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Abstract— In this paper, we address the problem of joint packet 
scheduling at the application layer as well as power and rate 
allocation at the physical layer for delay-sensitive video 
streaming over slow-varying flat-fading wireless channels. Our 
goal is to find the optimal cross-layer policy that maximizes the 
cumulative received video quality, while minimizing the total 
transmission energy. We first formulate the cross-layer 
optimization using a systematic layered Markov Decision 
Process (MDP) framework and then propose a layered real-time 
dynamic programming (RTDP) algorithm for solving this cross-
layer optimization problem by combining together the policy 
update and real-time decision making. This approach reduces 
the high complexity of the conventionally used offline dynamic 
programming methods. Moreover, to accommodate the cases 
when the network environment dynamics (e.g. state transition 
probabilities) are unknown or non-stationary (e.g. state 
transition probabilities are changed over time), we further 
improve our RTDP method by collecting the required network 
information and estimating the dynamics online, using a model-
free approach. Based on this information, a user (a transmitter-
receiver pair) can adaptively change its policy to cope in real-
time with the experienced environment dynamics. We also prove 
the convergence of this RTDP method (which complies with the 
layered architecture of the OSI stack). Finally, our numerical 
experiments show that the proposed RTDP solutions outperform 
the conventional offline DP methods for real-time video 
streaming. 

Keywords- layered markov decision process, dynamic 
programming, real-time learning, online learning, wireless video 
transmission. 

I.  INTRODUCTION 

Video streaming over best-effort, packet-switched 
networks is challenging due to a number of factors, including 
the high bit-rates and dynamic characteristics exhibited by the 
video traffic, the time-varying channel characteristics, and the 
hard delay constraints that need to be fulfilled for real-time 
applications [1]. This paper addresses the problem of 
streaming packetized video data over a wireless channel from 
the transmitter to the receiver. In such a streaming media 
system, the transmitter encodes the incoming video frames, 
stores the encoded data in its output buffer and, subsequently, 
transmits them on demand to a client for playback in real-time 
[2]. Since wireless channels do not provide any quality of 
service (QoS) guarantees, the transmitter must perform 
adaptive packet scheduling as well as transmission power and 
rate allocation, in response to the environment dynamics 
experienced by the transmitter or receiver. In this paper, we 
focus on the problem of real-time video transmission over a 
single-hop wireless network, analyzing the single user case 

with a transmitter-receiver pair. Specifically, we consider 
how, depending on the environment, we can optimally trade 
off the video quality and transmission energy for real-time 
wireless video transmission, by adapting the packet 
scheduling strategy at the application layer and the power and 
rate allocation strategy at the physical layer. This problem is 
often treated as a cross-layer optimization problem. Although 
cross-layer optimization solutions [3][4][5][6] have been 
extensively investigated in recent years to improve the 
performance of the wireless user operating in a time-varying, 
error-prone wireless environment, the current solutions often 
optimize the current utility without considering the impact on 
the future performance (i.e. myopic decision [7]) and also, do 
not comply with the existing layered network architecture. 

In [7], a layered framework based on MDP has been 
established to solve such cross-layer problems by considering 
the impact of the current selection of cross-layer transmission 
strategies on the future performance. In this framework, if the 
states on every layer are defined to capture the environmental 
dynamics at each time slot and the actions at each layer are 
also defined in order to determine the received reward and the 
state transition across time slots, then each layer can use 
layered dynamic programming (DP) to autonomously 
determine its optimal action by exchanging only limited 
information with other layers. 

However, the layered DP solutions iteratively search the 
optimal policy offline, which require a full scan over the 
entire system state space during each iteration and are, thus, 
expensive in terms of the required computation resources and 
overhead. In video applications, the heterogeneity of video 
data usually leads to a large state space, thus inhibiting the 
implementation of such offline layered DP methods, even if 
their resulting solution is optimal. Moreover, and even more 
importantly, the dynamic wireless network environment, such 
as the time-varying traffic characteristic and channel 
conditions, as well as the repeated interaction among multiple 
users are often difficult to characterize a priori. In this case, 
the offline DP methods usually perform poorly, due to their 
inability to adapt to the environmental changes. 

To solve these problems, we proposed an alternative 
approach referred to as RTDP [8] which, instead of updating 
the state-value function for all the states during one iteration, 
selectively updates the state-value function for only a subset 
of states instead of the entire state space. To adaptively adjust 
the policy to the change in the environment dynamics, we 
further develop a model-free approach for RTDP, which is 
called Adaptive RTDP (ARTDP), to work in environments 
where the a priori environment knowledge is limited or 
inexistent.  
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Summarizing, the proposed RTDP method has three main 
advantages over the conventional offline DP: 

1. Unlike the offline DP methods, RTDP is applied 
online intertwined with the real-time decision 
making. Therefore, in the actual implementations of 
the cross-layer optimization, we do not have to wait 
for a satisfactory policy before the real-time control 
process must begin. 

2. Because RTDP is able to select a subset of states to 
which the state-value function and policy updates are 
applied, we can smartly select the states which need 
to be improved most, based on the experience 
collected during the decision making process, in 
order to improve the efficiency of the policy 
optimization. 

3. ARTDP can work efficiently without the network 
environment knowledge, and can adaptively change 
its policy based on the online experienced dynamics. 

The paper is organized as follows. Section II introduces 
the considered wireless system. Then, in Section III, we 
formulate the considered cross-layer problem into a formal 
MDP problem. Section IV discusses the proposed on-line 
RTDP method and the online learning under the layered MDP 
framework. Section V presents the simulation results. Section 
VI concludes the paper. 

II. CONSIDERED SYSTEM MODEL 

This paper considers real-time video transmission over a 
single-hop slow-varying flat fading channel. We focus on the 
transmission strategy adaptation at the application (APP) 
layer, MAC layer, and physical (PHY) layer, as depicted in 
Error! Reference source not found. (top). The aim of our 
work is to optimize the received video quality under certain 
transmission energy constraints. This cross-layer optimization 
problem can be modelled as an MDP defined over a joint 
space of states, transition probabilities, action sets, and 
reward function over all layers, maximizing the long-term 
utility of the user (e.g. discounted accumulative reward as in 
[7]). The considered system model can be formulated as in 
Figure 1 (bottom). 

A. APP layer model 

At the APP layer, we assume that the wireless user 
deploys a delay-sensitive video streaming application, which 
deploys a video encoder (e.g. H.264) operating at a frame rate 
fs. The encoded packets are then injected into the output 
buffer, and are ready for transmission. We use the activity 
adaptive model proposed in [9] to model the incoming 
variable bit rate (VBR) video traffic: after identifying the I 
frames, the sequence is encoded with a repeating pattern of 
two B frames followed by a P frame, until the next I frame is 
reached, but if the interval between two I frames is not a 
multiple of three, this pattern cannot always be inserted, in 
which case the last pattern is terminated when the I frame is 
reached. Here, to simplify our analysis, we neglect the 
different activity levels of the frames [9], but these can be 
easily included in the proposed solution and our analysis. 

In [6] and [10], it has been shown that partitioning the 
packets into different priority classes and adjusting the 
transmission strategies correspondingly for each class can  
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Figure 1.  (top) The Architecture of Video Streaming System; 

(bottom) The corresponding layered architecture 
significantly improve the overall received video quality and 
provide graceful degradation as network congestion levels   
and channel conditions are changing. Thus, we also divide the 
packets of the encoded video stream into several priority 
classes based on their delay constraints and visual impacts on 
the overall video quality. Assuming that three types of frames 
exist in this application, which are the I, B, and P frames, 
respectively, such video traces can then be modelled as a 
stochastic Markov process, as shown in [9]. 

For simplicity, we assume that each frame type 
corresponds to one priority class (i.e. I, B, P classes), and that 
inside each class, all packet characteristics are the same and 
hence, they have the same delay deadline and distortion 
impact. The average packet length is denoted as L  in bits, 
and a frame contains GI, GB, GP packets on average for class I, 
B, P, respectively. Meanwhile, the delay deadline for each 
type of frame is denoted as I frameD T , B frameD T , P frameD T  

respectively, where DI, DB, and DP are all integer constants, 
and frameT  is the length of one frame interval. It is easy to tell 

that the lifetimes of different frames have the relationship as 
DB=DI –1 and DP=DI +2. Moreover, each packet at classes I, 
B, and P has the distortion impact QI, QB, and QP, 
respectively. The dependencies1 between different classes are 
considered through the distortion impact of the different 
classes. Since both B and P classes depend on the I class and 
the B class further depends on the P class, we have the 
following inequality: QI>QB>QP. 

                                                           
1 The exact dependency between different classes can be expressed as 

direct acyclic graph (DAG) as in [17]. In this paper, we made the 
simplification on this dependency for the analysis.  
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B. MAC layer model 

At the MAC layer, the transmission is time slotted. 
Because the transmission of an APP layer frame can be 
divided into several transmissions of packet at the MAC layer, 
we assume that frameT  is much larger than the length of MAC 

time slot, denoted as TD  in the rest of this paper. To keep 
our analysis simple due to the space limitations, we do not 
explicitly consider of the adaptation of the transmission 
strategies at the MAC layer, but assume that the transmission 
actions at the MAC layer are all fixed (e.g. each user has a 
fixed window to access the spectrum in each time slot, and a 
fixed number of retransmission when performing ARQ). The 
channel access can be based on time division multiple access 
(TDMA) or code division multiple access (CDMA). 
Therefore, the QoS provided by the MAC layer has a 
deterministic mapping to the QoS from the PHY layer, and 
we just use the PHY’s QoS as variables in our cross-layer 
optimization for simplicity.  

C. PHY layer model 

The PHY layer then grabs packets from the output buffer 
and transmits them through a slow-varying flat-fading 
wireless channel. The wireless channel in this problem is 
modelled as a discrete-time block-fading additive white 
Gaussian noise channel [11], where continuous time is 
partitioned into discrete time slots, and the Signal-to-Noise 
Ratio (SNR) is assumed to be constant in each time slot. Here, 
we assume the length of channel coherence time cohT  is equal 

to the MAC time slot TD  [3][4] and hence, the Signal-to-
Noise Ratio is assumed to be constant within each time slot. 

The scheduling in the video streaming consists of two 
parts then. In each time slot i , the APP layer decides which 
set of packets in the output buffer to be transmitted, and the 
PHY layer selects the optimal transmission rate v  and the 
optimal power allocation q  to transmit these packets, so as to 
minimizing the average transmission energy consumption. 

III. MDP FORMULATION 

The goal in our problem is to design an optimal joint 
scheduling mechanism over the video encoder at APP layer 
and the wireless transmitter at PHY layer, with the aim of 
optimizing the received video quality while minimizing the 
transmission energy. This can be modelled as a MDP 
maximizing some discounted accumulative reward as in [7]. 
Based on the cross-layer model in [7], the MDP problem can 
be defined over a joint space of states, transition probabilities, 
action sets, and reward function over all layers. However, 
note that our problem is significantly different than the cross-
layer problem considered in [7] and hence, we first proceed 
by formalizing the considered joint PHY-APP optimization as 
an MDP problem. 

A. APP layer 

1) APP state 
The state at the APP layer is defined such that it can 

capture APP’s currently experienced dynamics. In our 
problem, the APP’s state is composed of two parts, the 
incoming traffic pattern x Î  in each time slot and the 

post-encoding buffer occupancy k Î  at the beginning of 
every time slot: [ ]  ,APP APPs Sx k= Î = ´ . 

The packet-level time slot in our problem is assumed to be 
the frame interval, and accordingly, there is only one 
incoming packet in each time slot. We can use the activity 
adaptive model in [9] to model the incoming traffic as a 
Finite-State Markov Chain (FSMC) by defining the state 
space { } , , ,I P B BB= ,   can be augmented easily to 
also include more sequence type in [9] if needed. 

To accurately and uniquely capture the buffer state, we 
need to find the accurate expression for the state in every 
priority class. Neglecting the transmission time and decoding 
time, we assume that the queuing time of the packet in the 
transmitter’s output buffer equals to the time it experiences 
between encoding and decoding. Thus, any packet that has 
stayed in the output buffer for its lifetime and is not been 
successfully transmitted during this duration is assumed to be 
expired and will be discarded from the buffer. As described in 
Section II.A, there are three different packet lifetimes 
corresponding to different packet priority classes, and the 
packets in each class have different expiration deadlines, thus 
b  can be represented by the current numbers of I-type, P-type 
and B-type packets in every deadline respectively. 

 
max1 2, , , Dk k k ké ù= ê úë û   , (1) 

where Dmax=max{DI, DB, DP} is the largest possible packet 

lifetime. ( ), , ,, ,d d I d B d Pk k k k=  represents the number of 

packets from each frame type and having a remaining life 
time of d  time slots. Here we assume an output buffer which 
is large enough to hold all the incoming traffic. 

2) APP action 
The actions can be classified into two types at each layer 

[7]: an external action is performed to determine what the 
next state should be such that the future reward will be 
improved, and an internal action is performed to determine 
the service (QoS) provided to the upper layers for video 
streaming in the current time slot. 

As the APP layer is the highest layer in our system, it has 
no internal action to provide service to an upper layer, but 
only external actions which need to determine the set of 
packets to be transmitted in every time slot. Accordingly, we 
have  

 
max1 2, , ,APP Da a a aé ù= ê úë û   , (2) 

where ( ), ,d dI dB dPa a a a=  are the numbers of packets the 

transmitter takes from the subset of packets with a remaining 
life time of d  time slots. 

3) State transition probability 
The update on buffer occupancy is an MDP, and the state 

update will be influenced by the current APP action.  
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where tG  denotes the number of incoming packets in the 
previous time slot. The buffer state transition probability is 
then computed as 

 ( )
( )

1
|  Eq. (3) satisfied

| , ,
0            otherwise

t t

t t t t
APP

p G
p ak

x
k k x+

ìïïï= íïïïî
, (4) 

The incoming traffic is a FSMC, and thus, its transmission 

probability ( ){ }1 |t tpx x x+  is time-invariant and not 

influenced by the action executed at APP layer. 
The state transition probability at APP layer is 

( ) ( ) ( )1 1 1| , | | , ,t t t t t t t t t
APP APP APP APPp s s a p p ax kx x k k x+ + += . 

4) APP reward 
The current reward at APP layer is defined as the 

received application quality for the delay-sensitive application 
in this time slot. It is composed of two parts as 
( ), ,APP APP APP rec lossr s a Z r r= - , where recr  is the total video 

quality which is contributed by the packets successfully 
transmitted and is decodable on the receiver’s side in this time 
slot; and lossr  is the total video quality which is contained in 

the packets dropped in this time slot which expire due to the 
deadline. Thus,  

 
max

, 1, 1,
1

,
D

rec l h h loss h h h h
l h h h

r a Q r Q a Qk
=

= = -åå å å . (5) 

5) Action space reduction for packet scheduling 
Based on the problem formulation in Section II.A, it is 

easy to find out that the packet scheduling in every time slot 
has to search from an action space with the size of 

( )1 hD
h

h

N G= +a , where hG  represents the average 

number of incoming packets when frame of priority class h  
arrives. Fortunately, with the following two remarks, the 
action space can be reduced exponentially. 

Remark 1: There is no benefit of transmitting packets 
with longer expiration deadline instead of packets from the 
same priority class, but with shorter expiration deadline. This 
is obvious, as transmitting packets who will expire soon can 
obtain higher foresighted application quality at the same cost.  

Remark 2: Using K  to denote the number of effective 
QoS provided by PHY layer in its QoS frontier [7], and 
{ },1kv k K£ £  represents the transmission rate supported 

by these QoS. Then the number of packets transmitted in this 
time slot should be larger than the smallest supported rate. 

Remark 2 is explained as follows: Without generality, 
assume 1v  as an example of the smallest supported rate, and 

the number of packets selected from each priority class are 
denoted as , ,I B Pa a a    respectively. Then if the number of 

remaining packets is larger than 1v , we have to transmit at the 

minimum cost of 1v . It is straightforward to at least have 

1I B Pa a a v+ + ³     
Therefore, the above-mentioned action space size for 

packet scheduling can be reduced based on the above two 
remarks. 

Proposition 1: The MDP problem with the action space 

APP
  containing ( )1 hD

h

h

G +  has the same policy as the 

MDP problem with the reduced action set APP
  containing 

( ) ( )11h h
h

G D O v+ -   actions, where ( )1O v  is the volume 

of the region 1
1

H

h
h

a v
=

<å  . 

Proof: Based on Remark 1, the size of APP
  should be no 

larger than ( )1h h
h

G D + . Then with the constraints from 

Remark 2 that the sum rate of all priority classes should be 
larger than 1v , then those actions inside the region of 

1I B Pa a a v+ + <     are also discarded.  

B. PHY layer 

1) PHY state 
The dynamic we use to characterize the state at PHY layer 

is the possible received channel SNR in each time slot, 
denoted by PHY PHYs Sg= Î G = . The received signal 

envelope has the Rayleigh distribution in a typical multipath 
propagation environment. With additive Gaussian noise, the 
received instantaneous SNR g  is distributed exponentially 

with the following probability density function [11] 

 ( )
1

expp
g

g
g g

æ ö÷ç ÷= -ç ÷ç ÷çè ø
, (6) 

where g  is the average SNR which is determined by the 

allocated transmission power q . Let [ ]'1 2 1, , , N+G = G G G


  be 

the received SNR thresholds in increasing order with 1 0G =  

and 1N+G = ¥  which partition the total SNR space into N  

intervals. The channel is determined to be in state n  if the 
SNR is between nG  and 1n+G . The states are thus ordered 

with decreasing average Bit-Error-Rate (BER) values. 

2) PHY action 
At each state, the wireless user is able to adapt its 

modulation scheme to determine the QoS levels to support the 
upper layer. The selection of modulation level m  in each 
time slot is then the internal action at PHY layer, denoted as 

PHYb m= . To simplify the analysis, here we assume that 

MPSK is used, and the number of packets transmitted in each 
time slot is equal to the logarithm of modulation level, as 

( )
2logv m=  and hence, the selection of m  is the rate 

allocation we would like to discuss in this paper. However, 
this analysis can also be performed for more sophisticated 
MAC models. 

The external action at PHY layer is the power allocation 

PHYa q=   which could determine the received SNR as the 

channel state in the next time slot. The power allocation 
determines the transition of channel SNR, and the rate 
allocation determines the BER during transmission. Given the 
current channel SNR g  and transmission rate v , the BER  

can be determined as [12] 
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( )1.9

6
0.05 exp

2 1
b v

g
e

é ù-ê ú= ´ ê ú-ê úë û
. (7) 

The packet loss rate, as a function of be , depends on the 
specific packet error-correcting scheme being implemented. 
In this paper, we suppose that a packet is in error if at least l  
out of its totally L  bits are in error. Then we can characterize 
packet error rate in terms of BER  as 

 ( ) ( )( )
1

L
i L i

P b b
i l

L

i
e e e -

=

æ öæ ö ÷ç ÷ç ÷÷çç= - ÷÷çç ÷÷çç ÷ ÷ç ÷çè øè ø
å . (8) 

Thus, we can define the effective data rate in each time 
slot as pv v e= ´ , which represents the actual number of 

packets can be transmitted (with all the retransmission and 
error correction considered already). 

3) State transition probability 
As said in Section II.C, we assume that a one-step 

transition in the FSMC model corresponds to the channel 
state transition after one frame interval TD . The transition 
only happens from a given state to its two adjacent states. The 
transition probability , 1n nP +  from state n  to 1n +  , can be 

approximated by the ratio of the level crossing rate at 
threshold 1n+G  and the average number of packets per second 

staying in state n . Similarly, the transition probability , 1n nP -  

is approximated by the ratio of the level crossing rate at 
threshold nG  and the average number of packets per second 

staying in state n . Hence, they can be approximated as in 
[11], 
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  , (9) 

where 
p

T  is the transmission time for one packet; ( )N G  is 

the level crossing rate of level G  for the SNR process, and is 
expressed as 

 ( )
( ) ( )
2

expm
PHY PHY

F f
a a

p
g g

æ öG G ÷ç ÷çG = - ÷ç ÷÷çè ø
, (10) 

where 
m
f  is the maximum Doppler frequency. 

The steady-state probability of each state is 

 ( )
( ) ( )

1 1exp exp
j

j

j j
j

PHY PHY

p d
a a

f g g
g g

+G +

G

æ ö æ öG G÷ ÷ç ç÷ ÷ç ç= = - - -÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
ò . (11) 

4) PHY reward 
The reward at the PHY layer is the negative of the total 

energy consumed. The modulation energy cost is defined as 

the energy-rate function [13]: ( )2
_ 0 2 1 /v

PHY inc N g= - , 

where 0N  denotes thermal noise. The transmission energy 

cost is defined as: _PHY exc q T= D . We have 

_ _PHY PHY ex PHY inc c c= + . 

C. Utility function 

By combining the application quality at the APP layer and 
the incurred transmission energy at the PHY layer, the total 
reward in an individual time slot t  can be defined as 

( ) ( ) ( )s, , , ,t t t t t t t t t t
APP APP APP APP PHY PHY PHYR Z r a Z c bl= -as ,(12) 

where PHYl  is a positive parameter which trade off between 

the application quality and operation cost. 
The reward in Eq. (12) can also be further decomposed 

into two parts: one is the internal reward 

   _ _,t t t t t k
in APP PHY PHY in PHY inR Z r c  s ; and the external 

reward    _,t t t t t
ex PHY PHY ex PHYR c a as , which includes the 

transmission energy incurred due to the external actions. 
We assume that the state transitions at different layers are 

synchronized such that in each time slot, the wireless user has 
constant state and performs static actions. Thus, with the 
formulation of MDP, we try to optimize the foresighted cross-
layer decision [7], finding the optimal policy p  by 
maximizing the cumulative reward over the infinite time 
horizon, which means the wireless user is able to take the 
impact of the current actions on the future reward into 
consideration, as 

 ( )
0

, ,t t t t t
APP

t

V R Zp m
¥

=

ì üï ïï ï= í ýï ïï ïî þ
å as , (13) 

where m  is a discounted rate within ( )0,1 . When 0m = , the 
problem turns into the optimal myopic decision problem, 
where the video user only considers maximizing the reward 
received in the current time slot, thus we do not consider the  

0m =  case. The reasons for us not considering 1m =  are as 
follows: (i) for delay-sensitive video applications, the data 
needs to be sent out as soon as possible to avoid missing 
delay deadlines, and (ii) the undiscounted sum of rewards is 
not guaranteed to be finite and to converge [16]. In DP 
algorithms, V  is also called state value function or value 
function. 

IV. REAL-TIME DP SOLUTION  

A. Layered offline DP solution 

In [7], a layered dynamic programming solution has been 
proposed for the MDP problem formulated in Section III. It 
takes the idea of value iteration [16], and uses a layered DP 
operator to allow each layer to optimize its own policy 
autonomously, based on the information exchanged with the 
other layers. Each layer l  first selects its own internal actions, 
which, combined with the QoS provided by the lower layers, 
determines the QoS Zl supported to the upper layer. Then, the 
DP-based optimization starts from the highest layer in a 
sequential fashion. Each layer optimizes its own external and 
internal actions, and then passes the value function 
downwards to the lower layers for their optimization. The 
resulting DP solution is summarized in Algorithm 1 and the 
corresponding DP operator at each layer is shown in Table 1, 
where  
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. (15) 

The value function V  in the DP algorithm is the 
expectation of the foresighted utility function, as in Eq. (13)
and R  is the myopic utility function at that instant. The state 
space   then, is the composite space comprising of the 
incoming traffic state space  , the buffer occupancy   at 
APP layer, and the channel state space G  at PHY layer, i.e., 
  = ´ ´G , where ´  denotes the Cartesian product. 
The state transition from s  to 's  when action   is taken is 
given by 

( ) ( ) ( ) ( )' ' ' '| | | , , | ,APP PHYp p p a p ax k gx x k k x g g=s s, .(16) 

Algorithm 1: Algorithm for layered DP solution 
Initialize V  arbitrarily, e.g. ( ) 0V =s  for all Îs   

0D ¬  
Repeat 
For each Îs S  
     ( )v V¬ s  
      Perform layered DP 
      ( )( )max , v VD ¬ D - s  
Until ( )a small positive numberqD <  
Output the optimal deterministic policy ( )p p=   

Table 1: DP operator at each layer 
 DP operator at each layer 

APP ( ) ( )' 'max , , ,
APP APP

APP APP

PHY PHY PHY APP APP APP
a
Z

V s V s s a Z
Î
Î

é ù= ê úë û





PHY ( ) ( )max ,
PHY PHY

PHY PHY PHY
a

V V s a
Î

é ù= ê úë û
s


 

B. Why is a real-time solution needed? 

The layered DP algorithm presented in the previous sub-
section updates the state-value function and the policy for 
every state in every iteration, therefore this algorithm is called 
as Synchronous Dynamic Programming (SDP) as every 
state is updated synchronously. SDP is an offline solution, for 
one have to wait until the state-value function converges to 

*V  before it can implement the policy into real-time decision 
making, and the environment dynamics have to be known. 
Such approach can guarantee the policy to be optimal, but it is 
really computationally expensive sometimes, especially when 
the system state space is large. For example, if there are sn  
states and an  admissible actions for any state, then each SDP 
iteration, which consists of updating each state-value function 
and the policy exactly once, requires at most ( )2

s aO n n  
computations. For illustration, if we assume that each I frame 
contains 20 packets, B frame of 5 packets and P frame of 8 
packets, and the lifetime of three frames are 5, 4, 7 TD , 
respectively, then the buffer state space   itself contains 

5 4 7 1721 6 9 2.5 10´ ´ = ´  states, and thus, the entire state 

space   would be so large that the computation cost is 
unaffordable. Moreover, the network environment in the 
video streaming process is usually not stationary but changes 
over time. For example, the switch of video content will lead 
to the variation on the statistical property of the incoming data 
traffic, and the channel characteristics (e.g. SNR) of the 
wireless channel also varies from time to time. Therefore, the 
policy implemented during the control over the streaming 
process should be adaptively adjusted along with the dynamic 
change of the environment. Unfortunately, SDP can not make 
such policy adjustment online due to its offline characteristics. 
Every time the environment changes, SDP has to re-compute 
the policy, then implements it online. As we can see from the 
above, such offline-computing-and-online-implementing 
approach is so inefficient and expensive that is almost 
impossible to be used in real-time applications when the state 
space   inflates. 

Table 2: RTDP operator at each layer  
 DP operator at each layer 

APP ( ) ( )' 'max , , ,
APP APP

APP APP

t t
PHY PHY PHY APP APP APP

a
Z

V s V s s a Z
Î
Î

é ù= ê úë û





PHY ( ) ( )1 max ,
PHY PHY

t t t t
PHY PHY PHY

a
V V s a+

Î
é ù= ê úë û
s


 

Therefore, in this paper we propose the new RTDP 
algorithm to solve the optimal state-value function and policy 
update online. Our approach is to modify the offline and 
synchronous policy update, and consider performing the 
policy update and the real-time decision making of the policy 
in the video streaming process concurrently. The policy 
update and the real-time decision making interact as follows: 

1. Decision making: In every time slot t , the decision 
on packet scheduling and power and rate allocation 
for the video streaming process is made based on the 
most up-to-date policy and the current system state; 

2. Policy update: The value function and the policy of 
the current state are updated. 

In RTDP, let ts  be the last state visited by the system in 

the tht  time slot, and ( )tV s  is the most up-to-date value 

function for all Îs  . The system then executes action t , 
which can maximize the value function for the current state 

ts , that is 

 ( ) ( ) ( ) ( )1

'

max , ' | , '
t

t t t t t t tV R p Vm+
é ù
ê ú= +ê úë û

å
s

s s s s s


  . (17) 

and the DP solution (optimal policy) for ts  is then updated as 

( )t tp =s  . 

Similar to [7], this centralized RTDP operator can be 
decomposed across the OSI layers using a layering 
computation as shown in Table 2, where  

( ) ( )

( ) ( )
'

'

' ' '

, , , ,

| , , ,
APP APP

k t t t
PHY APP APP APP in APP APP

t t
APP APP APP APP PHY APP

s

V s s a Z R s Z

p s s a Z V s sm
Î

=

+ å



,(18) 

 

( ) ( )

( ) ( )
'

' '

, ,

| ,
PHY PHY

t t t
PHY PHY PHY PHY ex PHY PHY

t
PHY PHY PHY PHY PHY

s

V s a R s a

p s s a V s

l

Î

= -

+ å



. (19) 
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Before presenting the complete algorithm of RTDP, we 
first analyze the convergence of such layered RTDP operator. 

C. The convergence for layered RTDP 

In this part, we prove that the layered RTDP Algorithm 
converges to the optimal value function *V  and the optimal 
policy *p  generated from SDP, under certain sufficient 
conditions. 

To prove the convergence of layered RTDP, we first 
prove its equivalence to an asynchronous algorithm, and then 
use the Asynchronous Convergence Theorem to get the result. 

Lemma 1: Layered RTDP is a special case of 
Asynchronous Dynamic Programming [16], where only one 
state is updated in every time slot.  

Definition 1: There is a sequence of nonempty sets 
( ){ }X k  with  

 ( ) ( ) ( )1 0X k X k XÌ + Ì Ì Ì   (20) 
satisfying the following two conditions:  

(a) (Synchronous Convergence Condition) We have  
 ( ) ( ) ( )1 ,   f x X k k and x X kÎ + " Î  (21) 

Furthermore, if { }ky  is a sequence such that ( )ky X kÎ  
for every k , then every limit point of { }ky  is a fixed point of 
f . 

(b) (Box Condition) For every k , there exists sets 
( )i iX k XÌ  that ( ) ( ) ( ) ( )1 2 nX k X k X k X k= ´ ´ ´ . 

The Synchronous Convergence Condition implies that [14] 
the limit points of sequences generated by the (synchronous) 
iteration ( ):x f x=  are fixed points of f , assuming that the 

initial x  belongs to ( )0X . The Box Condition implies 

( )x X kÎ  and ( )'x X kÎ , if we replace the thj  components 

of them, we still obtain two elements of ( )X k . 

Lemma 2: (Asynchronous Convergence Theorem [14]) If 
the Synchronous Convergence and Box Conditions hold for 
the sequence of nonempty sets ( ){ }X k , and the initial 

solution estimate ( ) ( ) ( ){ }10 0 , , 0nx x x=  belongs to the set 

( )0X , then every limit point of ( ){ }x k  is a fixed point of f  

as defined in Definition 1. 
Proof: The proof of Lemma 2 can be found in [14].  
Hence, as Lemma 1 has shown that layered RTDP is a 

special asynchronous algorithm, if we view the update of 
layered RTDP as some mapping f , we just need to prove the 
set of value functions under this mapping satisfies the 
Synchronous Convergence and Box Conditions, and then use 
Lemma 2 to prove layered RTDP’s convergence. 

First, we prove that the mapping defined by layered RTDP 
is a contraction mapping. 

Definition 2: Let ( )', ,APP PHY APP PHYs s s=s  be the 

composite state at APP layer. Given this composite state, we 
can define the mapping at APP layer as  

 ( ) ( ){ }'max , , ,APP

APP APP

APP APP

s
APP PHY APP APP APP

a
Z

T V V s s a Z
Î
Î

= 



. (22) 

Similarly, at PHY layer, the mapping can be defined as  

 ( ) ( ){ }max ,
PHY PHY

s
PHY PHY PHY PHY PHY

a
T V V s a

Î
= 


. (23) 

The layered operation of RTDP can be represented as the 
following iteration  

 ( ) ( ) ( ) ( )1,APPs t t
PHY APP APP PHY PHYV T V V T V+= = ss s . (24) 

The value function update T  can be represented as the 
composition of the above two mappings  

 ( ) ( )( ) ( )( )1 APPt t s t
PHY APPV T V T T V+ = = ss s . (25) 

 
Lemma 3: The value function update T  is a contraction 

mapping. 
Proof: Let us first look at APPs

APPT  , for any two different 

value functions V  and V , it is verify that  

 ( ) ( )| |APP APPs s
APP APPT V T V V V Im

¥
- £ -    . (26) 

where . ¥  is the maximum norm and I  is the all-one vector 
( )1,1, ,1 . So ( )APPs

APPT V  is a contraction mapping.  
Similarly, ( )PHY PHYT Vs  is also a contraction mapping. 

Therefore, the value function update ( )( )T V s  is also a 
contraction mapping on V , as the composition of two 
contraction mappings.  

With all the above preparation, we can now prove the 
major theorem in this section. 

Theorem 1: The layered RTDP algorithm converges to 
the optimal value function as long as every state in the state 
space   is visited infinite times. 

Proof: As the state space   in our video streaming 

problem is assumed to be finite, denoted as { }1 2, , ,
sNs s s , 

where sN  is the size of  . Here we define  

 ( ) ( ) ( ) ( ){ } { }0 0 0
1 20 , , , 0, 0, , 0

sNx V V V= = s s s  (27) 

as the initial value functions on all states and ( )0 NX = R . 
Apparently, ( ) ( )0 0x XÎ . 

Then we set 

( ) ( ){ }* *| 0N kX k x x x x xm= Î - £ -R . If we define 

the value function update ( ) ( ). .T f=  and the value functions 
after t updates  

 ( ) ( ) ( ) ( ){ }1 2, , ,
s

t t t
Nx t V V V= s s s , (28) 

where ( ) ( ) ( )( )0tt
i iV T V=s s  for all i , we have 

( ) ( )x t X tÎ , and ( ){ }X t  is a sequence of nonempty sets 

satisfying the Synchronous Convergence and Box Condition 
in Definition 1. Based on Lemma 2, every limit point of ( )x t  

is a fixed point of T . 
Assuming ( )* *x V=   represents the fixed point of the 

mapping T  in lemma 3, that is, 

 ( )* *x T x= , (29) 

We have 
 ( ) ( ) ( )* *lim  and lim t

i i
t t

x t x V V
¥ ¥

= =s s  (30) 

for all i. 
So in layered RTDP, if we make sure every state to be 

visited infinite times, t is guaranteed to go infinite and all the 
value functions can converge to optimal.  

The only condition necessary for RTDP to converge is 
that every state should be visited infinite times, though this is 
not realistic in real applications, it tells us that the more a 
state is visited, the closer its value function will approach the 
optimum. To achieve it, we use a randomized learning policy 
to make sure that the system always continues to visit each 
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state. An example of such a learning policy is a form of 
Boltzmann exploration [16]: 

 ( )
( ) ( )

( ) ( )

,
| , ,

,

t

t

t

t

a A

e Q
Pr t Q

e Q

b

b

Î

=
å

s

s

s
s

s





, (31) 

where ( ),tQ s  is the value function of taking action   in 

state s  for time slot t; ( )
tb s  is the state-specific exploration 

coefficient for time slot t , which controls the rate of 
exploration in the learning policy. If we assume ( )

tb s  to be 

infinite in the limit, then this learning policy has the following 
two properties: 

1. Each action is executed infinitely often in every state 
that is visited infinitely often; 

2. In the time limit, the learning policy is greedy with 
respect to the Q-value function with probability 1. 

Learning policies satisfying the above conditions are 
denoted as GLIE, which stands for “Greedy in the Limit with 
Infinite Exploration” [15]. 

It has been proved in [15] that for any Reinforcement 
Learning algorithm that converges to the optimal value 
function and whose estimates stay bounded, using GLIE 
learning policies will ensure a concurrent convergence to an 
optimal policy, and therefore the GLIE policy in layered 
RTDP also converges for sure. 

So finally, the operation of layered RTDP is summarized 
in Algorithm 2. 

Algorithm 2: Algorithm for layered RTDP solution 
Initialize V  arbitrarily, e.g. ( ) 0V =s  for all Îs   
Start from initial state ( )0s  
In the tht  time slot ( )0t ³  

Layered value function update as in Table 2 
      Policy update: 
         Select the action to be performed based on the probability 

        ( )
( ) ( )

( ) ( )

,
| , ,

,

t

t

t

t

a A

e Q
Pr t Q

e Q

b

b

Î

=
å

s

s

s
s

s





 

        Update policy for state ts , ( )t tp= s  

State transition: 1
tat t+ ¬s s  

D. The layered adaptive RTDP 

The RTDP described above requires full prior knowledge 
of the network environment underlying the Markovian 
decision problem, such as state transition probabilities. When 
this knowledge is not available (this is commonly known as a 
Markovian decision problem with limited information), 
online learning methods should be combined with RTDP to 
adaptively learn the environment dynamics and adjust the 
policy in real-time. The key challenge for the online 
adaptation here is how to perform decision making in an 
unknown environment and how to adapt to the changing 
dynamics online. 

The general idea for doing the online adaptation in RTDP 
is to first estimate a system model using an online system 
identification method before its operation (i.e. policy update 
and decision making) in each time slot. Subsequently, the 
policy update and decision making are performed using the 
improved system model. This method is called layered 
Adaptive RTDP (layered ARTDP), or RTDP with incomplete 

knowledge, and the RTDP in the previous section could be 
referred as RTDP with complete knowledge. 

Assuming that the transition probabilities are unknown 
and need to be estimated, and the estimation is improved at 

each time slot t , denoted as ( ){ }| , , ,t
j ip i j"s s  . Let 

( )ijN t  be the observed number of times before time slot t  

that action   was executed when the system was in state is  

and made a transition to state js  afterwards; and ( )iN t  

denote the number of times action   was executed in state is  

before time slot t . The state transition probability at time slot 
t  can then be approximated as 

 ( )
( )

( )
| , ijt

j i
i

N t
p

N t
=s s



 . (32) 

The operation of layered ARTDP is summarized in 
Algorithm 3. 

Algorithm 3: Algorithm for layered ARTDP Solution 
Initialize V  arbitrarily, e.g. ( ) 0V =s  for all Îs   
Start from initial state ( )0s  
In the tht  time slot ( )0t ³  

System Identification: ( )
( )

( )

1

1

1 1| ,

t

t

ijt t t
j

i

N t
p

N t

-

-

- - =s s



 , for 

all j Îs  , and 1t
i

- =s s  

Layered value function update as in Table 2 
      Policy update: 
         Select the action to be performed based on the probability 

         ( )
( ) ( )

( ) ( )

,
| , ,

,

t

t

t

t

a A

e Q
Pr t Q

e Q

b

b

Î

=
å

s

s

s
s

s





 

         Update policy for state ts , ( )t tp= s  

State transition: 1
t

t t+ ¬s s


 

E. The convergence of layered ARTDP 

In this section, we analyze the convergence of the layered 
ARTDP and provide some sufficient conditions for its 
convergence. 

Theorem 2: The layered ARTDP algorithm converges to 
the optimal value function and the optimal policy, with 
probability one if the following conditions are met: 

C1. The convergence conditions for the corresponding 
layered RTDP algorithm are met. 

C2. In the limit, every action is executed from every state 
infinitely often. 

C3. The estimates of the state transition probabilities 
converge to their true value with probability one. 

Proof: In the layered ARTDP, let *
tV  denotes the optimal 

value function based on the estimates of transition 

probabilities ( )| ,tp ' as s  in the tht  time slot. Based on 

Condition C2, it is easy to tell that 
. .1* *lim

w p

t
t

V V
¥

 . For any 

small  , assume  

 * * ,tV V  for t Tdd
¥

- < > . (33) 
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For any state s , let ( )t is  denote the time that s  is backed 

up for the thi  time after Td , then we first prove that the 

following inequality holds for any state s  

( )
( )

( )
( )

( ) ( )
* *

1 1 1 ,    i
t i t i t tV V V V for anym d d+ ¥

- < - +s s s ss s (34) 

We use induction to prove it: 

( )
( )

( )
( )

( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

( ) ( )

( )

( ) ( )

* *
1

* * * *
1 1

* *
1 1 1 1

*
1 1

*
1 1

1

1

t i t i t i t i

t i t i t i t i t i t i

t i t i t i t i

i

i
t t

i
t t

V V T V T V

V V V V V V

V V V V

V V

V V

m m

m d m d

m m
m d

m

m d

+

- -¥ ¥ ¥

- - + -¥ ¥

¥

D

¥

- = -

£ - £ - + -

< - + £ - +

-
£ - +

-

= - +



s s s s

s s s s s s

s s s s

s s

s s

s s

.(35) 

Therefore,  as i  ¥ , ( )
( )

( )
( )*

1lim t i t ii
V V d+¥

- <s ss s , for 

any state s  and any small d . 

Finally, as 
. .1

* *lim
w p

tt
V V

¥
 , we can draw our conclusion 

that 
 ( )

( ) ( )*lim ,  . .1t ii
V V s w p

¥
s s . (36) 

 

V. NUMERICAL RESULTS 

In this experiment, we show that our layered RTDP 
algorithms have the performance close to optimal, and 
compare the performances of layered SDP, RTDP, and 
ARTDP.  

A. Simulation setting 

At APP layer, we use the video trace pattern as described 
in Section II.A, and assume that the statistic of incoming 
video traffic complies with the activity adaptive model as in 
[9] and has four possible states { }, , ,I P B BB . To simplify 
our analysis, we further reduce the state space into 3 spaces 
{ }, ,I P B , and use the transition probability matrix of the 4-
state model to approximate the transition probability between 
any two types of frames. 

The frame rate at the encoder is assumed to be 20Hz, thus 
the length of one time slot 1T msD = .  

The I frame has a life time of 50 TD , and the B frame 
and the P frame have corresponding life times of 45 TD  and 
60 TD  respectively. Each I frame is encoded into 20  packets, 
B frame is 5  packets, and P frame 8 packets. The average 
packet length 1000L bits= . 

At the PHY layer, we assume that the channel has the 
maximum Doppler frequency 50mf Hz= . The channel SNR 
has 9 levels, varying from 0  to infinite. The power allocation 
has 4 levels, [ ]( )0.5,1.0,1.5,2.0q mwÎ . We use the MPSK 
modulation, and there are also 4 modulation levels as 
{ }, , 8 ,16BPSK QPSK PSK PSK . 
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Figure 2. (top) The reward; (bottom) The PSNR received along time 

in video streaming process with stationary traffic 
In this example, we consider how to decide the power 

allocation and modulation levels, and then select a set from 
the output buffer, to optimize the video quality received in 
this application meanwhile minimize the transmission energy 
at PHY layer. 

B. Online adaptation with stationary incoming traffic 

In this simulation, we compare the performance of SDP, 
RTDP, and ARTDP in the video streaming process, with 
stationary incoming traffic, that is, the traffic pattern and the 
transition probabilities between different states remain the 
same. 

Figure 2 show the resulting average reward and PSNR 
achieved by different methods. As can be seen from these 
figures, the SDP generates the optimal policy, which keeps a 
constant reward. The RTDP methods will gradually catch up 
with the performance of SDP as they are learning through the 
real-time decision control, and their policies are getting closer 
to optimal.  

For the RTDP methods themselves, the performance of 
RTDP with complete knowledge is initially better than that of 
ARTDP, which is straightforward as the RTDP has the full 
accurate knowledge about the network environment and the 
dynamics before the control operation starts, thus can learn 
the optimal policy much faster than ARTDP. When the states 
are visited with enough times, ARTDP can get enough 
accurate estimation on the system state transition probabilities, 
and the rate of its policy update would get closer to its non-
adaptive competitor.  

C. Online adaptation with non-stationary incoming traffic 

In this simulation, the incoming traffic is non-stationary. 
After running 45 10´  time slots, the incoming video changes 
into a low motion scenario, and hence, there are less I frames 
and more B and P frames in the incoming traffic, as well as 
some change in the transition probabilities between frames. 
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Figure 3. (top) The reward; (bottom) The PSNR received along time 

in video streaming process with non-stationary traffic 
Figure 3 show the performances of the three methods in 

such a non-stationary environment. Since SDP uses a fixed 
policy which only fits certain fixed environment, its 
performance is most severely influenced by the environment 
dynamics, both in terms of the reward and PSNR.  

The RTDP methods, on the other hand, provide much 
more stable performances compared to SDP. When the 
incoming traffic changes after 45 10´  time slots, the reward 
and PSNR received by RTDP with complete knowledge stops 
to increase, which is due to the fact that the knowledge about 
the environment (i.e. state transition probabilities) possessed 
by RTDP is now out of date. But as RTDP is still in the 
middle of the learning process and the policy is sub-optimal, 
its performance does not have severe drop as that of SDP. 

The method which fits the non-stationary environment 
best, is the ARTDP. As we observe, after the environment 
changes, the performance of ARTDP will slightly fall. But 
after another 410  time slots, ARTDP has again updated its 
estimate on the state transition probabilities of incoming 
traffic, and its received reward and PSNR start to rise. 

VI. CONCLUSIONS 

In this paper, we extend the proposed layered MDP 
framework in [7] from the setting where all network 
environment dynamics are considered known to the more 
realistic case in which the knowledge of the environment 
dynamics is limited or even completely unknown. Unlike the 
conventional Synchronous Dynamic Programming method 
used to solve the MDP problem, we propose a Real-time 
Dynamic Programming solution, which can also adhere to the 
layered OSI structure, but is capable of combining the policy 
update and real-time decision making. This approach can not 
only avoid the high computational complexity involved in 
solving the MDP problem, but also, importantly, can 
adaptively adjust its policy online, given the experienced 
changes in the environment dynamics. We prove the 
convergence of the RTDP methods for the considered cross-

layer problem, and our experiment results show that the 
layered RTDP methods obtain near optimal performance in 
the long term and also exhibit significant advantages in terms 
of in the non-stationary environment. 
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