ C(t, X̄(Pπ

∗

t ))}, and the cor-
responding decision is θ̂π∗ = 1{

µt≥ C1
Co+C1

}.

SUSPENSE & SURPRISE
• The belief process µt governs the decision-
maker’s actions
• The decision-maker’s actions shape her beliefs:
information in σ(X(Pπt )) depends on Pπt .
• Trade-off: Less intense sampling reduces the
cost but bears the risk of not declaring θ̂ before
the stopping time τ .
• Key quantities:
B Information gain (surprise):

It(∆t) = (µt+∆t − µt) |Ft

The amount of drift in the decision-maker’s belief
at time t + ∆t with respect to her belief at time t,
given the information available up to time t.
B Survival (suspense):

St(∆t) = P(τ > t+ ∆t|Ft, θ = 1)

The probability that a process generated with θ =
1 survives up to time t+∆t given the information
observed up to time t.


