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APPENDIX A

PROOF OF THEOREM 1

From Nash’s Existence Theorem, we know that if we allow mixed strategies, then every game with a finite number

of players in which each player can choose from finitely many pure strategies has at least one Nash equilibrium

[28]. Assume that agent i adopts a mixed strategy ∆i = (pi1, pi2, ..., piN ), where pij is the probability that agent

i forms a link with agent j, and pii = 0, ∀i ∈ N . The utility of agent i in this case is obtained by averaging over

all possible networks as follows

ui(∆i) =
2N−1−1∑

j=1

wjf
(
H(Xi ∪Xαj )

)
−

N−1∑
l=1

pilc, (A.1)

where αj is an element of the power set of N/{i}, and wj is the probability of the emergence of a network

component comprising agents in the set {i ∪ αj} based on the mixed strategies. For instance, in a 2 agent network,

the utility function of agent 1 is given by

u1(∆1) = (p12(1− p21) + p21(1− p12) + p12p21) f (H(X1, X2))

+(1− p12)(1− p21)f (H(X1))− p12c.

In this case, w1 = p12(1− p21) + p21(1− p12) + p12p21 and w2 = (1− p12)(1− p21). Let the NE strategy profile

be ∆∗ = (∆∗
1,∆

∗
2, ...,∆

∗
N ), where ∆∗

i = (p∗i1, p
∗
i2, ..., p

∗
iN ). According to (3), the following condition on ∆∗ needs

to be satisfied

ui(∆
∗
i ,∆

∗
−i) ≥ ui(∆i,∆

∗
−i), ∀∆i ∈ [0, 1]N , ∀i ∈ N . (A.2)

Now we show that for any agent i, the NE strategy ∆∗
i needs to be a pure strategy for condition (A.2) to be

satisfied. We focus on agent i with a NE strategy ∆∗
i = (p∗i1, p

∗
i2, ..., p

∗
iN ), where p∗ij ∈ [0, 1]. Now assume we

induce a perturbation ϵ to the mixed strategy of agent i by modifying p∗ik to p∗ik + ϵ for a certain k, where

ϵ ∈ [−p∗ik, 1 − p∗ik]. We call this modified strategy ∆∗
i (ϵ). Note that we can write any wj in (A.1) in the form of

wj = w̃jp
∗
ik + w̄j(1− p∗ik). This results in a perturbed utility ui(∆

∗
i (ϵ)) as follows

ui(∆
∗
i (ϵ)) =

2N−1−1∑
j=1

(
w̃j(p

∗
ik + ϵ)f

(
H(Xi ∪Xαj )

)
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+w̄j(1− ϵ− p∗ik)f
(
H(Xi ∪Xαj )

))
− (p∗ik + ϵ)c−

N−1∑
l=1,l ̸=k

p∗ilc, (A.3)

which can be rearranged as

ui(∆
∗
i (ϵ)) =

ui(∆
∗
i ) + ϵ

2N−1−1∑
j=1

(w̃j − w̄j)f
(
H(Xi ∪Xαj )

)
− c

 .

Let δ =
∑2N−1−1

j=1 (w̃j − w̄j)f
(
H(Xi ∪Xαj )

)
− c. It can be easily shown that ∂ui(∆

∗
i (ϵ))

∂ϵ > 0 if δ > 0, and
∂ui(∆

∗
i (ϵ))

∂ϵ < 0 otherwise. Thus, if δ > 0, agent i can always increase its utility by increasing ϵ and setting

ϵ = 1− p∗ik (and thus playing a pure strategy with pik = 1), and if δ < 0, agent i can always increase its utility by

setting ϵ = −p∗ik(and thus playing a pure strategy with pik = 0), which contradicts with ∆∗
i being a NE strategy.

Thus, for all k ∈ N/{i}, agent i needs to select a pure strategy p∗ik ∈ {0, 1} for ∆∗
i to be a best response to ∆∗

−i

regardless of the strategies of other agents, i.e. non-pure strategies are always dominated by a pure strategy. Due

to symmetry, this applies to all agents in N . Therefore, it follows that a pure strategy NE always exists.

APPENDIX B

PROOF OF PROPOSITION 1

If the component C is not minimally connected, then it has at least one cycle as there exist agents i and j that

are connected via two paths pij,1 and pij,2, such that any of the two paths is not a subset of the other. For such

component at NE, assume that agent v is on path pij,1 and agent w is on path pij,2. Note that all the agents receive

the same amount of total information H(C). We know that there indeed exists links: g∗xv (or g∗vx) and g∗wy (or g∗yw),

where agent x ∈ pij,1 and agent y ∈ pij,2. Now focus on any link of them, say g∗wy = 1. We observe that agent

w can break this link and still receive the same benefit by gathering the same amount of information from path

pij,1, thus receiving a strictly higher utility function as it will not pay the cost for the link with agent y, which

contradicts the fact that g∗ is an NE. Thus, a single path exists between any two agents.

APPENDIX C

PROOF OF LEMMA 1

If there exists an agent in which other agents have an incentive to connect to even if they possess all other

information in the network, then the network is indeed connected at any equilibrium. This is satisfied if and only if

the linking cost satisfies c < f(H(X ))−f(H(Xi)) for some agent i in N , i.e. the marginal benefit from connecting

to that agent is always more than the link cost irrespective to the current connections of the agent forming the link.

Thus, we must have c < maxi f(H(X ))− f(H(Xi)). Hence, part (i) of the Lemma follows.

If no agent have an incentive to form any link, then the network is fully disconnected. From the monotonicity

property of the entropy, we know that if agent i has no incentive to connect to a set V of agents, then it has no

incentive to connect to a set U if U ⊆ V . Thus, if agent i has no incentive to connect to the set N/{i} via a single

link, then it has no incentive to form any link in the network. This occurs if c > f(H(X )) − f(H(Xi)). If this

condition is satisfied for all agents, then the network is indeed disconnected, and part (ii) of the Lemma follows.
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APPENDIX D

PROOF OF THEOREM 2

For the network to be in NE, no agent should have an incentive to unilaterally deviate by forming a new link

or breaking a link. Focus on a certain component Ci. Inside this component, each agent should either have an

incentive to form at least one link, or other agents should have an incentive to connect to it. Otherwise, this agent

can be removed from the component while strictly increasing the utility of some agent. Thus, we must have either

f(H(XCi))− f(H(Xj)) > c or f(H(XCi))− f(H(XCi/{j})) > c for all agents j in Ci. This should apply to all

components in the network. Hence, condition (1) follows.

Now focus on the interaction between different components of the network. If any agent in component Ci benefits

from forming a link to any agent in component Cj , then the network is not NE since in this case an agent in Ci
can strictly increase its utility by unilateral deviation. Hence, we should have f(H(XCi∪Cj ))− f(H(XCi)) ≤ c for

any two components in the network. Thus, condition (2) follows.

APPENDIX E

PROOF OF LEMMA 2

We know that in the KC region, all the NE networks are connected. Thus, the social welfare of any network in

KC is given by U(g∗) = Nf(H(X )) − (N − 1)c. The socially optimal network in KC is the one with a social

welfare of Ũ , where Ũ = maxg∈G U(g). Since f(H(X )) − f(H(Xi)) > c, ∀i in the KC region, then it is clear

that a connected network maximizes the social welfare. Therefore, Ũ = U(g∗) and the PoA = 1 in the KC region.

Next, we focus on the KI region. In this region, any connection will result a negative payoff for any agent who

forms a link since c > f(H(X ))−f(mini H(Xi)). Thus, the social optimal is a fully disconnected network, which

is also the unique (strict) NE, and the PoA = 1 in the KI region. For the KM region, the maximum PoA will

occur if a fully disconnected network is an equilibrium and a connected network is a social optimum. In what

follows, we show that this is indeed possible. Consider the case when f(H(Xi, Xj)) − f(H(Xi)) < c, ∀i, j, and

f(H(X ))− f(H(Xi)) > c, ∀i. In this case, agents do not get immediate benefit from forming links to individual

agents, thus a fully disconnected network is an NE since not forming a link is a best response for all agents when

all other agents do not form a link. Therefore, the PoA in the KM region is upper bounded by the social welfare

of a connected network and that of a fully disconnected network, i.e. PoA ≤ Nf(H(X ))−(N−1)c∑N
i=1 f(H(Xi))

.

APPENDIX F

PROOF OF THEOREM 4

The PoA can be written as PoA ≤ Nf(
∑N

i=1 H(Xi)−D(p||q))−(N−1)c∑N
i=1 f(H(Xi))

. Note that the benefit function f(x) is

monotonically increasing in x. Thus, as D(p||q) increases, f(
∑N

i=1 H(Xi) − D(p||q)) decreases, and the PoA

decreases consequently. Therefore, we have ∂PoA
∂D(p||q) < 0.
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APPENDIX G

PROOF OF COROLLARY 1

In the KC region, we know that all NE networks are connected. Thus, supg∗
u∈G∗ H(Xi∪XRi(g∗

u)
) = infg∗

u∈G∗ H(Xi∪

XRi(g∗
u)
) = H(X ), and MIL = 0. Similarly, in the KI region, we have supg∗

u∈G∗ H(Xi∪XRi(g∗
u)
) = infg∗

u∈G∗ H(Xi∪

XRi(g∗
u)
) = mini H(Xi), thus MIL = 0. In the KM region, the MIL is maximized if both a connected and a fully

disconnected network are equilibria. In this case, supg∗
u∈G∗ H(Xi ∪ XRi(g∗

u)
) = H(X ), and infg∗

u∈G∗ H(Xi ∪

XRi(g∗
u)
) = mini H(Xi). Thus, MIL ≤ H(X )−mini H(Xi).

APPENDIX H

PROOF OF COROLLARY 2

From Theorem 5, we know that when c > kH̄ , then we have a unique equilibrium s∗ for both F̃H and F˜H in

which g∗ij = 0, ∀i, j ∈ N , and H∗(Xi) = H̄ . Thus, we have H∗(Xi) > 0, ∀i ∈ N , and |I(s∗)|
N = 1, which applies

when the number of agents in the CIN grows to infinity, hence (9) follows. Next, we focus on the total amount of

information in the network. For F˜H, we have H(X1, X2, ..., XN ) = max{H̄, H̄, ..., H̄} = H̄ , and (10) follows.

Finally, for F̃H, we have H(X1, X2, ..., XN ) =
∑N

i=1 H̄ = NH̄ , and (11) follows.

APPENDIX I

PROOF OF COROLLARY 3

We start by deriving (12). From Theorem 6, we know that for F̃H, every equilibrium has only one information

producer. When the number of agents grows to infinity, we will still have one information producer and |I(s∗)|
N = 0.

In order to prove (13), one needs to find one network in equilibrium for F̃H in which, for arbitrary N , we have N

information producers. Consider this network for N agents. Assume that H(Xi) =
H̄
N , ∀i ∈ N , and the network

has a single component which is periphery-sponsored star network. It is clear that for this network, |I(s)| = N .

We want to show that this network is an NE by showing that every agents strategy is best response to all others.

It is easy to see that since c < kH̄ , each periphery agent has no incentive to break its link with the core since
N−1
N kH̄ > c when N is asymptotically large. Moreover, no agent has incentive to alter its information production

profile since the total information in the network is
∑N

i=1
H̄
N = H̄ . Thus, s is an NE. Since this applies to any N ,

(13) follows. Finally, since the network is always connected in any equilibrium, then (14) directly follows.
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