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Abstract—We investigate the problem of providing media serges to multiple
autonomous wireless users at the edge of a Contebelivery Network (CDN) in a setting
where wireless resources are priced based on reafre market demands. Our focus is on
the multimedia service resource negotiation processhich is performed prior to the actual
media transmission. We adopt the Progressive Secorfice (PSP) auction mechanism,
which is used to determine the network resource altation to the users and a
corresponding tax for the consumed resources. Ounierest in this negotiation mechanism
lies in understanding a single user’s (omgent’s) ability to learn to improve its bids over
time in order to increase its own utility in the face of time-varying resource valuations and
contention for resources with other users. We pay grticular attention to the
implementation complexity and the information requrements of the agent's deployed
learning rule, and we quantify the impact of thesefactors on the rule’s ultimate
performance (i.e. the cumulative utility achieved wer time) and efficiency (i.e. the utility
gained per unit of computation). These factors arespecially important in the mobile video
streaming context, where limited resources must beefficiently utilized, and where
communication and computation overheads can signdantly impact the quality of service

experienced by the user.

Index Terms—Multimedia service middleware, Resource Negotiativp, Session
Negotiation, Multi-agent learning, Content DeliveryNetworks.

|. INTRODUCTION
At the edge of content delivery networks, indepemdeedia-service providergl] deliver

network-content to multiplautonomousnobileusersthrough their wireless radiofhe number



of users that access a single media-service provitiey vary depending on the available
infrastructure (e.g an 802.11-enabled access pmnsus a cellular network base-station).
Regardless of the type of infrastructure-to-mohiieeless link, there are always limited network
resources (i.e. bandwidth). Unfortunately, suchdwadth constraints conflict with the resource
requirements of real-time, bandwidth intense, videgeaming applications, which we will focus
on in this paper. That being the case, resourceatibn becomes of paramount importance in
ensuring that multiple autonomous users fairly aptimally sharethe scarce wireless resources.

We frame the resource allocation problem as anauat which wireless resources are priced
based on real-time market demands [2][8]. In cattit@ charging a flat-rate (as is currently done
for most services provided over cellular networkd the internet), this auction based framework
allows media-service providers and other ownersashmunication bandwidth to manage the
network resources by charging users based on blaeidwidth usage and the real-time market
price of those resources at the time of their uséjes obviates the need for service providers to
implement controversial bandwidth “throttling” alghms, which slow traffic from big
consumers of bandwidth (such as those participatinmeer-to-peer video streaming and other
multimedia services), because, during times of highgestion, users would have to pay a
premium for the bandwidth required by these sesrice

By framing the network resource management probésman auction, the media-service
provider is no longer the sole decider of how reses are allocated among users. Individual
users now have incentive to actively participatéhm resource negotiating process because they
can influence their resource allocations throughirtibids. We assume that a user’s mobile
device automates the bidding process by actingasiger'sagent that is, it submits bids to the

media-service provider on the user’s behalf. Inmgatty, an agent’s bid impacts its resource



allocation as well as the resource allocationhefdther competing agents, which we will regard
asopponentsn the auction. This auction game is played reggigtover time such that agents

can request more or less resources based on thgestam that they experience and their time-
varying resource valuations.

In order to improve their bids over time (i.e. iease their payoffs), we assume that agents
receive (limited) feedback from the media-serveoutbtheir opponents’ bids. Using this
information, agents calearn to bidso that their utility is improved over time. Fotaeple, the
agent can analyze its opponents’ previously subndhitiid quantities and then submit a bid
commensurate with the anticipated future congeskewel and its current valuation of the
resources.

In this paper, we adopt the Progressive Seconce RRSP) auctidnmechanism [2] as the
foundation of the decentralized media-service resouegotiation. In the early work on the PSP
auction [2], the authors assume that (i) an ageayt lmarn to bid based on complete knowledge
of its opponents’ bid profile in the previous tinsdot; (i) bids are always submitted
asynchronously, with only one agent submitting & bel in each time slot; and, (iii) all agents
deploy the same learning rule (i.e. “self-play”waaptions [4]). These assumptions are designed
to study the equilibrium and convergence properbéshe PSP auction, but they are not
appropriate for the considered multimedia resoaltmation scenario for two reasons. Firstly,
each agent (i.e. mobile device) has limited (bffedent) computational capabilities, so it may
be infeasible for it to process all of its opporseitids in order to determine the bid that will
maximize its payoffs within a tolerable delay. Sedly, due to the decentralized nature of the

wireless resource allocation problem, and the pddgithat there are many agents requesting

! However, it should be noted that techniques pregas this paper could be deployed in conjunctidth wther auction mechanisms.



resources, possibly significant communication ogads are incurred as the media-server
repeatedly updates agents with information alatiubf their opponents’ bids. Hencenlike in
conventional game-theoretic solutions, we shift attention away from equilibrium concepts in
favor of modeling, analyzing, and improving the dynamic l@raof interacting usersn dynamic
settings, out of equilibrium, while also explicitiyonsidering the information requirements and
implementation constraints occurring when deploymgtimedia applications.

Considering the range of communication and proogssiapabilities in existing mobile
devices (e.g. smart phones, PDAs, laptops), itigarcthat there cannot be a one-size-fits-all
learning algorithm. In other words, learning al¢foms with various informational and
computational requirements are necessary so thatda range of mobile devices can all
participate in the auction game. Despite this newdcomplexity- and information-adaptive
learning rules in real-life multi-agent systems,sinliterature on multi-agent learning in games
only considers two categories of learning rulesesenlearning rules land on the extremes of both
informational and computational requirements andehaot been designed with any realistic
application in mind (i.e. they are general and application specific). For example, payoff-
based learning rules (e.g. reinforcement learngjpdre simple to implement, but they assume
that no a priori information about the system iaible. Meanwhile, probabilistic learning rules
(e.g. fictitious play [4]) are informationally armbmputationally prohibitive, which precludes
their applicability in the distributed mobile corte

Our contributions in this paper are as follows:

* We cast the media-service resource negotiationlgmoht the edge of the CDN as an auction
game among multiple agents. In this auction scendiie agents’ resource valuations are

defined based on operational rate-distortion mofitelshe encoded video sequences. Hence,



their valuations depend on such factors as theovstmurce’s characteristics (e.g. high-
motion, detailed textures) and multimedia formag(&MPEG-2, H.264/AVC). Importantly,
the agent’s utility, which is a quasi-linear furceti of the resource valuation and cost, is
aligned with the user’s desire to achieve a higaliguvideo at a low cost.

* We investigate different levels of centralized aboation in the auction game. Under the
proposed coordination policies, the media-server pall a variable number of agents to
submit a new bid in each time slot, thereby impagthe learning dynamics.

* We introduce learning rules that require an agerdadquire different levels of information
from the media-service provider about its opponeatsl we consider the computational
requirements (in floating point operations) of th#erent learning rules. We also consider
heterogeneous opponents, which all deploy diffelesarning rules.

* Finally, we propose two evaluation metrics with glhwe can quantify (i) the value of the
information required by an agent to deploy a paldc learning rule (i.e. the cumulative
impact of more or less information about its oppudsebids on its utility), (ii) the efficiency
of the learning rule in terms of achieved utiligrpnit of computational complexity, (iii) the
cumulative impact of different levels of centratizeoordination on an agent’s utility, and
(iv) the utility impact when agents deviate fromelfsplay” assumptions, and employ
heterogeneous learning rules with varying inforomai and computational requirements.

The remainder of this paper is organized as follosSection Il, we describe the system
setup and the PSP auction mechanism. We then fiaenide agents’ goals and the repeated
media-service resource negotiation framework. IatiSe 1ll, we describe several coordination
policies that can be employed in this frameworkS#ction 1V, we introduce learning rules that

vary in computational and informational complexdtyd, we propose two metrics for evaluating



and comparing these learning rules. In Section ¥,present our experimental results and in

Section VI we conclude the paper.

II. MEDIA-SERVICES AT THEEDGE OF THECONTENT DELIVERY
NETWORK

This section presents our proposed media-serviaehfor auctioning wireless resources at

the edge of a CDN.

A. System setup
We consider a system for delivering multimedia eabtto users at the edge of a CDN. The

system involves one or more content distributorthiwithe CDN, which deliver on-demand
video streams to users through an intermediateavsstivice provider.

To accommodate the various users, the media-sepviseder performs real-time transcoding
to seamlessly convert the content distributor’sevidtreams to a format compatible with the
end-user’s device [1] [6], and to meet the bandwitinstraints imposed by the user’s resource
allocation. In return, the users pay a tax to theglia-service provider. The tax that each user
pays increases with (i) the amount of bandwidthdusg the media-service provider to stream
the user’s video, (ii) the current demand for thedra-server’'s bandwidth, and (iii) the other
users’ valuations of the resources (as represdytéiaeir bids).

In this paper, we present a solution based on @uc¢kieory for deploying media-services in
which multiple users must share a single mediaisemprovider’'s bandwidth. We assume that
there areM such autonomous users. The total network resotine¢snust be shared among the
users isk (kb/s)? The agents, in the context of our auction game,the &7 mobile video

decoders, which are indexed by z={1,..., M} (one agent per user). These agents will play the

2 The total network resources could also be expteasea fraction of time (i.e. transmission oppdtguduration) within each service interval.
This time-allocation would then have to be conwettea rate allocation, which would depend on as##r’'s channel conditions. For simplicity,
however, we assume that the rate allocation isldiviamong the users.



auction game in every time slotin order to compete for the available wirelesoueses on
behalf of the users.

The flow diagram in Fig. 1 details the negotiatiogtween the agents and the media-server,
which auctions off the available bandwidth in edéiae slot. The figure illustrates the internal
logic flow of the agents and the media-server, &l as the information that is exchanged
between them at different stages of the negotiaiitve notation in the figure will be introduced
throughout the rest of this section. The shadedtional blocks are the most significant
components of our proposed solution for media-serviegotiation. We discuss them in their

respective sections, as specified in the figure.
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Fig. 1. Detailed media-service resource negotiation diagram. iagiat the block “Start = 0" (at the upper right), the logic for the Media-
Server and the Agents runs in parallel, with synchronizatiawéden the two wherever information exchange is required. The shadzidnal
blocks are further described in the corresponding labeled sections

B. Auction Mechanism for allocating resources
In this paper, we consider a simple auction medmarfor the resource negotiation in each



time slott € {0,1,2,...}. This stage of the media-service resource negmtias illustrated in Fig.

1 as the shaded functional block with the labelct®a 11”. Specifically, we deploy the
Progressive Second Price (PSP) auction mechanisimduted by Lazar in [2]. The PSP
mechanism is a generalization of the well-knownkvy auction, which is used to allocate a
single non-divisible objed one bidder [5f. The PSP, on the other hand, is used to divide
variable-sized portions of alivisible resourceamong multiple bidders, making it more
appropriate than the Vickrey auction [5] for allong (infinitesimally divisible) bandwidth to
multiple agents.

In the PSP mechanism, each agent submits & bidg;,p,) € & = [0,R) x[0,00) %, where Z is a
set of possible bid-actions. Each bid iguantity-price pair(q;,»;), whereq; and p, are theith

agent’s desired quantity of resourt@eb/s) and offered price per unit resource, retpely. A

bid profile is a tuple of agent's bid$ = (b,...,by) = (b,b_,) € &, wWhere £ = ][5 and
€z

b, = (b,...b;_1,bi41,...,by) € B; denotes the bids of thah agent's opponents, is determined
by the policy with which agent plays the auction game. We discuss such polices lin
Section IV. If an agent does not require resouritesid becomes, = 0. Note that the agents in
our game are actually the devices on which thesugemw their video streams. In other words,
the device’s software generates bids on behalietiser.

After each agent submits its bigd, the media-service provider performs the followimg
computations as part of the PSP auctioall®cation rule (i) The resource assignment, and (ii)
the payment computation based on the inconvenianmaticular agent causes the other agents
during the current time slot.

% In a Vickrey auction, the highest bidder wins the non-iilésresource, and must pay the price offered by the second hinjhesr.
* For notational simplicity, we do not explicitly indicatettime-index in this section (i.e. we do not Wﬁfe cf , etc.).
® To account for packet losses in the wireless channel, the ageitd $iid for thethroughputthat will achieve its desiregoodput



An allocation rule4A maps a bid profile ¢ # to an allocation profilex(b) € # . The allocation
to the ith user is denoted by the pai(b) = (,(b),7;(b)) € B = [0,R) x[0,00), Where r,(b) is the
resource allocation (kb/s) ands) is thetotal tax paid forr(b). The allocation rule is said to be

feasibleif it satisfies [2]:

M
> r(b) < R, Vb € B, and
=1

1
r(b)<gq, Vie 7 (1)
7:(b) < pig;, Vie Z

The auctioneer (i.e. the media-service providdgcates resources in order to maximize the

total “social welfare,” i.e.

M
r? = arg maprm , (2)
relo,R)M =

where r7" = (5'(b),...,ri?"(b)) meets the feasibility conditions in (1). An alltoa rule that
allocates resources as in (2) was introduced bgiLiaz2]; we repeat it below for completeness.

Allocation Rule [2]: For aunit price y € [0,00) , define

Ri(ya bfi) = [R - Z Qi | (3)

k€Z i,pr>y

where[z]" = max{z,0} . The PSP allocation,(b) = (r;(b),7,(b)) to user;: is defined as follows:

T}(b) = min{qivRi(pi7b-i)}7
Ti(b) = Z Pr [77\(03 b—7) - Tk(bmb-i)] ' (4)
keZ;
Equation (3) defines;(y,b_;), which represents the resources available to agént bids at

the unit pricep; = y. In (4), (b) denotes the resource allocation to agemind the taxr,(b)

represents the impact that agenthas on the users who are excluded by its presdice.

construction,r;(b) is always non-negative.



10

C. Problem formulation for the agents
The value that agentderives from a resource allocatignis denoted as;(r; ) . In our setting,

6, is the video quality received by agentit is measured in terms of the peak-signal-taseaoi
ratio (PSNR in dB), which is a commonly used ohjexideo quality metrit To obtain an
analytical expression fos,, we may adopt any video distortion-rate modelsgh literature.
Importantly, any other resource valuation functioould be deployed, as long as it is
differentiable, monotonically non-decreasing witlirieased resources, and concave [2].

For a one stage auction game in which the agebtsisthe bid profiles = (5,6 ,), the utility’
gained by agent has the quasi-linear form

u;(b) = 6;(r; (b)) — 7:(b) , (5)

which is merely the value of the allocation less tiost to the agent. Note thats) < ¢, (r; (b))
becauser; (b ) is always non-negative.

At each stage of the auction game, the agentsedsimaximize their own utilities. In other
words, each agentwants to determine the bigt" such that

b = ar;g;gax u; (b, b)) (6)

A solution to (6) (within a tolerance> 0) is given by Lazar in [2] (assuming th&at is known,
and p, = p,, Vk = ). We will discuss the intuition behind the solutiater in Section IV.B.

In large-scale decentralized and competitive ancsicenarios, (6) cannot be solved by each
user because they do not necessarily know othetsusduations and they cannot determine a
priori their opponents’ bidsh, (except under very specific circumstances, whiok will

describe in Section IV.B). Therefore, users mustriethrough repeated interaction to make

® We note that if users participating in the resource negotiatioress request videos with different spatial and/or tempesalutions, then
the PSNR may not accurately reflect the relative differences in percaked quality among the users. This can be remedied by pénfprm
separate auctions for groups of users who are streaming witdee same spatial and temporal resolutions.

" Throughout this paper, we will use the terms “utilitypayoff,” and “reward” interchangeably.
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better bids, thereby increasing their own utilitissthe next subsection, we formally define the
repeated negotiation procedure, which specifies &agants request media-service resources over

time. Later, in Section 1V, we describe how therdgdearn to improve their bids over time.

D. Repeated media-service resource negotiation
In our setting, the media-service provider auctithres available resources per time slot to the

users. The proposed media-service resource nagotfaamework provides a way of describing
the dynamic interactions among the agents.
Formally, we define the resource negotiation pracedat the edge of the CDN as a tuple

(Z,B,u,v), Wwhere Z is the set ofy agents andz is the joint bid-action space as defined in
Section II.B. z is a reward vector function defined as a mappiogfthe joint action® ¢ #

to an M -dimensional real vector representing the rewandgshe various tasks, i.es.5 — R™.
Lastly, v : Z x{0,1,2,...} — {0,1} is acentralized coordination policyrhe media-service provider
usesv to determine which agents may subrmetvbids in each time slat. Specifically,» maps
an agentindex ¢ z and a time slot € {0,1,2,...} to a binary variable:

1, if player i can submit a new bid at time ¢

(7)

v(1,t) =
(i>t) 0, if player ¢ cannot submit a new bid at time ¢

Importantly, if v(i,t) = 0, then theith agent’s bid is the same as in the previous siog as
illustrated in Fig. 1. We also assume that0) =1, vic Z, regardless of the deployed

coordination policy.
In the game theory literature, a “repeated gamed game with a coordination poliay in

which the agents simultaneously submit their actian every time slot [7], i.ev(i,t) =1,
v(i,t) € Z x{0,1,2,...} . In this paper, however, we want to investigatev ltbfferent levels of

coordination can impact each agent's ability tordedao improve its utility over time.
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Accordingly, we generalize the repeated game cdrtoegonsider different levels of centralized
coordination. In Section Ill, we describe seve@rclination policies in detail.

The action taken by task during each time slot (in which v(i,t) = 1) is to submit the bid
vectord! = (¢!, p!). We define the history of the game up to time slas

#' =00l b e (8)
whereb = (by,....by) = [(q1,p1);--->(qur, ar)] 1S the bid profile,a = (ay,...,ay) = [(1n,71),-..,(rar, Tar)] 1S
the allocation profile, ana@ = (u,,...,uy) is the utility profile. This history summarizestbids
played, the resulting allocations, and the pay-offseived by each agent up to time slot
During the repeated game, however, each agenay not be able to observe the entire history
#', but instead may only observe a sub&BtC #'. There are several reasons for this. First,
the information exchange overhead may be too deedistribute all the information to every
agent in each time slot; second, an agent’s menimoitations may make it impossible for the
agent to maintain all of the history; and, third,agent may not have the computational capacity
to use all of the information to their benefit, tbley making it useless to the agent.

We note that the observed history may be built tgmftime slot to time slot based on
metadata information sent from the media-servethéoagents. As illustrated in Fig. 1, when
agent:; submits a bid in time slaot, it also submits a correspondifepdback requeshetadata
unit denoted byo(i,t). This request depends on the deployed learnirng and prompts the
media-server to provide the agent with the corredpw information at the beginning of the
following time slot. Subsequently, the agent upgldtie observed historg?’ with o(i,¢).

Finally, we define a decision rule : @' — 5 for agenti as a mapping from its observed

history into a specific bid, i.e.
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bi,t = Wi(qt) . (9)

We describe learning rules and decision rules éurth Section V.

[Il. COORDINATION POLICIES

Recall thatv : Z x {0,1,2,...} — {0,1} is a coordination policy, which determines wheffiedent
agents may submitew bids in each time slot € {0,1,2,...}. In the following subsections, we
describe three simple coordination policies. Weeribat the policies described in this subsection
are only a subset of an infinite set of possiblécps. Nevertheless, we have selected policies
that reasonably span the possible levels of coatidin, from low to high. This stage of the
media-service resource negotiation is illustrate#fig. 1 as the shaded functional block with the

label “Section I1".

A. Repeated Game Coordination (RG)

As we mentioned in Section II.D, the RG polie}® requires that agents simultaneously
submit their bids at each time slot, &%) (i,t) = 1, V(i,t) € Z x{0,1,2,...} . This policy imposes a
low level of coordination becausxeryagent can update its bid at the smallest granhyjare.
in every time slot. The consequence of this, howesedhat individual agents may not be able to
adapt to maximize their utility because all of thepponents are always changing their bids,
thereby making it difficult to accurately predidtet optimal bid in each time slot. In the next

subsection, we propose a coordination policy thdtesses this problem.

B. Random# Polling (RNP)
The RNP policy»*) randomly and uniformly selects < M agents that can submit new

bids in each time slot, i.e. this policy ensurest v /"")(k,1) = N, vt € {1,2,...}. Under this

policy, the otheris — N agents (i.e. agentsc z for which »#¥)(k.+) = 0) do not submit a new
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bid in time slott; instead, they repeat their bids from the previboe slot, i.e.bf = /7'. If
N = M, then the RNP policy is equivalent to RG coordoraipolicy described in the previous
subsection. Clearly, the RNP policy has a levatagirdination that scales withi . In particular,
higher values ofv indicate lower levels of coordination. Importantly™?)(i,0) =1, Vie Z,
which is a requirement of all coordination policies

The value of v defined by the coordination policy, in conjunctiaith the number of agents
M, determine the probability with which an individuwagent submits a new bid in time slat

This bid-submission frequencgienoted by, is determined as,

(10)

E_I =

’u, =
Note that, is the same for every agent. As we will show & &xperiments in Section V.B, the

repetition of previous bids benefits agents. Fanagle, if some of an agent's opponents must
repeat their previous bids, then the agent’s nelnsiess susceptible to unexpected decisions by
its opponents, and is therefore more likely to iowerits utility in the current time slot. Clearly,
there exists a tradeoff between bid-submissionuieagy and agents improving their utility. In
particular, an individual agent wants to submitsbid every time slot in order to improve its
utility, however, the more agents that submit a inich time slot, the less improvement any
individual agent can make due to uncertainty iropgponents’ bids. We explore this tradeoff in
our experiments in Section V by using differentuesd of ¥, which impose different bid-
submission frequencies.

Due to the randomness built into this policy, thetik be cases in short intervals of time in
which some agents are allowed to submit bids mmguently than other agents. To ensure

fairness in bid-submission frequency, we proposepttiicy in the following subsection.
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C. Round-Robin Polling (RRP)
As in the RNP policy whenv =1, the RRP policy,/"*") ensures thab " /"")(i,1) =1,

vt € {1,2,...}. The RRP policy, however, also requires that agang polled in a (deterministic)
round-robin fashion, i.e i) ¢ + M) = v EEP) (1), vt e {1,2,..} and Vie Z . Clearly, this
policy imposes a high level of coordination. Ashwilhe other policies,##")(i,0) =1, Vi e Z .

Fig. 2 summarizes the relative levels of coordomatimposed by the proposed coordination
policies.

_Increasing
" Coordination

Repeated Game¢ | Random# Random-1 Round-Robin
Coordination Polling o Polling Polling

Fig. 2. Relative coordination levels for the proposed coatitin policies.

V. LEARNING TOBID

Since the utility derived by one task in each stafghe auction game depends on the bids of
all other agents, an individual agent cannot inegahnsolve the optimization problem in (6)
aimed at maximizing its utility. As we mentionedidre, the agents must learn to improve their
bids based on their repeated interactions and tisierved historieg?’ , vi ¢ z . This stage of
the media-service resource negotiation is illusttah Fig. 1 as the shaded functional block with
the label “Section I1V”.

We define a learning rule deployed by ttte agent as a tuplé;, = (@, ;,(;,v), where@, is
the information required to implement the learnimde, = is the decision rule mapping the
available information to a bid (i.er, : @ — £), and(; is the computational burden associated

with determining a bid using the decision rule ¢, is measured in floating point operations

(FLOPs). We also include the coordination poliey in our definition of the learning rule
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because some rules may have to be paired with tecydar coordination policy for them to
perform well (e.g. the best-reply learning rulegeneted in Section 1V.B).

In Section IV.A, we begin our discussion on leaginy introducing metrics for evaluating the
performance of different learning rules with difat information, complexity, and coordination
requirements. In Section IV.B-IV.D, we introducedé learning rules, which require varying

levels of computation and information to deterntime bid at each time slot.

A. Evaluating The Benefits of Learning
Our goal in this paper is to investigate the penfance of learning rules that span the three

dimensional space of information, complexity, andrdination. In this subsection, we introduce
performance metrics for comparing different leagnirules within this parameter space.
Importantly, these metrics are evaluatedsideof the actual media-service resource negotiation
process. In other words, they are not used by theiarserver or the agents to make decisions
during the negotiation process. Rather, they asduligools that enable a system designer to
guantitatively analyze different configurations tife resource negotiation system (e.g. to
investigate the tradeoffs between different coation policies and learning rules for a
particular media-service application).

A measure of a learning rule’s performance in tslo¢ ¢ of the auction game is the utility that
agent: receives for deploying it, i.e.

u (1 ('), bly) = 0, (r! (m,(A'), b)) — (7 ('), bs) (11)

where! = ;(@") is the bid generated by théh agent’s decision rule in time slot Note that

(112) is equivalent to (5). Based on this, a simpéasure of the performance loss associated with
a learning ruler, in time slot: can be defined as the difference between the apachievable

utility and the actual utility achieved, i.e.
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VL) = w (0™,b];) — ui(m ('), bl) (12)

where»”" is the solution to problem (6). The metric in (12)nspired by theory for the “value
of information” [9], which measures the changehe pptimized performance index in control
systems when certain information is known, relatvevhen it is not known. In our formulation,
a lower value of (12) indicates better performance.

Since the auction game is played repeatedly awes slots: € {0,1,2,...}, the performance

metric in (12) may not be representative of thegitgrm performance of one learning rule
compared to the optimal achievable utility. To agtdfor this, we extend (12) into a cumulative

performance loss metric
t
JHL) = VL), (13)
s=0

which is the cumulative performance loss from tidnarough timet. This metric measures the
absolute performance of a learning rule withouardgor the implementation complexity.
In order to compare the computational overheadtiftdrent learning rules, we introduce the

cumulative-utility-to-complexity ratio

Gi(L;) = (14)

2gtilr <@5>7b:3>]
Zi:() V(i, 5)- ¢ )

where ¢! is the number of FLOPs required to compute= =,(@ ) a single time, and the
summation in the denominator is the total numbdflddPs performed by the agent from time O
through timet. Hence,G! is the average utility gained per unit of compotal overhead. In
this way, the cumulative-utility-to-complexity ratrepresents the efficiency of the learning rule.
Clearly, since (14) is a ratio, it can be high owlregardless of (13) being high or low. By

considering both (13) and (14), however, we are &blget a complete picture of a learning rule
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in terms of both efficiency and absolute perfornganc

B. Best-reply Learning
In this subsection, we assume that thle agent knows its opponents’ bid profie in time

slot ¢. Given this information, we aim to determine tith agent’s bid that maximizes its utility
(i.e. solves problem (6)). It is important to ndtat in a decentralized and competitive scenario

like the auction game, it is usually unreasonableagsume that agent knows b’ before it
makes its bids! . This requirement can be met, however, under twot £onditions. First, the
observed history must contaiti;! (i.e. b;' ¢ @), therefore the feedback request will be
o(i,t —1) = b';'. Second, the coordination policy must allow oyt i to submit a new bid in

time slot ¢. Together, these two conditions dictate thal _wv(k,t)=1, v(it)=1, and

b', = b';'. Hence, the best-reply learning policy can be enmnted if either the RRP or the
RNP coordination policy (withv = 1) is deployed.

It can been shown that if its opponents’ bid peofil; is known, then theth agent’'s best-
reply bid b/ = (¢-%" ph") = 727 (@") (i.e. the solution to (6)) has the optimal bidcpri

o = Ol (15)
where 6/(q) = diqaj(q) Is the agent’snarginal valuationof the quantityq [2]. The optimal bid

quantity ¢/°** can be determined as described in [2].

2

Not only does this learning rule require signifit@rocessing (as will be illustrated in Section
V in Table 1), but it also requires an agent toai®e complete information from the media-
server about its opponents, i.e. the bid prodile To reduce the communication and complexity

overheads, the opponents’ bids can be clusterddsasibed in the next subsection.
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C. Clustered Best reply Learning
Thus far, we have assumed that the learning prasdsghly coordinated (i.e. one agent bids

in each time slot) and that the agents know th@ipooents’ bid profile a priori. In this
subsection, however, we consider a more generahsoein which agents do not precisely know
their opponents’ bid profile, and any coordinatpmiicy can be deployed.

As we mentioned in the previous subsection, agmatg not precisely know their opponents’
bids, or may not be able to process all of thermfdion about their bids, due to excessive
communication or computational overheads. Sincersusgevices have different inherent
constraints, some agents will be more capable otirately modeling their opponents than
others. To accommodate this, the media-server rnesable to provide different levels of
feedback to every agent, which they can use toam®their bids over time. To this end, we
assume that agentcan query the media-server for coarser, or motaildd, information about
its opponents through its feedback request metad&emation o(i,t). Specifically, theith
agent will request that the media-server clusteesagent’'s opponents inte! < {2,3,..., H}4%}
mutually exclusive and collectively exhaustive stbsof 7 ;. Here, #M4Y <|£,| is an upper
bound on the number of clusters, which dependfhercomputational capabilities of the user’s
device or the tolerable communication overheads (arger values off4* require higher
computational capacity and more information excleamgtween the media-server and the
agent).

We denote theith agent's clustered opponents a$, c 7;, 1 <h < H|. At the coarsest
level, the media-server will cluster an agent’s mpmts into two mutually exclusive and
collectively exhaustive subsets gf, during each time slot. We design these coarse opponent

clusters to match the form of the PSP auction jnpecifically, we define
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Z={keZ;|pi<p}<CZ, (16)
and

I ={ke Z;|pi>pl} C Z;. (17)
Z!, and 7!, are sets of opponents whose bid prices are longhagher than theth agent’s
bid price in time slott, respectively. These two coarse clusters may hbsowritten as

7'y =2z, and 7', = 7, (with H} =2), however, we will use the under- and over-bar

)
notation to emphasize the form of these clustenpoltantly, the opponents in both of these sets
impact theith agent’s utility. This is because, based on t88 Buction in (4), the opponents in
Z!, determine the tax that agentmust pay and the opponents i/, determine its resource
allocation.

If the agent requests! > 2 clusters, then the subsets of must be constructed to satisfy the

following two conditions: first, agents in cluster’,, offer a lower bid-price than agents in

cluster 7!

ihi1) second, clusteJZjW is either a subset af !, or a subset of7/; . In this way, the

agents’ opponents are still divided into clustéet impact its resource allocation or its tax.
Instead of considering each individual opponeninasubsection IV.B, agent sees each

cluster as an opponent. Accordingly, each cluster, c 7, 1 <& < H{, is associated with a
single bid o', = (¢',,),»' ), where the subscripti(r) indicates cluster. of the ith agent’s

opponents. The bid quantity associated with clustéy, is defined as

Aoy = D s (18)

t
keZ%

and the associated bid price is defined as

Pin) ::% > Ph- (19)



21
When agent; clusters its opponents, its observed history besod®’ = {bfg(ll),...,bff&],,l)},
which is a record of every clusters’ bids in theyous time slot. It follows that agentcan
determine itxlustered best repligid 5" using (6) by treating each cluster as a single. We

use the hat notation to indicate that the clustbesd reply is an approximation of the best reply

t,opt
blort

In our experiments in Section V, we use the evanametrics introduced in Section IV.A to
investigate the tradeoffs between computationalpterity and achieved utility when an agent
clusters its opponents at different granularities, does not cluster its opponents at all.
Additionally, in Section V in Table I, we illustta the number of FLOPs required for a player to

calculate its best-reply bid against different nensbof opponents, using different sized clusters.

D. A greedy learning solution
In the previous subsections, we have discussedifgnisolutions that require an agent to

collect information about its opponents’ bids. histsubsection, we use a greedy solution that
does not require an agent to observe its oppondmds. This greedy solution serves as a
performance baseline. We expect that the learriggyithms that make bid decisions based on
more information will perform better than this naigolution. We note that any coordination
policy can be deployed if agents implement thisres solution.

Recall that each userc 7 has valuationg, that is differentiable, monotonically non-
decreasing with increased resources, and concdefofm of the users’ valuations naturally
leads to a greedy learning solution in the repeatedion game. The essence of this solution is
that users will start by asking for some maximunargiy of resources at their marginal
valuation, which at their maximum quantity is a ininimum. After observing their own

allocations and payoffs, each user will decreasar trequested quantity and increase their
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offered price so that they can achieve a highdityutThis solution does not require the agents to
observe their opponents bids, therefore the ageiestback request will be(t) =o.
Accordingly, the ith agent's observed history at time slot only includes its bid
bt = (¢!, p!7"), allocationa!™ = (#/7!,7{7'), and valuatiory/ ' from time slott — 1, i.e.
O = a0 )

The following steps comprise the greedy learniggathm:
Greedy Learning Algorithm
1. Initial Bid Request: At time slot¢ =0, each user ¢ 7 submits its initial bid request
) = (¢2,pY). At this initial stage, each user requests a marinquantity of resourceg™* for a
minimum pricep!™ = 6/(¢M**). Useri then receives its first allocatiafi = (»°,7)).

2. Bid Quantity and Bid Price Update: At time slot ¢ < {1,2,...} each user updates its bid

based on its observed histagy . In particular:
a. If r/ft<gl™t, then ¢ = ¢ —Ag™ and p! =0/(¢/ — Agl™Y). Here, A¢t >0 is a
(possibly time-varying) step-size for the bid quiynt
b. Otherwise, if /' =4, then ¢/ =¢' and p! = p!~' with probability », and
¢ = ¢+ Agt and p! =0/(¢ + Aglt) with probability 1 - ;. In other words, if
agent: receives its desired resources in time sloti, then it prefers to bid the same
guantity in time slott with probability +,. With probability 1 — 4, , however, agent
would like to try to increase its resource allooatiin case extra resources become
available (e.g. due to other users leaving thei@ugfame or asking for less resources).
3. Repeat:Go to step 2.

A time-varying bid-quantity step size can be sehsilnat each step results in an approximately
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equivalent PSNR drop (or increase). To do thisswaply let Aq¢! = A6, /60/(q/"), where A, is
the constant PSNR step size. In this way, the ag#injuickly back-off its bid-quantity when its
marginal valuation is small, but will slowly change bid-quantity when its marginal valuation
is large.

Fig. 3 summarizes the relative information requieats and implementation complexity levels
for the proposed learning rules and Table | sunuearitheir properties and requirements. In
Section V in Table II, we illustrate the numberflofating-point operations (FLOPS) required for

a player to calculate its greedy bid against deifiémumbers of opponents.

Increasing
" Information
&
Greedy Clustered Best Clustered Best Deterministic | |mplementation
Learning Reply (7 =2) | """ | Reply (4 = u}Y) Best Reply Complexity

Fig. 3.Relative information requirements and implementation complésis for the proposed learning rules.

TABLE |. SUMMARY OF THE PROPOSED LEARNING RULES

Learn_mg Required Information Complexity Coordlnatlon Decision Rule
Solution Policy
Random-1
. _ . Pollin
Best Reply o(i,t)={b7'} C O High Round-Rgobin Eq. (6)
Polling
Clustered SN gpt-1 i1 t : Eq. (6)
o(e,t)={b" 5\,....,0" .} C O q
Best Reply ()= “in ) € | Low to High Any (with clustered opponents)
d olit)=2, dy | Igorith
Gree Low An Greedy learning algorithm
y e e Yy C o y y g alg

V. EXPERIMENTS

A. Learning rule properties

To better understand the properties of the learnigs, we consider two scenarios in which
M = 25 agents negotiate for media-service resourceseatdige of the CDN. In both scenarios,
we assume that agent= 5 deploys one of the learning rules introduced inti6a IV. We are

interested in how the™sagent’'s performance is impacted by its choiceeafling rule. We
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assume that the round-robin coordination policynfrSection 11I1.C is employed by the media-

server. Therefore, agent= 5 is polled to submit one bid eveny time slots.

1) Scenario 1: Two users stop and resume streaming session
In the first scenario, we assume that tffea§ent’'s opponentg ; maintain a constant bid-

profile throughout the duration of the streamingsssen, except for during time slots

t € {150,151,...,399} andt € {200,201,...,399} when agents 4 and 3, respectively, submit no &ids

all. This simulates the effect of agents stoppihgirt streams, which increases the wireless
resources that are available to the other useis,carrespondingly decreases the cost of the
resources. In response to these changes, "thagént can adapt its bid (i.e. increase its bid-
guantity and decrease its bid-price) in order twease its resource allocation and, consequently,
its utility. At ¢+ = 400, agents 3 and 4 resume their video streams byisiuigrthe same constant
bids as in earlier time slots. This increases thigvark congestion, thereby raising the price to
the users and forcing the"5agent to adapt its bid (i.e. decrease its bid-tityarand
correspondingly increase its bid-price) in ordemaximize its utility given the current level of
congestion.

Table Il illustrates the average number of FLORpimed for agent = 5 to determine its bid
using different learning rules against differentminers of opponents. The data in this table
confirms our intuition about the relative complgxdf the learning rules in Section 1V; clearly,
the greedy learning algorithm is the least compled the best reply is the most complex. The
greedy learning algorithm and the clustered bgditrdearning have complexity that is
approximately invariant with the number of usersgldaionally, the implementation complexity
of the clustered best-reply increases approximalialarly with the number of clusters. A
consequence of these predictable complexity leiethat an agent could dynamically select

different learning algorithms depending on its amsééneously available computational resources



25

and delay tolerance. We note that some of theemnini Table Il are empty because the number

of clusters exceeds the number of opponents withzeoo bids during some of the time slots

(for example, when two users are inactive in thesér scenario, there are not enough opponents

with non-zero bids to divide them int® = 4 clusters).

TABLE Il. LEARNING RULE IMPLEMENTATION COMPLEXITY INFLOPS,

Number Learning Rule ()
of Cluster Cluster Cluster
Users Greedy (H=2) (H=4) (H=8) Best Reply
5 3.80 37.69 - - 57.83
10 4.66 38.14 76.14 - 154.04
25 3.85 38.35 76.35 152.35 439.25

Fig. 4 illustrates the " agent’s utility over the course of the streamimgsson described
above. We note that the PSNR (in dB) is at leastaege as the utility shown in the figure
(because the utility is the PSNR less the non-megatost). Fig. 4(b) illustrates the utility
achieved when the agent deploys the best-reply thedgreedy learning algorithms. The
“optimal” utility shown in the figure is the solain to (6). We note that, since all of its opponents
have constant bids, agent 5 almost always achieves the optimal utility whempldging the
best-reply learning algorithm. There are only a feecasions when it does not achieve the
optimal utility: first, when it has no informatiabout its opponents (i.e. in time slot 0); and,
second, during time slots after other agents emtégave the streaming session, but before agent
i = 5 is polled to submit a new bid (e.g= 151 and¢ = 201).

Fig. 4(b) also illustrates the utility achieved tyge agent when it deploys the greedy learning
algorithm. As expected, this algorithm is slow ttapt to changes because it does not consider
any feedback about the other agents. No matter duuekly resources become available, the
greedy algorithm’s adaptation rate is limited bg tjuantity step-size defined in Section IV.D. If

this step size is set too large, then the agemtisywill oscillate, however, if it is set too sall
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(as it is here), then the utility may be far froptimal.

Fig. 4(a) compares the utility achieved when ageats deploys the clustered best-reply
algorithm with &, = 2 and H; = 8. Surprisingly, even when 24 opponents are clugter® two
groups, this learning algorithm performs almostwadl as the best-reply algorithm without
clustering. When the number of clusters is incrédseeight (incurring a computational burden
that is four times greater than with two clustecsaading to Table 1), the utility is increased
marginally. We note that the clustered best-remyfgyms nearly as well as the best-reply
algorithm even though it is less complex. It dodss tby exchanging instantaneous
implementation complexity for time-complexity. Inther words, by considering opponent
clusters, the agent saves in computations per siote but requires more time slots to achieve

the optimal utility.

37.5¢ 375 i
= Optimal = Optimal
L] wenen H=2 37 Best-reply T \
87 —_ H=8 \ — Greedy
36.5- Streams 3651 Streams
Stream 3 384 : Stream 3 384
361 / stops resume 36 / stops resum
355 3551 :
2 2
= = 357
5 35¢ =} .
) 3450 Session
34.51 Session Initialization
Initialization 34t
34+
335 Stream 4
335 +~__Stream 4 IS : S
: stops |
H stops a3l p
33
L L L L L L L L L L 325 L L L L I
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Fig. 4. Utility over time for stream 5 under various leagnrules (500 time slots): (a) Clustered best-reply learmity Hs = 2 and
Hy = 8, and (b) best-reply and greedy learning. At tinfes= 150 and ¢ = 200 video stream 4 and video stream 3 stop, respectively. At
time ¢ = 400 video streams 3 and 4 resume.

Now that we have discussed the constituent compsraérthe evaluation metrics proposed in
IV.A (i.e. complexity in FLOPs and utility), we ar@ a position to better understand the

performance tradeoffs associated with the vari@ssning rules. Table Il provides thd'5
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agent’s cumulative performance loss metri¢l;) (see (13)) and cumulative-utility-to-
complexity ratio metricGi(L;) (see (14)) at timesc {149,199,399,499} . The first three times are

chosen because they occur just before agents @nlesive the streaming session. The final time

is chosen to capture the average results ovemtive streaming session.

TABLE Ill. LEARNING RULES EVALUATION

TmE(j)SIot Eﬁgﬁgon Greedy Clu_stelr_eamgg_sT:rle ¢ )Clu_ster Best
H=2) (H=4) (H=8) Reply
149 JU(L) 47.53 70.86 65.56 62.16 2.57
G'(L) 141.24 20.93 10.63 5.36 1.81
199 JU(L) 102.21 75.56 70.26 66.86 7.27
G'(L) 180.35 21.54 10.90 5.48 1.87
399 JU(L) 440.79 83.88 78.57 75.18 15.59
G'(L) 264.42 22.9 11.53 5.78 2.03
499 JU(L) 460.07 84.46 79.15 75.76 16.17
G'(L) 244.24 22.78 11.44 5.73 1.99

It is clear from Table Ill that only the greedy feeg algorithm is more efficient (i.e. has a
greater cumulative-utility-to-complexity ratio) thahe clustered best-reply learning algorithm
with 7 = 2. The cumulative performance of the clustered chseiever, is much better (recall

that lower values ofz'(L) indicate a smaller deviation from the optimal asable utility).

Comparing this clustered case to the best-replg, dear that the latter is very inefficient. We
can also observe that with only two clusters, wiy tose approximately 19 utility points more
than the best-reply algorithm over the 500 timessidhis result indicates that dividing 24

opponents into two clusters provides a very goadeoff between complexity and performance.

2) Scenario 2: Many users randomly stop and resume streamgsips
Now, we consider a second scenario in which moréhef)M = 25 users stop and resume

sessions over a 1000 time slot simulation (i.€.{1,2,...,1000} ). In this scenario, we assume that

the length of each video streaming session is geaaky distributed with a mean of 1000 time
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steps. Once a session ends, we assume that thertithéhe session resumes is geometrically
distributed with a mean of 500 time steps. Fig) lastrates the number of active users in each
time slot. Fig. 5(b) and (c) show the utility acrée in each time slot by thé"Siser when it
deploys various learning strategies. We note that“ho learning” strategy in Fig. 5(b) is a

strategy where theésuser submits the same bid in every time slot.

25
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Fig. 5. Utility over time for stream 5 under various léagnrules (1000 time slots): (a) Number of active usersNg learning (i.e. constant
bids), greedy learning, and best-reply learning, (c) clustezstirbply learning withH = 5 and H = 12 clusters.

From Fig. 5, we observe that there is a lot of estign in the first 600 time slots (i.e. more
than 20 of 25 possible users are active). As dtralere are many time slots during which the
5™ agent's utility is zero. Importantly, this does meean that its video playback freezes. Instead,
it means that its pre-decoding buffer will draistir than it fills [10]. As long as this buffer is
not empty, the agent will be able to continue pigyback its streamed video [10]. In order to
illustrate this, we show in Fig. 6 the number dbkits received by the”Sagent over time when
it deploys different learning policies and its @sponding average PSNR. We make the

following observations:
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* Attime slott = 400, the best-reply policy receives less kilobits tiathe optimum case.
This is because the best-reply learning algoriterorly guaranteed to be optimal if the
agent’s opponents maintain the same bid as theyndite previous time slot. As we can
observe in Fig. 5(a), however, a new agent stareamming video at this time slot and
therefore the opponents’ bid profile is not the sams it was in the previous time slot.

e At time slot ¢t = 600, the clustered best-reply learning policy (with=5) starts to
improve dramatically. This is because the numbexctive users rapidly declines after this

time slot (see Fig. 5(a)), which allows the useinprove its bids despite only having

coarse grained information about its opponentst bias.

x 10°
15 T T T
—— Nolearning (PSNR =33.04 dB) -7
greedy (PSNR = 33.93 dB) Z
— cluster H=5 (PSNR = 34.12 dB)
— cluster H=12 (PSNR = 34.87 dB)
best-reply  (PSNR =35.03 dB)
=== optimum (PSNR = 35.10 dB)
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Cumulative received kb

-
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Fig. 6. Kilobits received for streamh = 5 over time for different learning policies. The average PSNRdich streaming session is shown in
the legend.

3) Learning rule properties summary
If very few agents are learning, then the more demtearning algorithms, which take into

account more information from the previous stagéidfling, perform better (in terms of the
cumulative performance metric) than less complegorhms, which take into account less
information from the previous stage. In the nextsgction, we will see that this is not the case

in very dynamic settings, where many agents amaileg.



30

B. Coordination policy comparison

In this subsection, we investigate the impact ef¢bordination policy on thé"agent’s utility
when it is negotiating for media-service resouregginst heterogeneous opponents in two
scenarios, which are distinct from the two scersainathe previous subsection. We first describe

the two scenarios and then make our observatidos/be

1) Scenario 1: Coordinating 10 heterogeneous users
In the first scenario, we let there be a total f= 10 agents. Three of the™5agent’s

opponents deploy the greedy learning algorithm; deploy the best-reply algorithm; and, four
deploy the clustered best-response algorithm (with 2,4,6 and 7 clusters).

In Fig. 7 (top left), we compare th& Bgent’s cumulative performance loss metric evatliat
t =499 (i.e. J3%(L;)) when it deploys the best-reply, greedy, and ehest best-reply i{; = 2)
learning algorithms under five different coordiwmati policies introduced in Section IV.
Specifically, we consider the Round-robin, RandgnRandom-5, Random-8, and Repeated
coordination policies. Fig. 7 (bottom left) illuates the B agent’'s cumulative-utility-to-
complexity ratio evaluated at= 499 (i.e. G2*(L;)) under the same settings.

2) Scenario 2: Coordinating 100 heterogeneous users
In the second scenario, we assume that thadent's 99 opponents deploy the following

learning policies: sixteen users deploy the grdedyning policy, eight users deploy the best-
reply learning policy, twenty-three users deplog ttlustered learning policy withif = 5,
twelve users deploy the clustered learning policghwH = 12, twenty users deploy the
clustered learning policy with H = 19, and twensets deploy constant bids. Because there are
many more users than in the previous scenario,tageat deploy the clustered learning policy
must consider more clusters to achieve good pednoa and the coordination policy must poll

more users at a time in order to maintain a redseriad-frequency for each user.
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3) Observations
The top two plots in Fig. 7 (especially the topt letot) illustrate that the best-reply learning

algorithm’s performance and, to a lesser extemt,clustered best-reply’s performance depends
on the choice of coordination policy. In particyltre algorithm’s performance depends on the

agent’s bid-frequency: and the number of agents that simultaneously dubitis, which are

both determined by the coordination policy.

On the one hand, if many agents bid simultaneofesty. Repeated coordination or Random-N
polling with large N), then a user deploying thestoeeply learning algorithm will not
significantly improve its performance because ppanents’ bids vary too frequently and too
unpredictably for it to reasonably predict its omdl bid in each time slot; on the other hand, if
agents bid too infrequently (e.g. Round-robin pgjlor Random-N polling with small N), then
the user deploying the best-reply learning algamithill be quickly outbid by the other users,
and its performance will degrade. Hence, it is ingoat for a coordination policy to be in place
that strikes a good balance between the bid-sumni$sequency and the number of agents that
simultaneously submit bids. From Fig. 7 (top left)d Fig. 7 (top right), we observe that the
Random-2 and Random-19 coordination policies, respdy, yield the best performance for the
5" agent when it uses the best-reply learning algorit(i.e. the minimum cumulative
performance loss). These policies both have an atege bid-submission frequency of
approximatelyng = 1/5.

In both the 10 and 100 user scenarios, the bebt-legrning algorithm performs particularly
poorly when the Round-robin polling policy is usddhis is precisely because of the low bid-
submission frequency. To see this, recall thatois-reply learning algorithm is optimal in the
current stage if the opponents’ bids stay the saméhey were in the previous stage. Hence,

when the agent submits a new bid under the Roubitk-faolicy, that bid is optimal. However,
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the other agents each get to outbid the agentdéfgets the opportunity to submit another bid,
which severely degrades its overall performance.

Fig. 7 (top left) shows that the greedy learninggoathm performs the best against
heterogeneous opponents (as indicated by the shallenulative performance loss values).
Although this algorithm is at a disadvantage whes apponents’ bids never change (as in the
previous subsection), it performs better when thpooents’ bids change frequently. This is
because the greedy algorithm’s bid decision is $essitive to the agent’s opponents’ previous
bids, which may not accurately predict their cuttads.

An interesting result in Fig. 7 is that the morenpdex learning algorithms, which take into
account more information from the previous stagbidfling (e.g. best-reply and random-N with
large N), actually perform worse in very dynamidtisgs than less complex algorithms (e.g.
greedy and random-N with small N), which take iat@ount less information from the previous
stage. As we have noted, this is because the optr®ds are unpredictable in very dynamic
settings, thereby making it impossible for tieagent to reasonably predict its optimal bid.

Fig. 7 (bottom left) and Fig. 7 (bottom right) #limate the cumulative-utility-to-complexity
ratio in the two scenarios. We can see that, niyt does the % agent's utility decrease as the
bid-submission frequency increases, but its gaimupé of computation decreases dramatically.
In other words, agent 5 expends significantly morecessing time (and energy) for a worse

utility.
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Fig. 7. Impact of the coordination policy on one agent'squerénce against heterogeneous opponents. (Top Row) Cumuletivenpance loss
metric for the 10 user scenario and a 100 user scenario. (BRtternhCumulative-utility-to-complexity ratio metric fané same scenarios, with
the y-axis in the logscale.

VI. CONCLUSION

In this paper, we propose a solution for negotgative network resources necessary for mobile
multimedia streaming services over wireless netaorkKhe focus of this paper is on
understanding a single agent’s (i.e. mobile multimealevice) ability to learn to improve its bids
over time given its limited computational capakekt and (possibly) limited feedback about its
environment (i.e. the bids of its opponents). Oxpegimental results show that, in a static
environment, an agent can learn to make near opbida with limited information, and with
very little computational overhead. However, in arendynamic environment, with many agents
simultaneously submitting bids, any single ageabdity to bid well depends heavily on the
degree of imposed centralized coordination. In \ayrgamic scenarios, our results show that a

greedy bidding approach performs better over tina® tmore complex approaches that consider
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other agent’s bids. We note that, although we degulothe Progressive Second Price (PSP)

auction, other auction mechanisms could be us#usrramework.
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