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Abstract

In this paper, we propose a new resource allocdtebmework for multimedia systems that perform nplet
simultaneous video decoding tasks. We jointly atdersthe available system resources (e.g. procegstes) and the
video decoding task’s characteristics such as ¢lj@ence’s content, the bit-rate, and the GOP sireicin order to
determine a fair and optimal resource allocatianthis end, we derive a quality-complexity modelttietermines the
quality (in terms of PSNR) that a task can achigien a certain system resource allocation. We thsse
quality-complexity models to determine a quality-faand Pareto optimal resource allocation using the
Kalai-Smorodinski Bargaining Solution (KSBS) froxi@matic bargaining theory. The KSBS explicitly cigers the
resulting multimedia quality when performing a nesme allocation and distributes quality-domain pées
proportional to the difference between each videooding task’s maximum and minimum quality requieats. We
compare the KSBS to other fairness policies inliteeature and find that because it explicitly cioless multimedia
guality it provides significantly fairer resourckoaations in terms of the resulting PSNR comparegolicies that
operate solely in the resource domain. To weightmlity impact of the resource allocations todifierent decoding
tasks depending on application specific requiresientiser preferences, we generalize the existBigIKsolution by

introducing bargaining powers based on each vidgoence’s motion and texture characteristics.

Index Terms

System resource management, multimedia systemso videcoding complexity, complexity scalability,

guality-complexity models, Kalai-Smorodinski bamgjag solution, bargaining powers.

|. INTRODUCTION

Decoding multiple video streams simultaneously @asassary in a variety of applications, includingltiFaoint
video conferencing, video surveillance from muliphmeras, and picture-in-picture. In recent yeaish applications
are becoming more and more important across diftgratforms such as desktop PCs, laptops, PDAlsjaephones,
and portable music players. These devices, howbhagg a wide range of processing capabilities,paoveer, energy,
and resource constraints that are not ideal fentat-sensitive and computationally intensive videgoding tasks.
Compounding this problem, these applications mguire multiple such tasks to run simultaneouslynoe resource
constrained processor. In this scenario, the naddir system resource allocation becomes impbttaensure that all

video decoding tasks attain reasonable qualitye®¥idecoding applications allow for flexible tradisdfetween output
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quality and resource usage that can be exploitectier to meet real-time latency constraints wiesources are scarce
(e.g. when many tasks compete for processor timghen few tasks require a long lifetime on a bstigowered
device). Therefore, as discussed in [1], systemureg allocation for video decoding is not a prabtbat can only be
addressed at the OS or hardware level. Insteadaitross-layer problem involving the applicatioperating system
and hardware because it requires joint considerati@available resources (e.g. processor cyclespandeo decoding
task’'s characteristics such as the sequence’s mpritee bit-rate, the GOP structure, etc., all ¢fickh determine
different levels of complexity and, concomitantideo decoding quality.

In this paper, we jointly consider the system resewonstraints and the quality-complexity tradeaffailable to
each video decoding task in order to determinér afal optimal resource allocation. Unlike conventl fair resource
allocation schemes, where system resources argbdisd based on resource-domain metrics, we deploy
bargaining-theoretic policy that distributes linditeesources fairly and optimally with respect iddeo quality metric
(i.e. PSNR). Specifically, we deploy the Kalai-Swdinski Bargaining Solution (KSBS) [18], which dibutes
penalties proportional to the difference betweetask’'s maximumachievable quality and its minimunrequired
quality. Using a proposed quality-complexity modeé quality-domain bargaining solution is thenyemted into the
quality-fair resource allocation.

Our contributions are as follows:

* We propose a new general complexity traffic modgframework for multimedia tasks. We characterimettaffic
with five parameters that together we designate task’scomplexity specification (CSPEC).

» To enable the complexity scalable admission contvbere multiple video tasks can be admitted siamgously,
we introducecomplexity strategies that encapsulate the complexity- and quality-daladaptation points that a video
decoding task can select to match its workloatiéat/ailable resources. Each complexity strategyal@rresponding
CSPEC and we label the aggregation of all CSPE@tatian points as a taskssalable CSPEC. Each task uses its
scalable CSPEC to negotiate for its fair sharesburces with the resource manager. We derive elrtiwat allows us
to determine the quality-complexity tradeoffs fdffetent video sequences.

* We generalize existing bargaining-theoretic allmeapolicies to determine a quality-fair resourdleaation for
video decoding tasks sharing a single resourceti@oned processor. Additionally, we compare thepps®zd solution
to other resource allocation solutions in the étere.

The rest of the paper is organized as follows.dcti®n 1, we define a task’s CSPEC and scalableEXSand show
how various complexity strategies for decoding ltasulifferent complexity levels. In Section IWe introduce some
resource management preliminaries and summarizralesxisting fairness policies for resource altmrathat are
implemented in the resource-domain. In Section VM, define the quality-complexity function and ilitege the

properties of the resulting feasible quality séfge then formulate the bargaining problem and define



Kalai-Smorodinsky Bargaining Solution (KSBS). Wentgeneralize the KSBS for our problem and we sumamthe
steps required to implement the proposed bargaib@sgd resource allocation system. In Section Vpresent our

experimental results and we conclude in Section VI.
II. ADAPTIVE WORKLOAD MODELING

A. Complexity Scalability

A majority of state-of-the-art video coders canateebit-streams that can be decoded at differealityu and
complexity-levels. This is achieved by dividing th#-stream into layers, partitions, video packetis that can be
decoded successively in order to gradually imprinevideo quality at an increased computationakegp. These
layers may be partitioned based on their differdistortion impacts, their deadlines, etc. Impofignthere are
dependencies among layers, e.g. gains from decadingnhancement-layer are limited if the base-tagee not
decoded. Finer complexity scalability can be aohikly simultaneously adjusting the number of dedddgers,/ ,
and the average extracted bit-rate [2]. For example, in H.264/AVC based video codersrious
Signal-to-Noise-Ratio (SNR) scalable layers cacreated via data partitioning. Moreover, variousgeral scalable
layers can be created using hierarchical B fra@esilarly, a motion compensation temporal filteridCTF) based

video coder [3] can create a variety of spatio-terapand SNR scalable layers.

Table 1. Display deadlines for decoding framesifiamed into 7' = 4 temporal layers using 5/3 Haar filter. Notice ttatodingl layers
requires decoding the frames in columips..,! — 1 as well as the frames in colunin

Display Number of Decoded Layers
Deadline 1 2 3 4

ty Lo, Hyg Ly Hio Ly Hyoo Ly Hi, 4,4
t, + 2A Ly, - Ly, Ly Hi 4 A
t, + 4A - H,, Hy,, A, A Hyy, Ay A
ty + 6A - Ly, Ly, Hy, Hy g, 4 4
t, + 8A - - - Hy 4, A
ty + 10A - Ly, Hzfs v Lys, Llﬁ HL,S s Ay Ay
t, + 12A - - - Hyg, Ay, Ay
tp + 14A - - L, Hy7y Ay, A

In this paper, we focus on MCTF-based temporalriaydowever, our approach is general and not laniite the
particular layering/partitioning choice or videodes as will be shown in some of our illustrativasples. A MCTF
structure with a Haar 5/3 temporal decompositidraf®i T' temporal levels, for example, can be partitiorred i’
layers (i.e. we can decode= 1,...,T layers). We use the notatid#, , and L., to indicate the<-th H and L
frame of temporal levet , respectively, wheré¢ < 7 < T and 0 < x < 27~7. By convention, we denote the
original encoded framed, ,, as belonging to temporal level= 0. Table 1 shows the decoding deadlines for the
frames of an MCTF structure with = 4 when it is partitioned inté = 1,2,3,4 temporal layers. In Table 1

denotes the display deadline of the pair of origfreames{4,, 4,} and the deadline of each subsequent pai\is



seconds after the previous pair's deadline. Theievalf A depends on the encoded frame-rate and, for our
1

experiments, is set a& = 30" 0.0333 s to correspond to the 30Hz frame-rate of the paigencoded sequences. We
note that the above analysis is related to the eeahplecomposition used (5/3 Haar filter), and défer for other
temporal decomposition structures [3].

To illustrate several key properties of the vidiszoding workload traffic that make it challengiogcharacterize
and model, example traffic for a variety of sceogaris shown in Fig. 1. We will describe each plotFig. 1

individually.
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Fig. 1. (a,b) Typical complexity profile for decodi! = 1,2, 3,4 temporal layers (witil" = 4 temporal level MCTF structure) of one GOP
of the Slent andStefan sequences, respectively. Includes upper- and kyeends on the decoding complexity when decoding 1,2, 3,4
layers with rater € [200,1536] Kb/s. Notice that the y-axis scales are diffefeneach sequence. (c) Typical complexity profieiomany
GOPs when decoding = 4 layers of theSlent sequence.

To measure the video decoding workload charadiesist a variety of scenarios, we profiled a C+piementation
of thet + 2D MCTF coder in [3] with system calls that query thiernal processor counter to obtain high-resotuti
timing measurements. All measurements in this papeobtained from the decoder implemented in Gidrexecuted
on a Dell Pentium IV system running Microsoft WingoXP safe mode with only a command prompt to entuat
context switches and interrupting processes aré &ep minimum. We note that in Fig. 1(a-c), a datant at time
to +2nA, n € Z, represents the number of normalized processdesyequired during the interval of time
(to +2(n — 1Aty + 2nA] to decode the appropriate set of frames befor@ ttecoding/display deadline at

ty + 2nA . The next paragraphs illustrate several imponpamperties of the workload traffic:

i) Workload depends on the sequence characteristics: To illustrate the impact of varying video sourcattteristics

¢, on the decoding workload across a GOP, Figbh)&hxow the upper- and lower-bounds on the workteatic for
GOPs four and five (frames 65-96) of tBeent and Sefan sequences, respectively, at CIF resolution, erntode
frame-rates of 30Hz, and with ratec [200,1536] Kb/s. Comparing Fig. 1(b) and Fig. 1(a), it isasl¢hat decoding
Sefan is significantly more computationally complex thdecodingSlent for most choices of . This observation is

congruent with the intuition th&efan’s intense motion characteristics should genera#yd heavier peak and mean

! Source characteristics include e.g. high moti@taited textures, and object occlusion.



computational workloads at the CPU. Hence, the ¢exity depends on a particular video source’s attaréstics,¢ .

ii) Workload is highly time-varying: From Table 1 it is clear that the number of frareg must be decoded at each
deadline is not distributed evenly over the duratid the GOP. For example, when decoding all tiyers only 3
frames require decoding or reconstruction durirgithhe-interval(t, + 6A,t, + 8A] while 10 frames are decoded or
reconstructed during the time-interv@l — 2A,¢,]. The time-varying workload curves in Fig. 1(a-keflect this
unbalanced workload distribution within a GOP. Hi¢r), on the other hand, shows how decoding waddare also
typically time-varying across several GOPs. Thithis consequence of changes in motion and texhaeacteristics

over the duration of the video sequence.

iii)Workload is rate dependent: Fig. 1(a-b) also illustrates how rate affects tleeatling complexity. Notice that
adjusting the rate can have a significant impadhencomplexity, particularly at the first decoditgadline in a GOP
where the base-layer frames (ifg: o, Hy ;) containing most of the texture information arealied. For example, in
Fig. 1(a), at the circled complexity measurements-a 2.1333 s (i.e. the first decoding deadline for GOP 4)uating
the rater € [200,1536] causes the upper-bound complexity resulting fremoding! layers (forl = 1,2) to be
above the lower-bound complexity for decodinigt+ 1 layers. In other cases, when minimal residual utext
information is decoded, rate-independent motion mamsation operations dominate the complexity. &sé¢hcases,
adjustingr insignificantly influences the complexity (see thecled complexity measurementiat 2.4667 s in Fig.
1(b)). Nevertheless, such significant peak workleadation induced by adjusting the ratein the former case

illustrates how adapting the rate can increassldg&hances for admission into a system with Behitesources.

iv) Decoding different layers leads to complexity scalability: Fig. 1(a-b) also illustrate that significantly reehal

workloads in terms of both peak and mean resowgeirements can be achieved by decoding less lajkeswide
range of complexity scalability enabled by decodiagous layers is important in an admission cdrstcenario where
a task may not be allocated any processor resoifriteannot adapt its workload to the resourcesilable to it.

As mentioned earlier, the workload distributionhirita GOP depends on the video encoding paramatdusling
the number of temporal levels , the choice of filter used in the temporal decosifan, etc. It has been shown [8] that
based on the video source characterist{csit may be desirable to chose different encodiatpmeters that yield
different levels of complexity-scalability. Henceur choice of the number of decoded laykrand rater are
dependent orf because, depending on a task’s video sequenceacthastics, differeni andr pairs may be
required to meet the same resource constraintsdtational simplicity, we do not explicitly inditthis dependence.

Based on the above observations pertaining tartevarying decoding workloads, a workload traffiodel that
captures all of these characteristics and can geoguality and latency guarantees through an admissontrol
process is highly desirable. We present such a hiodke next subsection. Note that while the aboliservations

were made for one particular coder, similar obg#&ma can be made for other coders such as H.26@/A%d



MPEG-4 using the same methodology.

B. Characterizing Video Decoding Workload Traffic

In order to capture a video decoding task’s timesviey and bursty resource requirements (see Sedtié)y we
model the decoding workload traffic with a twinkgeébucket. We assume that the task decddieyers at rate-. The
important model parameters are the Peak WorklBdd-) (cycles/second), Mean Workloadl, ) (cycles/second),
Maximum Burst Sizes(l,r) (cycles), and Delayi(l,) (seconds)d(l,r)is set based on the application requirements
or user preferences. The remaining parameters eadetermined using offline modeling, training, aofging,
followed by real-time classification [2] [7] [9]. & would like to develop a model that considers kbt Peak
Workload and the Mean Workload for two reasonstlfir considering just the Peak Worklo#tl, ) results in over
conservative worst-case complexity estimates tiefticiently use the CPU bandwidth. Conversely,sidering only
the Mean Workload(l,r) under allocates CPU bandwidth during time inteswahere the workload exceeds the
Mean Workload and therefore results in missed degodeadlines and, consequently, frame drops. Bgreing the
(small) Delayd(l,r) on all display deadlines (i.e. the display deatiin Table 1 becomg + 2An + d(I,r) for
n = 0,...,7) the bursty workload can be smoothed to reducpea& computational complexity. This delay paramete
was first introduced in [10] in order to reduce {heak computational capacity required by a devicedcode a
particular bit-stream. In this paper, we expandhenconcept by also exploiting complexity-scaldypivhich, given a
fixed Delay parameter, allows a task to adaptataglexity to match available resources.

Based on a twin leaky bucket analysis, the CPU Bt Demand for decoding layers at rate- with Delay
d(l,r) is:

P(l,r)

g(l,r) = 1+ d(l,r)[P(,r) - p(, r)]afl(l, T) .

1)

Together, the token bucket parameters and the GRldwidth Demand determine the tasktamplexity Specification
(CSPEC) denoted as the st r) = {g(l,7), P(,7),p(l,),d(l,r)}, where the Max Burst Size(/,r) is omitted

because it can be determined as

o(l,r) =2A- P(l,r) cycles. (2)

Intuitively, o(l,) can be expressed as in (2) because it corresporide maximum processor workload during any
2A second time interval. We note that the CPU Bantiwidemandg(l,r) in (1), corresponding to the smoothed
workload, is the parameter we use for resourceatiion and admission control because it resolveafiorementioned
issues with the Peak and Mean Workloads. Fig. il(sstrates how the first and second token bucketgilate the
arrival of workload traffic to the decoding bufféig. 2(b) details how the various CSPEC parametersletermined

using the cumulative workload traffic arrival cur¢&t) . Note that in Fig. 2(b)P, p, andg are the slopes of the



respective lines.
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Fig. 2. (a) Twin leaky bucket modeling of workload traffig) Arrival curve for one GOP of th@lent sequence for decoding
I = 3 layers withT = 4 and calculation of CPU Bandwidth Demand.

Example values foP(l,r), p(l,r), and g(I,r) for the workload traffic of the first 16 GOPs bktSlent sequence
are shown in Fig. 3 for 13 rates between 200 Kbésla5Mb/s,i = 4, and Delayd(l,r) = 2A . Using the data in Fig.
3, the Maximum Burst Size can be determined usigThe thin vertical rectangle labeled “CSPEC pwters” in
Fig. 3 is used to emphasize that the enclosed pdeasnconstitute the CSPESl, ) associated with a particular
vector [l,r] (= (4,640 Kb/s), in Fig. 3(a)). Importantly, this CSPEC definitiman be used to characterize the
decoding workloads of other coders. For examplg, 8{b) shows the CSPEC parameters forSihent sequence
determined using an H.264/AVC based coder [2] wjitlantization parameters between 22 and 40 and Déthy
d(l,7) = 0.5A . The CSPEC can also be adapted to characteriee eidcoding workloads.
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Fig. 3. (a) CSPEC parameters for MCTF based decd@eGOP normalized computation workload for dengdi = 4 layers of theSlent
sequence at 13 rates between 200 Kb/s and 1.5WwityDelay d(l, 7’) = 2/ . (b) CSPEC parameters for H.264 based decoderfragg:
normalized computation workload for decoding ajldes of theSilent sequence with quantization parameters betweem@2i@ with Delay
d(l,r) = 0.5A . GOP structure used for H.264 based measuremasisre | frame for every 3 P frames, and 3 B frafimesach I/P frame.
C. Complexity Srategies and the Scalable Complexity Specification

Depending on the sequence characteristictask: might deploy different decoding strategies in otdeadapt its

CSPEC and negotiate with tResource Manager for its fair share of resources. Note that eadew@icoder and task can



implement its own decoding strategy set. Hereilliostration purposes, we defing = [;,7;] € A;, i =1,...,M as
acomplexity strategy vector in the feasible set of complexity stratsdi taski, where A, = AMYER » ARATE gng

AFAYER — gl VYT gnd ARMTE =l e denote the  decoding  strategy  spaces  enabling

spatio-temporal decoding tradeoffs and bit-ratgptataons (corresponding to the SNR scalability3pextively. We
denote the cardinalities of the strategy spacesVas"™™ =|AMYER| and NFATE = | ATATE| | Note that the
feasible complexity strategies and decoding styespgces for thé-th task depend on its video source characterjstics
&, for the reasons described in Section II.A. Faational simplicity, we do not explicitly indicathis dependence.
By selecting the complexity strategy vectos; =[l;,;]€ A, , a task operates at one of the
N, = NFAYER . NRATE _ | A | feasible complexity levels that define Sisalable CSPEC. Formally, we define the
i-th task’s Scalable CSPEC as the set,

Gi(A) = {gi(a;) | a; € A}

= {{y(a;), P(a;), p(a;),d(a;)} | a; € A},

where g;(a;), rewritten using the complexity strategy notaticndetermined by (1) using the corresponding Peak

3)

Workload P;(a;), Mean Workloadp;(a;), Max Burst Sizer;(a;) determined by (2), and the Deldy(a;), which
relaxes the decoding/display deadlines.

Fig. 4(a,b) illustrates example Scalable CSPEGstitz for the first 256 frames of ti8dent andSefan sequences,
respectively (CIF resolution, 30 Hz encoded frae). The Delayi(a,) is set to2A . The example operating points,
gi(a;) € G(A;), from which the statistics are gathered are ddfity the N, = 52 complexity strategies

a; = [l;,r;] € A, with the vector componenis andr; in their respective strategy spaces,
AMYER — 1 93 4} NFAYER — 4 and 4)
ARATE — 1900, 256,320, 384, 448, 512, 640, 768, 896,1024,1152,1280,1536} Kb/s, NFATE = 13, (5)

The solid bars in Fig. 4(a,b) are the averagedevafuhe corresponding parameter (if¥a,), g(a,), or p(a;) over 13
measurements taken for bit-rates between 200KkdslasMb/s. The error bars show the maximum and mimi

value of the corresponding parameter for the 13soresnents.
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Fig. 4. CSPEC parameter statistics for various derily strategies based on 16 GOP normalized coatiomt workload with Delay
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The solid bars in Fig. 4(a,b) illustrate that, ljestingl, ¢ AF*YER  as defined in (4), a task’s CPU Bandwidth
Demandg(a;) can be scaled to below half of its maximum. Aduditlly, observing the error bars, it is clear that
adjusting, € ARATE as defined in (5) yields finer complexity scalébiby approximately 10-40% (depending on
the sequence) of the maximum CPU Bandwidth Demand fixed value of; . Clearly, the feasible set of complexity
strategies defines a wide range of complexity &dtla Therefore, complexity strategies are esggnwhen tasks
negotiate for limited system resources with theowese manager. Moreover, the Deléy,) = 2A significantly
reduces the processing rate required to meet edidiieg and display deadlines. Specifically, comgéarethe Peak
CPU BandwidthP(a;) that is required to meet all task deadlines wiien) = 0, the CPU Bandwidth Demang(a, )
for d(a;) = 2A is lower by ~30% on average and at most by ne#B6. In scenarios where a device’s limited
processing capacity preclude the admission of emaave tasks with high peak requirements, evenlseddys can
dramatically improve the number of admitted taskd aach task’s quality. We note that the Deléy,;) can be
increased further to achieve greater reductiomén@PU Bandwidth Demand, however, this requiregelamemory
buffers [10].

In a scenario where tagkis given a static resource allocatian(in processor cycles) we wish to determine the
optimal complexity strategy that maximizes the tssjuality under the complexity constraint. Forrgathe optimal

complexity strategy is determined as:

al = argmax Qi(g(a,)) : (@) < 5. gla;) € g(a) ©)

where @); is thei-th task’s quality that we will define in (17) ire&®ion IV.A andt is the duration of time during

which taski may consume resources.

The strategy spaces defined in (4) and (5) serlyeamexamples. Another layer partitioning may hanare or less
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layer strategies idd*YER which enable finer or coarser complexity scal&pilBimilarly, more or less rates can be
included in ARATE | Importantly, this methodology can be applied tloeo coders such as H.264/AVC and MPEG-4.
Notice that, unlike in a bandwidth constrained r@twscenario where; is chosen to match the channel bandwidth,
we adjustr; as a dimension of our complexity strategy framéwlmecause it influences the resources required for
decoding [2]. A joint rate-distortion-complexityaimework, however, can be used to adapt to bothanktaandwidth

constraints as well as system resource constif@hf8] but this is beyond the scope of this paper.

[1. FAIR ALLOCATION IN THE RESOURCEDOMAIN

A. Resource Management Preliminaries

We considerM real-time video decoding tasks that are to becatkd resources on a single CPU. These tasks are
competing for the available CPU resourd@s which in our system is the amount of processaies/that can be
allocated to the tasksi € R, ). We assume that Besource Manager (RM) is in place to divide the available
resources among the different tasks by using ada# policy denoted by . Possible implementations of the RM can
be found in [1]. The resources are allocated byRNefor time-intervals with a granularity specifibg the service
interval tg; and a parameter € Z_, which we describe later. During one service wdgreach admitted task is
guaranteed CPU time. In general, the service iategy depends on the GOP structure and the delay deadiirthe
various taskstg; can be calculated as in [11].

In general, due to overheads, resources cann@atlecated everys; seconds (for the proposed bargaining-based
resource allocation system, we describe the resoallocation overheads in Section IV.G). The afaetioned
parameterw is introduced to ameliorate this problem by allogvius to decrease the frequency of the resource
allocation. Specifically, we define the super sesvintervalty, = w - tg; which determines the global resource
allocation frequency. Depending on the availabkovecesR(t$;), the number of active taskd and the video
sequence characteristi€¢s (i = 1,..., M ) a task can deploy a different complexity stratémgyeveryts; .

To enable resource allocation for the upcoming sepevice interval with duratiory; seconds, the tasks need to
provide the RM their external informatioh, which depends on the deployed resource allocatitveme and may
include information about the task’s feasible coemjiyy strategies, Scalable CSPEC, decoding dealorequality.
Denoting the possible external information as #telds, the RM will decide in real-time the non-negatalocation
X = (Xy,..., Xjy) using fairness policyF as:

F .U - RY FU,..,0,)=X=(X,..., Xy). (7)

Depending on whether the fairness policy is impletaé in the resource domain or the quality-domiagnallocation

point X € RY will take on a different meaning; specifically,

(¢1y-.-,¢pr), if the policy is implemented in the resource-domain, and
(@1,...,Qyr), if the policy is implemented in the utility-domain.
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X = (¢,-..,ep) (0<¢; <R(t§) and Zjilci < R(t§) ) is the resource-domain allocation wheteis the
number of processor cycles allocated to taskfor the super service intervaly; . X = (Q,...,Qy)
(@ >0,i=1,...,M) is the quality-domain solution whetg is thei-th task’s quality (See Section IV.A for the
definition of quality and Section IV.D for how tlgpiality-domain solution is converted to the reseuatiocation).
Given the resource allocatiofs,...,c;;) for the super service interval, each task seldwtsoptimal complexity
strategya; defined in (6). Finally, the super service intérg is partitioned intow service intervals with duration
tg; during which each task is allocated resourgesw .

Fig. 5 illustrates the relationship between theébglaesource allocatiofy;,...,c,;) for the super service interval
tgr , the available resourcé®(ts;) during each service interval; , and real-time system scheduling for the video
tasks. System scheduling is not the focus of tipepdowever, any existing real-time schedulingigitnes such as

rate-monotonic, deadline-monotonic, earliest deadiirst, and least slack [4]-[5] [12]-[14] can &eplied within each

tsr .

Global Resource Allocation
(Per Super Service Interva;)

t = w-tg — R(t&) — (c,...cy) based onF

| Rea-time Schedulin |

Fig. 5. Relation between global resource allocagiensuper service interval; , resource allocation per service interég} and real-time
scheduling.
B. Existing Fairness Policies
In this subsection, using the framework introduce8ection I11.A, we describe a few existing faissepolicies for

system resource management as benchmarks agaiicst tiv quality-domain system resource managemeaityp
proposed in Section IV can be compared. In genr@akesource domain fairness policies attemplidoate resources
equitably to each task.

1) Generalized Processor Sharing (GPS): The conventional GPS fairness strategy allocassurces proportionally
to a task’s required resources [15]. In our reseuatlocation scenario, processor resources canllbeated
proportionally to each task’s maximum CPU BandwiBémand,g; ... . The resource allocations must meet the

following condition:
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c o M w
— == Y e = R(t) 9

91, max B 9M max
With g; nax = max{g;(a;) | g;(a;) € g;(a;) and g;(a;) € Gi(A)}.

In order for the RM to apply this resource manag#raeheme, it must gather from each tadts external information

U, = (g;max) - HENCE, the resource allocation by the GPS padiexpressed as:
Faprs(Wiyen, Uap) = (¢f,..0 ¢hr) (10)
where the resource allocatidd, ..., cj;) must satisfy (9).
2) Equal Resource Allocation (ERA): Using the ERA fairness policy, processor resaaiare allocated equally to
each task. Hence, the ERA policy can be written as:

R(tsr) Rt

-’F.ERA(\IJD"W\IIM):(Cika-'wcjw): M IRRER} M ’

(11)

where¥; = 0 for all ¢ because the RM requires no information from tiskgdo determine the ERA.
3) Weighted Max-min (WMM): In [1], a WMM fairness policy is used to fairljl@cate resources to multiple video

decoding tasks. The-th task’s CPU utilization in terms of the resouatiecationc; is defined as [1]:
M

C.
J; = ==, subject to » J; <1. (12)
R(tsr) ;
The minimum CPU utilization is defined as:
in . i(@;) - tg)
g = @B B @) € g a) and gi(a,) € G(A)) 3)
R(ts1)
and the maximum CPU utilization as:
mar __ gi(ai) ) gJI
JM = max{Z= 5~ | gi(a;) € g;(a;) and g,(a;) € G;(A)}. (14)
R(tgr)

Given the user defined weightg,, the WMM resource allocation algorithm is as falfo[1]:

i. The resource manager allocates to each tagk < i < M ) its minimum CPU utilizationJ™" , i.e.
J, =Jmm . If J, < J™® then task i is made an element of the unsatisfied task set
I={i|1<i<Mand J; <J"}.

S

ii. Foreach task € I, increment the CPU utilization b%(l — Zji). If J, > Jr* setJ, = J"* and
icl 7t 1=1
remove task fromI.
M

iii. Repeat step (ii) ifZ J; =1 andI = @ . Otherwise allocate resources = J, - R(t§;) to each task .
=1

Hence, the WMM policy can be written as:
Fona (W15, W) = (clseenseir) = (J1 - R(EST), -5 Jar - RALST)) (15)

where J; is the i -th task's CPU utilization determined by the WMMsoerce allocation algorithm and
Uy = (L I1).
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IV. A FAIR RESOURCEALLOCATION SOLUTION IN THE QUALITY DOMAIN

The fairness policies described in Section lll.Bedte CPU resources without considering the quatipact. For
multimedia applications, however, explicitly coreithg the video quality is essential because whssiwdion is fair in
the resource domain it does not guarantee a gtalitysolution. To overcome the shortcomings of the
resource-domain resource allocation policies foitimedia applications, we propose using a bargagtireoretic
approach based on the Kalai-Smorodinsky Bargaiofytion (KSBS) for fair and optimal (in a Paretense)
resource allocation in the quality-domain. To deiiee the KSBS we must first define a quality-comjilemodel to
relate a task’s resource consumption to its ackiexdeo quality. We propose such a model in théofahg

subsection.

A. Quality Definition and Model

In previous sections, we have described that atgt@mplexity tradeoff is made when choosing onenplexity
strategy instead of another. In order to quankify tradeoff, we introduce our quality-complexitgpdel in this section.
In multimedia applications, the video quality deggn the video sequence characteristics, encpdiragneters, and
deployed multimedia algorithms (e.g. H.264/AVC oPEIG-2) and can be expressed as a function of caitpl&he
quality-complexity (QC) model introduced in thispea is denoted a§(g), whereg is the CSPEC and)(-) is the
Peak Signal-to-Noise Ratio (PSNR) which is a frexlyeused measure of video quality. Given a setarfiplexity
strategies4; and the corresponding scalable CSRECS, ), we define the -th task’s operational quality set as:

Ui(Gi(A)) = {ui(gi(a;)) | gi(a;) € Gi(A)}, (16)

where u;(g;(a;)) is the measured or estimated average PSNR (iaityjuthat useri achieves when deploying
complexity strategya; with the corresponding CSPE§;(a,) . In other wordsi/;(G;(A;)) contains all of the quality
points achievable by task given its set of complexity strategied; . Similar to conventional operational
rate-distortion models, we fit the QC model to tm@vex hull of the operational quality set becawseassume that
Q;(g,) i1s monotonically increasing with increased reseuronsumption (i.e. for a fixed delay € g; , if g; € g;
increases, then the quality also increases). T98araption is reasonable because we would not wasteirces by
allocating them to a task that will gain nothingrfr them in terms of quality),(g;) may also be interpreted as the
guality corresponding to the achievable minimuntaditon defined in [19].

Using an empirical curve fitting approach, simitar successful approaches used in rate-distortieoryhfor
modeling the average distortion-rate performanceidd¢o coders, we found that a good QC model fertth- 2D

version of the MCTF video coder in [3] is:
Q(g) = ml eXp(mQ : g) + m.‘}’ g € g’ gmax 2 g 2 gmin) gmin > O’ (17)

wherem;,m, € R, andm; € R are the QC model parameters that depend on thesiseg characteristics, the

Scalable CSPE;(.4;), and the operational quality s&t(G;(.4;)) . Additionally, ¢,,;, and g,,.. are the minimum
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and maximum required resources to decode a scdlakdream, respectively, ar@(-) is the PSNR of the luminance
channel. Example QC model parameters foibfan, Slent, Foreman, andCoastguard sequences at CIF resolution,
determined using Least Mean Square fitting techesgand the measured PSNR of the sequence’s lumeinanc

components, are shown in Table 2 along with theesponding mean square error (MSE) of the model fit

Note that (17) is just one example of a QC mod#éteDcoders may use different QC models. Additignéhe QC
model could be based on the Mean CPU Bandwidthiremmentp or the Peak CPU Bandwidth requiremrdr a
statistical model [1][6] depending on the applicatrequirements. Importantly, if a complexity-std¢acoder is used,
we can construct a set of feasible complexity sgias.4; such that any point oQ(g) is achievable.

Table 2. Quality-complexity model parameters (469)(and MSE of the model fit for tt&kent, Sefan, Coastguard, andForeman sequences at
CIF resolution and with a 30Hz encoded frame-rate.

Model Video Sequence
Parameter|  silent Stefan Coastguardi Foreman
my 43.98 0.7022 4.63 8.72
my 5.38e-6 2.63e-5 1.17e-5 1.24e-b
ms -20.60 17.14 16.01 9.24
MSE 0.02 0.09 0.03 0.33

B. TheFeasible Quality Set

The feasible quality se& for M tasks contains all of the achievable quality @intR* given the total system
resource constrairR(tg; ) . Formally, the feasible quality set is defined@®pws:

Definition 1: Feasible quality set.

M
S = {(Qi(g1):-- Qu(gn)) | Z;gi ~tgr < Rftsy) and g; € g;}. (18)

The feasible quality set’s properties constrainstteof solutions that we may apply to determineality-fair resource
allocation. Observing Fig. 6 it is clear that teadible quality se$ (the shaded region in the figure) is non-convex.
The non-convexity of the feasible quality set i®sult of the exponential form of each task’s Q@ction (see (17)).
Due to the non-convexity &, conventional Lagrangian optimization techniqudsclv require convexity are not
applicable because using convex relaxation of thlgnal feasible quality set may result in videaltjty degradation,
especially in cases where operational QC pointspaese. Moreover, the solutions are often veryperi[1].

The feasible quality se8, however, isd -comprehensive, which is a requirement of the KEB$ In the following
definition, we letx < y denote component-wise inequality for vector corigoear.

Definition 2: d -comprehensive. A d -comprehensive s& € R is one for which given a point € R, if
d<x<yandyeS,thenxeS.

Clearly, S is d -comprehensive because (17) is a monotonicallyeasing function of the resource allocation.



15

Feasible quality set and KSBS for two tasks

Ideal Point

Bargaining Set

28} B
271 /

Feasible Quality Set
26} S
251
24| Disagreement Point

./ d \
23} ‘
! ! . . ! ! . \ ‘
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Task 2 Quality (PSNR in dB) — Coastguard.cif

Task 1 Quality (PSNR in dB) — Foreman.cif

Fig. 6. Non-convex feasible quality set for two deing tasksForeman (task 1) andCoastguard (task 2).

C. Problem Formulation

In this subsection, we describe the objective amstraints of the quality-fair resource allocation.

» System resource constraint: The CPU has a total resource constré@nt The resource considered is in units of
processor cycles. Each applicatidrf: = 1,..., M ) is allocated resources such that

SH <R (19)

» Application quality constraint: Applicationi (i = 1,...,M ) requires at least a minimum quality denoted by
Xmin - Additionally, applicationi has a maximum (best) achievable qualif§f*® that corresponds to deploying the
complexity strategy that requires the most resaurbrethis paper, quality is defined as the aveidgmoded PSNR.
Note that if the application quality constraint nahbe met for a particular application (i.e. tishiavable quality is not
higher than its minimum required quality), thenttpplication will not be included in the resoust®cation and the
task will not be performed. In summary, lettighy(c;) denote the quality achieved by th#h application when it is
allocated resources , the application quality constraint can be writéen

Xmn < Qi) < XM, i€ {l,...,M}. (20)

» Fairness Criterion: We define fairness for autonomous applicationgisgathe same CPU resources to be a
proportional drop in quality for all applicationBormally, such a fair allocation satisfies the daling fairness

criterion:
Qi(ci) — lem B Q](C]) _ X;TLHL

_ = 2 — Vi,je{l,...,M}. (1)
XZTLGT _ XZ_TUMZ X"]/n(l.l? _ X;TIZTL

» Problem Formulation: We desire to divide the CPU resourc&s, among thelM applications such that the
fairness criterion is satisfied, the applicatioralify constraint is met, and the system resoureesttaint is met with
equality such that no system resources are lefsethuThe quality-fair resource allocation problenformulated as

follows:
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find ¢ € 0C
st. 0C= { Cls--+sCy ’Zz 17t
ijm < Qi(ci) < X7.7na1’ Vi € {1’“.’ } (22)

Qi(cz‘) - szm _ Q](c]) — X;rL:in,
Xz.maa: o Xz_mm ijar . X]mm ’

Vi, j € {l,...,M}

We note that the solution to the above problemmigue because the feasible quality sed isomprehensive. In this
paper, in order to solve (22), we deploy the KSBfnfaxiomatic bargaining theory. The KSBS formudaded solves
the resource allocation problem in (22) in the gualomain by explicitly considering the quality jiact on the various

applications sharing the same system resources.

D. Kalai-Smorodinski Bargaining Solution: A Fair Scheduling Solution in the Quality Domain

Using the KSBS, the resource manager tries to m@terthe resource allocation by first selectingia &nd optimal
guality-domain solution and then mapping this doluinto the resource domain solution describe@R®). In this
subsection, we describe the concept of a bargapmolglem and then present the six axioms that cizapine KSBS.
Subsequently, in the following subsection, we deschow the quality-domain bargaining solution iapped back
into the resource domain.

The bargaining problem is expressed as a($ad) . S represents the feasible quality set defined in éb8 d is a
disagreement point corresponding to the minimunepizble qualities of all the taské. is formally defined below in
definition 3. Since the resource manager triedltzate the resources in an optimal manner, thected quality point
needs to be in thRareto Optimal quality set (Pareto optimality is defined belowDefinition 5). Note that, in this
section, the notatioX; represents the-th task’s quality and is used interchangeably wih) .

Definition 3: Disagreement Point. The point d = (X{"",..., Xji") € S is the disagreement point if

The coordinates of the disagreement poit'™ (i = 1,..., M ), are the qualities obtained when the resourceagem
assigns taski resourcesc; = ¢/""(a;) = min{g;(a;) € g;(a;) | g;(a;) € G(A)}, i.e., X" = Q,(g""(a;)) .
X™n can be defined by the task prior to revealingeitsernal information¥; to the RM. X" may also be
interpreted as the minimum quality expected by ta$ér collaborating in the resource allocation,aw the quality the
task expects to gain if it does not collaboratallgi.e. does not want to participate in the reselwallocation and wants
only to receive best-effort service).

Definition 4: ldeal Point. The point X, = (X{",.. ., X5*) €S is the ideal point if

Xmaz = (Xl X ) = (XHSI%(X>d X17 7X£r§%(}(2d XM) [18]
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That is, the ideal point is the point where evagktachieves its maximum quality. In general, tleal point cannot be
achieved because there are not enough resouradisdate to each task in order for them to all obtheir maximum

quality.
Definition 5: Pareto Optimality. The quality point (X;,...,X,,) € S is Pareto optimal if for each

(X1,..., X)) €8 and(Xy,...,Xy) > (Xy,..., X)), then(X,..., X)) = (X1,..., Xy) [18].

Pareto optimality in the quality-domain implies tthéne resource-domain allocation satisfies the tmmd
Ziﬁ = R(t§r). This is highly desirable because no resourcesvasted and no task can increase its quality
without decreasing the quality of another taslsoline resources are left unused, however, thenromere tasks can
increase their resource allocation (and qualityh@tit decreasing any other task’s resource alloegtind quality).

Generally, a bargaining solution is a functisit (S,d) — R with the property tha#'(S,d) € S. The KSBS
gives a unigue and fair Pareto optimal solutiort thHills the following axioms. In the followingwe letx <y
denote component-wise inequality for vector conguari

Definition 6: Kalai-Smorodinsky Bargaining Solution. X* = F(S,d) is said to be a KSBS i for the

disagreement poind , if the following six axioms are satisfied [18].

1. Individual Rationality: X* > d.

2. Feasibility: X* € S.

3. Pareto Optimality: X* is Pareto optimal.
Axioms 1, 2, and 3 define th®mrgainingset B={X € S|Y > X = Y ¢ S}, which is the set of all individually
rational and Pareto optimal quality points. Thiag, KSBS is located in the bargaining set. Notetth@bargaining set
B contains all of the quality points that corresptmthe set of resource allocatio€ defined in (22).

4. Individual Monotonicity: Given another feasible quality se$ , if S >8 , d=d , and

(e Xy = o X, Vk € {1,...,M}\ {i}, then[F(S,d)]; > [F(S,d)];.

Axiom 4 states that increasing the bargainingizetia a direction favorable to tagkalways benefits task. In other
words, Axiom 4 provides incentive for a task to ldgpthe optimal complexity strategy in (6) so thia¢ resources

allocated to the task by the RM are optimally usechaximize the tasks quality.

To illustrate how the feasible quality set changd®n one task deploys a subset of its availableptmxity
strategies, consider the two user example in KabJ where task 1 consists of decodsiignt and task 2 consists of
decodingXefan. Fig. 7(a) shows the feasible quality set in anade where both tasks deploy the complexity stpate
set corresponding to the cross-product of (4) &dHig. 7(b) shows the feasible quality set ic@mrio where task 1
deploys at random only one quarter of its compjegitategy set while task 2 deploys the same glyatet as in the

former scenario. In both cases, task 2 has a mamiaxthievable qualityX;"** = 32.26 dB ; hence, its maximum

achievable quality is not penalized or rewardedhgycomplexity strategies that task 1 choosesuealeo the RM.
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Task 1, however, loses ~4 dB in maximum achievghkdity in the second scenario compared to thé iesause it
does not deploy the optimal complexity strategyegithe available resources (see (6)). MoreoveiK B8RS results in
task 1 achieving ~2 dB less in the second scefiagioX; = 34.13 dB) compared to the first (i.eX; = 35.90 dB).

Note that the low quality (< 30 dB) achieved byktadn both scenarios may be caused by decodiadgav temporal
resolution and not necessarily by poor image qualising (23) (defined below in Section IV.E) totelgnine the
resource allocation corresponding to the qualitinpX*, we determine that both scenarios yield nearlysime
resource allocation despite the significantly défg qualities. Specifically, in scenario 1, 31.38%@ 68.62% of the
available resources are allocated to task 1 akd2ta®spectively; in scenario 2, 30.81% and 69.1%he available
resources are allocated to task 1 and 2, respictidence, because the task’s complexity strategjiectly impact
how much quality the task can derive from the ad@ resources, each task has incentive to defdogptimal

complexity strategy (see (6)) to maximize its giyali

Feasible quality set and KSBS for two tasks Feasible quality set and KSBS for two tasks
34t 34t
—— Bargaining set
— L (43.62 dB,32.26 dB) (39.61 dB,32.26 dB)
O Xax o)

32f 2l

d

—— Bargaining set

O Xinax

30t 30t

d
4 KSBS

28t 28]

26} 261

Task 2 Quality (PSNR in dB) — Stefan.cif
Task 2 Quality (PSNR in dB) — Stefan.cif

241 - 241

P ,

~ (27.42‘dB.22.0‘0 dB) ) ) ) ) ) 2 e (27.5? dB,22.90 dB) ) ) ) ) ) )

28 30 32 34 36 38 40 42 44 28 30 32 34 36 38 40 42 44
Task 1 Quality (PSNR in dB) — Silent.cif Task 1 Quality (PSNR in dB) — Silent.cif

(@) (b)

Fig. 7. Examples of achievable quality sets andaisociated Kalai-Smorodinski Bargaining Solutifumswo decoding tasks. Task 1 and task 2
decode CIF video sequenc@kent andSefan, respectively, under a resource constraint. Thgig-of both plots is the quality (PSNR in dB) of
task 1, and the y-axis of both plots is the quaidityask 2. (a) Scenario where both tasks deplbgfaheir complexity strategies. (b) Scenario
where task 1 deploys at random one quarter obitspdexity strategies and task 2, again, deploysfats complexity strategies.
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5. Independence of Linear Transformations: For any linear scale transformatign o(F(S,d)) = F(¢(S),¢(d)).

Axiom 5 states that the bargaining solution dogshange if the quality function and disagreemefare scaled by

a linear transformation.
6. Symmetry: If S is invariant under all exchanges of taskgS,d) = F;(S,d) for all possible tasks, ;.

Finally, Axiom 6 is a special case of the equalgigndrop fairness criteria imposed by the KSBSmiplies that if
tasks have the same disagreement points and the maximum achievable quality, then they will hakie same
guality allocation and therefore incur equal drapgjuality. Together, axioms 4, 5, and 6 are callaxioms of

fairness”.

E. Resource Allocation Using the KSBS
Let F' be the KSBS defined by the six axioms describeSdation IV.D and leQ = (Q;(-),...,Qx(-)) be a set of

quality functions. We can express the system resoaifocation as:



19

fKSBS(\Ijb"'v\IIMaC) = (Qil oFo Q)(‘Illaa\I/Mvc) = (Cikw'-vc}kW)! (23)
where a composite function gf and is denoted asf o h)(z) = f(h(z)) andC = {(cy,...,cy |Z

Note thatoC, defined in (22), is the subset 6f for which there is equality in the system resowaestraint (see (19)
). The KSBS requires that the resource manageegathe external informatiodr; = (Q,(-), X™) from each task
i=1..,M (i.e. each task’s QC model and minimum requirealigy).

Given a set of resource allocatio@isand the received external information defining@@ models, (23) first forms
the bargaining problem pai8,d) and then finds the KSBX* = F/(S,d). Finally, (23) determines the fair and Pareto
optimal resource allocatioft;,...,cj;) using the inverse of the quality function (i.ee fhverse of (17)). In the next

subsection, we describe how to determine the KEBS= F(S,d).

F. Generalized KBS
The conventional KSBS folM tasks satisfies
X" = F(87 d) =d + )‘marc(xmaaﬂ - d)’ (24)
where \,,,, = m)z\xx{)\ |d + \X,,., —d) € S}. Hence, the conventional KSBS is the intersectietween the

bargaining seB C S and the linel. joining the disagreement point and the ideal pdéefined by

Xu .
L=3X - .= M X . -
{ | Xm(u Xﬂ“ , X > O, V’I,} ( )

Note that the constraint tha&f, > 0 is a consequence of the translated disagreemémi Ipeing the origin of the
quality-space (i.ed = 0). A generalization of the KSBS can be envisagedabgigning each task different
bargaining powersgy;, which scale the ideal point and lead to uniquéghted bargaining solutions in the Pareto
optimal bargaining seB. The generalized KSBS, however, requires thatdikagreement point coincides with the
origin of the quality space (i.el = 0). Therefore, to determine the generalized KSBShaee to first translate the
feasible quality se$ to the setS = S — d such that the translated disagreement pairt d — d = 0 coincides
with the origin of the quality space. Similarlyetideal point is translated %,,,, = X,,., — d. We then form the line

L joining the translated disagreement point andriéneslated and scaled ideal point defined by

L={X| X K , Z>02a La; > 0,Yit, (26)
X’ITIOT aMXm(lT
where o; denotes the -th task’s bargaining power. Whem = ... = «y,, the generalized KSBS becomes the

conventional KSBS. As in (25), the constraint that> 0 is due to the fact that = 0. The translated generalized
KSBS X* = F(S,d) is the intersection of: with the translated Pareto optimal bargainingBet B — d .

We solve forX* using a low-complexity numerical method based dnisection search with a predetermined
tolerances , which can be adjusted to limit the overall comjileof the resource allocation. The complexitytlois

search is on the order ddg,(c)- M . Finally, the generalized KSBS is determinedXds= X* + d. Fig. 7(a-b)



20

illustrate how the lindl = L + d, determined by the disagreement painand the ideal poinX,,,, , intersects the
bargaining seB = B + d to obtain the KSBS for two different two task sagas.

We note that the bargaining powers provide a flexitesource management tool for making quality dodif$
between different tasks. This is particularly imtpat for multimedia applications because the piggiof different
tasks may change over time depending on the segisenontent characteristics [16]. Examples of tffeca of

bargaining powers are given in Section V.

G. Proposed Bargaining-based Resource Allocation System

In this subsection, we describe the steps that dempur bargaining-based resource allocation sysied discuss
the complexity overheads associated with each alepf the following steps for determining the KSEare illustrated
in Fig. 8:
1. Session initialization stage: The RM determines the available system resouf®g$, ) for the current super service
interval t§; and conveys this information to taske {1,...,M}. This step is performed online, however, it incurs
negligible complexity overhead.
2. Determine the Scalable CSPEC: Given the sets of complexity strategids, i € {1,..., M}, we determine the
Scalable CSPE;(.4;) defined in (3). The Scalable CSPEC can be detednising offline modeling, training, or

profiling, followed by real-time classification [2]] [9]. The offline methods incur no overheadsidg the resource
allocation. Only a small overhead is incurred bgl4t@ne classification

3. Determine the quality-complexity models/external information: The QC model);(-) (i € {L,..., M}) defined in
(17) are determined offline (similar to [7]) as descdte Section IV.A. Therefore, no overhead is inedrduring the
online resource allocation. These QC models comméch task’'s external information that must beatd to the
RM.

4. Determine the KSBS: For the set ofM tasks, we find the quality-domain allocatidsi® = (X7,..., Xj/)
determined by the KSBS (sé#)). The KSBS is solved online using a low-complexitymerical method based on a
bisection search with a predetermined tolerancevhich can be adjusted to limit the overall comjiie of the

resource allocation. The complexity of this seascO(|log, ()| - M).

5. Determinethe quality-fair resource allocation: The quality-domain allocatioX* = (X7,..., Xj,;) determined by
the KSBS is then converted to the quality-fair tgse allocationc® = (cf,...,cj;) using (23). The step incurs
negligible computational overhead since it onlyuiegs calculating the inverse @f7) for each of thel/ tasks.

6. Select the optimal complexity strategy: Given the quality-fair resource allocatiogs (i € {1,...,M}) each task
selects its optimal complexity strategy defined in(6). This step is performed online, however, if waiass that each
task’s complexity strategies are sorted (offlimejléscending or ascending order of complexitypfitenal complexity

strategy can be determined using a low complexitgry search. For a set af tasks that each hay€ complexity

strategies, the complexity of the binary searcB(8/ - log,(K)). This complexity is limited for a relatively small



21

number of tasks and complexity strategies. Howeafrarsystem designer wants to limit the complexitythis step, a
maximum number of complexity strategies per tasklmimposed. The number of these strategies ctrelsame for
all tasks, or can be larger for more important$assers or tasks that require a large complexityhieir execution.

7. Real-time scheduling: Each task is scheduled using any real-time scheglyolicy in the literature [4]-[5]
[12]-[14], consumes resourcega;) = cj/tg', , and achieves qualit®,(g;(a;)), g:(a;) € g;(a;).

Initialize resource allocation

by sending to tasks:
tsr R(ts) . Fisps
Task1l e Resource
< Manager
Complexity
Strategies .A1 Determine the 91 (A1 ) Determine the \j
Al > Scalable » external 1 > Determine the KSBS
CSPEC information .
o Gi(A) U = (i) : X" = Frsps(V1,..., Vi)
tsr. RAtsr) . Fisps War| = (X{,..., Xiy)
n : . *x\ Lk tw e *
. * Schedule task 1 with resourceg(aj) = cl/ o, utiity @ (g1(al)). il X*
Determint
Task M resource allocation:
= (Cfa"'aczf)
Complexity
Strategies AM Determine the gM(AM Determine the : :
A » Scalable » external —— | A0C |
CSPEC information | [
v ) 4
| Gu(Awr) Uy = (Qu() cf i
. T Tasks select optimal complexity
81 RA(Ls) . Fiesps «— strategies.
Cm

Schedule taskl/ with resourcesgys(aj;) = cjj/tfé’[ , utility Qpr(gar(ads))-

Fig. 8. Resource allocation system diagram showiegxchange of information between thé video tasks and the Resource Manager which
determines a fair resource allocation based oimtpesed fairness policy.

V. EXPERIMENTS

In this section we first evaluate the CSPEC asdmnission control tool for multimedia systems arnukdfically,
video decoding. We then compare the performanchefKSBS against other system resource allocatdmness

policies. Finally, we give examples of the effettrmtion and texture based bargaining powers orKBBS.

A. Evaluation of the CSPEC as an Admission Control Tool

In Section II.C we illustrated how adding the dgl@yameterl to a task’s deadlines significantly reduced tls&'&
CPU bandwidth requirement. In this section, we @&t the use of the CSPEC’s CPU bandwidth demanadingger g
(defined in Section 11.B), used for admission cohttind complexity prediction, against an existimgugon in the

literature [1][6] and also against the mean banthwdquirement.
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Table 3. Deadline miss percentage for differentitiee/priority classes for two bandwidth allocatistnategies based on either meeting 95% of
all deadlines or only providing the mean CPU banltlwirequired by a task. Comparison of PSNRs fdediht resource allocations.

Sequence Allocated CPU Deadline / Priority Class Deadline Miss %
q Bandwidth 0 1 2 3 [4] 5 |67
Silent 95% 43.75 0 0 0 0 0 0
Mean 100.0| 68.75 62.5Q 50.00 O 8125 |0 |O
Sefan 95% 43.75 0 0 0 0 0 0
Mean 100.0| 87.50, 75.0Q 0 D 8730 |0 |O
Sequence PSNR (Proposef) PSNR (95% PSNR (Mean)
Slent 38.25 dB 37.14 dB 31.37dB
Sefan 35.03 dB 32.06 dB 26.46 dB

Let any frames belonging to the equivalent disptisadlines within each GOP belong to a particular
deadline/priority class: . For example, ift, is the first deadline of the -th GOP, then all frames with their deadlines
att, +2nA, forn =0,...,7 (as in Table 1) belong to the-th deadline/priority class. Smaller values of
correspond to frames of higher priority becauseriframes depend on them. In an H.264/AVC baseercdor

example, | frames can be classified as having 0, P framesn = 1, and B frames: = 2.

Table 3 illustrates the distribution of missed deesd in a priority class for two cases: first, t6BU bandwidth
assigned is statistically determined in order te®%% of the video decoding task’s deadlines J1§écond, the CPU
bandwidth is assigned as the task’'s Mean Bandwiljlnirementp . In the latter case, many deadlines are missed
across several classes. The mean bandwidth onlyesihat over the duration of the super serviegval ¢§; the task
receives enough CPU cycles to complete, howevisrdtes not guarantee that the instantaneous deddlideadline
bandwidth requirements are satisfied. The formee d¢eas many less missed deadlines, however, thegcalr in the

highest priority class which can adversely afféet quality of subsequent frames. The bottom half of

Table 3 shows the quality impact of the Mean Bauwidwi{labeled “Mean”), 95% deadline (labeled “95%&hd
CPU Bandwidth Demand based (labeled “Proposedtureg allocations. Based on the PSNRs in

Table 3 it is clear that allocating resources tenaa arbitrary percent (e.g. 95%) of a task’s tieasl significantly

impacts the PSNR. In the top half of

Table 3 we do not include the case when the CPW\e@th demandy is assigned to a task, and each priority
class’s deadlines are increased o 2nA + d, because no deadlines are missed. This additdeiay, however,
incurs a small penalty in memory requirements duadreased buffering. An analysis of the bufferavgrheads and

peak CPU bandwidth savings when using the CPU bitll\demandg can be found in [10].

B. Smulation Setup

Experiments are done via simulation. The Scalal8@EC data for th&efan, Slent, Coastguard, and Foreman
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sequences (CIF resolution, 30Hz encoded frame-sate)lected offline. We extract the CSPEC datedwespond to
frames 1-256 for each sequence (i.e. the Peak vamtkIMean workload, Delay, and CPU Bandwidth Demared
constant for the 256 frames). Additionally, eachusnce’'s QC model parameters shown in Table 2 eterrdined.
Lastly, we assume that each task is able to chibmseptimal complexity strategy given its resouatlecation (the

optimal strategy is defined in (6)).

C. Comparison of the KSBSwith other fairness policies

In this section, we compare the KSBS from SectiIwith the resource allocation policies in Sentld.B. We
perform the resource allocation for all four expeintal sequences. Table 4 illustrates the resutjunglity and
resource allocation for each fairness policy, therdinates of the disagreement padhiand the ideal poink,,,,, , and
the Quality Increase Factor (QIF) defined relatwvel andX,,,, as follows:

100 x Qic;) — X"

— | 27
leax _ XZ’ITMTL ( )
(A _ ymin (c.) — Xmi’n
For the KSBS,Q’(C?,) X? — = Q],(C{) . Vi, j€{l,...,M} as required by the fairness criterion defined in
XZ_WL(LL _ XiNLﬂL X]I]L(LL _ X]”L”L
(22).

We use the metric in (27) to compare the diffenesiource allocation policies because it capturesqimlity
requirements for each task. Specifically, a QI a@fidicates that a task achieves its minimum degijrelity; higher
(positive) values of the QIF indicate that the taskieves a higher quality; a QIF of 100 indicdkes a task achieves
its maximum desired quality; and, a negative QUidates that a task achieves below its minimumiredwquality.

Table 4 clearly illustrates how the resource donf@iimess policies fail to provide quality-fair msce allocations:
» The results for the ERA policy demonstrate how auna¢ resource allocation does not guarantee eaquzditigs in
the quality-domain. For exampl&]ent receives 25% of the resources which corresponds tmperceptibly distorted
45.0 dB PSNR, however, the 25% resource allocati®efan achieves only a 22.1 dB PSNR which is well belber t
task’s minimum acceptable quality when using th&khence the negative QIF), and is intolerablyodied.

» The GPS policy has significant variation in thelgualegradation for each task. Most notatijent has a QIF of
59.08 whileSefan has a QIF of -23.40 which is negative becauserg¢iseurce domain fairness policies cannot
guarantee a minimum quality.

* The WMM policy (with equal weights) provides fairgquitable resource allocations to each task amdpfothe
GPS, WMM, and KSBS policies, has the maximum mimimrasource allocation. The consequence of thisghiewy is
that the task that required the least resour§éanf) received an unnecessary boost in quality to 4B.7Tdhis large
windfall for the Slent sequence, in turn, penalizedefan significantly by starving it of necessary resosgread
decreasing its QIF to -33.64% corresponding tocimexed PSNR of 22.6 dB.

* Finally, the KSBS provides almost equitable QIFd & designed to do based on the fairness aviten (21). In
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fact, the QIFs for the KSBS only differ becauséhaf non-zero tolerance used in the numerical b@esearch for the
Pareto optimal and fair quality allocation. Sinlbe KSBS operates in the quality domain, it allosaignificantly less
resources t&lent compared to other fairness policies. Consequethigyresources that aren’t allocate&tent can be
allocated toStefan, which requires the most resources to achieveefoality. The KSBS is effective because it

explicitly considers the quality impact of the rese allocations.

Table 4. Comparison of different fairness policiésegative “Quality Increase Factor” means thattdsk achieves less quality than the
minimum quality that it demands when the KSBS igldged as the fairness policy.

Ideal PointX,,,, (dB) Disagreement Poind (dB)
(Foreman, Coastguard, Stefan, Silent) (Foreman, Coastguard, Stefan, Silent) Quality Increase Factor
(39.8 dB, 37.9 dB, 32.3 dB, 45.2 dB (25.0 dB, 288) 25.0 dB, 25.0 dB) Qi(c;) — X"™
. . 100 x Xmar _ Xmin
Fairness Quality Q(c;) (dB) Resourcex ¢; (%) : !

Policy (Foreman, Coastguard, Stefan, Silent) (Foreman, Coastguard, Stefan, Silent) (Foreman, Coastguard, Stefan, Silent)
ERA (31.3dB, 27.1dB, 22.1 dB, 45.0dB)  (25.00 %, PFM, 25.00 %, 25.00 %]  (42.31, 16.37, -40.@R.85)
GPS (30.4 dB, 29.9 dB, 23.3 dB, 36.9 dB (23.95 %, 21%, 27.81 %, 16.82 % (36.63, 38.02, -23.43.08)
WMM (32.0dB, 27.6 dB, 22.6 dB, 41.7 dB (25.84 %, BBA, 26.16 %, 21.85 % (47.04, 19.92, -33.632.86)
KSBS (30.2 dB, 29.5 dB, 27.5 dB, 32.1 dB (23.62 %, 90k, 34.51 %, 11.28 % (34.94, 34.91, 34.984.96)

D. The Effect of Bargaining Powers

In this section, we illustrate how bargaining posvehange the KSBS. Table 5 shows example bargapongr
values for each of the four experimental sequebassd on the motion vector (MV) bit-rates (whica proportional
to the average number of motion vectors per ppxgl ) and pyz [2] [7] [9] which is the fraction of non-zero traiosm
coefficients (taken from the sequences decode84Kb/s). Table 6 illustrates the KSBS resultingnfrthese sets of
bargaining powers. We make the following observetio
i) Motion related bargaining powers: When the bargaining powersg are proportional tg; 5, the KSBS favors the
tasks with high motion characteristics. In thisez&efan is favored and it achieves a 33.28 dB PSNR. Sihee
bargaining powers are widely varying among the fexperimental sequences, the quality allocatioalse widely
varying. Notably, theSlent sequence, which always achieved the highest P®NiRei KSBS without bargaining
powers, now achieves the lowest PSNR (28.32 dB).
ii) Texturerelated bargaining powers: When the bargaining powersg are proportional te; v, the KSBS favors the
tasks with more non-zero transform coefficientsic8ip; y, is proportional to the average video bit-rate [1iigse
bargaining powers are similar for our set of tesfuences, however, the high frequency textureseottowd in the
background oftefan result in it having a higher bargaining power tiam other sequenceSlent, on the other hand,
has comparatively lower frequency textures (paldidy in the residual error frames) and has a gpoadingly lower

bargaining power. Hence, compared to the KSBS withargaining powersgtefan improves by almost 1 dB while
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Slent drops over 1 dB.

We note that many other bargaining powers basedti@sequence’s content characteristics can be ykp[d 6].

Table 5. Example bargaining powers.

Bargaining Power Sequence
Foreman Coastguard Sefan Slent
MV bit-rate o< pyry 62997 46483 185034 29086
(bits/sec) (a = 0.195) (a = 0.144) (o = 0.572) | (a = 0.089)
Dz 0.35 0.29 0.37 0.26
(a = 0.276) (a = 0.228) (a =0.291) | (a = 0.205)

Table 6. KSBS with bargaining powers.

Resourcex ¢; (%) Quiality Q(¢;) (dB)
(Foreman, Coastguard, Sefan, Slent) (Foreman, Coastguard, Sefan, Slent)

Fairness Policy

KSBS

(@ parv) (24.36 %, 28.83 %, 40.14 %, 6.66 %) (30.75 dB, @8l8, 33.28 dB, 28.32 dB)
KSBS

(o > puy) (24.77 %, 30.34 %, 35.25 %, 9.64 %) (31.08 dB, 2@B, 28.15 dB, 30.70 dB)

VI. CONCLUSION

In this paper, we propose a new system resouraesadibn framework for multimedia systems that perfonultiple
simultaneous video decoding tasks. We jointly cbeisthe available system resources (e.g. proceysteas) and a
video decoding task’s characteristics such as ¢ljegence’s content, the bit-rate, and the GOP sireicin order to
determine a quality-fair and Pareto optimal reseuatiocation using the Kalai-Smorodinski Bargaini@glution
(KSBS) from axiomatic bargaining theory. To driveetresource allocation, we characterize the videmoding
workload using a twin leaky bucket traffic modadrr which we determine the task’s CPU bandwidth dehtaven its
latency/delay constraints. Using the CPU bandwidtemand and offline measurements, we derive a
guality-complexity model that quantifies the traffetetween the video quality and the actual systemplexity (e.g.
processing time on a specific processor). We coeiperr KSBS to other fairness policies in the liter@and find that
because it explicitly considers multimedia qualitprovides significantly fairer resource allocatsthan the other

policies that operate solely in the resource domain
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