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Abstract— In this paper, we first formulate the cross-layer 
design as a non-linear constrained optimization problem by 
assuming complete knowledge of the dynamically changing 
application characteristics and the underlying time-varying 
network conditions. By decomposing the cross-layer 
optimization problem, we determine the necessary message 
exchanges between layers for achieving the optimal cross-layer 
solution and explicitly show how the cross-layer strategies 
selected for one date unit (DU, e.g. packet) will impact its 
neighboring DUs as well as the DUs that depend on it. However, 
the attributes (e.g. distortion impact, delay deadline etc) of 
future DUs as well as the network conditions are often unknown 
in the considered real-time applications. The impact of current 
cross-layer actions on the future DUs can be characterized by a 
state-value function in the Markov decision process (MDP) 
framework. Based on the value iteration solution to the MDP, we 
develop a low-complexity cross-layer optimization algorithm 
using online learning for each DU transmission. This online 
optimization utilizes information only about the previous 
transmitted DUs and past experienced network conditions. This 
online algorithm can be implemented in real-time in order to 
cope with unknown source characteristics, network dynamics 
and resource constraints. Our numerical results demonstrate the 
efficiency of the proposed online algorithm.  

Keywords- Cross-layer optimization, wireless multimedia 
transmission, decomposition principles, online optimization.  

I.  INTRODUCTION 
To maximize its utility, a wireless user needs to jointly 

optimize the various protocol parameters and algorithms 
available at each layer of the Open Systems Interconnection 
(OSI) stack. This joint optimization of the transmission 
strategies at the various layers is referred to as cross-layer 
optimization [1][2]. Cross-layer optimization has been 
extensively investigated in recent years in order to maximize 
the application’s utility given the underlying time-varying and 
error-prone network characteristics.  

In this paper, we focus on the cross-layer optimization for 
one wireless user (a transmitter and receiver pair) over a 
single hop wireless network [e.g. Wireless Local Area 
Network (WLAN)]. The cross-layer optimization 1  for one 

                                                           
1  Research on cross-layer optimization has also focused on multi-user 

cross-layer optimization. The multi-user cross-layer optimization is often 
formulated as a network utility maximization (NUM). A comprehensive 
overview of NUM can be found in [7] and the references therein. In this 
paper however, we focus on solving the cross-layer optimization across time 
from a single user’s perspective. 

wireless user focuses on the joint transmission strategy 
adaptation [1][4][5][8] across multiple layers. We consider 
the sequential cross-layer adaptation over time in order to 
maximize the long-term utility. The most important advantage 
of such sequential approaches is that they allow the wireless 
users to consider the experienced source and network 
dynamics (which are affected by both the uncertainty in the 
environment and the actions chosen by the wireless user) and, 
based on the users’ knowledge about these dynamics up to 
that moment, select their cross-layer transmission strategies to 
maximize their utility over time. 

A. Related work  
 Based on the network dynamics and decision 

granularities in different OSI layers, most sequential 
approaches for wireless transmission can be further classified 
into two categories: flow-based transmission decisions and 
DU-based transmission decisions. The goal of the flow-based 
approaches, e.g. [3][4], is to optimize the “average” or “worst 
case” quality of service (QoS), e.g. average/worst case packet 
delay, packet loss rate, bit rate etc., for the supported 
applications. However, since the heterogeneous attributes of 
the packets in terms of delay deadlines and distortion impacts 
etc. are ignored, the flow-based approaches often result in 
suboptimal utilities for the delay-sensitive applications [19]. 
In DU-based transmission scenarios [8][11], each DU can 
contain one packet or multiple packets. Each DU is 
characterized by its distortion impact (e.g. the decrease in the 
application quality when that DU is lost), its packet length, 
the time at which the DU is ready for transmission and its 
delay deadline. For example, in video streaming applications, 
the DU can be one frame or one group of pictures, which may 
comprise multiple packets [8]. The decision is made for each 
DU to select the optimal transmission strategies across 
multiple layers such that the total quality of the application 
(e.g. the Peak Signal-to-Noise Ratio (PSNR) for multimedia 
streaming) is maximized. In [8], the video packets with 
various characteristics are scheduled considering a common 
delay deadline and an optimal solution (including optimal 
packet ordering and retransmission) is developed assuming 
that the underlying wireless channel is static. In [11], a 
Directed Acyclic Graph (DAG) model is used to capture the 
media packet dependencies and, based on this, an optimal 
packet scheduling method is developed using dynamic 
programming [10]. However, the proposed solution 
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disregards the dynamics and error protection capabilities at 
the lower layers (e.g. MAC and physical layers).  
Summarizing, a general sequential cross-layer optimization 
framework which simultaneously considers both the 
heterogeneous and dynamically changing DUs’ attributes of 
delay-sensitive applications and the underlying time-varying 
network conditions is still missing. In this paper, we aim to 
develop a solution that addresses both of these challenges for 
the delay-sensitive applications and in particular, multimedia 
streaming. 

B. Contributions of this paper 
We consider a DU-based approach, and assume that the 

cross-layer decisions are performed for each DU. We 
consider both the independently decodable DUs (i.e. they can 
be decoded independently without requiring the knowledge of 
other DUs) and the interdependent DUs (i.e. in order to be 
decoded, each DU requires those DUs it depends on to be 
decoded beforehand and these dependencies are expressed as 
a DAG). We first formulate a non-linear constrained 
optimization problem by assuming complete knowledge of 
the attributes 2  (including the time ready for transmission, 
delay deadlines, DU size and distortion impact and DAG-
based dependencies) of the application DUs and the 
underlying network conditions. The formulations in 
[5][6][8][12] are special cases of the framework proposed in 
this paper.     

 
Figure 1. Decomposition of the cross-layer optimization and 

corresponding information update 
The constrained cross-layer optimization for both 

independently decodable DUs and interdependent DUs can be 
decomposed into several subproblems and two master 
problems as shown in Figure 1. We refer to each subproblem 
as Per-DU Cross-Layer Optimization (DUCLO) since it 
represents the cross-layer optimization for one DU. For the 
interdependent DUs, the DUCLOs are solved iteratively in a 
round-robin style. One master problem is called the Price 
Update (PU), which corresponds to the Lagrange multiplier 
(i.e. price of the resource) update associated with the 
considered resource constraint imposed at the lower layer 
(e.g. energy constraint); and the other master problem is 
called Neighboring Impact Factor Update (NIFU), which is 
implemented at the application layer. The NIFU corresponds 

                                                           
2 This is the case, for instance, when the multimedia data was pre-encoded 

and hinting files were created before transmission time [19]. However, in the 
real-time encoding case, these attributes are known just in time when the 
packets are deposited in the streaming buffer, which will be considered in 
Section V.  

to the update of the Lagrange multipliers (called Neighboring 
Impact Factors, NIFs) associated with the DU scheduling 
constraints between neighboring DUs3. As we will show in 
this paper, the proposed decomposition provides necessary 
message exchanges between layers and illustrates how the 
cross-layer strategies for one DU impact its neighboring DUs 
and the next DUs which it connects to within the DAG. 

In delay-sensitive real-time applications, the wireless user 
does not know the attributes of future DUs and what network 
conditions they will experience. In other words, it only knows 
the attributes of previous DUs, and past experienced network 
conditions and transmission results. The message exchange 
mechanism developed based on the decomposition of the non-
linear optimization is infeasible since it requires exact 
information about future DUs. However, when the 
distribution of the attributes and network conditions of DUs 
fulfil the Markov property [18], the cross-layer optimization 
can be reformulated as a MDP. Then, the impact of the cross-
layer action of the current DU on the future unknown DUs are 
characterized by a state-value function which quantifies the 
impact of the current DU’s cross-layer action on the future 
DUs’ distortion.  Using the obtained decomposition principles 
developed for the online cross-layer optimization, we develop 
a low-complexity algorithm which only utilizes the available 
(causal) information to solve the online cross-layer 
optimization for each DU, update the resource price and learn 
the state-value function.  

Thus, the difference between the methods proposed in this 
paper and those in [5][6][8] [11][12]  is that we explicitly take 
into account both the application characteristics and network 
dynamics and constraints, and determine corresponding 
decomposition principles for cross-layer optimization which 
illustrates the necessary massage exchanges between layers 
over time. Our solution also differs from other decomposition 
methods, such as NUM in [7] because we decompose the 
cross-layer optimization over time into per-DU cross-layer 
optimizations in order to take into account the heterogeneity 
and dependencies of the DUs and the time-varying network 
conditions. Moreover, in this paper, we propose a systematic 
framework to deal with the cross-layer optimization with 
incomplete knowledge which is not addressed in the previous 
work.  

The rest of the paper is organized as follows. Section II 
formulates the cross-layer optimization problem for the 
independently decodable DUs as a non-linear constrained 
optimization assuming the knowledge of the characteristics of 
the supported application and underlying network conditions. 
Section III decomposes the optimization problem and 
presents the necessary message exchanges between layers and 
between neighboring DUs. Section IV further formulates the 
cross-layer optimization for interdependent DUs as a non-
linear constrained optimization and presents the decomposed 
cross-layer optimization algorithm based on the 
decomposition principles developed in Section III. Section V 
presents an online cross-layer optimization for each DU 

                                                           
3  These are consecutive packets generated by the source codec in the 

encoding/decoding order.  
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transmission. Section VI shows some numerical results, 
followed by the conclusions in Section VII. 

II. PROBLEM FORMULATION 
We assume that a wireless user streams delay-sensitive 

data (e.g. encoded video sequences) over a time-varying 
wireless network. We focus on the DU-based cross-layer 
optimization. Specifically, the wireless user has M  DUs with 
individual delay constraints and different distortion impacts. 
In this section, we consider that the DUs are independently 
decodable and will discuss the cross-layer optimization for 
the interdependent DUs in Section IV. The time the DUs are 
ready for transmission is denoted by , 1, ,it i M= . The 
delay deadline of each DU i  (i.e. the time before which the 
DUs must be received by the destination) is denoted by id , 
and thus, the following constraint needs to be satisfied: 

i id t≥ . The DUs are transmitted in the First In First Out 
(FIFO) fashion (i.e. the same as the encoding/decoding order). 
The size of each DU i  is assumed to be il  bits. Each DU i  
also has a certain distortion impact iq , which represents the 
decrease on the quality of the application when this entire DU 
is dropped [8][13].  Hence, each DU i  is associated with an 
attribute tuple { }, , ,i i i i iq l t dψ = . In this section and the 
subsequent two sections, we assume that the attributes are 
known a priori for all DUs. In Section V, we will discuss the 
case in which the attributes of all the future DUs are unknown 
to the wireless user, as is the case in live encoding and 
transmission scenarios. 

During the transmission, DU i  is delivered over the 
duration from time ix  to time iy  ( i iy x≥ ), where ix  
represents the starting transmission time (STX) and iy  
represents the ending transmission time (ETX). The choice of 

ix  and iy  represents the scheduling action of DU i , which is 
determined in the application layer. The scheduling action is 
denoted by ( ),i ix y  satisfying the condition of 
i i i it x y d≤ ≤ ≤ . At the lower layer (which can be one of 

the physical, MAC and network layers or combination of 
them), the wireless user experiences the average network 
condition ic +∈  during the transmission duration. For 
simplicity, we assume that the average network condition is 
independent of the scheduled time ( ),i ix y , which can be the 
case when the network condition is slowly changing. The 
wireless user can deploy the transmission action ia ∈ A  
based on the experienced network condition. The set A  
represents the possible transmission actions that the wireless 
user can choose. The transmission action at the lower layer 
can be, for example, the number of DU transmission retry (e.g. 
ARQ) at the MAC layer, or energy allocation at the physical 
layer [21].  

When the wireless user deploys the transmission action ia  
under the network condition ic , the expected distortion of DU 
i  due to the imperfect transmission in the network is 
represented by ( ) ( ), , , ,i i i i i i i i iQ x y a q p x y a= 4 , where 

                                                           
4 We consider here that the distortion of the independently decodable DUs 

is not affected by other DUs, as in [15].  

( ), ,i i i ip x y a  can be the probability that DU i  is lost as in 
[11] or the distortion decaying function5 due to partial data of 
DU i  being received as in [13]. The resource cost incurred by 
its transmission is represented by ( ), ,i i i iw x y a +∈ . In 
addition, we assume that the functions ( ), ,i i i ip x y a  and 

( ), ,i i i iw x y a  satisfy the following conditions: 
C1 (Monotonicity): ( ), ,i i i ip x y a  is a non-increasing function 
of the difference i iy x−  and the transmission action ia . 
C2 (Convexity): ( ), ,i i i ip x y a  and ( ), ,i i i iw x y a  are convex 
functions of the difference i iy x−  and the transmission 
action ia .  

Condition C1 means that the expected distortion will be 
reduced by increasing the difference i iy x− , since this 
results in a longer transmission time which increases the 
chance  DU i  will be successfully transmitted. In condition 
C2, the convexities of ip  and iw are assumed to simplify the 
analysis. This assumption is satisfied in most scenarios, as 
will be shown in Section VI.  

Based on the description above, the cross-layer 
optimization for the delay-sensitive application over the 
wireless network is to find the optimal scheduling action (i.e. 
determining the STX ix  and ETX iy  for each DU) at the 
application layer and, under the scheduled time [ ],i ix y , the 
optimal transmission action ia  at the lower layer. The goal of 
the cross-layer optimization is to minimize the expected 
average distortion experienced by the delay-sensitive 
application. This cross-layer optimization may also be 
constrained on the available resources at the lower layer (e.g. 
energy at the physical layer). Then, the cross-layer 
optimization problem with complete knowledge (referred to 
as CK-CLO) can be formulated as:  

  

( )

( )

, , 1, ,

1

1

1

1
min

. . , , , , ,

1
,

, ,

, ,

i i ix y a i M

i i i i i i i i i

M
i i i ii

M
i i i ii

M
s t x y x t y d x y a

W
M

Q x y a

w x y a

=

+

=

=

≤ ≥ ≤ ≥ ∈

≤

∑

∑

A    (CK-CLO) 

where the constraint 1i ix y+ ≥  indicates that DU 1i +  has 
to be transmitted after DU i  is transmitted (i.e. FIFO), and 
the last line in the CK-CLO problem indicates the resource 
constraint in which W  is the average resource budget (e.g. 
the available energy for transmission). The minimization of 
the distortion is the same as the maximization of the utility.  

III. DECOMPOSITION FOR CROSS-LAYER OPTIMIZATION 
In this section, we discuss how the cross-layer 

optimization in the CK-CLO problem can be decomposed 
using duality theory [9], what information has to be updated 
among DUs at each layer and what messages have to be 
exchanged across multiple layers. Such decomposition 

                                                           
5 The distortion decaying function represents the fraction of the distortion 

remained after the (partial) data are successfully transmitted. For example, 
when the source is encoded in a scalable way, the distortion function is given 
by RD Ke θ−=  when R  bits has been received [13]. In this case, the 
distortion decaying function is given as ( ) ( ), ,, , i i i i iR x y a

i i i i ep x y a θ−=  and 
iq K= . 
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principles are important for developing optimal cross-layer 
solutions, because it adheres to the current layered network 
architecture.  

A. Lagrange dual problem 
We first relax the constraints in the CK-CLO problem by 

introducing the Lagrange multiplier 0λ ≥  associated with 
the resource constraint and Lagrange multiplier vector 

[ ]1 1, , T
Mμ μ −= ≥ 0μ , whose elements are associated 

with the constraint 1 ,i ix y i+ ≥ ∀ . The corresponding 
Lagrange function is given as  
( ) ( )

( )( ) ( )

1

1
11 1

, , , ,

1

1 , ,

, ,

M
i i i ii

M M
i i i i i i ii i

L

M W

M Q x y a

w x y a y x

λ

λ μ

=

−
+= =

+

+

=

− −

∑
∑ ∑

x y a μ
, (1) 

where [ ]1, , Mx x=x , [ ]1, , My y=y  and [ ]1, , Ma a=a . 
Then, the Lagrange dual function is given by  

 
( ) ( )

, ,
, , , , ,

. . , , , , 1, , .

min

i i i i i i i

g L

s t x y x t y d a i M

λ λ=

≤ ≥ ≤ ∈ =A

μ μ
x y a

x y a
 (2) 

The dual problem (referred to as CK-DCLO) is given by  
                                  ( )

0, 0
max ,g

λ
λ

≥ ≥μ
μ ,                 (CK-DCLO) 

where 0≥μ  denotes the component-wise inequality. The 
CK-DCLO dual problem can be solved using the subgradient 
method as shown next. 

The subgradients of the dual function are given by 
( )( )1

1 , ,
M

i i i ii
h WM w x y aλ =

= −∑  with respect to the 
variable λ and ( )1i i ih y xμ += −  with respect to the variable 

iμ  [9]. The CK-DCLO problem can then be iteratively solved 
using the subgradients to update the Lagrange multipliers as 
follows. 
Price-Updating: 

 ( )( )( )1

1

1
, ,

M
k k k

i i i i

i

w x y a W
M

λ λ α
+

+

=

= + −∑ , (3) 

and NIF Updating: 
 ( )( )1

1
k k k
i i i i iy xμ μ β ++

+= + − , (4) 
where { }max ,0z z+ =  and kα  and k

iβ are the update step 
size and satisfy the following conditions: 

( )2

1 1
,k k

k k
α α

∞ ∞

= =
= ∞ < ∞∑ ∑  and 

1
,k

ik
β

∞

=
= ∞∑  

( )2

1

k
ik

β
∞

=
< ∞∑ 6. The proof of convergence is given in [9]. 

From the subgradient method, we note that the Lagrange 
multiplier λ  is updated based on the consumed resource and 
available budget, which is interpreted as the “price” of the 
resource and it is determined at the lower layer, while the 
Lagrange multiplier vector μ  is updated based on the 
scheduling time of the neighboring DUs, which is interpreted 
as the neighboring impact factors and is determined at the 
application layer. Since the CK-CLO problem is a convex 
optimization, the duality gap between the CK-CLO and CK-
DCLO problems is zero, which is further demonstrated in 
Section VI.  

                                                           
6  These conditions are required to enforce the convergence of the 

subgradient method. The choice of kα  and k
iβ  trades off the speed of 

convergence and performance obtained. One example is 
1/k k

i kα β= = .  

B. Decomposition for Lagrange dual function 
Given the Lagrange multipliers λ  and μ , the dual 

function shown in Eq. (2) is separable and can be 
decomposed into M   DUCLO problems: 

DUCLO problem { }1, ,i M∈ : 

 
( ) ( ) 1

, ,
min , ,

. . , , , ,

1
, ,

i i i

i i i i i i i i
x y a

i i i i i i i

i i i i w x y a x y
M

s t x y x t y d a

Q x y a
M

λ
μ μ−+ − +

≤ ≥ ≤ ∈ A
 (5) 

where 0 0μ =  and 0Mμ = . Given the Lagrange multipliers 
λ  and μ , each DUCLO problem is independently optimized. 
From Eq. (5), we note that all the DUCLO problems share the 
same Lagrange multiplier λ , since the budget constraint at 
the lower layer is imposed on all the DUs. We also note that 
each DUCLO problem i  shares the same Lagrange multiplier 

1iμ −  with DUCLO problem 1i −  and iμ  with DUCLO 
problem 1i + . Compared to the traditional myopic algorithm 
in which each DU is transmitted greedily without considering 
its impact on future DUs, the DUCLO problems presented 
here automatically take into account the impact of the 
scheduling for the current DU on its neighbours. The DUCLO 
problem can be solved using the interior point method as in 
[16], which is much simpler than the original CK-CLO. The 
algorithm for solving the CK-CLO problem is illustrated in 
Algorithm 1.  
Algorithm 1: Algorithm for solving the CK-CLO problem for 

the independently decodable DUs 
Initialize 0 0,λ μ , 1 1,λ μ , ε , 1k =  
While ( 1 1k k k kλ λ ε− −− + − >μ μ  or 1k = ) 
          For 1, ,i M=  
              Sovle DUCLO for DU i . 
         End 
        Compute  1 1,k kλ + +μ  as in Eqs. (3) and (4). 
        1k k← +  
End  

IV. CROSS-LAYER OPTIMIZATION FOR INTERDEPENDENT 
DUS 

In this section, we consider the cross-layer optimization 
for interdependent DUs. The interdependencies can be 
expressed using a DAG (Examples can be found in [11]). 
Each node of the graph represents one DU and each edge of 
the graph directed from DU i  to DU i ′  represents the 
dependence of DU i  on DU i ′ . This dependency means that 
the distortion impact of DU i  depends on the amount of 
successfully received data in DU i ′ . We can further define 
the partial relationship between two DUs which may not be 
directly connected, for which we write i i′ ≺  if DU i ′  is an 
ancestor of DU i  or equivalently DU i  is a descendant of 
DU i′  in the DAG. The relationship i i′ ≺  means that the 
distortion (or error) is propagated from DU i ′  to DU i . The 
error propagation function from DU i ′  to DU i  is 
represented by ( ) [ ], , 0,1i i i ie x y a′ ′ ′ ′ ∈ 7 which is assumed to 

                                                           
7 In general, the error propagation function ( ), ,i i i ie x y a′ ′ ′ ′  of DU i ′  

also depends on which DU it will affect [15]. For simplicity, we assume the 
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be a decreasing convex function of the difference i iy x′ ′−  
and ia ′ . Then, the distortion impact of DU i  can be 
computed as  

 
( )

( )( ) ( )( )

, ,

1 , , 1 , ,

i i i i

i i i i i i k k k k
k i

Q x y a

q q p x y a e x y a

=

− − −
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∏

≺

. (6) 

If DU i  cannot be decoded because one of its ancestor is 
not successfully received and ( ), ,i i i ip x y a  represents the 
loss probability of DU i , then ( ) ( ), , , ,i i i i i i i ie x y a p x y a=  
as in [15].  

The primary problem of the cross-layer optimization for 
the interdependent DUs is the same as in the CK-CLO 
problem by replacing  ( ), ,i i i iQ x y a  with the formula in Eq. 
(6). The difference from the CK-CLO problem is that 

( ), ,i i i iQ x y a  here depends on the cross-layer actions of its 
ancestors and ( ), ,i i i iQ x y a  may not be a convex function of 
all the cross-layer actions ( ), ,k k kx y a k i∀ ≺ , although 

( ), ,k k k ke x y a  is a convex function of ( ), ,k k kx y a . However, 
we note that, given ( ), ,k k kx y a k i∀ ≺ , ( ), ,i i i iQ x y a  is a 
convex function of ( ), ,i i ix y a . We will use this property to 
develop a dual solution for the original non-convex problem 
and we will quantify the duality gap in the simulation section.  

The derivative of the dual problem is the same as the one 
in Section III. By replacing ( ), ,i i i iQ x y a  with the formula in 
Eq. (6), the Lagrange dual function shown in Eq. (2) becomes  
( )

( )( ) ( )( )
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M

λ

λ μ

=

−

+
= =

=
=

+ − + −

≤ ≥ ≤ ∈ =

− − −
⎛ ⎞⎧ ⎫⎪ ⎪⎟⎜⎪ ⎪⎟⎜ ⎟⎪ ⎪⎜⎝ ⎠⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

∑

∑ ∑

∏
≺

A

μ

. (7) 

Due to the interdependency, this dual function cannot be 
simply decomposed into the independent DUCLO problems 
as shown in Eq. (5). However, the dual function can be 
computed DU by DU assuming the cross-layer actions of 
other DUs is given, as shown in [11]. Specifically, given the 
Lagrange multipliers ,λ μ , the objective function in Eq. (7) is 
denoted as ( ) ( )( )1 1 1, , , , , , , ,M M MG x y a x y a λ μ . When the 
cross-layer actions of all DUs except DU i  are fixed, the 
DUCLO for DU i  is given by  

( ) ( ) ( )( )

( ) ( )( )
, , ,

1 1 1
, ,
,

1

min

min

, , , , , , , , , , , ,

1
, , , , ,

i i i i i i i

i i i i

i i i

x y x t y d a

i i i M M M
x y x t
y d a

i i i i i i i i i i i i i

G x y a x y a x y a

Q x y a w x y a x y
M M

λ

λ
μ μ θ

≤ ≥ ≤ ∈

≤ ≥
≤ ∈

−

=

′ + − + +

A

A

μ

 (8) 

where  

                                                                                                    
error propagation function only depends on the current DU and does not 
depend on the DU it will affect. In this paper, to simplify the analysis, we do 
not consider the impact of error concealment strategies. Such strategies could 
be used in practice, and this will not affect the proposed methodology for 
cross-layer optimization.  

( ) ( ) ( )

( )( )

( )( ) ( )( )
,

1
, , , , , ,

1 , ,

1 , , 1 , ,

1

,

i i i i i i i i i k k k k
k i

i i i i

k k k ki i i i i
i i k i k i

Q x y a q p x y a e x y a
M

e x y a

q p x y a e x y a

M

′ ′ ′ ′ ′
′ ′ ≠

′ =

− −

− −
⎛ ⎞⎟⎜× ⎟⎜ ⎟⎜ ⎟⎝ ⎠

∏

∏∑

≺

≺

 (9) 

and iθ  represents the remaining part in Eq. (7), which does 
not depend on the cross-layer action  ( ), ,i i ix y a . It is easy to 
show that the optimization over the cross-layer action of DU 
i  in Eq. (8) is a convex optimization, which can be solved 
using the interior point method.  

As discussed in [11], ( ), ,i i i iQ x y a′  can be interpreted as 
the sensitivity to (or impact of) the imperfect transmission of 
DU i , i.e. the amount by which the expected distortion will 
increase if the data of DU i  is fully received, given the cross-
layer actions of other DUs. It is clear that the DUCLO for DU 
i  is solved only by fixing the cross-layer actions of other 
DUs, unlike the solutions for the independently decodable 
DUs which do not require the knowledge of other DUs. 

Then, the optimization in Eq. (7) can be solved using the 
block coordinate descent method [9], as described next. Given 
the current optimizer ( ) ( )( )1 1 1, , , , , ,n n n n n n

M M Mx y a x y a at 
iteration n , the optimizer at iteration 1n + , 
( ) ( )( )1 1 1 1 1 1

1 1 1, , , , , ,n n n n n n
M M Mx y a x y a+ + + + + +  is generated 

according to the iteration  
( )

( ) ( ) ( )

( ) ( )

, , ,

1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1

min, , arg

, , , , , , , , , ,
.

, , , , , , , ,

i i i i i i ix y x t y d a

n n n
i i i

n n n n n n
i i ii i i

n n n n n n
i i i M M M

x y a

x y a x y a x y a
G

x y a x y a λ

≤ ≥ ≤ ∈

+ + +

+ + + + + +
− − −

+ + +

=

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

A

μ

(10) 

At each iteration, the objective function is decreased 
compared to that of the previous iteration and the objective 
function is lower bounded (greater than zero). Hence, this 
block coordinate descent method converges to the locally 
optimal solution to the optimization in Eq. (7), given the 
Lagrange multipliers λ  and μ . The algorithm for solving the 
CK-CLO problem for the interdependent DUs is illustrated in 
Algorithm 2. 

Algorithm 2: Algorithm for solving the CK-CLO 
problem for interdependent DUs 

Initialize 0 0,λ μ , 1 1,λ μ ,  ε , 1k =   
While ( 1 1k k k kλ λ ε− −− + − >μ μ  or 1k = ) 
     Initialize : 0 0 0, , , 1, ,i i ix y a i M= , ,δ , 1n = .  
           While ( δΔ >  or 1n = ) 
                For 1, ,i M=  
                   Solve DUCLO for DU i  as in Eq. (10). 
               End 

               
( )( )

( )( )1 1 1

, , , 1, , , ,

, , , 1, , , , .

n n n k k
i i i

n n n k k
i i i

G x y a i M

G x y a i M

λ

λ− − −

Δ = =

− =

μ

μ
 

               ( ) ( )1 1 1, , , , , 1, ,n n n n n n
i i i i i ix y a x y a i M+ + + ← = . 

                1n n← +  
          End  
          Update  1 1,k kλ + +μ  as in Eqs. (3) and (4). 
        1k k← +  
End  
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V. ONLINE CROSS-LAYER OPTIMIZATION WITH 
INCOMPLETE KNOWLEDGE  

The cross-layer optimization formulated in Sections II and 
IV assumes complete a-priori knowledge of the DUs’ 
attributes and the network conditions. However, in real-time 
applications, this knowledge is only available just before the 
DUs are transmitted. Furthermore, the cross-layer 
optimization algorithms based on the decomposition 
principles presented in Sections III and IV require multiple 
iterations (as shown in Sections VI.B) to converge, which 
may be difficult to implement for real-time applications. To 
deal with the real-time transmission scenario, we propose a 
low-complexity online cross-layer optimization algorithm 
motivated by the decomposition principles developed in 
Sections III and IV.  

A. Online optimization using learning for independent DUs 
In this section, we assume that the DUs can be 

independently decoded and that the attributes and network 
conditions dynamically change over time. The random 
versions of the time the DU is ready for transmission, delay 
deadline, DU size, distortion impact and network condition 
are denoted by , , , ,i i i i iT D L CQ , respectively. We assume that 
both the interval of two consecutive DUs being ready (i.e. 

1i iT T+ − ) and the life time (i.e. i iD T− ) of the DUs are 
i.i.d. The other attributes of each DU and the experienced 
network condition are also i.i.d. random variables 
independent of other DUs. We further assume that the user 
has an infinite number of DUs to transmit. Then, the cross-
layer optimization with complete knowledge presented in the 
CK-CLO problem becomes a cross-layer optimization with 
incomplete knowledge (referred to as ICK-CLO) as shown 
below: 

   

( )

( )

( )

, , , , , , ,
1

1

, , , ,
1

1
min lim , ,

. . max , , , ,

1
lim , , .

i i i i i i i i

i i i i i

N

i i i i
x y a i N T D L C

i

i i i i i i i
N

i i i i
N T D L C

i

E Q x y a
N

s t x y T x y D a i

E w x y a W
N

∀ →∞ =

−

→∞ =

≥ ≤ ≤ ∈ ∀

≤

∑

∑

Q

Q

A  (ICK-CLO) 

The optimization in the ICK-CLO problem is the same as the 
CK-CLO problem except that the ICK-CLO problem 
minimizes the expected average distortion for the infinite 
number of DUs over the expected average resource 
constraint. However, the solution to the ICK-CLO problem is 
quite different from the solution to the CK-CLO problem. In 
the following, we will first present the optimal solution to the 
ICK-CLO problem, and then we will compare this solution 
with that of the CK-CLO problem. Finally, we will develop 
an online cross-layer optimization for each DU.  

1) MDP formulation of the cross-layer optimization for 
infinite DUs 

Similar to the dual problem presented in Section III, the 
dual problem (referred to as ICK-DCLO) corresponding to 
the ICK-CLO problem is given by the following optimization.  
                                     ( )

0
max g
λ

λ
≥

,                  (ICK-DCLO) 

where ( )g λ  is computed by the following optimization.  

 
( )

( )

( ) ( )( )

1max , , , ,

1

, , , ,
min

1
lim , , , ,

i i i i i ii i i i i x y T y D a i
N

i i i i i i i i
N

i

T D L C
g

Q x y a w x y a W
N

Eλ

λ λ

−≥ ≤ ∈ ∀

→∞ =

=

+ −
⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

∑
AQ

, (11) 

where the Lagrange multiplier λ  is associated with the 
expected average resource constraint, which is the same as the 
one in Eq. (1). Once the optimization in Eq. (11) is solved, the 
Lagrange multiplier is then updated as follows:  

( )1

, , , ,
1

1
lim , ,

i i i i i

N
k k k

i i i i
N T D L C

i

E w x y a W
N

λ λ α
+

+

→∞ =

= + −
⎧ ⎛ ⎞⎫⎪ ⎪⎪ ⎪⎟⎜ ⎟⎨ ⎬⎜ ⎟⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭

∑
Q

.(12) 

Hence, in the following, we focus on the optimization in 
Eq. (11).  

From the assumption presented at the beginning of 
Section V.A, we note that 1i iT T+ − , i iD T− , iC  and other 
attribute of DU i  are i.i.d. random variables. Hence, for the 
independently decodable DUs, if we know the value of iT , 
the attributes and network conditions of all the future DUs 
(including DU i ) are independent of the attributes and 
network conditions of previous DUs. As shown in Figure 2, 
DU 1i −  will impact the cross-layer action selection of DU 
i  only through ETX 1iy −  since ( )1max ,i i ix y t−= . In other 
words, DU 1i −  brings forward or postpones the 
transmission of DU i  by determining its ETX 1iy − . If we 
define a state for DU i  as ( )1max ,0i i is y t−= − . Then, the 
impact from previous DUs is fully characterized by this state. 
Knowing the state is , the cross-layer optimization of DU i  is 
independent of the previous DUs. This observation motivates 
us to model the cross-layer optimization for the time-varying 
DUs as a MDP [10] in which the state transition from state is  
to state 1is +  is determined only by the ETX iy  of DU i  and 
the time 1it +  DU 1i + is ready for transmission, i.e. 

( )1 1max ,0i i is y t+ += − . The action in this MDP 
formulation is the STX ix , ETX iy  and the action ia . The 
STX is automatically set ( )1max ,i i ix y t−= . Hence, the 
only variables in this MDP are the ETX iy  and the action ia .  
The immediate cost by performing the cross-layer action is 
given by ( ) ( ), , , ,i i i i i i i iQ x y a w x y aλ+ . 

Given the resource price λ , the optimal policy (i.e. the 
optimal cross-layer action at each state) for the optimization 
in Eq. (11) satisfies the dynamic programming equation [10], 
which is given by  

( )

( ) ( )

( )( ), , , ,

, , , ,
max ,max , 0D L C T x s t
y D
y x
a

Q x y a w x y a
V s E V y T

λ
β

= +
≤
≥
∈

+ +
= −−

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎡ ⎤⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

Q

A

 (13) 

where ( )V s  represents state-value function at state s  and 
the difference ( ) ( )0V s V−  represents the total impact that 
the previous DU impose on all the future DUs by delaying the 
transmission of the next DU by s  seconds; t  is the time the 
current DU is ready for transmission; and β  is the optimal 
average cost.  It is easy to show that ( )V s  is a non-
decreasing function of s  because the larger the state s , the 
larger the delay in transmission of the future DUs, and 
therefore the larger the distortion.  
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There is a well-known relative value iteration algorithm 
(RVIA) [10] for solving the dynamic programming equation 
in Eq. (13), which is given by  

 
( )

( ) ( )
( )( ) ( )

1
, , , ,

,

, , , ,
max 0 ,max ,0

n
D L C T

n
x s t y D a n

V s E

Q x y a w x y a
VV y T

λ
+

= + ≤ ≤ ∈

=
+⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥ −⎨ ⎬+ −⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

Q

A

 (14) 

where ( )nV ⋅  is the state-value function obtained at the 
iteration n .   

 
Figure 2. State transition from DU i  to DU 1i +  

2) Comparison of the solutions to CK-CLO and ICK-CLO 
In this section, we discuss the similarity and difference 

between the solutions to the CK-CLO and ICK-CLO 
problems. We note that both solutions are based on the 
duality theory and solve dual problems instead of the original 
constrained problems. Hence, both solutions use the resource 
price to control the amount of resource used for each DU.  

In the CK-CLO problem, the solution is obtained 
assuming complete knowledge about the DUs’ attributes and 
the experienced network conditions, which is not available for 
the ICK-CLO problem. Hence, in the DUCLO for the CK-
CLO problem, the impact on the neighboring DUs is fully 
characterized by scalar numbers 1iμ −  and iμ . The cross-layer 
action selection for each DU is based on the assumption that 
the cross-layer actions for neighboring DUs (previous and 
future DUs) are fixed. However, in the RVIA for the ICK-
CLO problem, the cross-layer action selection for each DU is 
based on the assumption that the cross-layer actions for the 
previous DUs are fixed (i.e. the sate s  is fixed) and the future 
DUs (and the cross-layer actions for them) are unknown. The 
impact from the previous DUs is characterized by the state s  
and the impact on the future DUs is characterized by the state 
value function ( )V s .   

Hence, the solution to the CK-CLO problem cannot be 
generalized to the online DUCLO which has no exact 
information about the future DUs. However, the solution to 
the ICK-CLO problem can be easily extended to the online 
cross-layer optimization for each DU, since it takes into 
account the stochastic information about the future DUs once 
it has the state value function ( )V s . In the next section, we 
will focus on developing the learning algorithm for updating 
the state-value function ( )V s . 

3) Online cross-layer optimization using learning 
In this section, we develop an online learning to update 

the state-value function ( )V s  and the resource price λ . 
Assume that, for DU i , the estimated state-value function and 
resource price are denoted by ( )iV s  and iλ , then the cross-
layer optimization for DU 1i +  is given by  

( ) ( ) ( )( )
, ,

1min , ,

. . , ,

, , max , 0
i i i

i i i i i
x y a

i i i i

i i i i i i i

i i

w x y a y

s t x y d a

Q x y a V t

s t

λ ++ +

≤ ∈

−

= + A
 (15) 

 This optimization can be solved using the interior point 
method. The remaining question is how we can choose the 

right price of resource iλ  and estimate the state-value 
function ( )iV s .  

From the theory of stochastic approximation [17], we 
know that the expectation in Eq. (14) can be removed and the 
state-value function can be updated as follows:  

( ) ( ) ( )

( ) ( )

( )( )
( )

( ) ( )

1

, , 1

1

1

, , , ,
max 0 ,

max , 0

and ,

i i i i i

i i i i i

i i i i i i i i

i i
x s y d a i i i

i i i

V s V s

Q x y a w x y a
V

V y t

V s V s if s s

γ

λ
γ

+

= < ∈ +

+

= − +

+
−

+ −

= ≠

⎧ ⎡ ⎤ ⎫⎪ ⎪⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎩ ⎣ ⎦ ⎭A
(16) 

where iγ  satisfies ( )2
1 1

,j jj j
γ γ∞ ∞

= =
= ∞ < ∞∑ ∑ . We 

should note that, in this proposed learning algorithm, the 
cross-layer action of each DU is optimized based on the 
current estimated state-value function and resource price. 
Then the state-value function is updated based on the current 
optimized result. Hence, this learning algorithm does not 
explore the whole cross-layer action space like the Q-learning 
algorithm [20] and may only converge to the local solution. 
However, in the simulation section, we will show that it can 
achieve the similar performance as the CK-CLO with 

10M = , which means that the proposed online learning 
algorithm can forecast the impact of current cross-layer action 
on the future DUs by updating the state-value function.  

Since ( )iV s  is a function of the continuous state s , the 
formula in Eq. (16) cannot be used to update state-value 
function for each state . To overcome this obstacle, we use a 
function approximation method similar to the work in [14] to 
approximate the state-value function by a finite number of 
parameters. Then, instead of updating the state-value function 
at each state, we use the formula in Eq. (16) to update the 
finite parameters of the state-value function. Specifically, the 
state-value function ( )V s  is approximated by a linear 
combination of the following set of feature functions:  

 ( )
( )

1

0

0 . .

K
k k

k

r v s if s
V s

o w
=

⎧⎪⎪ ≥⎪⎪≈ ⎨⎪⎪⎪⎪⎩

∑ , (17) 

where 1, , Kr r ′⎡ ⎤= ⎣ ⎦r  is the parameter vector; 
( ) ( ) ( )1 , , Ks v s v s ′⎡ ⎤= ⎣ ⎦v  is a vector function with each 

element being a scalar feature function of s [14]; and K is the 
number of feature functions used to represent the impact 
function. The feature functions should be linearly 
independent. In general, the state-value function ( )V s  may 
not be in the space spanned by these feature functions. The 
larger the value K , the more accurate this approximation. 
However, the large K  requires more memory to store the 
parameter vector. Considering that the state-value function 

( )V s  is non-decreasing, we choose 
( ) 1, , / !Ks s s K ′⎡ ⎤= ⎣ ⎦v  as the feature functions. Using 

these feature functions, the parameter vector 
1, , Kr r ′⎡ ⎤= ⎣ ⎦r  is then updated as follows: 

 

( )

( ) ( )

( )( )
( )

( )( )

, , 1

1 1

, , , ,
max 0

max , 0
/

.

i i i i i

i i

i i i i i i i i

i
x s y d a i i i

k k
i i

k

r r

Q x y a w x y a
V

V y t

Kv s

γ γ

λ

= < ∈ +

+ = − +

+
−

+ −

×

⎧ ⎡ ⎤ ⎫⎪ ⎪⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎩ ⎣ ⎦ ⎭A
 (18) 
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Similar to the price update in Section III, the online 
update for λ  is given as follows: 

 
1

1

1 i

i i i j
j

w W
i

λ λ κ
+

+
=

= + −
⎛ ⎛ ⎞⎞⎟⎟⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎟⎟⎟⎜ ⎜⎝ ⎝ ⎠⎠∑ , (19) 

where iκ  satisfies ( )2
1 1

, , lim 0j
j j

jj j j

κ
κ κ

γ

∞ ∞

→∞= =

= ∞ < ∞ =∑ ∑ .  

In Eqs. (18)  and (19), iterating on the state-value function 
( )V y  and the resource price λ  at different timescales 

ensures that the update rates of the state-value function and 
resource price are different. The resource price is updated on 
a slower timescale (lower update rate) than the state-value 
function. This means that, from the perspective of the 
resource price, the state-value function ( )V y  appears to 
converge to the optimal value corresponding to the current 
resource price. On the other hand, from the perspective of the 
state-value function, the resource price appears to be almost 
constant.  

The algorithm for the proposed online optimization using 
learning is illustrated in Algorithm 3. 

Algorithm 3: Proposed online optimization using learning 
Initialize 1 1, 0λ =r , 1 0s = , 1i =  
For each DU i  
     Observe the attributes and network condition of DU i   and the 

time 1it +  at which DU 1i +  is ready for transmission; 
     Solve the DUCLO given in Eq. (15); 
     Update ( )1 1max ,0i i is y t+ += − , 1iλ +  as in Eq. (19) and  

1i+r  as in Eq. (18); 
     1i i← +  
End  

B. Online optimization for interdependent DUs  
In this section, we consider the online cross-layer 

optimization for the interdependent DUs as discussed in 
Section IV. In order to take into account the dependencies 
between DUs, we assume that the DAG of all DUs is known a 
priori. This assumption is reasonable since, for instance, the 
GOP structure in video streaming is often fixed. When 
optimizing the cross-layer action ( ), ,i i ix y a  of DU i , the 
transmission results ( )* * *, ,k k k kp x y a  and ( )* * *, ,k k k ke x y a  of 
DUs with index k i<  are known. Then, the sensitivity 

( ), ,i i i iQ x y a′  of DU i  is computed, based on the current 
knowledge, as follows:  

( ) ( ) ( )( )
( )( )

( ) ( )( )

* * *

,

, , , , 1 , ,

1 , ,

1 1 , ,

i i i i i i i i i k k k k
k i

i i i i

j j j ji i
i i j i j i

Q x y a q p x y a e x y a

e x y a

q p e x y a′ ′
′ ′ ≠

′ = − −

− ×
⎛ ⎞⎟⎜ ⎟− −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∏

∏∑

≺

≺

,    (20) 

where ( )1i iq p′ ′−  is the estimated distortion impact of DU 
i ′ . The term ( )* * *, ,k k k ke x y a  is the error propagation function 
of DU k i< , which is already known. If  j i<  , 

( ) ( )* * *, , , ,j j j j j j j je x y a e x y a= , otherwise ( ), , 0j j j je x y a =  
by assuming that DU j  can be successfully received. In other 
words, if DU k  is transmitted, the transmitted results  

( )* * *, ,k k k kp x y a  and ( )* * *, ,k k k ke x y a  are used, otherwise DU k  
is assumed to be successfully received in the future.  

Similar to the online cross-layer optimization for 
independent DUs given in Section V.A, the online 
optimization for the interdependent DUs is given as follows:  

( ) ( ) ( )( )
, ,

1min , ,

. . , , .

, , max ,0
i i i

i i i i i
x y a

i i i i

i i i i i i

i i

w x y a y

s t x y d a

Q x y a V t

s t

λ ++ +

≤ ∈

′ −

= + A
(21) 

The update of the parameter vector r  and the resource 
price λ  is the same as in Eqs. (18) and (19).  

VI. NUMERICAL RESULTS 
In this section, we present our numerical results to 

evaluate the proposed decomposition method and the online 
algorithm. We consider an example in which the user streams 
the delay sensitive DUs over a time-varying channel with 
energy constraints.  

A. Models for distortion impact and energy cost functions 
In this example, we consider the proposed cross-layer 

optimization solution to determine the optimal scheduling and 
energy allocation for DUs with various attributes at the 
application layer transmitted over a time-varying channel at 
the physical layer. The transmission action is the number of 
bits, ia , to be transmitted. The consumed energy (cost) is 
given, as in [5], by  

 ( ) ( )( )( )0 /, , 2 1i i ia y x
i i i i i i

i

N
w x y a y x

c
−= − − , (22) 

where 0N  denotes thermal noise. It is easy to show that 
( ), ,i i i iw x y a  is a convex function of the difference i iy x−  

and ia .  
We assume that the application data is compressed in a 

scalable way [13] such that, given the amount of transmitted 
bits, ia , the expected distortion of the independent DU with 
index i  is given, as in [18], by 
 ( ) ( )min ,, , 2 i i ia l

i i i i iQ x y a q θ−= , (23) 
where 0iθ > . That is, ( ) ( )min ,, , 2 i i ia l

i i i ip x y a θ−= . It is easy 
to show that ( ), ,i i i ip x y a  is a convex function of ia . 

For interdependent DUs, the expected distortion of DU i  
is then given by  

 ( ) ( )( )min ,, , 1 1 2 k k ka l
i i i i i

k i

Q x y a q θ−
⎛ ⎞⎟⎜ ⎟⎜= − − ⎟⎜ ⎟⎟⎜⎝ ⎠

∏
≺

. (24) 

That is, ( ) ( )min ,, , 2 i i ia l
k k k ke x y a θ−= 8 . The distortion 

reduction for each DU is given by i iq Q− .  
In this example, the distortion impact iq  is the realization 

of a uniformly distributed random variable in the range of 
[ ]50, 150 . The DU size il  is assumed to be constant and 
equals 10000bits. The varying DU size is considered in 
Section VI.E for video streaming. The arrival interval 

1i it t −−  is the realization of  an exponentially distributed 
random variable with the mean of 50 ms. The DU lifetime 

i id t−  is 50 ms. The parameter iθ  equals 0.5. We will verify 
the efficiency of the proposed methods using the model 
developed in this section in Sections B~ D. We will further 
consider a more realistic scenario with video streaming over 
wireless networks in Section E.  

                                                           
8 Here the error propagation function represents the fact that increasing the 

faction of DU i  reduces the amount of error  propagated to other DUs. 
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B. Duality gap for the interdependent DUs 
Figure 3 (a) shows the duality gap between the dual 

solutions and primal solutions for the interdependent DUs 
with 10M = . Although the cross-layer optimization 
problem for the interdependent DUs is not a convex 
optimization, it is shown here that the duality gap in this 
example goes to zero after around 230 iterations, which 
demonstrates that the subgradient algorithm developed in 
Section III also converges in the cross-layer optimization for 
interdependent DUs. The subgradient algorithm for the 
interdependent DUs requires two types of iterations: one is 
the outer iteration which updates the price of the resource λ  
and NIFs μ  and the other one is the inner iteration which is 
to find the optimal cross-layer action for each DU given λ  
and μ  as shown in Eq. (10). Figure 3 (b) shows the required 
number of inner iterations per outer iteration using the cross-
layer actions obtained in the previous outer iteration as the 
starting point in the current outer iteration. It is clear that 2~6 
inner iterations are required for each outer iteration to 
converge to the optimal cross-layer actions given λ  and μ . 
Hence, the subgradient method requires a total of 651 inner 
iterations 9 , which is unacceptable for the real-time 
applications (e.g. video streaming) and motivates us to 
develop an online algorithm which was presented in Section 
V.  The simulation results for the online algorithm are 
presented in Section VI.D. 

 
(a) (b) 

Figure 3. (a) Duality gap between the dual and primal solutions  for 
interdependent DUs, and (b) number of inner iterations per outer 
iterations for the cross-layer optimization of interdependent DUs 

C. Online cross-layer optimization for independent DUs 
In this simulation, we consider three online algorithms for 

the scenario with independent DUs. The first is the online 
cross-layer optimization for each DU proposed in Section V. 
The second performs the cross-layer optimization every 

10M =  DUs by assuming complete knowledge of these M  
DUs’ attributes and underlying network conditions (we call 
this M -DU cross-layer optimization). The third one performs 
the cross-layer optimization for each DU (i.e. 1M = , called 
myopic online optimization). We will refer to the 
transmission of 10  DUs as one cycle.  

Figure 4 depicts the distortion reduction of each cycle 
under various resource constraints for these three algorithms. 
From this figure, we note that, on the one hand, the online 
cross-layer optimization proposed in Section V outperforms 
the myopic online optimization by around 6% for various 
energy constraints because the proposed online optimization 

                                                           
9 Note that the similar observation is also made for the independent DUs. 

can predict the impact on the future DUs through the state-
value function and allocate the energy for each cycle based on 
the importance of DUs. On the other hand, the M -DU cross-
layer optimization outperforms the proposed online cross-
layer optimization by around 4% since M -DU cross-layer 
optimization explicitly considers the exact information of 
future DUs which is not available in the online cross-layer 
optimization. However, the proposed online cross-layer 
optimization has the following advantages, compared to the 
M  DU cross-layer optimization: (i) it performs the cross-
layer optimization for each DU and updates λ  and state-value 
function ( )V s  for each DU without requiring multiple 
iterations, which significantly reduces the computational 
complexity; (ii) it does not require exact information about 
the future DUs’ attributes and network conditions.  

 
Figure 4. Distortion reduction under various energy constraints for 

independent DUs 

 
Figure 5. Distortion reduction under various energy constraint for 

interdependent DUs 

D. Online cross-layer optimization for interdependent DUs 
 In this simulation, we also consider three online 

algorithms as described in Section VI.C for the scenario with 
interdependent DUs. The interdependencies (represented by a 
DAG) are generated randomly every 10 DUs. The 
interdependency between DUs happens only within one cycle 
(for instance, a cycle could represent one group of pictures 
(GOP) of the video sequences). Figure 5 shows the distortion 
reduction of each cycle under various energy constraints. 
From this figure, we note that, for interdependent DUs, our 
proposed online cross-layer optimization can significantly 
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improve the performance (more than 28% increased) 
compared to the myopic online optimization, and has similar 
performance as the M -DU optimization. We will also verify 
this observation in a more realistic scenario which is 
presented in the next section. The reason that our proposed 
solution can have similar performance as the M -DU solution 
is as follows: for the interdependent DUs, the amount of the 
distortion reduction is mainly determined by the important 
DUs (on which many other DUs depend on) and our solution 
can ensure that more important DUs are successfully 
transmitted by allocating more energy to them.  

E. Online cross-layer optimization for video streaming 
In this simulation, we consider a more realistic situation in 

which the wireless user streams the video sequence 
“Coastguard” (CIF resolution, 30 Hz) over the time-varying 
wireless channel. For the compression of the video sequence, 
we used a scalable video coding schemes based on Motion 
Compensated Temporal Filtering (MCTF) using wavelets 
[19]. Such 3D wavelet video compression is attractive for 
wireless streaming applications because it provides on-the-fly 
adaptation to channel conditions, support for a variety of 
wireless receivers with different resource capabilities and 
power constraints, and easy prioritization of various coding 
layers and video packets. We consider every 8 frames as one 
GOP and each DU corresponds to one frame at a certain 
temporal level, as shown in [11]. We compare three online 
optimization methods as in Section VI.D. Figure 6 depicts the 
received PSNR in dB under these methods. From this figure, 
we note that the myopic online optimization achieves the 
PSNR of 27.1dB on average which is generally considered 
very poor video quality. However, our proposed online cross-
layer optimization can improve the video quality over time 
through the learning procedure and achieve the PSNR of 29.9 
dB (2.8dB better than the myopic solution). Moreover, the 
achieved video quality in our solution is much smoother (i.e. 
the PSNRs of all the frames do not vary dramatically like in 
the myopic case). We also demonstrated that the proposed 
solution achieves the similar performance (only 0.5dB less on 
average) as the M -DU method, as indicated in Section VI.D.  

 
Figure 6. PSNR for the video sequence “coastguard” under three 

cross-layer optimization methods 

VII. CONCLUSIONS 
In this paper, we consider the problem of cross-layer 
optimization for a single user streaming delay-sensitive 
applications, and we develop decomposition principles that 

guarantee the optimal performance of the application while 
requiring the necessary message exchanges between 
neighboring DUs and between layers. To account for the 
unknown and dynamic characteristics of real-time delay-
sensitive applications, we further propose an efficient online 
cross-layer optimization with low complexity, which can be 
used for live events (e.g. real-time encoding and streaming of 
ongoing events, videoconferencing etc.), when the encoding 
is performed in real-time and the wireless user does not have 
a priori information about future application data and network 
conditions.  
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