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Abstract— In this paper, we model the various wireless users in a 
cognitive radio network as a collection of selfish, autonomous 
agents that strategically interact in order to compete for the 
dynamically available spectrum opportunities. We propose a 
stochastic game framework to model how the competition among 
users for spectrum opportunities evolves over time. At each stage 
of the dynamic resource allocation, a spectrum moderator 
auctions the available resources and the users strategically bid 
for the required resources. Based on the observed resource 
allocation and corresponding rewards from previous allocations, 
we propose a best response learning algorithm that can be 
deployed by wireless users to improve their bidding policy at 
each stage. The simulation results show that by deploying the 
proposed best response learning algorithm, the wireless users 
can significantly improve their own performance in terms of 
both the packet loss rate and the incurred cost for the used 
resources. 

Keywords- Multi-user Resource Management; Interactive 
Learning, Cognitive Radio Networks, Stochastic game 

I.  INTRODUCTION  
One vision for emerging cognitive radio networks assumes 

that certain portions of the spectrum will be opened up for 
secondary users (SUs), which can autonomously and 
opportunistically share the spectrum once primary users (PUs)  
are not active [3][4][5]. Importantly, in cognitive radio 
networks, heterogeneous wireless users with different utilities, 
delay tolerances, traffic characteristics, interference avoidance, 
knowledge and ability to adapt will need to coexist in the same 
band. Current solutions do not provide fair or efficient 
resource management for delay-sensitive applications such as 
multimedia streaming in the cognitive radio networks. 

Thus, to enable the proliferation of multimedia applications 
over cognitive radio networks, wireless solutions for dynamic 
spectrum access and resource management will need to 
consider the system dynamics, as well as the heterogeneity of 
wireless users. Moreover, SUs will need to possess learning 
abilities to be able to strategically influence and adapt to the 
dynamic spectrum division. Using their knowledge, SU can 
proactively harvest resources based on their dynamic resource 
requirements as well as optimally adapt their cross-layer 
transmission strategies to the environment dynamics and time-
varying gathered resources. Such dynamic and competitive 
solutions for spectrum access and protocol design lead to more 
efficient and fair wireless networks than current solutions, 
which require SUs to blindly follow predetermined or static 
protocol rules [1].  

In our considered cognitive radio networks, the SUs are 
modeled as rational and strategic. We model the spectrum 
management as a stochastic game [6] in which the SUs 
simultaneously and repeatedly compete for the available 

network resources. The competition for the dynamic resources 
is assisted by a central coordinator (similar to that in existing 
wireless LAN standards such as 802.11e HCF [7]). We refer to 
this coordinator as the central spectrum moderator (CSM). The 
role of the CSM is to allocate resources to the SUs based on 
pre-determined utility maximization rule. In this paper, to 
explicitly consider the strategic behavior of the autonomous 
SUs and the informationally-decentralized nature of the 
competition for wireless resources, we assume that the CSM 
deploys an auction mechanism for dynamically allocating 
resources. In order to capture the network dynamics, we allow 
the CSM to repeatedly auction the available spectrum 
opportunities based on the PUs’ behaviors. Meanwhile, each 
SU is allowed to strategically adapt its bidding strategy based 
on information about the available spectrum opportunities, its 
source and channel characteristics, and the impact of the other 
SUs bidding actions. Using this stochastic wireless allocation 
framework, we can develop a learning methodology for SUs to 
improve their policies for playing the auction game, i.e. the 
policies for generating the bids to compete for the available 
resources. The detailed learning algorithm is presented in [2]. 
Specifically, during the repeated multi-user interaction, the 
SUs can observe partial historic information of the outcome of 
the auction game, through which the SUs can estimate the 
impact on their future rewards and then adopt their best 
response in order to effectively compete for the channel 
opportunities.  

The paper is organized as follows. In Section II, we 
introduce a stochastic game formulation for multi-user 
interaction in the cognitive radio networks. In Section III, we 
specify the details of the stochastic game in our cognitive radio 
networks and characterize the best response to play this game. 
In Section IV, we present the simulation results, followed by 
the conclusions in Section V. 

II. DYNAMIC MULTI-USER WIRELESS RESOURCE GAME 
FORMULATION 

As mentioned in the introduction, we focus in this paper on 
developing wireless resource markets for secondary networks 
(SN). In SN, the SUs can opportunistically utilize the network 
resources that are vacated by the PUs. For illustration 
purposes, we assume that the SN consists of M  SUs, which 
are indexed by { }1, ,i M∈ . The SUs compete for the 
dynamically available transmission opportunities based on 
their own “private” information and knowledge about other 
SUs and available resources (and/or PUs’ behaviors). In each 
time slot TΔ , the SUs compete with each other for spectrum 
access and, given the allocated transmission opportunities, 
they deploy optimized cross-layer strategies to transmit their 
delay-sensitive bitstreams.  
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During each time slot, a “state” of network resources can 
be defined to represent the available transmission opportunities 
in a SN, which is denoted by ∈w W , where W  is the set 
of possible resource states. We can also define “states” for the 
SUs. For instance, the states may represent their private 
information, which includes the traffic and channel 
characteristics. The current state of a SU i  is denoted by 
i is ∈ S , where iS  is the set of possible states of SU i .  

 At each time slot, SU i  will deploy an action to compete 
for the network resources. This action is denoted by i ia ∈ A , 
where iA  is the set of possible external actions. An example 
of the actions in wireless networks is the selected transmit 
power in interference channels or the declared resource request 
like the TSPEC in 802.11e WLANs.  

In this paper, we formulate the multi-user wireless 
cognitive resource competition as a stochastic game. Formally, 
the stochastic game is defined as a tuple 
( , , , , , , )wPI S W A RsP , where I  is the set of agents 
(SUs), i.e. ={1,..., }MI , S  is the set of state profiles of all 
SUs, i.e. 1= M× ×S S S  with iS  being the state set of SU 
i , W  is the set of network resource state. A  is the joint 
action space 1= M× ×A AA , with iA   being the external 
action set available for SU i  to play the resource sharing 
game, sP  is a transition probability function defined as a 
mapping from the current state profile ∈s S , corresponding 
joint actions ∈ Aa  and the next state profile ' ∈s S  to a 
real number between 0 and 1, i.e. : [0,1]× ×S A SsP . 
Pw  is a transition probability function defined as a mapping 
from the current resource state ∈w W  and the next state 

′ ∈w W  to a real number between 0 and 1, i.e. 
: [0,1]P ×w W W . R  is a reward vector function defined 

as a mapping from the available resource w , the current state 
profile ∈s S  and corresponding joint actions ∈ Aa  to an 
M -dimensional real vector with each element being the 
reward to a particular agent, i.e. : M× ×RW S A . 

The state transition Pw  for the network resource state is 
determined by the PUs, and not by the SUs. In other words, the 
SUs’ actions will not affect the network resource state 
transition. This structure actually opens an opportunity to 
allow the PUs to be agents with higher priorities in this 
stochastic game.  

III. SPECIFICATION OF STOCHASTIC GAME FOR COGINITVE 
RADIO NETWORKS 

As an illustration example, we consider that the SN can be 
formed across N  channels, each indexed by {1,..., }j N∈ . 
At each time slot, each channel is assumed to be in one of the 
following two states: ON (this channel is currently used by the 
PUs) or OFF (this channel is not used by the PUs and hence is 
an opportunity for the SUs to use). Within each time slot, the 
channel is only OFF or ON [8]. At time slot t ∈ , the 
availability of each channel j  is denoted by { }0,1t

jw ∈ , 
with t

jw  being 0 if the channel is in ON state, and being 1 if it 
is in OFF state. The channel availability profile for the 
N channels is represented by [ ]1,...,

t t t
Nw w=w , which is the 

state of the network resource at time slot t .  
A. States for each SU 

We assume that the SU deploys a delay-sensitive 
application. The data of the application layer is packetized 
with an average packet length . In this paper, we consider 
multimedia applications, where the application packets have a 
hard delay deadline, i.e. the packets will expire in J  stages 

after they are ready for transmission. Then, we can define the 
state of the buffer as [ ]1, ,

Tt t t
i i iJv v=v , where 

( )1tjv j J≤ ≤  is the number of packets waiting for 
transmission that have a remaining life time of j  time slots.  

The condition of channel j  experienced by SU i  is 
represented by the Signal-to-Noise Ratio (SNR) and it is 
denoted as tijc  in dB. The channel condition profile is given by 

[ ]1, ,
t t t
i i iNc c=c . To model the dynamics experienced by SU 
i  at time t  in the cognitive radio network, we define a “state” 

( , )t t t
i i i is = ∈ Sv c , which encapsulates the current buffer state 

as well as the state of each channel.  
The environment experienced by each SU is characterized 

by the packet arrivals from the (multimedia) source (i.e. 
source/traffic characterization) connected with the transmitter, 
the spectrum opportunities released by PUs and the channel 
conditions. Different models can be used by a SU to 
characterize the environment. However, the accuracy of the 
deployed models will only affect the performance of the 
proposed solution, and not the general framework for multi-
user stochastic game model presented here.  
B. State transition and stage reward 

Since the network resource state is not affected by the 
actions performed by the SUs, the transition of tw  can be 
modeled as a finite state Markov chain [8]. The transition 
probability is denoted by ( )1 |t tp +

w w w . In this example, we 
assume that the transition probability ( )1 |t tp +

w w w  is 
known by all the SUs and CSM. However, more complicated 
models for the network resource state transition can also be 
involved in our stochastic game framework [9].  

When SU i  receives the resource allocation t
iz , it can 

transmit t
in  packets during time slot t , which is denoted as  

 ( )
( ),

,
t t
i it t

i i i
T

sn
Ψ

=
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦
c z

z , (1) 

where ( )Ψ ⋅  is the effective rate function, the form of which 
depends on the protocols implemented at the SU.  

Then, the buffer state can be updated as  
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∑ , (2) 

where t
iY  is the random variable representing the number of 

packets arriving at time slot t  having life time J . The 
distribution of t

iY  is denoted by ( )t
iYp l . Hence, the transition 

probable is given by  

 ( )
( )

( )1

1

. 2

| , &

0 . .

t
i

t
i

Yt t t t
i i i i

if satisfies eq
P l

p Y l

ow

+

+ = =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v

v v z  (3) 

The channel condition tic  depends on the channel gain and 
the power level for transmission. The channel gain is generally 
modeled as a FSMC [10]. In this example, we also consider 
that the power allocation is constant during the data 
transmission, and hence, the channel condition t

ic  can be 
formulated as a FSMC with transition probability 
( )1 |t t
i ip +c c .  
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The state transition probability for SU i  is given by  
      ( ) ( ) ( )1 1 1| , | , |t t t t t t t t

s i i i i i i i ip s s p p+ + +=z v v z c c . (4) 
Here, we assume that the transition of the channel 

condition is independent of the transition of buffer state. The 
utility for the delay-sensitive application at time slot t  is 
defined here as  

( ) { },1
1

, min , max , 0
J

t t t t t t
i i i i ij g i i

j

u s n v v nλ
=

= − −
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠∑z , (5) 

where gλ  is the parameter to trade-off the received and lost 
packets. More sophisticated utility formulations for 
multimedia transmission, which consider the explicit impact 
on the multimedia quality (e.g. PSNR) can be found in [1]. 
C. Resource allocation rule 

We model the multi-user wireless resource allocation as an 
auction for spectrum opportunities held by the CSM during 
each time slot. The SUs calculate the external action tia  based 
on the information about the network resources, and their own 
private information about the environment they experience.. In 
this auction game, the external action is the competition bid, 
i.e. tia  is the amount of bid submitted to the CSM. We use the 
external action and bid interchangeably. Subsequently, each 
SU submits the bid t

ia  to the CSM. After receiving the bid 
vectors from the SUs, the CSM computes the channel 
allocation t

iz  for each SU i  based on the submitted bids. To 
compel the SUs to declare their bids truthfully [11], the CSM 
also computes the payment t

iτ −∈  that the SUs have to pay 
for the use of resources during the current stage of the game. 
The negative value of the payment means the absolute value 
that SU i  has to pay the CSM for the used resources. The 
auction result is then transmitted back to the SUs which can 
deploy their transmission strategies in different layers and send 
data over the assigned channel. After the data transmission, 
another auction starts at the next time slot 1t + . The 
computation of the allocation t

iz  and payment t
iτ  is described 

as follows. 
After each SU submits the bid vector, the CSM performs 

two computations: (i) channel allocation and (ii) payment 
computation. During the first phase, the CSM allocates the 
resources to SUs based on its adopted fairness rule, e.g. 
maximizing the total “social welfare”:  

 ( ),

1

arg max , ,
t

M
t opt t t

i i i
i

h a w
=

= ∑z
z z , (6) 

where ( )ih ⋅  is the utility function of SU i  seen by the CSM. 
Note that this utility can be represented by either the effective 
rate or time on the network allocated to each user, or it can be 
determined in the utility domain, by considering the resulting 
utility-rate functions of the deployed multimedia coders [1]. 

We will consider in this paper, for illustration, a second 
price auction mechanism [12] for determining the tax that 
needs to be paid by SU i  based on the above optimal channel 
assignment ,t optz . This tax equals: 

 ( ) ( ),

1, 1,

, , max , ,
t
i

M M
t t t opt t t
i j j j j i i

j j i j j i

h a w h a wτ
−= ≠ = ≠

= −∑ ∑
z

z z . (7) 

For simplicity, we can denote the output of the resource 
allocation game as ( ) ( ), ,t t t t tw= = Ωr z aτ .  

D. Selecting the Policy for Playing the Resource 
Management Game 
In the cognitive radio network, we assume that the 

stochastic game is played by all SUs for an infinite number of 
stages. This assumption is reasonable for applications having a 
long duration, such as video streaming, videoconferencing etc. 
In our network setting, we define a history of the stochastic 
game up to time t  as 

0 0 0 0 0 0 1 1 1 1 1 1{ , , , , , , ..., , , , , , ,t t t t t t tw w− − − − − −=h s a b z s a b zτ τ
}t t∈s H , which summarizes all previous states and the 

actions taken by the SUs as well as the outcomes at each stage 
of the auction game and tH  is the set of all possible history 
up to time t . However, during the stochastic game, each SU i  
cannot observe the entire history, but rather part of the history 
th . The observation of SU i  is denoted as t t

i i∈o O  and 
t t
i ⊂o h . Note that the current state t

is  can be always 
observed, i.e. t t

i i∈s o . Then, a bidding policy :t t
i i iπ O A  

for SU i  at the time t  is defined as a mapping from the 
observations up to the time t  into the specific action, i.e. 

( )t t t
i i ia π= o . Furthermore, a policy profile iπ  for SU i  

aggregates the bidding policies about how to play the game 
over the entire course of the stochastic game, i.e. 

0( ,..., ,...)t
i i iπ π=π . The policy profile for all the SUs at time 

slot t  is denoted as ( ) ( )1,..., ,t t t t t
M i iπ π π −= =π π .  

The reward for SU i  at the time slot t  is 
( )( , ) ,t t t t t t

i i i i i i iR s u s τ= +r z . Since the resource allocation 
also depends on other SUs’ states and external actions, the 
reward is further expressed by ( )( , , , )t t t t t

i i i iR s a −Ω a w . We 
define the best response iβ  for SU i  to other SUs’ policies 
t
i−π  as  

 ( ) argmax (( , ) | , )
i

t t t t t t
i i i i -iQ

π
β π− = s wπ π  (8) 

where ( , | , )t t t t t
i i -iQ π s wπ  is the total discounted sum of 

rewards which is defiend as  

( )( )(( , ) | , ) ( ) , , ,t t t t t
i i -i

k t k k k k k
i i i i i

k t

Q R s aπ α
∞

−
−

=
= Ω∑s w a wπ  (9) 

The factor ( )0 1i iα α≤ <  is the discounted factor 
determined by a specific application (for instance, for video 
streaming applications, this factor can be set based on the 
tolerable delay). The total discounted sum of rewards in Eq. 
(9) consists of two parts: (i) the current stage reward and (ii) 
the expected future reward discounted by iα . Note that SU i  
cannot independently determine the above value without 
explicitly knowing the policies and states of other SUs. The 
SU maximizes the total discounted sum of future rewards in 
order to select the bidding policy, which explicitly considers 
the impact of the current bid vector on the expected future 
rewards.The central issue in the stochastic game is how the 
best response policies can be determined by the SUs. This will 
be discussed in Section III.E. 
E. Characterizing the best response policy 

Recall that during each time slot, the CSM announces an 
auction based on the available resources and then SUs bid for 
the resources. To enable the successful deployment of this 
resource auction mechanism, we can prove, similarly to our 
prior work in [1], that SUs have no incentive to misrepresent 
their information, i.e. they adhere to the “truth telling” policy. 
We assume that at each time slot t , SU i  has preference t

ijU  
over the channel j , which capture the benefit derived when 
using that channel. The preference t

ijU  is interpreted as the 
benefit obtained by SU i  when using channel j , compared to 
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the benefit when this channel is not used. Note that this benefit 
also includes the expected future rewards. The optimal bid 
,t opt
ija  that SU i  can take on the channel j  at time t  is the bid 

maximizing the net benefit t t
ij iτ+U . In the auction discussed 

in Section III.C, the optimal bid that SU i   can make is 
,t opt t

ijija = U , i.e. the optimal bid for SU i  is to announces its 
true preference to the CSM [1]. The proof is omitted here due 
to space limitations, since it is similar to that in [1]. The 
payment made by SU i  is computed by the CSM based on the 
inconvenience incurred by other SUs due to SU i  during that 
time slot [1]. 

Next, we define the preference t
ijU  in the context of the 

stochastic game model. Using the channel j  when it is 
available, SU i  obtains the immediate gain ( ),ti ju s e  by 
transmitting the packets in its buffer, where je  indicates that  
channel j  is allocated to SU i  during the current time slot. 
SU i  then moves into next state 1t

i
+s  from which it may 

obtain the future reward 1 1 1( | , )t t t t
iQ

+ + +s wπ . On the other 
hand, if no channel is assigned to SU i , it receives the 
immediate gain ( ),tiu s 0  and then moves into the next state 
1t

is
+  from which it may obtain the future reward 

1 1 1( | , )t t t t
iQ

+ + +s wπ . We define a feasible set of channel 
assignments to SU i ’s opponents, given SU i ’s channel 
allocation t

iz , as ( )t t
-i izZ , with ( ) { |t t t

-i i iZ−=zZ  

1, 1
, , 1, , {0,1}}

M Nt t t t t
kj j i kj kjk k i j
z y j z k i z

= ≠ =
= − ∀ ≤ ∀ ≠ ∈∑ ∑z . 

The preference over the current state can be then computed as 
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,

,

| , |

| , ,

,

| , |

| ,

t

t tt
i i j

t t t
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t t
i i j i

t t t t
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M
t t t t t t

s k k k i

Z k

t t
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t t t t
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M
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+
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0

s S
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(10) 

From this equation, it is clear that the true value t
ijU  depends 

on its own current state tis , but also the other SUs’ states t i−s , 
the channel allocations ( )t

i j− eZ  to the other users when 
channel j  is assigned to SU i , ( )t

i− 0Z  when SU i  is not 
assigned to any channel, and the state transition models 

( )1 | , ,t t t
s k kkp s s k+ ∀z . However, the other SUs’ states, the 

channel allocations and the state transition models of other 
SUs are not known to SU i , and it is thus impossible for each 
SU to determine its preference ( ),t t t

ijU s w .  
Without knowing the other SUs’ states and state transition 

models, SU i  cannot derive its optimal bidding strategy 
( ), ,t opt t t t

ijija = U s w . However, if SU i  chooses the bid 
vector by only maximizing the immediate reward 

( ),t t t
i i i iu s τ+z , i.e. the total discounted sum of reward 

degenerates in ( )( , , ) ,t t t t t t
i i i i iQ u s τ= +s w zπ  by setting 

0iα = . Then, the preference over channel j  becomes 
( ) ( ) ( ), , ,t t t t t

ij i i j i iu s u s= − 0U s y e . Since now t
ijU  only 

depends on the state tis , SU i  can compute both the optimal 
bid vector as well as the optimal bidding policy. We refer to 
this optimal bidding policy as the “myopic” policy, since it 
only takes the immediate reward into consideration and 

ignores the future impact. The myopic policy is referred to as 
myopic
iπ .  To solve the difficult problem of optimal bidding 

policy selection when 0iα ≠ , an SU needs to forecast the 
impact of its current bidding actions on the expected future 
rewards discounted by iα . The forecast can be performed 
using learning from its past experiences.  
F. Learning for playing the game 

A key question is what needs to be learned within a 
wireless stochastic game in order to improve the policy of an 
SU. Recall that the optimal bidding policy for SU i  is to 
generate a bid vector that represents its preferences ,tij j∀U  for 
using different channels. From III.E, we can see that SU i  
needs to learn: (i) the state space of other SUs, i.e. i−S ; (ii) 
the current state of other SUs, i.e. t

i−s ; (iii) the transition 
probability of other SUs, i.e. ( )1 | ,t t t

s k kkk i
p +

≠∏ s s z ; (iv) the 
resource allocation ( ),t

-i j j∀Z e  and ( )t
-i 0Z ; and (v) the 

discounted sum of rewards ( )( )1 1 1| , ,t t t t t
i i iQ + + +

−s s wπ . 
However, SU i  can only observes the information 

0 0 0 0 0 0 1 t-1 1 1 1 1{ , , , , , ,..., , , , ,t t t t t t
i i i i i i i i i i i

− − − − −= s w a b z s w a b zο τ τ
, }tis  from which SU i  cannot accurately infer the other SUs’ 
state space and transition probability. Moreover, capturing the 
exact information about other SUs requires heavy 
computational and storage complexity.   

Instead, we allow SU i  to classify the space i−S  into iH  
classes each of which is represented by a representative state 
, , {1,..., }i h ih H− ∈s . By dividing the state space i−S , the 

transition probability ( )1 | ,t t t
s k kkk i
p +

≠∏ s s z  is approximated 
by ( )1 | ,t t t

s i i ip s s+
− − z , where t

is−  and 1t
is
+

−  are the 
representative states of the classes that t

i−s  and 1t
i
+

−s  belong 
to. This approximation is performed by aggregating all other 
SUs’ states into one representative state and assuming that the 
transition depends on the resource allocation t

iz . Note that the 
classification on the state space i−S  and approximation of the 
transition probability and discounted sum of rewards affects 
the learning performance. Hence, a user should tradeoff an 
increased learning complexity for an increased learning 
performance. The transition probability ( )1 | ,t t t

s i i ip s s+
− − z  can 

be approximated using occurrence frequency and the average 
rewards ( )( )1 1 1,t t t

i i iV s+ + +
−s  can be learned using the 

algorithm similar to the Q-learning [13]. The detailed learning 
algorithm is presented in [2]. 

IV. SIMULATION RESULTS 
In this section, we aim at quantifying the performance of 

our proposed stochastic interaction and learning framework. 
We assume that the SUs compete for the available spectrum 
opportunities in order to transmit delay-sensitive multimedia 
data. 

In this simulation, we consider five SUs competing for the 
available channel opportunities in the WLAN-like cognitive 
radio network. The packet arrivals of all the five SUs are 
modeled using a Poisson process with the same average arrival 
rate of 2Mbps. The number of channels is 3 and the channel 
condition of all the five SUs on each channel takes only three 
values ( 3K = ), which are 18dB, 23dB and 26dB. The 
transition probabilities are 
0 1 0 2 0 30.4, 0.2ij ij ijp p p→ → →= = = , 1 2

1 1 0.4,l l
j jp p→ →= =

3
1 0.2, , ,l
jp i j l→ = ∀ . The parameters of the model of the 

availability of the channels to the SUs are 
0.7, 0.3NF FN

j jp p= = . The length of the time slot  TΔ  is 
also 210− s.  Similar parameters are used for the five SUs in 
order to clearly illustrate the performance differences obtained 
based on the different strategies.  
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In this simulation, we consider only two scenarios. In 
scenario (1), all SUs deploy a myopic bidding strategy 

, 1,2,...,5myopic
i iπ = , while in scenario (2), SU 5 deploys the 

multi-user learning-based bidding strategy 5
iπL  with the disc 

and the other SUs deploy the myopic bidding 
strategy , 1,..., 4myopic

i iπ = . The packet loss rate and cost per 
time slot incurred by the SUs are presented in Table 1. The 
accumulated packet loss and cost of SU 5 for the five scenarios 
are plotted in  Figure 1(a) and (b), respectively. The average 
tax and cost is again computed within a time window of 

1000T =  slots.  
From Table 1, we note that SU 5 significantly reduces the 

packet loss rate by 14.6% and average cost by 16.1% by 
adopting the best response learning-based bidding strategy. 
Figure 1(a) and (b) further verify the improvement of the 
performance for SU 5. However, other SUs’ performances are 
decreased, as they need now to compete against a learning SU 
(i.e. SU 5), which is able to make better bids for the available 
resources. 

V. CONCLUSION 
In this paper we model the cognitive radio resource 

allocation problem as a “stochastic game” played among 
strategic SUs. At each stage of the game, the CSM deploys a 
generalized second price auction mechanism to allocate the 
available spectrum resource. The SUs are allowed to 
simultaneously and independently make bid decision on that 
resource by considering their current states, experienced 
environment as well as the estimated future reward. To 
improve the bid decision at each stage, we propose a best 
response learning algorithm to predict the possible future 
reward at each state. The simulation results show that our 
proposed learning algorithm can significantly improve the 
SUs’ performance. Our future work will focus on analyzing 
the performance of cognitive radio networks where multiple 
SUs are deploying various learning strategies and protocols. 

Table 1. Performance of SU 1~5 in the five SUs network 
 SU 1 SU 2 

 Packet Loss 
Rate (%) 

Average 
cost 

Packet Loss 
Rate (%) 

Average 
cost 

1 21.14 1.2002 19.99 1.1666 
2 25.03 1.2992 24.20 1.2993 
 SU3 SU 4 
1 22.05 1.2123 21.37 1.1949 
2 25.72 1.3338 26.02 1.3568 
 SU 5  
1 24.17 1.3101   
2 9.56 1.0988   
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(b) 

Figure 1. The accumulated packet loss and cost of SU 
5 in the two scenarios, (a) accumulated packet loss over the 

time slot; (b) accumulated cost over the time slot 
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