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PROBLEM AND OBJECTIVES
• In the US, every year:
B 200,000 hospitalized patients experience car-
diopulmonary arrests.
B 75% of those patients die.
B 50% of those patients could have been saved
by early transfer to ICU (Hershey 1982).

• Our goal:
B Develop an algorithm for estimating a patient’s
clinical state using the offline EHR data to allow
for timely ICU admission.

OUR ALGORITHM
• Our clinical state algorithm has the following
features:
B [Non-parametric]: number of clinical states is
learned from the EHR data.
B [Bias-immune]: the bias created by therapeutic
intervention censoring is removed.
B [Confidence guarantees].
• Three steps for learning:
1- Physiological model learning.
2- Model refinement.
3- Domain knowledge incorporation.

THE PHYSIOLOGICAL MODEL

• Latent variable model: clinical states {zt}t∈N+

are hidden and manifest through lab tests and vi-
tal signs {yt}t∈N+ .
Model for time series data→ HMM
Non-parametric inference→ HDP prior.
• Sticky HDP-HMM with Gaussian emissions:
B Conditional on the clinical states, the physiolog-
ical variables are Gaussian.

yt|zt ∼ N (µ(zt),Σ(zt)).

B To control the rate of self-transitions, we use a
sticky HDP with a stick-breaking construction as
a prior for the transition probabilities πk.
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MODEL REFINEMENT
The learned model is validated in 3 steps:
• Goodness-of-fit:
B Test the validity of the Gaussian distribution
using an improved Bonferroni method.
• Sample complexity:
B Check that the sample size in each segment
is sufficient using a multidimensional empirical
Bernstein bound.
• Check state distinctness:
Use a permutation test to ensure that the discov-
ered clinical state are distinct (have different µ
and Σ).
If the learned model fails the above tests, hyper-
parameters are re-adjusted.

MODEL LEARNING
• Non-parametric Bayesian Inference:
B Compute the posterior probability on the
model parameters (π, µ,Σ) given an offline EHR
dataset D.
B Prior on the transition parameters

β ∼ Dir(γ/L, . . ., γ/L)

πk ∼ Dir(αβ1, . . ., αβk + κ, . . ., αβk)

B Conjugate priors on the Gaussian emissions:
Normal-Inverse-Wishart distribution. (Normal-
inverse-gamma distribution is 1-D equivalent.)
B Output of this phase: a segmentation of the
physiological streams and parameter estimates.

REAL-WORLD CLINICAL STATE ESTIMATION

• We applied our algorithm to a heteroge-
neous cohort of 6,094 patients: admissions to
Ronald Reagan UCLA medical center (March
2013-February 2016).

• Our model anticipates clinical deterioration
many hours before clinicians. The model outper-
forms the Rothman index (currently deployed in
more than 70 US hospitals).

Method Our Algorithm Rothman MEWS Logistic Reg. RF SVM

TPR/PPV (%) 71.9/37.4 53.9/34.5 28.1/26.3 55.7/30.7 44.5/31.1 32.2/29.9

• Clinical impact: many cardiac arrests prevented!

CLINICIAN DOMAIN KNOWLEDGE INCORPORATION
To assess the patients’ clinical states, attach clinical interpretation to the learned states:
B Clinicians provide labels in the EHR dataset by marking specific segments of the physiological
streams with clinical assessments/conditions. We use the Bhattacharyya distance to associate the
discovered states with the “domain-knowledge-based” states labeled by clinicians.

This removes the bias in the learned parameters created by censoring due to interventions.
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