

MOTIVATION AND GOAL

Motivation

• Screening helps timely diagnosis (e.g., cancers) • For every 1000 mammograms, 500 false positives, and 200 unnecessary biopsy

- Clinical guidelines are **not personalized**!
 - Yearly after the age between 45-54 in USA, Biennial after the age of 40 in Canada, Japan
- Disease models are complex, MISCAN-COLON
- Screening works use simplistic disease models

Goal

• Develop a **general framework** for screening

- Personalized to patient feature and history
- Applicable to many diseases

STEPS TO DPSCREEN

Idea 1. Define belief over entire path and not current state. $b(\vec{s}, l), l = 1/0 \implies diagnosed/not$ • Bayesian belief update.

$$\boldsymbol{\tau}$$
 , $[\underline{y, z, \tilde{\tau}}]$, $x)$

Scheduled visit Observation

• Bellman equation.

 $\hat{b}(\vec{s},l) = Pr(\vec{s},l|\boldsymbol{b},l)$

$$V(\boldsymbol{b}, t) = \max_{\boldsymbol{\tau}} \left[\sum_{\vec{s}, z, l} \boldsymbol{b}(\vec{s}, l) Pr(z | \vec{s}, l) \tilde{C}(\vec{s}, l, t, z) + \sum_{z, y, \tilde{\tau}} Pr(z, y, \tilde{\tau} | \boldsymbol{\tau}, \boldsymbol{b}) V(\hat{\boldsymbol{b}}, t + \tilde{\tau}) \right]$$

 \tilde{C} : cost for screening and cost of delay per epoch • **Result**. Value function is piecewise linear

> $V(\boldsymbol{b},t) = \max \boldsymbol{\alpha}^t \boldsymbol{b}$ $\boldsymbol{\alpha} \in \Gamma(t)$

• Optimal α vector decides the optimal policy • If $\Gamma(t+1)$ is known, then a recursion derived from Bellman equation can determine $\Gamma(t)$

$$\Gamma(t) = \mathcal{R}^{exact} \left[\Gamma(t+1) \right]$$
 (2)

 $|\Gamma(t)|$ exponential in $t \implies \mathcal{R}^{exact}$ intractable! • Point-based value iteration **PBVI** $\Gamma(t) = \mathcal{R}^{PBVI} \left[\Gamma(t+1) \right]$ (3)

 $|\boldsymbol{b}| \text{ large } \Longrightarrow \mathcal{R}^{PBVI} \text{ intractable!}$

DPSCREEN: DYNAMIC PERSONALIZED SCREENING

KARTIK AHUJA[†], WILLIAM ZAME[†], AND MIHAELA VAN DER SCHAAR^{*†}, [†]UCLA, *UNIVERSITY OF OXFORD

RELATED WORKS

Screening in Operations Research and Statistics • Partially Observable Markov Decision Process **POMDP** (Ayer et.al.)

- Bayesian Optimal Design (Rizopoulos et.al.)
 - **Pros:** Principled search for optimal policies
 - Cons: Markov/Semi-Markov, Stationary

Screening in Medical Literature

• Stochastic simulation based (Frazie et.al.)

- **Pros:** No assumptions on disease models
- Cons: Not personalized, Compare a fixed set of policies chosen by experts

This work No assumptions on disease models! **Principled search for optimal policies!**

PROJECTED PBVI

Idea 2. Dimensionality reduction:

- Sample *K* i.i.d. paths from disease model
- Project the beliefs over the sampled subset

Idea 3. Basis set of policies:

- Random exploration
- Clinical guidelines/policies from existing works

Intuition: Ensure better performance than basis • Belief set construction:

- Use stochastic simulations to generate outcomes using basis set
- Construct belief set \overline{B} : Bayesian update conditional on the sampled subset

• **Projected PBVI**: One α vector per point in \overline{B}

$$\hat{\Gamma}(t) = \mathcal{R}_{\bar{B}}^{PPBVI} [\hat{\Gamma}(t+1)]$$
(4)

$$\hat{V}(\boldsymbol{b},t) = \max_{\boldsymbol{\alpha}\in\hat{\Gamma}(t)} \boldsymbol{\alpha}^{t}\boldsymbol{b}$$
(5)

• **Approximation error**: $|\hat{V}(\boldsymbol{b},t) - V(\boldsymbol{b},t)| \leq \Omega(\bar{B})$, $\Omega(\bar{B})$ worst case sampling density

• Computational complexity: $\mathcal{O}(T^3|\bar{B}|^2K|\mathcal{Y}||\mathcal{Z}|)$ • **Robustness:** Errors in model estimation?

Optimal policy is locally constant over the space of models, i.e small errors don't matter!

• Optimize hyperparameters, i..e, sampling policy and the basis set, is future work

ILLUSTRATIVE EXPERIMENTS

• **Dataset**: Deidentified breast cancer dataset of 45,000 women. At least one mammogram/woman. • Features: Number of family members with breast cancer history, age, bmi, menopause • **Disease model**: **Pre-incidence.** Two state Markov model for the onset of breast cancer. **Post-incidence.** Universal tumor growth law. Tumor growth \implies lumps develop \implies self-arrivals •Model Estimation: Parameters of the disease model estimated using standard MCMC methods. •Benchmarks: Annual and Biennial screening •Metrics: $E[\Delta|R]$, $E[\Delta|R, D] E[N|R]$: Expected delay (months) given risk, Expected delay given risk and disease, expected number of screenings given risk,

MODEL AND PROBLEM FORMULATION

• **Disease model:** Finite state stochastic process, one absorbing disease state, \vec{S} is path of the stochastic process, $Pr(\vec{S} = \vec{s} | x)$ is probability of the path, $x \in X$ feature vector (age, gender, etc.), states are hidden • **Diagnostic test:** Z(t): test outcome at time t, $Pr(Z(t) = z | \vec{s}(t), x)$: probability of test outcome • External information: Y(t): observation by the patient, $Pr(Y(t) = y | \vec{s}(t), x)$: probability of the observation, if $Y(t) \in \mathcal{Y}$ patient goes to the clinician

• Screening policy: $\pi : \mathcal{H} \times \mathcal{X} \to \{1, ., T\}$: map from observation history, features to next arrival time • Costs: Cost of screening : 1 (normalized),

Cost of delay in detection: $C(t_d - t_D; t_D)$, t_D/t_d is the time of incidence/detection • Optimal screening policy: Minimizer of the weighted sum of the aggregate discounted screening costs and the delay costs, with weight w, discount factor δ , and the set of arrival times \mathcal{T}_s

$$\pi^* = \arg\min\left(1 - w\right) E\left[\sum_{t \in \mathcal{T}_s} \delta^t\right] + wE\left[C(t_d - t_D; t_D)\right]$$

• Challenges: Standard POMDP and POSMDP cannot be used

• Disease model is not Markov/Semi-Markov

• Time between decision epochs depends on scheduled date, external information and the state path

k	Metrics	DPSCREEN	DPSCREEN	Annual
		with	w/o	
		self-exam	self-exam	
N	E[N R]	0.32,	0.55	1
	$\mid E[\Delta R] \mid$	0.23	0.23	0.24
	$\mid E[\Delta R,D]$	9.2	9.2	9.4
gh	E[N R]	0.43	0.72	1
-	$\mid E[\Delta R] \mid$	0.50	0.52	0.52
	$\mid E[\Delta R,D]$	6.7	7.07	7.07

CONCLUSION

• Developed a general framework for screening • Extended PBVI to address the challenges imposed by screening

• Gains > 30% on breast cancer screening dataset Potential impact beyond screening in stopping time problems

UNIVERSITY OF OXFORD

