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Abstract—Existing cross-layer optimization solutions are often 
based on the assumption that each layer’s parameters are fully 
accessible to other layers or a centralized optimizer, thereby 
violating the layered network architecture of the protocol stack. 
This paper presents a new systematic framework named layered 
Markov decision process (MDP) for cross-layer optimization, 
which allows each layer to make autonomous decisions 
individually and determine the optimal message to be exchanged 
among layers in order to cooperatively maximize the utility of the 
wireless station. Hence, this layered cross-layer framework does 
not change the current layered architecture and is suitable for 
the delay-sensitive applications over wireless networks. 

Keywords-Cross-layer optimization; layered MDP; message 
exchange; environmental dynamics. 

I.  INTRODUCTION  
In layered network architectures such as the Open Systems 

Interconnection (OSI) model [1], the functionality of each layer 
is specified in terms of the services that it receives from the 
layer(s) below and that it is required to provide to the layer(s) 
above. The advantage of layered architectures is that the 
designer or implementer of the protocol or algorithm at a 
particular layer can focus on the design of that layer, without 
being required to consider all the parameters and algorithms of 
the rest of the stack. However, in current layered network 
implementations, each layer often optimizes its strategies and 
parameters individually. This generally results in sub-optimal 
performance for the users/applications [2]. Cross-layer 
optimization solutions have been proposed in recent years to 
improve the performance of network users operating in a time-
varying, error-prone wireless environment. As pointed out in 
[3], these solutions optimize the protocol parameters in an 
integrated fashion by jointly and simultaneously considering 
the dynamics at each layer and requiring layers to provide 
access to their internal protocol parameters to other layers. 
However, a majority of these integrated approaches violates the 
layered network architecture of the protocol stack, thereby 
requiring a complete redesign of current networks and 
protocols and leading to a high implementation cost [3]. This 
motivates us to develop a new cross-layer optimization 
framework, which adheres to the current layered network 
architecture, and allows layers to determine their own protocol 
parameters, and exchange only the information they desire with 
other layers.   

Unlike the previous works that jointly optimize the cross-
layer strategies in a centralized way, we propose a layered 
Markov decision process (MDP) solution to drive the cross-

layer optimization. In this layered MDP framework, each layer 
makes its transmission decision (i.e. selects the transmission 
strategies, e.g. packet scheduling in the application (APP) 
layer, retransmission in the MAC layer and modulation 
selection in the physical (PHY) layer) in an autonomous 
manner, by considering the dynamics experienced at that layer 
as well as the information available from other layers. 
Importantly, using this layered optimization framework, we do 
not change the current layered architecture of the protocol 
stack. Moreover, the current algorithms and protocols 
implemented at each layer also remain unaffected, as the 
proposed framework requires only the exchange of information 
across layers and the optimization of available parameters at 
each layer. To exchange information across multiple layers, we 
define a message exchange mechanism in which the content of 
the message captures the performed transmission strategies and 
experienced dynamics at each layer However, the format of the 
message is independent of the transmission strategies, protocols 
and dynamics implemented at each layer.  

The rest of the paper is organized as follows. Section II 
discusses the structure of the cross-layer optimization and 
formulates the cross-layer design as an MDP problem. Section 
III presents a layered value iteration algorithm for optimally 
solving the layered MDP. Section IV discusses the preliminary 
results of the layered MDP. The paper concludes in Section V. 

II. CROSS-LAYER OPTIMIZATION PROBLEM FORMULATION 

A. Structure of cross-layer optimization 
As argued in [8], many complex systems have a “nearly 

decomposable, hierarchical structure”, with the subsystems 
interacting only weakly with each other. The wireless 
communication system is such a system and each layer can be 
viewed as a subsystem. This simple and elegant structure of the 
layered architecture is not explicitly considered in the cross-
layer optimization context. Our research focuses on building a 
formal framework for exploring the specific layered structure 
of wireless networks in order to find the optimal cross-layer 
strategies for networked devices. 

Depending on the system design [2], there can be different 
types of dependencies between layers. In this paper, we 
consider that the decision on transmission strategies at one 
layer only depends on its neighboring layers. However, the 
framework we will propose is also applicable for other 
dependency structures. Specifically, we consider one WSTA 
transmitting its time-varying traffic to another WSTA (e.g. base 
station) over a wireless network (e.g. wireless LAN, cellular 
network, etc.). We also assume that there are L participating 
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layers in the protocol stack. Each layer is indexed 
{ }1, ...,l L∈  with layer 1 corresponding to the lowest 

participating layer (e.g. PHY layer) and layer L  corresponding 
to the highest participating layer (e.g. APP layer). The WSTA 
interacts with the dynamic environment at various layers in 
order to maximize the application utility.  

1) State definition 
In wireless communications, different states can be defined 

at each layer to capture the current undergoing dynamics. For 
example, the signal to noise ratio (SNR)1 at the PHY layer [4], 
the amount of transmission opportunities acquired at MAC 
layer [9], and the amount of packets with various delay-
deadlines at the APP layer [4] can be defined as the states of 
those layers. These states are assumed to be Markovian, as in 
[4][9]. Moreover, in this paper, the states at each layer are also 
defined in such a way that future transmission strategies can be 
determined solely based on the current state, and independently 
of the past history. In other words, the state encapsulates all the 
past information required for future strategy adaptation. Note 
that the state transition may be affected by the transmission 
strategies performed by the wireless transceiver as well as by 
the environmental dynamics. When considering the layered 
architecture of current networks, we are able to define a state 
l ls ∈ S  for each layer l . Then, the state of the entire wireless 

user is denoted by ∈s S , with 
1

L
ll=

= ∏S S . 
2) Classsification of actions  

In a layered architecture, a WSTA takes different 
transmission actions in each state of each layer. The 
transmission actions can be classified into two types at each 
layer l : an external action is performed to determine the state 
transition, and an internal action is performed to determine the 
QoS provided to the upper layers for the packet(s) 
transmission. The QoS at each layer is formally defined later in 
this project description. Hence, the internal actions in all the 
layers jointly determine how many packets can be successfully 
delivered to the destination. In other words, the internal actions 
performed at all the layers may affect the state transition in the 
highest layer, e.g. the APP layer. For specific applications, the 
layers may have only one type of action (e.g. internal action). 
This does not affect our proposed framework. We also note 
that, for some applications, the action may simultaneously 
determine the QoS provided to the upper layer and the state 
transition due to multi-user interaction in wireless networks.  

The external actions at each layer l  are denoted by 
l la ∈ A , where lA  is the set of the possible external actions 

available at layer l . The external actions for the WSTA in all 
the layers are denoted by [ ]1, ..., La a= ∈a A  , where 

1

L
ll=

= ∏A A . The internal actions are denoted by l lb ∈ B , 
where lB  is the set of the possible internal actions available at 
layer l . The internal actions are performed by the WSTA to 
efficiently utilize the wireless medium given the network 
resource allocation and its own resource budget (e.g. power 

                                                        
1 The SNR in the PHY layer can be determined based on the allocated 

power, the experienced channel fading and interference from other wireless 
transmitters. Without the knowledge of other wireless users’ power allocation, 
the Markov assumption about the experienced SNR is reasonable and has been 
used in [4]. The Markov model for the MAC layer’s state (i.e. the amount of 
time/frequency band) can be verified in the same way. 

constraint), by providing the QoS required by the supported 
applications. The internal actions for the WSTA across all the 
layers are denoted by [ ]1, ..., Lb b= ∈ Bb , where 

1

L
ll=

= ∏B B . 
Hence, the action at layer l  is the aggregation of external and 
internal actions, denoted by l l l la bξ = ∈   X , where 

l l l= ×X A B . The joint action of the WSTA is denoted by 
[ ]1 1
, ...,

L
L ll

ξ ξ
=

= ∈ ∏ξ X .  
3)  Layered state transition model 

The external actions drive the state transition. In this 
section, we examine the structure of state transition model and 
the underlying models for environmental dynamics. In general, 
because states are Markovian, the state transition of the WSTA 
only depends on the current state s , the current performed 
actions, and the environmental dynamics. The corresponding 
transition probability is denoted by ( )| ,p ′ ξs s . This global 
state transition can be compactly represented using dynamic 
decision network [10]. Formally, the transition model is 
presented by 

 ( ) ( )( )parent action
1

1

| , | ( ),
L

l l l
l

p p s s s
−

=

′ ′ ′ ′= ∏s s ξ  (1) 

where ( )parent ls′  represents the parents of the state ls′  on 

which the transition of ls′  depends, and ( )action ls′  represents 
the set of actions that affect the transition of ls′ . Based on the 
structure of actions, the transition probability can be 
decomposed as  

 ( ) ( ) ( )
1

1 -1 1 -1
1

| , | , , | , , ,
L

l l l l L L L
l

p p s s a p s a
−

→ →
=

′ ′ ′ ′ ′= ∏s s s s s bξ . (2) 

In other words, { }parent 1 1( ) ,l l ls s s→ −′ ′= , { }laction s′ =  
{ }la for { }1,..., 1l L∈ −  and { }parent 1 1( ) ,L Ls s → −′ ′= s , 

{ } { },L Laction s a′ = b . The transition model is illustrated in 
Figure 1. 

4) Decomposed utility function 
The utility gain obtained in layer L  is based on the states 

and internal actions at each layer and it is denoted by ( ),Lg s b . 
The transmission cost at layer l  represents the cost of 
performing both the external  and internal actions, e.g. the 
amount of power allocated to determine the channel conditions 
at the PHY layer or the cost spent to acquire the transmission 
opportunities at the MAC layer. In general, the transmission 
cost of performing the external (internal) action at layer l  is 
denoted by ( ),l l lc s a  ( ( ),l l ld s b ), which is a function of the 
external (internal) action and the state of layer l . Based on the 
transition model and action structure, that the utility form is 
decomposed as  

 ( ) ( ) ( ) ( )
1 1

, , , ,
L L

a b
L l l l l l l l l

l l

R g c s a d s bλ λ
= =

= − −∑ ∑ξs s b , (3) 

where alλ  ( b
lλ ) is a external (internal) Lagrangian multiplier in 

layer l , determined by the WSTA to trade off the utility gain at 
layer L  and transmission cost at all the layers. The optimal 
Lagrangian multipliers depend on the available resource budget 
and can be obtained as in [5]. Each component of the utility 
function is illustrated in Figure 1. 
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Figure 1. Layered transition model and components of 

utility function. 

B.  Problem  formulation 
As described above, the state transition at each layer is 

controlled by the external actions. For simplicity, we first 
assume that the state transition in each layer is synchronized 
and operates at the same time scale, such that the transition can 
be discretized into stages during which the WSTA has a fixed 
state and performs static actions. The length of each stage can 
be determined based on how fast the environment changes. We 
use a superscript k  to denote stage k . Hence, the state of the 
WSTA at stage k ∈  is denoted by ks  with each element kls  
being the state of layer l ; similarly, the joint action performed 
by the WSTA at state k  is kξ  with each element 

,k k k
l l la bξ  =   . The state transition probability is given by Eq. 

(2) and the stage reward is given by Eq. (3). Specifically, we 
assume that the WSTA will maximize the discounted 
accumulative reward, which is defined as 

 ( ) ( )0

0

, |k kk

k

Rγ
∞

=

∑ ξs s , (4) 

where γ  is a discounted rate, with 0 1γ≤ <  and 0s  is the 
initial state.  

The transmission strategies at each layer can be obtained by 
jointly maximizing the discounted reward defined in Eq. (4). 
This optimization problem can be formulated as a MDP [6]. 

However, the central optimizer makes decisions on the 
transmission action selection for all the layers, and it 
unfortunately violates the layered architecture since it obliges 
each layer to take the actions dictated by the central optimizer 
and the layers have no freedom to adapt their own actions to 
the environmental dynamics. To overcome the problems 
associated with the centralized cross-layer optimization, in this 
research we propose a layered MDP framework, which enables 
the layers to make optimal decisions on the transmission 
actions and exchange information autonomously. In this way, 
the layered architecture is kept unchanged. 

III. LAYERED MDP FORMULATION 
The problem structure discussed in Section 2 enables us to 

decompose the MDP into a layered MDP for the cross-layer 
optimization problem which is defined as follows:  
Definition (Layered MDP with information exchange) The 
layered MDP model with information exchange is given by 

the tuple { } { } { }1
, 1 , 11 1 2

, , , , , , ,L LL
l l l l ll l l

p R γ−
+ −= = =

= Θ ΘM L S X , 
where  
• { }1, ...,L=L  is a set of L  layers, each of which takes the 

internal and external actions individually. 
• S is a finite set of states, each element ∈s S  of which 

contains [ ]1, , Ls s . 
• lX  is a finite set of actions available to layer l , each 

element l lξ ∈ X  of which contains the external and internal 
actions, i.e. [ ],l l la bξ = . 

• , 1l l+Θ  is the message set sent by layer l  to its upper layer 
1l + , where , 1 , 1l l l lθ + +∈ Θ  represents a message sent by 

layer l  to its upper layer 1l +  (i.e. upward message). 
• , 1l l−Θ  is the message set sent by layer l  to its lower layer 

1l − , and , 1 , 1l l l lθ − −∈ Θ  represents a message sent by layer 
l  to its lower layer 1l −  (i.e. downward message). 

• p  is the transition probability function. ( )| ,p ′s s ξ  is the 
probability of moving from state ∈s S  to the state ′ ∈s S  
when layer l ∈ L  performs action lξ . We assume that the 
transition model is stationary and independent of the stage 
(i.e. time). 

• 
1

:
L

ll
R

=
×∏ XS  is the system stage reward function 

which has the form of ( ),R s ξ , i.e. the reward is determined 
by the state and actions in each layer. 

• γ  is the discounted factor. 
Upward message: At state s , by deploying the internal 

actions, the WSTA can determine for each layer (i) the 
probability, ( )1 1,l l lε → →s b , of a packet being dropped due to 
expiration; (ii) the amount of time, ( )1 1,l l lt → →s b , it takes to 
transmit a packet on average; and (iii) the cost ( ),l l ld s b  
associated with its transmission. We define a QoS level as a 
three-tuple [ ], , T

l l l lZ t fε= to represent the transmission 
result where ( )

1
,

l b
l ll l ll
f d s bλ ′′ ′ ′′=

= ∑ . The QoS at layer l  
represents the service layer l  provides to its upper layer 1l + . 
Using the QoS, layer 1l +  does not need to know the actions 
and dynamics at lower layers. That is, the QoS is a sufficient 
statistics of the states and internal actions performed in the 
lower layers. By knowing QoS 1LZ −  provided from layer 

1L − , layer L  can computed the internal reward 
( ) ( )

1
, ,in

L b
L l l l ll

R g d s bλ
=

−= ∑s b . In other words, the 
internal reward inR  is independent of the states and actions in 
the lower layers, given QoS 1LZ −  provided from layer 1L − . 
Hence, the upward message is , 1l l lθ + = Z , where lZ  is the 
necessary QoS levels required by the upper layers.  

Downward message: Based on our layered MDP 
framework, we propose a layered value iteration algorithm by 
allowing information exchange between adjacent layers. As 
defined above, each layer in the layered MDP is regarded as an 
autonomous entity that needs to determine its own actions. 
However, the layers can cooperate with each other using the 
information exchange in order to find the optimal transmission 
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strategies as in the value iteration for the central MDP. By the 
value iteration [6], finding the optimal transmission strategies 
is equivalent to find the optimal state-value function ( )*V s . 
The value iteration is decomposed into L  layered sub-value 
iterations.  

The layered value iteration can be performed as follows: at 
each iteration n , layer L  performs the sub-value iteration to 
obtain the state-value function ( )*

, 1 1 -1n L LV − →′s , which serves 
as future state-value function at layer 1L − . Then, layer l  
performs the sub-value iteration to generate  ( )*

1 1n lV → −′s  
based on the future state-value function from layer 1l + .  
Finally, layer 1 performs the sub-value iteration to generate the 
state-value function ( )*

, 1n L LV →s , which is ( )*
nV s , as in the 

centralized value iteration. Then, the downward message 
exchanged from layer 1l +  to layer l  is 

( ){ }*
1, 1 1l l n lVθ + − →′= s . 
By decomposing the value iteration for the central MDP, 

we can obtain the following theorem. 
Theorem: The state-value function ( )

*V s  corresponding 
to the optimal policy can be obtained using a layered value 
iteration algorithm. At iteration n , each layer l  performs a 
sub-value iteration to determine the optimal external and 
internal policies, given the downward message including 

( )*
1 1l lV → −s  and optimal QoS level *

lZ  from layer 1l + . 
The proof can be found in [7] and is omitted due to the 

space limitation. 

IV. PRELIMINARY RESULTS 
We now show the preliminary results that highlight the 

performance improvement of our layered MDP framework 
compared to the myopic cross-layer optimization and the cross-
layer optimization with ad-hoc message exchanges. We 
consider the optimization of the transmission strategies 
available at the APP, MAC, and PHY layers, i.e. 3L = . In 
the PHY layer, the SNR can be modeled as a finite state 
Markov chain (FSMC) [4]. To satisfy the service requirement 
from upper layers, the PHY layer adapts its modulation and 
channel coding schemes based on the current SNR. In the 
MAC layer, the wireless user acquires the transmission 
opportunities from the shared network. Besides the resource 
acquisition, the MAC can also perform error control algorithms 
(e.g. ARQ) to improve the service provided to the upper layers. 
In the APP layer, the WSTA generates delay-sensitive video 
data. The number of packets available for transmission depends 
on the source coding parameters adaptation as well as the 
transmission strategies at the lower layers. We first compare 
the performance of the myopic cross-layer optimization (i.e. 

0γ = ) versus our proposed foresighted cross-layer 
optimization. Figure 2 (a) shows the average reward per stage 
for both the myopic policy and foresighted policy. The average 
reward obtained by the foresighted policy is 0.3115, while the 
average reward by the myopic policy is only 0.0132. The 
simulation results demonstrate that the foresighted policy can 
achieve much better performance (approximately 24 times 
better in this simulation) than the myopic policy. To compare 
the performance loss for traditional cross-layer optimization 

with the ad-hoc message exchange, we also depict the average 
reward per stage for the layered MDP and application-centric 
cross-layer optimization in Figure 2 (b). From Figure 2 (b), we 
note that the ad-hoc message exchange result in suboptimal 
performance. 
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Figure 2. (a) Average reward per state for myopic 

cross-layer optimization and foresighted cross-layer 
optimization; (b) Average reward per state for formal 

message exchange in layered MDP and application-centric 
cross-layer solution. 

V. CONCLUSIONS 
In the proposed algorithm, the optimization of solving the 

optimal actions are decomposed into layered optimization sub-
problems each of which corresponds to a sub-value iteration. 
First, each layer is not required to know the dynamics model 
and possible internal and external actions from other layers, but 
only its own dynamics and actions. Second, the format of the 
messages between layers is independent of the protocols 
deployed in each layers although the content of the messages 
characterizes the dynamics and performed actions at each layer. 
The layered framework allows us to analyze how the limited 
message exchanges among layers affect the WSTA’s utility 
and what is the bound by considering all possible 
environmental dynamics.  
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