
 1

 Online Learning for Wireless Video Transmission
with Limited Information

Yu Zhang, Fangwen Fu, Mihaela van der Schaar
Electrical Engineering Department, UCLA

yuzhang@ucla.edu, {fwfu, mihaela}@ee.ucla.edu

Abstract— In this paper, we address the problem of joint packet
scheduling at the application layer as well as power and rate
allocation at the physical layer for delay-sensitive video
streaming over slow-varying flat-fading wireless channels. Our
goal is to find the optimal cross-layer policy that maximizes the
cumulative received video quality, while minimizing the total
transmission energy. We first formulate the cross-layer
optimization using a systematic layered Markov Decision
Process (MDP) framework and then propose a layered real-time
dynamic programming (RTDP) algorithm for solving this cross-
layer optimization problem by combining together the policy
update and real-time decision making. This approach reduces
the high complexity of the conventionally used offline dynamic
programming methods. Moreover, to accommodate the cases
when the network environment dynamics (e.g. state transition
probabilities) are unknown or non-stationary (e.g. state
transition probabilities are changed over time), we further
improve our RTDP method by collecting the required network
information and estimating the dynamics online, using a model-
free approach. Based on this information, a user (a transmitter-
receiver pair) can adaptively change its policy to cope in real-
time with the experienced environment dynamics. We also prove
the convergence of this RTDP method (which complies with the
layered architecture of the OSI stack). Finally, our numerical
experiments show that the proposed RTDP solutions outperform
the conventional offline DP methods for real-time video
streaming.

Keywords- layered markov decision process, dynamic
programming, real-time learning, online learning, wireless video
transmission.

I. INTRODUCTION

Video streaming over best-effort, packet-switched
networks is challenging due to a number of factors, including
the high bit-rates and dynamic characteristics exhibited by the
video traffic, the time-varying channel characteristics, and the
hard delay constraints that need to be fulfilled for real-time
applications [1]. This paper addresses the problem of
streaming packetized video data over a wireless channel from
the transmitter to the receiver. In such a streaming media
system, the transmitter encodes the incoming video frames,
stores the encoded data in its output buffer and, subsequently,
transmits them on demand to a client for playback in real-time
[2]. Since wireless channels do not provide any quality of
service (QoS) guarantees, the transmitter must perform
adaptive packet scheduling as well as transmission power and
rate allocation, in response to the environment dynamics
experienced by the transmitter or receiver. In this paper, we
focus on the problem of real-time video transmission over a
single-hop wireless network, analyzing the single user case

with a transmitter-receiver pair. Specifically, we consider
how, depending on the environment, we can optimally trade
off the video quality and transmission energy for real-time
wireless video transmission, by adapting the packet
scheduling strategy at the application layer and the power and
rate allocation strategy at the physical layer. This problem is
often treated as a cross-layer optimization problem. Although
cross-layer optimization solutions [3][4][5][6] have been
extensively investigated in recent years to improve the
performance of the wireless user operating in a time-varying,
error-prone wireless environment, the current solutions often
optimize the current utility without considering the impact on
the future performance (i.e. myopic decision [7]) and also, do
not comply with the existing layered network architecture.

In [7], a layered framework based on MDP has been
established to solve such cross-layer problems by considering
the impact of the current selection of cross-layer transmission
strategies on the future performance. In this framework, if the
states on every layer are defined to capture the environmental
dynamics at each time slot and the actions at each layer are
also defined in order to determine the received reward and the
state transition across time slots, then each layer can use
layered dynamic programming (DP) to autonomously
determine its optimal action by exchanging only limited
information with other layers.

However, the layered DP solutions iteratively search the
optimal policy offline, which require a full scan over the
entire system state space during each iteration and are, thus,
expensive in terms of the required computation resources and
overhead. In video applications, the heterogeneity of video
data usually leads to a large state space, thus inhibiting the
implementation of such offline layered DP methods, even if
their resulting solution is optimal. Moreover, and even more
importantly, the dynamic wireless network environment, such
as the time-varying traffic characteristic and channel
conditions, as well as the repeated interaction among multiple
users are often difficult to characterize a priori. In this case,
the offline DP methods usually perform poorly, due to their
inability to adapt to the environmental changes.

To solve these problems, we proposed an alternative
approach referred to as RTDP [8] which, instead of updating
the state-value function for all the states during one iteration,
selectively updates the state-value function for only a subset
of states instead of the entire state space. To adaptively adjust
the policy to the change in the environment dynamics, we
further develop a model-free approach for RTDP, which is
called Adaptive RTDP (ARTDP), to work in environments
where the a priori environment knowledge is limited or
inexistent.

 2

Summarizing, the proposed RTDP method has three main
advantages over the conventional offline DP:

1. Unlike the offline DP methods, RTDP is applied
online intertwined with the real-time decision
making. Therefore, in the actual implementations of
the cross-layer optimization, we do not have to wait
for a satisfactory policy before the real-time control
process must begin.

2. Because RTDP is able to select a subset of states to
which the state-value function and policy updates are
applied, we can smartly select the states which need
to be improved most, based on the experience
collected during the decision making process, in
order to improve the efficiency of the policy
optimization.

3. ARTDP can work efficiently without the network
environment knowledge, and can adaptively change
its policy based on the online experienced dynamics.

The paper is organized as follows. Section II introduces
the considered wireless system. Then, in Section III, we
formulate the considered cross-layer problem into a formal
MDP problem. Section IV discusses the proposed on-line
RTDP method and the online learning under the layered MDP
framework. Section V presents the simulation results. Section
VI concludes the paper.

II. CONSIDERED SYSTEM MODEL

This paper considers real-time video transmission over a
single-hop slow-varying flat fading channel. We focus on the
transmission strategy adaptation at the application (APP)
layer, MAC layer, and physical (PHY) layer, as depicted in
Error! Reference source not found. (top). The aim of our
work is to optimize the received video quality under certain
transmission energy constraints. This cross-layer optimization
problem can be modelled as an MDP defined over a joint
space of states, transition probabilities, action sets, and
reward function over all layers, maximizing the long-term
utility of the user (e.g. discounted accumulative reward as in
[7]). The considered system model can be formulated as in
Figure 1 (bottom).

A. APP layer model

At the APP layer, we assume that the wireless user
deploys a delay-sensitive video streaming application, which
deploys a video encoder (e.g. H.264) operating at a frame rate
fs. The encoded packets are then injected into the output
buffer, and are ready for transmission. We use the activity
adaptive model proposed in [9] to model the incoming
variable bit rate (VBR) video traffic: after identifying the I
frames, the sequence is encoded with a repeating pattern of
two B frames followed by a P frame, until the next I frame is
reached, but if the interval between two I frames is not a
multiple of three, this pattern cannot always be inserted, in
which case the last pattern is terminated when the I frame is
reached. Here, to simplify our analysis, we neglect the
different activity levels of the frames [9], but these can be
easily included in the proposed solution and our analysis.

In [6] and [10], it has been shown that partitioning the
packets into different priority classes and adjusting the
transmission strategies correspondingly for each class can

Buffer
Occupancy

State

Source coding
(Non-adaptive)

External Action

Packet
scheduling

Internal Action

APP Layer

PHY Layer

Source dynamics

Channel fading
and interference

Environment

MAC Layer

Retransmission
Strategy

Internal Action

Trans. Window
(Constant)

State

(Non-adaptive)

External Action

Channel SNR

State

Power
Allocation

External Action

Adaptive
Modulation

Internal Action

PHY QoS

MAC QoS

APP QoS

Figure 1. (top) The Architecture of Video Streaming System;

(bottom) The corresponding layered architecture
significantly improve the overall received video quality and
provide graceful degradation as network congestion levels
and channel conditions are changing. Thus, we also divide the
packets of the encoded video stream into several priority
classes based on their delay constraints and visual impacts on
the overall video quality. Assuming that three types of frames
exist in this application, which are the I, B, and P frames,
respectively, such video traces can then be modelled as a
stochastic Markov process, as shown in [9].

For simplicity, we assume that each frame type
corresponds to one priority class (i.e. I, B, P classes), and that
inside each class, all packet characteristics are the same and
hence, they have the same delay deadline and distortion
impact. The average packet length is denoted as L in bits,
and a frame contains GI, GB, GP packets on average for class I,
B, P, respectively. Meanwhile, the delay deadline for each
type of frame is denoted as I frameD T , B frameD T , P frameD T

respectively, where DI, DB, and DP are all integer constants,
and frameT is the length of one frame interval. It is easy to tell

that the lifetimes of different frames have the relationship as
DB=DI –1 and DP=DI +2. Moreover, each packet at classes I,
B, and P has the distortion impact QI, QB, and QP,
respectively. The dependencies1 between different classes are
considered through the distortion impact of the different
classes. Since both B and P classes depend on the I class and
the B class further depends on the P class, we have the
following inequality: QI>QB>QP.

1 The exact dependency between different classes can be expressed as

direct acyclic graph (DAG) as in [17]. In this paper, we made the
simplification on this dependency for the analysis.

 3

B. MAC layer model

At the MAC layer, the transmission is time slotted.
Because the transmission of an APP layer frame can be
divided into several transmissions of packet at the MAC layer,
we assume that frameT is much larger than the length of MAC

time slot, denoted as TD in the rest of this paper. To keep
our analysis simple due to the space limitations, we do not
explicitly consider of the adaptation of the transmission
strategies at the MAC layer, but assume that the transmission
actions at the MAC layer are all fixed (e.g. each user has a
fixed window to access the spectrum in each time slot, and a
fixed number of retransmission when performing ARQ). The
channel access can be based on time division multiple access
(TDMA) or code division multiple access (CDMA).
Therefore, the QoS provided by the MAC layer has a
deterministic mapping to the QoS from the PHY layer, and
we just use the PHY’s QoS as variables in our cross-layer
optimization for simplicity.

C. PHY layer model

The PHY layer then grabs packets from the output buffer
and transmits them through a slow-varying flat-fading
wireless channel. The wireless channel in this problem is
modelled as a discrete-time block-fading additive white
Gaussian noise channel [11], where continuous time is
partitioned into discrete time slots, and the Signal-to-Noise
Ratio (SNR) is assumed to be constant in each time slot. Here,
we assume the length of channel coherence time cohT is equal

to the MAC time slot TD [3][4] and hence, the Signal-to-
Noise Ratio is assumed to be constant within each time slot.

The scheduling in the video streaming consists of two
parts then. In each time slot i , the APP layer decides which
set of packets in the output buffer to be transmitted, and the
PHY layer selects the optimal transmission rate v and the
optimal power allocation q to transmit these packets, so as to
minimizing the average transmission energy consumption.

III. MDP FORMULATION

The goal in our problem is to design an optimal joint
scheduling mechanism over the video encoder at APP layer
and the wireless transmitter at PHY layer, with the aim of
optimizing the received video quality while minimizing the
transmission energy. This can be modelled as a MDP
maximizing some discounted accumulative reward as in [7].
Based on the cross-layer model in [7], the MDP problem can
be defined over a joint space of states, transition probabilities,
action sets, and reward function over all layers. However,
note that our problem is significantly different than the cross-
layer problem considered in [7] and hence, we first proceed
by formalizing the considered joint PHY-APP optimization as
an MDP problem.

A. APP layer

1) APP state
The state at the APP layer is defined such that it can

capture APP’s currently experienced dynamics. In our
problem, the APP’s state is composed of two parts, the
incoming traffic pattern x Î in each time slot and the

post-encoding buffer occupancy k Î at the beginning of
every time slot: [] ,APP APPs Sx k= Î = ´ .

The packet-level time slot in our problem is assumed to be
the frame interval, and accordingly, there is only one
incoming packet in each time slot. We can use the activity
adaptive model in [9] to model the incoming traffic as a
Finite-State Markov Chain (FSMC) by defining the state
space { } , , ,I P B BB= , can be augmented easily to
also include more sequence type in [9] if needed.

To accurately and uniquely capture the buffer state, we
need to find the accurate expression for the state in every
priority class. Neglecting the transmission time and decoding
time, we assume that the queuing time of the packet in the
transmitter’s output buffer equals to the time it experiences
between encoding and decoding. Thus, any packet that has
stayed in the output buffer for its lifetime and is not been
successfully transmitted during this duration is assumed to be
expired and will be discarded from the buffer. As described in
Section II.A, there are three different packet lifetimes
corresponding to different packet priority classes, and the
packets in each class have different expiration deadlines, thus
b can be represented by the current numbers of I-type, P-type
and B-type packets in every deadline respectively.

max1 2, , , Dk k k ké ù= ê úë û , (1)

where Dmax=max{DI, DB, DP} is the largest possible packet

lifetime. (), , ,, ,d d I d B d Pk k k k= represents the number of

packets from each frame type and having a remaining life
time of d time slots. Here we assume an output buffer which
is large enough to hold all the incoming traffic.

2) APP action
The actions can be classified into two types at each layer

[7]: an external action is performed to determine what the
next state should be such that the future reward will be
improved, and an internal action is performed to determine
the service (QoS) provided to the upper layers for video
streaming in the current time slot.

As the APP layer is the highest layer in our system, it has
no internal action to provide service to an upper layer, but
only external actions which need to determine the set of
packets to be transmitted in every time slot. Accordingly, we
have

max1 2, , ,APP Da a a aé ù= ê úë û , (2)

where (), ,d dI dB dPa a a a= are the numbers of packets the

transmitter takes from the subset of packets with a remaining
life time of d time slots.

3) State transition probability
The update on buffer occupancy is an MDP, and the state

update will be influenced by the current APP action.

1
1 2 2

1
1 1

1
1 1

1
1 1

B B B

I II

P PP

t t t

t t t t
D D D B

t t tt
D D ID

t t tt
D D PD

a

a G

a G

a G

k k

k k

kk

kk

+

+
+ +

+
+ +

+
+ +

é ù é ù-ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú- +ê ú ê ú=ê ú ê ú
ê ú - +ê ú
ê ú ê ú
ê ú ê ú- +ê ú ê ú
ê ú ê ú
ê ú ê úê ú ë ûë û

, (3)

 4

where tG denotes the number of incoming packets in the
previous time slot. The buffer state transition probability is
then computed as

 ()
()

1
| Eq. (3) satisfied

| , ,
0 otherwise

t t

t t t t
APP

p G
p ak

x
k k x+

ìïïï= íïïïî
, (4)

The incoming traffic is a FSMC, and thus, its transmission

probability (){ }1 |t tpx x x+ is time-invariant and not

influenced by the action executed at APP layer.
The state transition probability at APP layer is

() () ()1 1 1| , | | , ,t t t t t t t t t
APP APP APP APPp s s a p p ax kx x k k x+ + += .

4) APP reward
The current reward at APP layer is defined as the

received application quality for the delay-sensitive application
in this time slot. It is composed of two parts as
(), ,APP APP APP rec lossr s a Z r r= - , where recr is the total video

quality which is contributed by the packets successfully
transmitted and is decodable on the receiver’s side in this time
slot; and lossr is the total video quality which is contained in

the packets dropped in this time slot which expire due to the
deadline. Thus,

max

, 1, 1,
1

,
D

rec l h h loss h h h h
l h h h

r a Q r Q a Qk
=

= = -åå å å . (5)

5) Action space reduction for packet scheduling
Based on the problem formulation in Section II.A, it is

easy to find out that the packet scheduling in every time slot
has to search from an action space with the size of

()1 hD
h

h

N G= +a , where hG represents the average

number of incoming packets when frame of priority class h
arrives. Fortunately, with the following two remarks, the
action space can be reduced exponentially.

Remark 1: There is no benefit of transmitting packets
with longer expiration deadline instead of packets from the
same priority class, but with shorter expiration deadline. This
is obvious, as transmitting packets who will expire soon can
obtain higher foresighted application quality at the same cost.

Remark 2: Using K to denote the number of effective
QoS provided by PHY layer in its QoS frontier [7], and
{ },1kv k K£ £ represents the transmission rate supported

by these QoS. Then the number of packets transmitted in this
time slot should be larger than the smallest supported rate.

Remark 2 is explained as follows: Without generality,
assume 1v as an example of the smallest supported rate, and

the number of packets selected from each priority class are
denoted as , ,I B Pa a a respectively. Then if the number of

remaining packets is larger than 1v , we have to transmit at the

minimum cost of 1v . It is straightforward to at least have

1I B Pa a a v+ + ³
Therefore, the above-mentioned action space size for

packet scheduling can be reduced based on the above two
remarks.

Proposition 1: The MDP problem with the action space

APP
 containing ()1 hD

h

h

G + has the same policy as the

MDP problem with the reduced action set APP
 containing

() ()11h h
h

G D O v+ - actions, where ()1O v is the volume

of the region 1
1

H

h
h

a v
=

<å .

Proof: Based on Remark 1, the size of APP
 should be no

larger than ()1h h
h

G D + . Then with the constraints from

Remark 2 that the sum rate of all priority classes should be
larger than 1v , then those actions inside the region of

1I B Pa a a v+ + < are also discarded.

B. PHY layer

1) PHY state
The dynamic we use to characterize the state at PHY layer

is the possible received channel SNR in each time slot,
denoted by PHY PHYs Sg= Î G = . The received signal

envelope has the Rayleigh distribution in a typical multipath
propagation environment. With additive Gaussian noise, the
received instantaneous SNR g is distributed exponentially

with the following probability density function [11]

 ()
1

expp
g

g
g g

æ ö÷ç ÷= -ç ÷ç ÷çè ø
, (6)

where g is the average SNR which is determined by the

allocated transmission power q . Let []'1 2 1, , , N+G = G G G

 be

the received SNR thresholds in increasing order with 1 0G =

and 1N+G = ¥ which partition the total SNR space into N

intervals. The channel is determined to be in state n if the
SNR is between nG and 1n+G . The states are thus ordered

with decreasing average Bit-Error-Rate (BER) values.

2) PHY action
At each state, the wireless user is able to adapt its

modulation scheme to determine the QoS levels to support the
upper layer. The selection of modulation level m in each
time slot is then the internal action at PHY layer, denoted as

PHYb m= . To simplify the analysis, here we assume that

MPSK is used, and the number of packets transmitted in each
time slot is equal to the logarithm of modulation level, as

()
2logv m= and hence, the selection of m is the rate

allocation we would like to discuss in this paper. However,
this analysis can also be performed for more sophisticated
MAC models.

The external action at PHY layer is the power allocation

PHYa q= which could determine the received SNR as the

channel state in the next time slot. The power allocation
determines the transition of channel SNR, and the rate
allocation determines the BER during transmission. Given the
current channel SNR g and transmission rate v , the BER

can be determined as [12]

 5

()1.9

6
0.05 exp

2 1
b v

g
e

é ù-ê ú= ´ ê ú-ê úë û
. (7)

The packet loss rate, as a function of be , depends on the
specific packet error-correcting scheme being implemented.
In this paper, we suppose that a packet is in error if at least l
out of its totally L bits are in error. Then we can characterize
packet error rate in terms of BER as

 () ()()
1

L
i L i

P b b
i l

L

i
e e e -

=

æ öæ ö ÷ç ÷ç ÷÷çç= - ÷÷çç ÷÷çç ÷ ÷ç ÷çè øè ø
å . (8)

Thus, we can define the effective data rate in each time
slot as pv v e= ´ , which represents the actual number of

packets can be transmitted (with all the retransmission and
error correction considered already).

3) State transition probability
As said in Section II.C, we assume that a one-step

transition in the FSMC model corresponds to the channel
state transition after one frame interval TD . The transition
only happens from a given state to its two adjacent states. The
transition probability , 1n nP + from state n to 1n + , can be

approximated by the ratio of the level crossing rate at
threshold 1n+G and the average number of packets per second

staying in state n . Similarly, the transition probability , 1n nP -

is approximated by the ratio of the level crossing rate at
threshold nG and the average number of packets per second

staying in state n . Hence, they can be approximated as in
[11],

()

()

()

() ()

1 1
1

11 1
1

1 1

, ,

| , , ,

1 , . .

j p t t
PHY j PHY j

j

j pt t t t t
PHY PHY PHY PHY j PHY j

j

j p j p

j j

F T
s s

F T
p s s a s s

F T F T
o w

g

f

f

f f

+ +
+

-+ +
-

- +

ìï Gïï = G = Gïïïïïï Gïï= = G = Gíïïïïï G Gïï - -ïïïïî

 , (9)

where
p

T is the transmission time for one packet; ()N G is

the level crossing rate of level G for the SNR process, and is
expressed as

 ()
() ()
2

expm
PHY PHY

F f
a a

p
g g

æ öG G ÷ç ÷çG = - ÷ç ÷÷çè ø
, (10)

where
m
f is the maximum Doppler frequency.

The steady-state probability of each state is

 ()
() ()

1 1exp exp
j

j

j j
j

PHY PHY

p d
a a

f g g
g g

+G +

G

æ ö æ öG G÷ ÷ç ç÷ ÷ç ç= = - - -÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
ò . (11)

4) PHY reward
The reward at the PHY layer is the negative of the total

energy consumed. The modulation energy cost is defined as

the energy-rate function [13]: ()2
_ 0 2 1 /v

PHY inc N g= - ,

where 0N denotes thermal noise. The transmission energy

cost is defined as: _PHY exc q T= D . We have

_ _PHY PHY ex PHY inc c c= + .

C. Utility function

By combining the application quality at the APP layer and
the incurred transmission energy at the PHY layer, the total
reward in an individual time slot t can be defined as

() () ()s, , , ,t t t t t t t t t t
APP APP APP APP PHY PHY PHYR Z r a Z c bl= -as ,(12)

where PHYl is a positive parameter which trade off between

the application quality and operation cost.
The reward in Eq. (12) can also be further decomposed

into two parts: one is the internal reward

 _ _,t t t t t k
in APP PHY PHY in PHY inR Z r c s ; and the external

reward _,t t t t t
ex PHY PHY ex PHYR c a as , which includes the

transmission energy incurred due to the external actions.
We assume that the state transitions at different layers are

synchronized such that in each time slot, the wireless user has
constant state and performs static actions. Thus, with the
formulation of MDP, we try to optimize the foresighted cross-
layer decision [7], finding the optimal policy p by
maximizing the cumulative reward over the infinite time
horizon, which means the wireless user is able to take the
impact of the current actions on the future reward into
consideration, as

 ()
0

, ,t t t t t
APP

t

V R Zp m
¥

=

ì üï ïï ï= í ýï ïï ïî þ
å as , (13)

where m is a discounted rate within ()0,1 . When 0m = , the
problem turns into the optimal myopic decision problem,
where the video user only considers maximizing the reward
received in the current time slot, thus we do not consider the

0m = case. The reasons for us not considering 1m = are as
follows: (i) for delay-sensitive video applications, the data
needs to be sent out as soon as possible to avoid missing
delay deadlines, and (ii) the undiscounted sum of rewards is
not guaranteed to be finite and to converge [16]. In DP
algorithms, V is also called state value function or value
function.

IV. REAL-TIME DP SOLUTION

A. Layered offline DP solution

In [7], a layered dynamic programming solution has been
proposed for the MDP problem formulated in Section III. It
takes the idea of value iteration [16], and uses a layered DP
operator to allow each layer to optimize its own policy
autonomously, based on the information exchanged with the
other layers. Each layer l first selects its own internal actions,
which, combined with the QoS provided by the lower layers,
determines the QoS Zl supported to the upper layer. Then, the
DP-based optimization starts from the highest layer in a
sequential fashion. Each layer optimizes its own external and
internal actions, and then passes the value function
downwards to the lower layers for their optimization. The
resulting DP solution is summarized in Algorithm 1 and the
corresponding DP operator at each layer is shown in Table 1,
where

 6

()
()

() ()
'

'

' ' '

, , ,

,

| , , ,
APP APP

PHY APP APP APP

in APP APP

APP APP APP APP PHY APP
s

V s s a Z

R s Z

p s s a Z V s sm
Î

=

+ å

, (14)

()

()

() ()
'

' '

,

,

| ,
PHY PHY

PHY PHY PHY

PHY ex PHY PHY

PHY PHY PHY PHY PHY
s

V s a

R s a

p s s a V s

l

Î

= -

+ å

. (15)

The value function V in the DP algorithm is the
expectation of the foresighted utility function, as in Eq. (13)
and R is the myopic utility function at that instant. The state
space then, is the composite space comprising of the
incoming traffic state space , the buffer occupancy at
APP layer, and the channel state space G at PHY layer, i.e.,
 = ´ ´G , where ´ denotes the Cartesian product.
The state transition from s to 's when action is taken is
given by

() () () ()' ' ' '| | | , , | ,APP PHYp p p a p ax k gx x k k x g g=s s, .(16)

Algorithm 1: Algorithm for layered DP solution
Initialize V arbitrarily, e.g. () 0V =s for all Îs

0D ¬
Repeat
For each Îs S
 ()v V¬ s
 Perform layered DP
 ()()max , v VD ¬ D - s
Until ()a small positive numberqD <
Output the optimal deterministic policy ()p p=

Table 1: DP operator at each layer
 DP operator at each layer

APP () ()' 'max , , ,
APP APP

APP APP

PHY PHY PHY APP APP APP
a
Z

V s V s s a Z
Î
Î

é ù= ê úë û

PHY () ()max ,
PHY PHY

PHY PHY PHY
a

V V s a
Î

é ù= ê úë û
s

B. Why is a real-time solution needed?

The layered DP algorithm presented in the previous sub-
section updates the state-value function and the policy for
every state in every iteration, therefore this algorithm is called
as Synchronous Dynamic Programming (SDP) as every
state is updated synchronously. SDP is an offline solution, for
one have to wait until the state-value function converges to

*V before it can implement the policy into real-time decision
making, and the environment dynamics have to be known.
Such approach can guarantee the policy to be optimal, but it is
really computationally expensive sometimes, especially when
the system state space is large. For example, if there are sn
states and an admissible actions for any state, then each SDP
iteration, which consists of updating each state-value function
and the policy exactly once, requires at most ()2

s aO n n
computations. For illustration, if we assume that each I frame
contains 20 packets, B frame of 5 packets and P frame of 8
packets, and the lifetime of three frames are 5, 4, 7 TD ,
respectively, then the buffer state space itself contains

5 4 7 1721 6 9 2.5 10´ ´ = ´ states, and thus, the entire state

space would be so large that the computation cost is
unaffordable. Moreover, the network environment in the
video streaming process is usually not stationary but changes
over time. For example, the switch of video content will lead
to the variation on the statistical property of the incoming data
traffic, and the channel characteristics (e.g. SNR) of the
wireless channel also varies from time to time. Therefore, the
policy implemented during the control over the streaming
process should be adaptively adjusted along with the dynamic
change of the environment. Unfortunately, SDP can not make
such policy adjustment online due to its offline characteristics.
Every time the environment changes, SDP has to re-compute
the policy, then implements it online. As we can see from the
above, such offline-computing-and-online-implementing
approach is so inefficient and expensive that is almost
impossible to be used in real-time applications when the state
space inflates.

Table 2: RTDP operator at each layer
 DP operator at each layer

APP () ()' 'max , , ,
APP APP

APP APP

t t
PHY PHY PHY APP APP APP

a
Z

V s V s s a Z
Î
Î

é ù= ê úë û

PHY () ()1 max ,
PHY PHY

t t t t
PHY PHY PHY

a
V V s a+

Î
é ù= ê úë û
s

Therefore, in this paper we propose the new RTDP
algorithm to solve the optimal state-value function and policy
update online. Our approach is to modify the offline and
synchronous policy update, and consider performing the
policy update and the real-time decision making of the policy
in the video streaming process concurrently. The policy
update and the real-time decision making interact as follows:

1. Decision making: In every time slot t , the decision
on packet scheduling and power and rate allocation
for the video streaming process is made based on the
most up-to-date policy and the current system state;

2. Policy update: The value function and the policy of
the current state are updated.

In RTDP, let ts be the last state visited by the system in

the tht time slot, and ()tV s is the most up-to-date value

function for all Îs . The system then executes action t ,
which can maximize the value function for the current state

ts , that is

 () () () ()1

'

max , ' | , '
t

t t t t t t tV R p Vm+
é ù
ê ú= +ê úë û

å
s

s s s s s

 . (17)

and the DP solution (optimal policy) for ts is then updated as

()t tp =s .

Similar to [7], this centralized RTDP operator can be
decomposed across the OSI layers using a layering
computation as shown in Table 2, where

() ()

() ()
'

'

' ' '

, , , ,

| , , ,
APP APP

k t t t
PHY APP APP APP in APP APP

t t
APP APP APP APP PHY APP

s

V s s a Z R s Z

p s s a Z V s sm
Î

=

+ å

,(18)

() ()

() ()
'

' '

, ,

| ,
PHY PHY

t t t
PHY PHY PHY PHY ex PHY PHY

t
PHY PHY PHY PHY PHY

s

V s a R s a

p s s a V s

l

Î

= -

+ å

. (19)

 7

Before presenting the complete algorithm of RTDP, we
first analyze the convergence of such layered RTDP operator.

C. The convergence for layered RTDP

In this part, we prove that the layered RTDP Algorithm
converges to the optimal value function *V and the optimal
policy *p generated from SDP, under certain sufficient
conditions.

To prove the convergence of layered RTDP, we first
prove its equivalence to an asynchronous algorithm, and then
use the Asynchronous Convergence Theorem to get the result.

Lemma 1: Layered RTDP is a special case of
Asynchronous Dynamic Programming [16], where only one
state is updated in every time slot.

Definition 1: There is a sequence of nonempty sets
(){ }X k with

 () () ()1 0X k X k XÌ + Ì Ì Ì (20)
satisfying the following two conditions:

(a) (Synchronous Convergence Condition) We have
 () () ()1 , f x X k k and x X kÎ + " Î (21)

Furthermore, if { }ky is a sequence such that ()ky X kÎ
for every k , then every limit point of { }ky is a fixed point of
f .

(b) (Box Condition) For every k , there exists sets
()i iX k XÌ that () () () ()1 2 nX k X k X k X k= ´ ´ ´ .

The Synchronous Convergence Condition implies that [14]
the limit points of sequences generated by the (synchronous)
iteration ():x f x= are fixed points of f , assuming that the

initial x belongs to ()0X . The Box Condition implies

()x X kÎ and ()'x X kÎ , if we replace the thj components

of them, we still obtain two elements of ()X k .

Lemma 2: (Asynchronous Convergence Theorem [14]) If
the Synchronous Convergence and Box Conditions hold for
the sequence of nonempty sets (){ }X k , and the initial

solution estimate () () (){ }10 0 , , 0nx x x= belongs to the set

()0X , then every limit point of (){ }x k is a fixed point of f

as defined in Definition 1.
Proof: The proof of Lemma 2 can be found in [14].
Hence, as Lemma 1 has shown that layered RTDP is a

special asynchronous algorithm, if we view the update of
layered RTDP as some mapping f , we just need to prove the
set of value functions under this mapping satisfies the
Synchronous Convergence and Box Conditions, and then use
Lemma 2 to prove layered RTDP’s convergence.

First, we prove that the mapping defined by layered RTDP
is a contraction mapping.

Definition 2: Let ()', ,APP PHY APP PHYs s s=s be the

composite state at APP layer. Given this composite state, we
can define the mapping at APP layer as

 () (){ }'max , , ,APP

APP APP

APP APP

s
APP PHY APP APP APP

a
Z

T V V s s a Z
Î
Î

=

. (22)

Similarly, at PHY layer, the mapping can be defined as

 () (){ }max ,
PHY PHY

s
PHY PHY PHY PHY PHY

a
T V V s a

Î
=

. (23)

The layered operation of RTDP can be represented as the
following iteration

 () () () ()1,APPs t t
PHY APP APP PHY PHYV T V V T V+= = ss s . (24)

The value function update T can be represented as the
composition of the above two mappings

 () ()() ()()1 APPt t s t
PHY APPV T V T T V+ = = ss s . (25)

Lemma 3: The value function update T is a contraction

mapping.
Proof: Let us first look at APPs

APPT , for any two different

value functions V and V , it is verify that

 () ()| |APP APPs s
APP APPT V T V V V Im

¥
- £ - . (26)

where . ¥ is the maximum norm and I is the all-one vector
()1,1, ,1 . So ()APPs

APPT V is a contraction mapping.
Similarly, ()PHY PHYT Vs is also a contraction mapping.

Therefore, the value function update ()()T V s is also a
contraction mapping on V , as the composition of two
contraction mappings.

With all the above preparation, we can now prove the
major theorem in this section.

Theorem 1: The layered RTDP algorithm converges to
the optimal value function as long as every state in the state
space is visited infinite times.

Proof: As the state space in our video streaming

problem is assumed to be finite, denoted as { }1 2, , ,
sNs s s ,

where sN is the size of . Here we define

 () () () (){ } { }0 0 0
1 20 , , , 0, 0, , 0

sNx V V V= = s s s (27)

as the initial value functions on all states and ()0 NX = R .
Apparently, () ()0 0x XÎ .

Then we set

() (){ }* *| 0N kX k x x x x xm= Î - £ -R . If we define

the value function update () (). .T f= and the value functions
after t updates

 () () () (){ }1 2, , ,
s

t t t
Nx t V V V= s s s , (28)

where () () ()()0tt
i iV T V=s s for all i , we have

() ()x t X tÎ , and (){ }X t is a sequence of nonempty sets

satisfying the Synchronous Convergence and Box Condition
in Definition 1. Based on Lemma 2, every limit point of ()x t

is a fixed point of T .
Assuming ()* *x V= represents the fixed point of the

mapping T in lemma 3, that is,

 ()* *x T x= , (29)

We have
 () () ()* *lim and lim t

i i
t t

x t x V V
¥ ¥

= =s s (30)

for all i.
So in layered RTDP, if we make sure every state to be

visited infinite times, t is guaranteed to go infinite and all the
value functions can converge to optimal.

The only condition necessary for RTDP to converge is
that every state should be visited infinite times, though this is
not realistic in real applications, it tells us that the more a
state is visited, the closer its value function will approach the
optimum. To achieve it, we use a randomized learning policy
to make sure that the system always continues to visit each

 8

state. An example of such a learning policy is a form of
Boltzmann exploration [16]:

 ()
() ()

() ()

,
| , ,

,

t

t

t

t

a A

e Q
Pr t Q

e Q

b

b

Î

=
å

s

s

s
s

s

, (31)

where (),tQ s is the value function of taking action in

state s for time slot t; ()
tb s is the state-specific exploration

coefficient for time slot t , which controls the rate of
exploration in the learning policy. If we assume ()

tb s to be

infinite in the limit, then this learning policy has the following
two properties:

1. Each action is executed infinitely often in every state
that is visited infinitely often;

2. In the time limit, the learning policy is greedy with
respect to the Q-value function with probability 1.

Learning policies satisfying the above conditions are
denoted as GLIE, which stands for “Greedy in the Limit with
Infinite Exploration” [15].

It has been proved in [15] that for any Reinforcement
Learning algorithm that converges to the optimal value
function and whose estimates stay bounded, using GLIE
learning policies will ensure a concurrent convergence to an
optimal policy, and therefore the GLIE policy in layered
RTDP also converges for sure.

So finally, the operation of layered RTDP is summarized
in Algorithm 2.

Algorithm 2: Algorithm for layered RTDP solution
Initialize V arbitrarily, e.g. () 0V =s for all Îs
Start from initial state ()0s
In the tht time slot ()0t ³

Layered value function update as in Table 2
 Policy update:
 Select the action to be performed based on the probability

 ()
() ()

() ()

,
| , ,

,

t

t

t

t

a A

e Q
Pr t Q

e Q

b

b

Î

=
å

s

s

s
s

s

 Update policy for state ts , ()t tp= s

State transition: 1
tat t+ ¬s s

D. The layered adaptive RTDP

The RTDP described above requires full prior knowledge
of the network environment underlying the Markovian
decision problem, such as state transition probabilities. When
this knowledge is not available (this is commonly known as a
Markovian decision problem with limited information),
online learning methods should be combined with RTDP to
adaptively learn the environment dynamics and adjust the
policy in real-time. The key challenge for the online
adaptation here is how to perform decision making in an
unknown environment and how to adapt to the changing
dynamics online.

The general idea for doing the online adaptation in RTDP
is to first estimate a system model using an online system
identification method before its operation (i.e. policy update
and decision making) in each time slot. Subsequently, the
policy update and decision making are performed using the
improved system model. This method is called layered
Adaptive RTDP (layered ARTDP), or RTDP with incomplete

knowledge, and the RTDP in the previous section could be
referred as RTDP with complete knowledge.

Assuming that the transition probabilities are unknown
and need to be estimated, and the estimation is improved at

each time slot t , denoted as (){ }| , , ,t
j ip i j"s s . Let

()ijN t be the observed number of times before time slot t

that action was executed when the system was in state is

and made a transition to state js afterwards; and ()iN t

denote the number of times action was executed in state is

before time slot t . The state transition probability at time slot
t can then be approximated as

 ()
()

()
| , ijt

j i
i

N t
p

N t
=s s

 . (32)

The operation of layered ARTDP is summarized in
Algorithm 3.

Algorithm 3: Algorithm for layered ARTDP Solution
Initialize V arbitrarily, e.g. () 0V =s for all Îs
Start from initial state ()0s
In the tht time slot ()0t ³

System Identification: ()
()

()

1

1

1 1| ,

t

t

ijt t t
j

i

N t
p

N t

-

-

- - =s s

 , for

all j Îs , and 1t
i

- =s s

Layered value function update as in Table 2
 Policy update:
 Select the action to be performed based on the probability

 ()
() ()

() ()

,
| , ,

,

t

t

t

t

a A

e Q
Pr t Q

e Q

b

b

Î

=
å

s

s

s
s

s

 Update policy for state ts , ()t tp= s

State transition: 1
t

t t+ ¬s s

E. The convergence of layered ARTDP

In this section, we analyze the convergence of the layered
ARTDP and provide some sufficient conditions for its
convergence.

Theorem 2: The layered ARTDP algorithm converges to
the optimal value function and the optimal policy, with
probability one if the following conditions are met:

C1. The convergence conditions for the corresponding
layered RTDP algorithm are met.

C2. In the limit, every action is executed from every state
infinitely often.

C3. The estimates of the state transition probabilities
converge to their true value with probability one.

Proof: In the layered ARTDP, let *
tV denotes the optimal

value function based on the estimates of transition

probabilities ()| ,tp ' as s in the tht time slot. Based on

Condition C2, it is easy to tell that
. .1* *lim

w p

t
t

V V
¥

 . For any

small , assume

 * * ,tV V for t Tdd
¥

- < > . (33)

 9

For any state s , let ()t is denote the time that s is backed

up for the thi time after Td , then we first prove that the

following inequality holds for any state s

()
()

()
()

() ()
* *

1 1 1 , i
t i t i t tV V V V for anym d d+ ¥

- < - +s s s ss s (34)

We use induction to prove it:

()
()

()
()

()() ()()

() () () () () (){ }
() (){ } () (){ }

() ()

()

() ()

* *
1

* * * *
1 1

* *
1 1 1 1

*
1 1

*
1 1

1

1

t i t i t i t i

t i t i t i t i t i t i

t i t i t i t i

i

i
t t

i
t t

V V T V T V

V V V V V V

V V V V

V V

V V

m m

m d m d

m m
m d

m

m d

+

- -¥ ¥ ¥

- - + -¥ ¥

¥

D

¥

- = -

£ - £ - + -

< - + £ - +

-
£ - +

-

= - +

s s s s

s s s s s s

s s s s

s s

s s

s s

.(35)

Therefore, as i ¥ , ()
()

()
()*

1lim t i t ii
V V d+¥

- <s ss s , for

any state s and any small d .

Finally, as
. .1

* *lim
w p

tt
V V

¥
 , we can draw our conclusion

that
 ()

() ()*lim , . .1t ii
V V s w p

¥
s s . (36)

V. NUMERICAL RESULTS

In this experiment, we show that our layered RTDP
algorithms have the performance close to optimal, and
compare the performances of layered SDP, RTDP, and
ARTDP.

A. Simulation setting

At APP layer, we use the video trace pattern as described
in Section II.A, and assume that the statistic of incoming
video traffic complies with the activity adaptive model as in
[9] and has four possible states { }, , ,I P B BB . To simplify
our analysis, we further reduce the state space into 3 spaces
{ }, ,I P B , and use the transition probability matrix of the 4-
state model to approximate the transition probability between
any two types of frames.

The frame rate at the encoder is assumed to be 20Hz, thus
the length of one time slot 1T msD = .

The I frame has a life time of 50 TD , and the B frame
and the P frame have corresponding life times of 45 TD and
60 TD respectively. Each I frame is encoded into 20 packets,
B frame is 5 packets, and P frame 8 packets. The average
packet length 1000L bits= .

At the PHY layer, we assume that the channel has the
maximum Doppler frequency 50mf Hz= . The channel SNR
has 9 levels, varying from 0 to infinite. The power allocation
has 4 levels, []()0.5,1.0,1.5,2.0q mwÎ . We use the MPSK
modulation, and there are also 4 modulation levels as
{ }, , 8 ,16BPSK QPSK PSK PSK .

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0.5

1

1.5

2

2.5

3

Stage

A
ve

ra
ge

 R
ew

ar
d

H
is

to
ry

Average Reward History

Optimal Policy (SDP)

RTDP with complete knowledge
Adaptive RTDP

0 1 2 3 4 5 6 7 8 9 10

x 10
4

25

30

35

40

Stage

P
S

N
R

PSNR History

Optimal Policy (SDP)

RTDP with complete knowledge
Adaptive RTDP

Figure 2. (top) The reward; (bottom) The PSNR received along time

in video streaming process with stationary traffic
In this example, we consider how to decide the power

allocation and modulation levels, and then select a set from
the output buffer, to optimize the video quality received in
this application meanwhile minimize the transmission energy
at PHY layer.

B. Online adaptation with stationary incoming traffic

In this simulation, we compare the performance of SDP,
RTDP, and ARTDP in the video streaming process, with
stationary incoming traffic, that is, the traffic pattern and the
transition probabilities between different states remain the
same.

Figure 2 show the resulting average reward and PSNR
achieved by different methods. As can be seen from these
figures, the SDP generates the optimal policy, which keeps a
constant reward. The RTDP methods will gradually catch up
with the performance of SDP as they are learning through the
real-time decision control, and their policies are getting closer
to optimal.

For the RTDP methods themselves, the performance of
RTDP with complete knowledge is initially better than that of
ARTDP, which is straightforward as the RTDP has the full
accurate knowledge about the network environment and the
dynamics before the control operation starts, thus can learn
the optimal policy much faster than ARTDP. When the states
are visited with enough times, ARTDP can get enough
accurate estimation on the system state transition probabilities,
and the rate of its policy update would get closer to its non-
adaptive competitor.

C. Online adaptation with non-stationary incoming traffic

In this simulation, the incoming traffic is non-stationary.
After running 45 10´ time slots, the incoming video changes
into a low motion scenario, and hence, there are less I frames
and more B and P frames in the incoming traffic, as well as
some change in the transition probabilities between frames.

 10

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

1.5

2

2.5

3

Stage

A
ve

ra
ge

 R
ew

ar
d

H
is

to
ry

Average Reward History

Optimal Policy (SDP)

RTDP with complete knowledge
Adaptive RTDP

0 1 2 3 4 5 6 7 8 9 10

x 10
4

25

30

35

40

Stage

P
S

N
R

PSNR History

Optimal Policy (SDP)

RTDP with complete knowledge
Adaptive RTDP

Figure 3. (top) The reward; (bottom) The PSNR received along time

in video streaming process with non-stationary traffic
Figure 3 show the performances of the three methods in

such a non-stationary environment. Since SDP uses a fixed
policy which only fits certain fixed environment, its
performance is most severely influenced by the environment
dynamics, both in terms of the reward and PSNR.

The RTDP methods, on the other hand, provide much
more stable performances compared to SDP. When the
incoming traffic changes after 45 10´ time slots, the reward
and PSNR received by RTDP with complete knowledge stops
to increase, which is due to the fact that the knowledge about
the environment (i.e. state transition probabilities) possessed
by RTDP is now out of date. But as RTDP is still in the
middle of the learning process and the policy is sub-optimal,
its performance does not have severe drop as that of SDP.

The method which fits the non-stationary environment
best, is the ARTDP. As we observe, after the environment
changes, the performance of ARTDP will slightly fall. But
after another 410 time slots, ARTDP has again updated its
estimate on the state transition probabilities of incoming
traffic, and its received reward and PSNR start to rise.

VI. CONCLUSIONS

In this paper, we extend the proposed layered MDP
framework in [7] from the setting where all network
environment dynamics are considered known to the more
realistic case in which the knowledge of the environment
dynamics is limited or even completely unknown. Unlike the
conventional Synchronous Dynamic Programming method
used to solve the MDP problem, we propose a Real-time
Dynamic Programming solution, which can also adhere to the
layered OSI structure, but is capable of combining the policy
update and real-time decision making. This approach can not
only avoid the high computational complexity involved in
solving the MDP problem, but also, importantly, can
adaptively adjust its policy online, given the experienced
changes in the environment dynamics. We prove the
convergence of the RTDP methods for the considered cross-

layer problem, and our experiment results show that the
layered RTDP methods obtain near optimal performance in
the long term and also exhibit significant advantages in terms
of in the non-stationary environment.

REFERENCES
[1] M. van der Schaar, and S. Shankar, “Cross-layer wireless multimedia

transmission: challenges, principles, and new paradigms,” IEEE
Wireless Commun. Mag., vol. 12, no. 4, Aug. 2005.

[2] M. van der Schaar and P. Chou, editors, "Multimedia over IP and
Wireless Networks: Compression, Networking, and Systems,"
Academic Press, 2007.

[3] Q. Liu, S. Zhou, and G. B. Giannakis, “Cross-layer combing of adaptive
modulation and coding with truncated ARQ over wireless links,” IEEE
Trans. Wireless Commun., vol. 4, no. 3, May 2005.

[4] Y. J. Chang, F. T. Chien, and C. C. Kuo, “Cross-layer QoS analysis of
opportunistic OFDM-TDMA and OFDMA networks,” IEEE J. Select.
Areas Commun., vol 25, no. 4, pp. 657-666, May, 2007.

[5] M. van der Schaar, Y. Andreopoulos, and Z. Hu, "Optimized scalable
video streaming over IEEE 802.11 a/e HCCA wireless networks under
delay constraints," IEEE Trans. Mobile Comput., vol. 5, no. 6, pp. 755-
768, June 2006.

[6] M. van der Schaar, and D. Turaga, “Cross-Layer Packetization and
Retransmission Strategies for Delay-Sensitive Wireless Multimedia
Transmission,” IEEE Transactions on Multimedia, vol. 9, no. 1, pp.
185-197, Jan., 2007.

[7] F. Fu and M. van der Schaar, “A New Systematic Framework for
Autonomous Cross-Layer Optimization”, IEEE Trans. Veh. Tech., to
appear.

[8] A. G Barto, S. J Bradtke, S. P Singh, “Learning to act using real-time
dynamic programming”, Artificial Intelligence, Elsevier, 1995.

[9] D. S. Turaga and T. Chen, “Hierarchical Modeling of Variable Bit Rate
Video Sources”, Proc. of the 11th Packet Video Workshop.

[10] A. Albanese and M. Luby, “PET-priority encoding transmission,” in
High-Speed Networking for Multimedia Application. Norwell, MA:
Kluwer, 1996.

[11] Q. Zhang, Saleem A. Kassam, “Finite-State Markov Model for
Rayleigh Fading Channels,” IEEE Trans. On Communications. Vol. 47,
No. 11, November 1999.

[12] S. T. Chung, A. J. Goldsmith, “Degrees of Freedom in Adaptive
Modulation: A Unified View,” IEEE Trans. On Communications, Vol.
49, No. 9, September 2001.

[13] W. Chen, U. Mitra, M. J. Neely, “Energy-efficient Scheduling with
Individual Packet Delay Constraints over a Fading Channel,” Wireless
Networks, Springer, 2008.

[14] D. P. Bertsekas, J. N. Tsitsiklis, “Parallel and Distributed Computation:
Numerical Methods”, Prentice Hall, 1989.

[15] S. Singh, T. Jaakkola, M. L. Littman, C. Szepesvari, “Convergence
Results for Single-Step On-Policy Reinforcement-Learning
Algorithms”, Machine Learning, Springer, 2000.

[16] R. S. Sutton, A. G. Barto, “Reinforcement Learning: An Introduction”,
MIT Press, 1998.

[17] P. Chou, and Z. Miao, “Rate-distortion optimized streaming of
packetized media,” IEEE Trans. Multimedia, vol. 8, no. 2, pp. 390-404,
2005.

