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MOTIVATION AND GOAL
Motivation
• Screening helps timely diagnosis (e.g., cancers)
• For every 1000 mammograms, 500 false posi-
tives, and 200 unnecessary biopsy
• Clinical guidelines are not personalized!

• Yearly after the age between 45-54 in USA,
Biennial after the age of 40 in Canada, Japan

•Disease models are complex, MISCAN-COLON
• Screening works use simplistic disease models

Goal
• Develop a general framework for screening
• Personalized to patient feature and history
• Applicable to many diseases

RELATED WORKS
Screening in Operations Research and Statistics
• Partially Observable Markov Decision Process
POMDP (Ayer et.al.)
• Bayesian Optimal Design (Rizopoulos et.al.)
• Pros: Principled search for optimal policies
• Cons: Markov/Semi-Markov, Stationary

Screening in Medical Literature
• Stochastic simulation based (Frazie et.al. )
• Pros: No assumptions on disease models
• Cons: Not personalized, Compare a fixed

set of policies chosen by experts
This work No assumptions on disease models!
Principled search for optimal policies!

MODEL AND PROBLEM FORMULATION

• Disease model: Finite state stochastic process, one absorbing disease state, ~S is path of the stochastic
process, Pr(~S = ~s|x) is probability of the path, x ∈ X feature vector (age, gender, etc.), states are hidden
• Diagnostic test: Z(t): test outcome at time t, Pr(Z(t) = z|~s(t),x): probability of test outcome
• External information: Y (t): observation by the patient, Pr(Y (t) = y|~s(t),x): probability of the obser-
vation, if Y (t) ∈ Y patient goes to the clinician
• Screening policy: π : H×X → {1, ., T}: map from observation history, features to next arrival time
• Costs: Cost of screening : 1 (normalized),
Cost of delay in detection: C(td − tD; tD), tD/td is the time of incidence/detection
• Optimal screening policy: Minimizer of the weighted sum of the aggregate discounted screening
costs and the delay costs, with weight w, discount factor δ, and the set of arrival times Ts

π∗ = arg min

Screening costs︷ ︸︸ ︷
(1− w)E

[∑
t∈Ts

δt
]

+

Delay costs︷ ︸︸ ︷
wE
[
C(td − tD; tD)

]
(1)

• Challenges: Standard POMDP and POSMDP cannot be used

• Disease model is not Markov/Semi-Markov
• Time between decision epochs depends on scheduled date, external information and the state path

CONCLUSION

• Developed a general framework for screening
• Extended PBVI to address the challenges im-
posed by screening

• Gains > 30% on breast cancer screening dataset
• Potential impact beyond screening in stopping
time problems

ILLUSTRATIVE EXPERIMENTS
• Dataset: Deidentified breast cancer dataset of 45,000 women. At least one mammogram/woman.
• Features: Number of family members with breast cancer history, age, bmi, menopause
• Disease model: Pre-incidence. Two state Markov model for the onset of breast cancer.
Post-incidence. Universal tumor growth law. Tumor growth =⇒ lumps develop =⇒ self-arrivals
•Model Estimation: Parameters of the disease model estimated using standard MCMC methods.
•Benchmarks: Annual and Biennial screening
•Metrics: E[∆|R], E[∆|R,D] E[N |R]: Expected delay (months) given risk, Expected delay given risk
and disease, expected number of screenings given risk,

Risk Metrics DPSCREEN
with

DPSCREEN
w/o

Annual

self-exam self-exam
Low E[N |R] 0.32, 0.55 1

E[∆|R] 0.23 0.23 0.24
E[∆|R,D] 9.2 9.2 9.4

High E[N |R] 0.43 0.72 1
E[∆|R] 0.50 0.52 0.52
E[∆|R,D] 6.7 7.07 7.07

STEPS TO DPSCREEN
Idea 1. Define belief over entire path and not
current state. b(~s, l), l = 1/0 =⇒ diagnosed/not
• Bayesian belief update.
b̂(~s, l) = Pr(~s, l|b, τ︸︷︷︸

Scheduled visit

, [y, z, τ̃ ]︸ ︷︷ ︸
Observation

, x)

• Bellman equation.

V (b, t) = max
τ

[∑
~s,z,l

b(~s, l)Pr(z|~s, l)C̃(~s, l, t, z)+

∑
z,y,τ̃

Pr(z, y, τ̃ |τ , b)V (b̂, t+ τ̃)
]

C̃: cost for screening and cost of delay per epoch
• Result. Value function is piecewise linear

V (b, t) = max
α∈Γ(t)

αtb

• Optimal α vector decides the optimal policy
• If Γ(t + 1) is known, then a recursion derived
from Bellman equation can determine Γ(t)

Γ(t) = Rexact
[
Γ(t+ 1)

]
(2)

|Γ(t)| exponential in t =⇒ Rexact intractable!
• Point-based value iteration PBVI

Γ(t) = RPBV I
[
Γ(t+ 1)

]
(3)

|b| large =⇒ RPBV I intractable!

PROJECTED PBVI
Idea 2. Dimensionality reduction:
• Sample K i.i.d. paths from disease model
• Project the beliefs over the sampled subset

Idea 3. Basis set of policies:
• Random exploration
• Clinical guidelines/policies from existing

works
Intuition: Ensure better performance than basis
• Belief set construction:
• Use stochastic simulations to generate out-

comes using basis set
• Construct belief set B̄ : Bayesian update

conditional on the sampled subset

• Projected PBVI: One α vector per point in B̄

Γ̂(t) = RPPBV IB̄

[
Γ̂(t+ 1)

]
(4)

V̂ (b, t) = max
α∈Γ̂(t)

αtb (5)

•Approximation error: |V̂ (b, t)−V (b, t)| ≤ Ω(B̄),
Ω(B̄) worst case sampling density
• Computational complexity: O(T 3|B̄|2K|Y||Z|)
• Robustness: Errors in model estimation?
Optimal policy is locally constant over the space
of models, i.e small errors don’t matter!
• Optimize hyperparameters, i..e, sampling pol-
icy and the basis set, is future work


