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Abstract: With the current proliferation of high bandwidth and delay-sensitive multimedia applications 

and services, each wireless user will try to maximize its utility by acquiring as much spectrum resources 

as possible, unless a preemptive mechanism exists in the network. Thus, emerging solutions for dynamic 

spectrum access in cognitive radio networks will need to adopt market-based approaches in order to 

effectively regulate the available resources. In this paper, we show how various centralized and 

decentralized spectrum access markets can be designed based on a stochastic game framework, where 

multimedia users (also referred to as secondary users) can compete over time for the dynamically 

available transmission opportunities (spectrum “holes”). When operating in such spectrum access 

markets, wireless users become selfish, autonomous agents that strategically interact in order to acquire 

the necessary spectrum opportunities. We also show how wireless users can successfully compete with 

each other for the limited and time-varying spectrum opportunities, given the experienced dynamics in the 

wireless network, by optimizing both their external actions (e.g. the resource bids, power and channel 

used for transmission etc.) and internal actions (e.g. the modulation schemes etc.). To determine their 

optimal actions in an informationally-decentralized setting, users will need to learn and model directly or 

indirectly the other users’ responses to their external actions. We study the outcome of various dynamic 

interactions among self-interested wireless users possessing different knowledge, and determine that the 

proposed framework can lead to multi-user communication systems that achieve new measures of 

optimality, rationality and fairness. Finally, the illustrative results show that the presented game-theoretic 

solution for wireless resource management enables users that deploy enhanced (smarter) learning and 

communication algorithms to derive higher utilities.  

1. Introduction 

1.1. Motivation 
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Due to their flexible and low cost infrastructure, wireless networks are poised to enable a variety of delay-

sensitive multimedia transmission applications, such as videoconferencing, emergency services, 

surveillance, telemedicine, remote teaching and training, augmented reality, and distributed gaming. 

However, existing wireless networks provide limited, time-varying resources with only limited support 

for the Quality of Service (QoS) required by the delay-sensitive, bandwidth-intense and loss-tolerant 

multimedia applications. The scarcity and variability of resources does not significantly impact delay-

insensitive applications (e.g., file transfers), but has considerable consequences for multimedia 

applications and often leads to unsatisfactory user experience.  

In recent years, the research focus has been to adapt the resource allocation (e.g. integrated and 

differentiated services) methods, and transmission (e.g. TCP) strategies and concepts designed for the 

wired (Internet, ATM) communications to the time-varying and bandwidth-constrained wireless 

networks. However, such solutions (e.g. QoS enabled 802.11e solutions) do not provide fair or efficient 

support for delay-sensitive applications such as multimedia streaming in crowded or dynamic wireless 

networks [13], because they ignore the wireless system dynamics, including the time-varying source and 

channel characteristics, the mobility of the wireless sources, the unpredictability of wireless users or 

interference sources coming or leaving the network, etc.  

One vision for emerging cognitive radio networks assumes that certain portions of the spectrum will 

be opened up for secondary users1 (SUs), such as wireless multimedia applications, to autonomously and 

opportunistically share the spectrum becoming available once primary users (PUs) are not active 

[1][2][3]. Importantly, in cognitive radio networks, heterogeneous wireless users (with different utility-

rate functions, delay tolerances, traffic characteristics, knowledge and adaptation abilities) will need to 

coexist and interact within the same band [6]. However, to enable the proliferation of multimedia 

applications over cognitive radio networks, solutions for dynamic spectrum access will need to consider 

different challenges that are discussed next. 

1.2. Challenges for Dynamic Spectrum Access in Cognitive Radio Networks  

Next generation networking solutions will need to address, besides other issues related to the co-existence 

between the PUs and SUs, the following four challenges associated with designing efficient resource 

                                                 
1 The secondary users/applications are envisioned in this paper to be a single transmitter-receiver pair.  
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management solutions for dynamic and autonomous applications over wireless environments.  

• A first challenge arises due to the dynamic, time-varying nature of applications, source and 

channel characteristics. As the source characteristics are changing, the delays that are tolerable at 

the application layer and the derived utility (e.g. quality or fidelity) can vary significantly. This 

influences the performance of the different transmission strategies at the various layers and, 

ultimately, the choice of the optimal strategy adopted by the transmitter. Hence, the utility that a user 

derives from using a certain resource dynamically varies over time, depending on both the 

“environment” (e.g. application, source and channel characteristics), which is not in the control of the 

user, as well as on the user’s response to this environment, which is the selected transmission strategy 

(at the application, transport, network, MAC or physical layers).  

• A second challenge associated with multi-user transmission and resource management is that the 

wireless users’ actions and their performances are coupled [2][43], since the transmission strategy 

of a user impacts and is impacted by the competing users (see Figure 1). Hence, a user’s actions will 

have a direct impact not only on its own utility, but also on the performance of the other wireless 

users sharing the spectrum. 

• A third challenge comes from the informationally-decentralized nature of the multi-user wireless 

resource management problem. Each wireless user can derive different utilities based on the 

amount of resources consumed/allocated, which also depends on its “private” information (i.e. traffic 

and channel characteristics, and selected transmission strategy). However, in general, in a practical 

transmission scenario, the private information of each user is not known by the resource manager or 

other wireless users (see Figure 1). Moreover, the users are not always directly aware of the resources 

requested by other users, how the other wireless users allocate their power etc. This is different from 

the multi-access channel setting in conventional communication systems, where the assumption is 

made that the private information of all users is known by the resource coordinator in the centralized 

network setting. Note also that since this information is private, wireless users may lie when declaring 

their private information.  

• Finally, most existing wireless resource management solutions disregard two important properties of 

the autonomous wireless users: their knowledge (and thus ability to learn and optimize their 

transmission strategies by anticipating the coupling with the other users and the impact of their 
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actions on both their immediate as well as long-term utilities) and their “selfish nature”, which results 

in resource misuse both when a user is not charged at all for spectrum utilization or it is charged a 

flat-fee. Particularly in a congested network, if some users inefficiently utilize the spectrum because 

they deploy old technologies or they inefficiently optimize their cross-layer strategies, the 

performance of the entire wireless network may significantly degrade. Existing resource management 

solutions do not prevent wireless users from inefficiently using resources or even exaggerating their 

resource requirements at the expense of competing users. This is especially important when 

multimedia applications are deployed, since these require a high bandwidth. Also, they do not provide 

incentives to the users to minimize their resource usage in order to limit their impact on the utilities 

and costs of other users [16]. Hence, the lack of incentives in current wireless networks for users to 

declare their information truthfully, to use resources efficiently or, to adhere to fairness or courtesy 

rules will ultimately lead to a tragedy of commons, since there is no incentive, other than the ultimate 

survival of the system, for users to limit their use [16][22].  
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Figure 1. Coupling and information flow between wireless users. 

1.3. Knowledge-driven Multi-user Networking Paradigm 

A new networking paradigm is needed to address the abovementioned challenges for managing, 

characterizing and optimizing multi-user communication systems, such that delay-sensitive multimedia 

applications and services will be able to proliferate over next-generation cognitive radio networks [2][48]. 

Specifically, to enable spectrum access to be efficiently and fairly divided based on users’ true utility, a 

“market”-based solution needs to be constructed for regulating the dynamic spectrum access of 

heterogeneous wireless users [2][16][48].  

To create a market-based resource management solution, we introduce in this paper a new way of 
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architecting communications systems that is governed by dynamic spectrum access rules [10], and where 

SUs can compete with each other based on their available transmission strategies as well as their 

knowledge about the environment and other SUs. Specifically, wireless users can compete for spectrum 

access based on “market” rules designed using either non-collaborative (e.g. mechanism design [15][22]) 

or cooperative2 (e.g. bargaining or coalition theory [33]) game-theory (see Figure 2). Hence, wireless 

users become rational players competing for the available wireless resources in a stochastic (or repeated) 

game, played repeatedly by the communication system entities. To maximize their utilities, the users will 

need to negotiate or acquire spectrum access as well as to proactively adapt their cross-layer transmission 

strategies. Note that the competition is performed using incomplete information about other users’ private 

information, actions or utility functions, and it is influenced by the SUs’ behaviors – e.g. attitudes towards 

risk, willingness to pay for resources, maliciousness etc. 
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Figure 2. Evolution of spectrum access rules to create a dynamic wireless resource market. 

The paradigm proposed in this paper is referred to as knowledge-driven networking, since the various 

network entities (spectrum moderators, access points or wireless users) will need to make their decisions 

about spectrum division, spectrum negotiation, or cross-layer optimization based on their knowledge 

about the environment and other network entities (PUs and SUs). As mentioned previously, since the 

decisions that need to be taken are based on incomplete information about the environment and other 

entities (see Figure 3), the knowledge that a network entity possesses will influence its efficiency and 

performance. By gathering information (private observations or explicit information exchanges with other 

SUs), and subsequently learning and reasoning based on this information, network entities can develop 

true beliefs3 about the current state of the communication system and its evolution over time, based on 

which they can select the optimal policies for interacting with other entities such that they maximize their 

utilities. For example, a foresighted user can learn the other entities’ responses to its actions, thereby 

being able to forecast the impact of its actions on the wireless system and, ultimately, to optimize its 

                                                 
2 Cooperative game theory is a parallel branch to the more widely known topic of non-cooperative game theory. The term 
“cooperative” does not mean that users have interests that are aligned, but rather cooperative game theory concepts are relevant in 
situations where a scarce resource is to be divided fairly among competing users. Concepts, such as the bargaining solutions, 
embody specific notions of fairness and take into account the strategic interests of competing users [33]. 
3 Plato defined knowledge as "justified true belief" [http://en.wikipedia.org/wiki/knowledge]. 
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resulting utility over time, rather than just myopically optimize its immediate performance. 

Summarizing, in this paper, we show how users can compete for resources in various wireless 

markets and briefly introduce the necessary principles and methods for:  

• designing different dynamic spectrum access rules for a variety of communication scenarios;  

• enabling the wireless users to learn the system dynamics based on observations and/or explicit 

information exchanges, and improve their strategies for playing the spectrum access game;  

• evaluating the “value” of learning, and “value of information” for a user in terms of its utility impact;  

• coupling the internal and external actions4 of the wireless users to allow them to achieve an optimal 

response to the dynamically changing wireless resource market.  

Our main focus in this paper will be on designing solutions for emerging cognitive radio networks in 

which wireless stations5 (WSTAs) are able to utilize multiple frequency bands, thereby allowing WSTAs 

to dynamically harvest additional resources. However, the proposed solutions will also be beneficial when 

deployed in existing ISM radio bands, dedicated bands, or in first-generation versions of cognitive radio 

networks, which may only rely in their implementations on multiple ISM bands. Thus, the focus of this 

paper will be on designing new dynamic spectrum access and strategic transmission solutions, but not on 

detecting primary users and identifying spectrum opportunities for WSTAs. For this topic, we refer the 

interested reader to [4][5] as well as to several articles in this special issue, which are addressing these 

important issues. In this paper, we assume that the spectrum opportunities can be known by simply 

accessing a dynamically created Spectrum Opportunity Map [11]. 
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Figure 3. Knowledge-driven wireless networking. 

1.4. Paper layout 

                                                 
4 The internal and external actions and the coupling between them will be discussed in detail in Section 3. 
5 In this paper, the secondary users (SUs) are also termed wireless stations (WSTAs) and thus, we use the denominations “SU” 
and “WSTA” interchangeably. 
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The paper is organized as follows. First, we discuss in Section 2 several important issues that need to be 

considered when defining the spectrum access game among the wireless users. In Section 3 we define a 

general framework for constructing the wireless resource game. Section 4 presents learning solutions that 

can be deployed by the users to improve their performance when playing the spectrum access game. This 

section also presents several illustrative examples for the presented framework. However, note that these 

results are only illustrative and a significant body of work will need to take place before comprehensive 

solutions can be implemented based on the presented knowledge-driven networking framework. Section 5 

concludes the paper by highlighting the impact of developing such a knowledge-driven networking 

framework. 

2. Issues to consider for the design and construction of spectrum access games 

In this section, we summarize several key issues that need to be considered when designing and 

constructing any spectrum access game (“market”) for cognitive radio networks.  

• Resource types 

In [46], the resources in a certain market were classified according to different criteria – continuous vs. 

discrete, divisible or not, sharable or not, static or not. These classification criteria are also useful and 

should be considered by both the WSTAs and spectrum regulators when accessing or determining the 

spectrum division rules and policies for cognitive radio networks. For instance, the resources can be 

discrete (e.g. in FDMA, where a single channel is allocated to each user, or even in the case of TDMA, 

when users are allocated a certain percentage of a service time interval to access the channel), or they can 

be continuous (e.g. the adjustment of power levels). The resources can be defined as sharable or not, 

depending on the wireless protocol used. For instance, in FDMA, only one user can share a frequency 

band, and in TDMA, multiple users can time-share the same channel access. The resources are static or 

dynamically varying over time, e.g. depending on the PU access.  

• Stochastic vs. repeated games 

Stochastic games [18] are dynamic, competitive games with probabilistic transitions played by several 

SUs. The game is played in a sequence of stages. At the beginning of each stage, the game is in a certain 

state. The SUs select their actions and each SU receives a reward that depends on both its current state 
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and its selected external and internal actions. The game then moves to a new state with a certain 

probability, which depends on the previous state and the actions chosen by the SUs. This procedure is 

repeated at the new state and the interaction continues for a finite or infinite number of stages. The 

stochastic games are generalizations of repeated games, which correspond to the special case where there 

is only one state. 

• One shot vs. multi-stage games 

The games taking place in the wireless networks can be categorized as one-shot or multi-stage games, 

depending on whether the allocation is performed once or repeatedly. For instance, in 802.11e, the 

resource allocation is usually performed by the wireless access point only once, when a SU joins the 

network [13]. The advantages of such one-shot allocations are that the complexity associated with 

implementing any resource allocation is kept limited. However, the disadvantage is that this solution does 

not consider the time-varying source and channel characteristics of the SUs, and the static allocation may 

become inefficient over time [13][22]. In this case, repeated or stochastic games can be defined, where 

the users repeatedly compete for the available resources at each stage of the wireless resource allocation 

game. 

• Centralized vs. decentralized  

In the centralized setting, a central spectrum moderator (CSM) such as an access point or base station is 

responsible for determining and enforcing the allocation among the competing users. In the decentralized 

setting, the SUs interact with each other directly, through the actions they perform [34][35], and there is 

no moderator involved in the negotiation. Note that in current ISM bands, the wireless users are using the 

same spectrum access protocols and thus, distributed solutions can be easily designed and enforced. 

However, in cognitive radio networks, the SUs will be heterogeneous in terms of protocols, utility-cost 

functions etc., and this needs to be explicitly considered when designing distributed solutions/protocols. 

• Budget-balanced vs. money-making resource allocation solutions 

Wireless resource allocation solutions can be budget balanced (i.e. all the money users pay to the wireless 

network is allocated back to them) or money-making. For instance, many well-known mechanism 

implementations, such as the Vickrey-Clarke-Groves (VCG) mechanism [25], charge users for using 

resources. In the VCG mechanism, the transfer (money, tokens etc.) is only delivered from the direction 

of the SU to the moderator, which becomes a money-making (transfer-making) entity. The moderator can 
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use this transfer to maintain or upgrade its service, purchase additional spectrum etc. However, if there is 

either no moderator in the system or the participating SUs want to prevent the moderator from behaving 

as a profit maker (e.g. in some wireless LAN usage scenarios), which may potentially result in the 

moderator trying to alter the users’ allocations in order to maximize its revenue, the SU will need to 

deploy a budget-balanced mechanism (i.e. all the money users pay to the wireless network is allocated 

back to them) [15]. Note also that the wireless resource markets can also be designed and regulated 

without transfers. However, such transfers provide important benefits for wireless networks, because they 

force multimedia users to truthfully reveal their resource needs [22]. 

• Social decisions (fairness rules) 

Various fairness rules can be imposed by the CSM or can be negotiated in a decentralized manner by the 

WSTAs, e.g. using bargaining solutions. Some examples investigated in current wireless networks are 

weighted-sum maximizations of rates or utilities among the participating users, envy-free fairness 

solutions or egalitarian solutions. For a comprehensive discussion of these fairness rules, the interested 

reader is referred to [46]. Performing the resource allocation in the utility domain rather than the resource 

domain is vital for multimedia users and can result in significant performance gain over application-

agnostic resource allocation solutions [31]. 

• Desired equilibrium concepts 

When playing or designing wireless resource games, SUs or moderators will need to proactively negotiate, 

select or design their desired equilibrium point. This is unlike most game-theory literature [23], which is 

developing descriptive models (in e.g. social or biological systems) to show that certain equilibrium exist. 

In wireless communication games, constructive models are required, where equilibrium can be designed 

or influenced by the participating SUs (e.g. [30]). Depending on whether the game is centralized or 

decentralized, the CSM or the WSTAs may strive towards implementing such equilibriums. Note that 

often other equilibrium concepts rather than the well-known Nash equilibrium are desired. Examples are 

correlated equilibriums [40][41], dominant strategy equilibriums [22], Stackelberg equilibriums etc. For 

instance, in [30], to characterize the multi-user interaction in the distributed power-control game where a 

foresighted SU can anticipate the responses of its opponent SUs to its actions, the Stackelberg equilibrium 

is introduced which is shown to outperform the well-known Nash equilibrium.  

• Implementation complexity 
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An important issue associated with the implementation and adoption of wireless resource markets is the 

resulting complexity for both the CSM, which needs to implement the different resource allocations, and 

the SUs, which may adopt strategic learning algorithms to be able to compete against other SUs. Hence, 

new metrics such as the value of learning or the value of information exchanges (which will be discussed 

in Section 4) need to be deployed to trade-off the actual benefit that the network entities can derive by 

increasing their knowledge against the expense of a higher complexity cost.   

3. Dynamic multi-user spectrum access games 

While the knowledge-driven framework presented in this paper can be implemented in most network 

settings discussed in the previous section, we will illustrate in this paper only several specific wireless 

transmission scenarios. In particular, as mentioned in the introduction, we focus on developing wireless 

resource markets for secondary networks (SN). In SN, the secondary users (SUs) can opportunistically 

utilize the network resources that are vacated by the PUs. For illustration purposes, we assume that the 

SN consists of M  SUs, which are indexed by { }1, ,i M∈ . The SUs compete for the dynamically 

available transmission opportunities based on their own “private” information, knowledge about other 

WSTAs and available resources (and/or PUs’ behaviors). In each time slot TΔ , the WSTAs compete 

with each other for spectrum access and, given the allocated transmission opportunities7, they deploy 

optimized cross-layer strategies to transmit their delay-sensitive bitstreams.  

During each time slot, a “state” of network resources can be defined to represent the available 

transmission opportunities in a SN, which is denoted by w ∈W , where W  is the set of possible resource 

states. We can also interpret the state of network resources to reflect the behaviors of PUs in the cognitive 

radio networks [11]. We can also define “states” for the WSTAs. For instance, the states may represent 

their private information, which includes the traffic and channel characteristics. The current state of a 

WSTA i  is denoted by i is ∈ S , where iS  is the set of possible states of WSTA i .  

 At each time slot, WSTA i  will deploy an action to compete for the network resources. This action is 

referred to as the external action denoted by i ia ∈ A , where iA  is the set of possible external actions. An 

example of external actions in wireless networks is the selected transmit power in interference channels or 

the declared resource request like the TSPEC in 802.11e WLANs. Besides the external action, WSTA i  

will also deploy an internal action in order to transmit the delay-sensitive data. The internal action can be 
                                                 
7 Note that the resource competition and data transmission may take place concurrently.  
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an action profile including all or a subset of actions from different layers (e.g. adaptation of the packet 

scheduling strategy, which error correcting codes or retransmission limits to use etc.). This action is 

denoted as the internal action denoted by i ib ∈ B , where iB  is the set of possible internal actions. Note 

that the external and internal action selections are coupled together as shown in [22]. Moreover, the 

actions’ adaptation can be driven by cross-layer optimization. 

In this paper, we formulate the multi-user wireless resource competition as a stochastic game 8 . 

Formally, the stochastic game is defined as a tuple ( , , , , , , , )wPI S A B RW sP , where I  is the set of 

agents (SUs), i.e. ={1,..., }MI , S  is the set of state profiles of all SUs, i.e. 1= M× ×S S S  with iS  

being the state set of SU i , W  is the set of network resource state. A  is the joint external action space 

1= M× ×A AA , with iA  9 being the external action set available for SU i  to play the resource sharing 

game, andB  is the joint internal action space 1= M× ×B B B , with iB   being the internal action set 

available for SU i  to transmit delay-sensitive data. sP  is a transition probability function defined as a 

mapping from the current state profile ∈s S , corresponding joint external actions ∈ Aa  and internal 

actions ∈b B  and the next state profile ' ∈s S  to a real number between 0 and 1, i.e. 

: [0,1]× × ×S A B SP . wP  is a transition probability function defined as a mapping from the current 

resource state w ∈W  and the next state w ′ ∈W  to a real number between 0 and 1, i.e. 

: [0,1]P ×W W . This will be discussed subsequently, in more detail.R  is a reward vector function 

defined as a mapping from the current state profile ∈s S  and corresponding joint external and internal 

actions ∈ Aa  and ∈b B  to an M -dimensional real vector with each element being the reward to a 

particular agent, i.e. : M× ×R S A B . 

In the cognitive radio environment, if the secondary network shares all the spectrum resources with the 

primary network, it could happen that all the resources are occupied by the primary users and thus, no 

“spectrum holes” are available for the secondary users. In this case, no QoS guarantee can be provided to 

the secondary users. However, in most usage scenarios, not all primary users are active simultaneously 

and even if they are all active simultaneously, they will not use the spectrum continuously. Thus, most of 

the time, even when all the primary users are active, the secondary network will have access to limited 

resources, which can be used to guarantee the minimum resource needs of the secondary users. Thus, in 

                                                 
8 The use of games for dynamic spectrum access in cognitive radio networks were discussed already in e.g. [2][32]. 
9 Note that the action set may depend on the state of the SU. For simplicity, we assume that the actions sets are the same for all 
the states of the SU. 
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this paper, we assume that the secondary network has always access to a limited amount of resources. It 

should be noted that this assumption does not violate the stochastic game model for the secondary 

network.  

The state transition for the network resource state is determined by the PUs, and not by the SUs. In 

other words, the SUs’ actions will not affect the network resource state transition.  This structure actually 

creates an opportunity to allow the PUs to be agents with higher priorities in this stochastic game. 

Moreover, multiple parallel games can be easily defined in this way for different priority users of the 

same wireless infrastructure [50]. According to how the WSTAs compete for spectrum access and 

exchange information about (and access) the available spectrum opportunities, we consider two types of 

stochastic games for wireless resource “markets”: centralized stochastic games and distributed stochastic 

games.  

3.1 Centralized stochastic game 

In the centralized stochastic game, the competition between WSTAs is coordinated by a CSM, which 

can be an access point, base station or selected leader. Specifically, at each stage, the WSTAs perform the 

external actions ia  (e.g. resource requirement, competition bids) and send the CSM a message im  

representing the selected actions. An example of a wireless infrastructure where such a centralized 

stochastic game can be implemented are wireless LANs (802.11a PCF or 802.11e HCF), where the CSM 

role is played by the access point. 

After receiving the messages [ ]1, Mm m=m  from all the WSTAs, the CSM performs the resource 

allocation according to a certain rule, i.e.  
 [ ] ( )1,..., ,M f w=r r m , (1) 

where ir  is the resource allocation to WSTA i , and ( ),f ⋅ ⋅  represents the resource allocation rule based 

on the announced message m  and network resource state w .  

After receiving the resource allocation ir , WSTA i  performs its own internal action ib  to transmit the 

delay-sensitive data based on its current state is . Note that in the centralized game, the resource allocation 

ir  for each SU i  is computed by the CSM based on the external actions of all the WSTAs. The state 

transition can be represented by  

 ( ), ,i i i i is g s b+ = r , (2) 

and the reward function is computed as  
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 ( ), ,i i i i iR h s b= r . (3) 

The states and reward functions for an SU as well as the coupling with the other SUs will be 

discussed in subsequent sections.  

The centralized stochastic game for the cognitive radio network is illustrated in Figure 4. This can be 

employed across multiple channels (frequency bands) simultaneously. 
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Figure 4. Message exchange between WSTAs and CSM, and the actions performed by WSTAs. 

Each WSTA plays the centralized stochastic game against the other WSTAs by not only selecting its 

(external) actions, but also by selecting and implementing its internal actions for data transmission. 

Moreover, the state transition of each WSTA i  is directly impacted by both its external and internal 

actions as well as the external actions of other WSTAs through the resource allocation. The same holds 

true for the reward. The cross-layer transmission strategies constitute the internal actions deployed by a 

WSTA. When determining its external actions, a WSTA will need to predict not only what will be the 

evolution of the source and channel characteristics over time, but also the cross-layer strategy that the 

user will select given the future environment condition. As shown in [22], the cross-layer transmission 

strategy will not only impact the immediate reward derived by the WSTA based on transmitting the 

current packets, but also the future states and rewards. This is because the current cross-layer strategy will 

determine which packets get transmitted and thus, what are the remaining packets to be transmitted etc., 

which affects the future states. Hence, as shown in [22], the ability of a WSTA to adopt more efficient 

transmission algorithms at the various layers as well as optimize its cross-layer transmission strategies, 

significantly impacts the performance of both the WSTA and that of its competing WSTAs. Moreover, 

the behavior of a WSTA that is risk adverse or risk taking will significantly influence the way in which 

both its internal and external actions are selected [22]. For instance, a risk adverse WSTA may decide to 
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schedule its important packets as soon as possible, at the possible expense of a higher transmission cost or 

of other less important packets not being transmitted.  

3.2 Distributed stochastic game 

In the distributed stochastic game, the SUs simultaneously compete for the spectrum opportunities in 

the absence of a CSM that coordinates their interactions. In the distributed game, no moderator exists. 

Examples of such distributed games are the power control games in interference channels. (For instance, 

the distributed power control games in e.g. [44][49] can be represented using the stochastic game 

formulation presented here.) In the distributed stochastic game, the WSTAs simultaneously implement the 

internal and external actions. However, the interactions between WSTAs are realized through the external 

actions. From the perspective of each WSTA, the impact from other WSTAs is aggregated into the 

experienced channel interference ( ),i ie − −s a . In power control games, the external action can be the 

power allocation, while the internal action can be the modulation and channel coding scheme. Hence, in 

distributed stochastic games, the reward of each WSTA i  is determined by   

 ( )( ), , , ,,i i i ii i ia e wR h s b − −= s a , (4) 

where i−  is the set of WSTAs except WSTA i . The state transition is determined by  

 ( )( ), , , ,,i i i ii ii a e ws g s b − −
+ = s a . (5) 

The states and reward functions for an SU will be discussed in subsequent sections. The distributed 

stochastic game for the cognitive radio network is illustrated in Figure 5. 

Network resource 
state
w

State 

( )( ), , , ,,j j j jj jj a e ws g s b − −
+ = s a

js

Reward

WSTA j

ja
External action 

( )( ), , , ,,j j j jj j ja e wR h s b − −= s a

Internal action 

jb( ),j je − −s a
Interference

State 

( )( ), , , ,,i i i ii ii a e ws g s b − −
+ = s a

is

Reward

WSTA i

ia
External action 

( )( ), , , ,,i i i ii i ia e wR h s b − −= s a

Internal action 

ib ( ),j je − −s a

Interference

 
Figure 5. Actions performed by WSTAs in the distributed stochastic game. 

3.3 Specification of the centralized stochastic game 

As illustration, we consider that the SN can be formed across N  channels, each indexed by 

{1,..., }j N∈ . At each time slot, each channel is assumed to be in one of the following two states: ON 

(this channel is currently used by the PUs) or OFF (this channel is not used by the PUs and hence can be 

used by the SUs). Within each time slot, the channel is only OFF or ON [11]. At time slot t ∈ , the 
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availability of each channel j  is denoted by { }0,1t
jw ∈ , with t

jw  being 0 if the channel is in the ON 

state, and being 1 if it is in the OFF state. The channel availability profile for the N channels is 

represented by [ ]1,...,
t t t

Nw w=w , which is the state of the network resource at time slot t . As mentioned 

before, this can be characterized using a Spectrum Opportunity Map [11] in the CSM.  

If the CSM performs imperfect spectrum sensing as in [5], this imperfect detection only affects the 

common system state [ ]1,...,
t t t

Nw w=w  which is announced to all the secondary users. In this case, 

instead of announcing the exact common resource state, the CSM can announce the probability of the 

channel being available to the secondary users or not. Then, the secondary users will compete for the 

resource based on the probability of the channel availability. This relaxation does not provide too much 

insight on how the secondary users compete for the available resources with each other, but it increases 

the communication overhead by exchanging the probability of channel availability. Hence, in this paper, 

we focus on the case in which the CSM performs the perfect spectrum sensing and efficiently allocates 

the detected spectrum among the competing secondary users. 

As in [14], we assume that a polling-based medium access protocol is deployed in the secondary 

network, which is arbitrated by a CSM. The polling policy is changed only at the beginning of every time 

slot. For simplicity, we assume that each SU can access a single channel and that each channel can be 

accessed by a single SU within the time slot. The SUs can switch the channels only when crossing time 

slots. Note that this simple medium access model used for illustration in this paper can be easily extended 

to more sophisticated cognitive radio models [12], where each SU can simultaneously access multiple 

channels or the channels are being shared by multiple SUs etc.  

A.  Wireless Stations States 

We assume that WSTAs need to transmit delay sensitive applications. The bitstream at the application 

layer is packetized with an average packet length . In this paper, we consider multimedia applications, 

where the application packets have a hard delay deadline, i.e. the packets will expire J  stages after they 

are ready for transmission. Then, we can define the state of the buffer as [ ]1, ,
Tt t t

i i iJv v=v , where 

( )1tjv j J≤ ≤  is the number of packets waiting for transmission that have a remaining life time of j  

time slots.  

The condition of channel j  experienced by WSTA i  is represented by the Signal-to-Noise Ratio 

(SNR) and it is denoted as tijc  in dB. The channel condition profile is given by [ ]1, ,t t t
i i iNc c=c . To 
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model the dynamics experienced by WSTA i  at time t  in the cognitive radio network, we define a 

“state” ( , )t t t
i i i is = ∈ Sv c , which encapsulates the current buffer state as well as the state of each channel.  

The environment experienced by each WSTA is characterized by the packet arrivals from the 

(multimedia) source (i.e. source/traffic characterization) connected with the transmitter, the spectrum 

opportunities released by Pus, and the channel conditions. Different models can be used by a WSTA to 

characterize the environment. However, the accuracy of the deployed models will only affect the 

performance of the solution, and not the general framework for multi-user interaction presented here.  

B. Internal and external actions 

At the beginning of each time slot, each WSTA deploys an external action ia  to compete for the 

spectrum opportunities with other WSTAs. The selection of external actions will be discussed in Section 

3.3.E. After receiving the resource allocation ir  from the CSM, the WSTA will deploy the internal action 
t
ib . The internal action in this example includes the modulation scheme t

i iγ ∈ ϒ  in the physical layer and 

retransmission limit t
iζ ∈  in the MAC layer, i.e. ( ),t t t

i i ib γ ζ= . Here, iϒ  is the set of possible 

modulation schemes. For more sophisticated examples of actions, see e.g. [8] for application layer actions. 

C. State transition and stage reward 

Since the network resource state is not affected by the actions performed by the WSTAs, the transition 

of tw  can be modeled as a finite state Markov chain (FSMC) [26]. The transition probability is denoted 

by ( )1 |t tq +w w . In this section, we assume that the transition probability ( )1 |t tq +w w  is known by all 

the WSTAs and CSM. However, more complicated models for the network resource state transition [24] 

can also be involved in our stochastic game framework.  

When WSTA i  receives the resource allocation t
iz , it deploys the internal action tib  and can transmit 

t
in  packets during time slot t , which is computed as  

 ( ), , ,t t t t
i i i it

i
T

n
γ ζ⎢ ⎥Ψ⎢ ⎥= ⎢ ⎥⎣ ⎦

c z , (6) 

where ( )Ψ ⋅  is the effective rate function, the form of which depends on the protocols implemented at the 

WSTA. Then, the buffer state can be updated as  
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∑
, (7) 

where t
iY  is a random variable representing the number of packets arriving at time slot t  having life time 

J . The distribution of t
iY  is denoted by ( )t

iY
p l . Hence, the transition probability is given by  

 ( ) ( ) ( )1
1 . 7

| , ,
0 . .

t
i

t t
i it t t t Y

i i i i

P l if v satisfies eq and Y l
p v v z b

o w

+
+

⎧⎪ =⎪⎪= ⎨⎪⎪⎪⎩
 (8) 

The channel condition t
ic  depends on the channel gain and the power level for transmission. The 

channel gain is generally modeled as a FSMC. In this example, we also consider that the power allocation 

is constant during the data transmission, and hence, the channel condition t
ic  can be formulated as a 

FSMC with transition probability ( )1 |t t
i ip +c c . Details about such transition probability computations can 

be found in [8].  

The state transition probability for WSTA i  is given by  
 ( ) ( ) ( )1 1 1| , , | , , |t t t t t t t t t t

i i i i i i i i i ip s s b p z b p+ + +=z v v c c . (9) 

Here, we assume that the transition of the channel condition is independent of the transition of the buffer 

state. The utility for the delay-sensitive application at time slot t  is defined here as  

 ( ) { },1
1

, , min , min , 0
J

t t t t t t t
i i i i ij g i i

j

u s b n v v nλ
=

⎞⎛ ⎟⎜ ⎟= − −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑z , (10) 

where gλ  is the parameter to trade-off the received and lost packets (see [22] for details). More 

sophisticated utility formulations for multimedia transmission, which consider the explicit impact on the 

multimedia quality (e.g. PSNR) can be found in [22]. 

D. Resource allocation rule 

We model the multi-user wireless resource allocation as an auction [7][9][21] for spectrum 

opportunities held by the CSM during each time slot. The WSTAs calculate the external action tia  based 

on the information about the network resources, and their own private information about the environment 

they experience, and their anticipated internal actions [22]. In this auction game, the external action is the 

competition bid, i.e. t t
i im a= . Next, we use the terms - external action and bid interchangeably. 

Subsequently, each WSTA submits the bid t
ia  to the CSM. After receiving the bid vectors from the 
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WSTAs, the CSM computes the channel allocation t
iz  for each WSTA i  based on the submitted bids. To 

compel the WSTAs to declare their bids truthfully [25], the CSM also computes the payment t
iτ −∈  

that the WSTAs have to pay for the use of resources during the current stage of the game. The negative 

value of the payment represents the absolute value that WSTA i  has to pay the CSM for the used 

resources. The auction result is then transmitted back to the WSTAs which can deploy their transmission 

strategies in different layers and send data over the assigned channel. After the data transmission, another 

auction starts at the next time slot 1t + . A schematic of the evolution of the multi-user interaction is 

portrayed for illustration in Figure 6. 

The computation of the allocation t
iz  and payment t

iτ  is described as follows. After each WSTA 

submits the bid vector, the CSM performs two computations: (i) channel allocation and (ii) payment 

computation. During the first phase, the CSM allocates the resources to WSTAs based on its adopted 

fairness rule, e.g. maximizing the total “social welfare”10:   

 ( ),

1

arg max , ,
t

M
t opt t t

i i i
i

h a w
=

= ∑z
z z , (11) 

where ( )ih ⋅  is the utility function of WSTA i  seen by the CSM. Note that this utility can be represented 

by either the effective rate or time on the network allocated to each user, or it can be determined in the 

utility domain, by considering the utility-rate functions of the deployed multimedia coders [31]. 
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Figure 6. Evolution of multi-user interaction. 

We will consider in this paper, for illustration, a second price auction mechanism [20][25] for 

determining the tax that needs to be paid by WSTA i  based on the above optimal channel assignment 

,t optz . This tax equals: 

                                                 
10 Note that other social welfare solutions [46] could be adopted and this will not influence our proposed solution. 
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 ( ) ( ),

1, 1,

, , max , ,
t
i

M M
t optt t t t

i j j j i ij
j j
j i j i

h a w h a wτ
−= =

≠ ≠

= −∑ ∑z
z z . (12) 

For simplicity, we can denote the output of the resource allocation game as ( ) ( ), ,t t t t tw= = Ωr z aτ . 

Note that as mentioned in Section 2, the CSM can design different resource allocation games using 

different mechanisms, leading to different social decisions, allocations, equilibriums etc. Moreover, the 

taxation does not need to be implemented and can be omitted. However, we would like to point out that, 

unless the taxation is implemented, the WSTA will have no incentive to efficiently optimize their cross-

layer strategies, upgrade their systems or truthfully and optimally declare their requirements. 

E. Selecting the Policy for Playing the Resource Management Game 

In the cognitive radio network, we assume that the stochastic game is played by all WSTAs for an 

infinite number of stages. This assumption is reasonable for multimedia applications, which usually have 

a long duration. In our network setting, we define a history of the stochastic game up to time t  as 
0 0 0 0 0 0 1 1 1 1 1 1{ , , , , , ,..., , , , , , , }t t t t t t t t tw w− − − − − −= ∈h s a b z s a b z sτ τ H , which summarizes all previous states 

and the actions taken by the WSTAs as well as the outcomes at each stage of the auction game and tH  is 

the set of the entire history up to time t . However, during the stochastic game, each WSTA i  cannot 

observe the entire history, but rather part of the history th . The observation of WSTA i  is denoted as 

t t
i i∈o O  and t t

i ⊂o h . Note that the current state tis  can be always observed, i.e. t t
i i∈s o . Then, a bidding 

policy :t t
i i i iπ ×O A B  for WSTA i  at the time t  is defined as a mapping from the observations up to 

the time t  into the specific action, i.e. [ ], ( )t t t t
i i i ia b π= o . Furthermore, a policy profile iπ  for WSTA i  

aggregates the bidding policies about how to play the game over the entire course of the stochastic game, 

i.e. 0( ,..., ,...)t
i i iπ π=π . The policy profile for all the WSTAs at time slot t  is denoted as 

( ) ( )1,..., ,t t t t t
M i iπ π π −= =π π .  

The reward for WSTA i  at the time slot t  is ( )( , , ) , ,t t t t t t t t
i i i i i i i iR s b u s b τ= +r z . Since the resource 

allocation also depends on other SUs’ states and external actions as well as the channel state, the reward 

can be estimated based on the observation t
io , and thus, the reward used by a WSTA will be  ( , , )t t t t

i i i iR s bo . 

The reward ( , , )k k k k
i i i iR s bo  at stage k  is discounted by factor ( )k tiα −  at time t . The factor ( )0 1i iα α≤ <  

is the discounted factor determined by a specific application (for instance, for video streaming 

applications, this factor can be set based on the tolerable delay). The total discounted sum of rewards 

( , | , )t t t t t
i i -iQ wπ sπ  for SU i  can be calculated at time t  from the state profile ts  as: 
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 (( , ) | , ) ( ) ( , , )t t t t t k t k k k k
i i -i i i i i ik t
Q w R s b ,π α

∞ −
=

= ∑s oπ  (13) 

where [ ]( )( ) ,t t t t
-i i j j j i

a b− ≠
=sπ . We assume that the SUs implement the policy tπ  in the subsequent time 

slots. The total discounted sum of rewards in Eq. (13) consists of two parts: (i) the current stage reward 

and (ii) the expected future reward discounted by iα . Note that SU i  cannot independently determine the 

above value without explicitly knowing the policies and states of other SUs. The SU maximizes the total 

discounted sum of future rewards in order to select the bidding policy, which explicitly considers the 

impact of the current bid vector on the expected future rewards. 

 We define the best response iβ  for SU i  to other WSTAs’ policies t
i−π  as  

 ( ) arg max (( , ) | , )
i

t t t t t t
i i i i -iQ w

π
β π− = sπ π  (14) 

The central issue in such stochastic game in cognitive radio networks is how the best response policies 

can be determined by the SUs. This will be the topic of Section 4. 

3.4 Specification of distributed stochastic game  

An example of a distributed game is the power-control game played by SUs in the interference 

channels in cognitive radio network. There are M  SUs, each of which comprises one transmitter and one 

receiver. There are N  channels potentially vacated by the PUs for SUs transmission. At time slot t , the 

network resource state is [ ] { }1,..., 0,1 Nt t t
Nw w= ∈w . The channel gain of SU i  at channel { }1,...,j N∈  

is j
iiH  and the cross channel gain from transmitter i  (belonging to SU i ) to receiver i ′  (belonging to SU 

i ′ ) at channel j  is j
iiH ′ . We assume that the (cross) channel gains for all the SUs are constant.  

In this game, the state of SU i  is defined as a vector { }0,1 Nt
is ∈  with each element indicating whether 

SU i  selects that channel (corresponding to 1) or not (corresponding to 0). The external action tia  of SU 

i  includes two components: channel selection t
iκ  and power allocation t

iϕ , i.e. ( ),t t t
i i ia κ ϕ= , where 

{ }1,...,t
i Nκ ⊆ . For each external action tia  of SU i , there is power constraint imposed on the power 

allocation, i.e.  
 

t
i

t
ij i

j

P
κ
ϕ

∈
≤∑  (15) 

In this power-control game, at the beginning of each time slot, the SUs simultaneously choose the 

channels over which they will transmit delay-sensitive data and allocate the power on the selected 

channels under the power constraints. In order not to interfere the PUs, the SUs are not allowed to 

transmit any data over those channels with 0t
jw =  (i.e. channel j  is occupied by the PUs). For 
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simplicity, we consider the case that the SUs are free to choose any channels. Hence, the state of SU i  

equals the channel selection action, i.e. t t
i is κ= . The internal actions for the SUs are empty. The effective 

transmission rate can be computed as   

 ( )( ) ( )( ) ( )( ) 2
0

1

1
, , , , , , , , log 1

2
,

t
i

t t
j j

j t
ii ijt t t t t t t t t t t t

i i i i i i i i i i i j t
j j i ji i
w i

t
i

H
a e a e a e

N H
T h s b h

κ

ϕ

ϕ
− − − −

∈ ′′
= ′∈

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= = +⎜ ⎟⎟⎜ + ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

= ∑
∑

a w s a w a w

C

, (16) 

where t
jC  is the set of SUs who select channel j  in time slot t ,  ( )

t
j

jt t
i i i i j

i

e H ϕ− ′ ′
′∈

= ∑a
C

 and 0jN  represents 

the noise level in the selected channel j . In this power-control game, the stage reward function for SU i  

can be defined as effective transmission rate per joule, similarly to [49], i.e.  

( )( )
( )( ), ,

, ,

t
i

t t t
i it t t t

i i i t
ij

j

t
i a eR a e
T

κ
ϕ
−

−

∈

=
∑
a w

a w .                                                  (17) 

However, such a reward function cannot satisfy the QoS requirements of multimedia applications. Hence, 

the following stage reward function can be adopted for such applications: 

( )( )
( )( )( ){ }1 , , ,

, ,

t
i

t t t
i i i i it t t t

i i i t
ij

j

t
i a e d

R a e
P T

κ
ϕ

−
−

∈

Λ × −
=

∑
a w

a w ,                                          (18) 

where iΛ  represents the arrival source rate of the applications of SU i  and ( )( )( ), , ,t t t
i i i i

t
i a e dP T −a w  

represents the packet error rate, which is a function of the effective transmission rate t
iT  (in equation (16)) 

and the delay deadline id  of the applications of SU i . More complicated utility-resource functions as in 

[22] can also be employed. 

Since the state of each SU i  is the same as the channel selection and no internal actions are considered, 

the channel-selection and power-control game is reduced to a repeated game [39]. The essential goal of 

SU i  is to find the best response to the aggregated interference ( )t ie −a  under various network resource 

states, i.e.  

 ( )( ) ( )( ),* , arg max , ,
t
i

t t t t t t t
i i i ii a

a e R a e− −=a w a w  (19) 

This will be discussed in the next section. 

4. Strategic learning solutions in multi-user wireless systems  

4.1. Why learn? 

In the previous section, it was shown that in order for an SU to derive its own transmission policy, it 

needs to know how its decision process and resulting performance is coupled to that of other SUs. In a 

stochastic game framework, the goal for each SU is to find a policy iπ  such that its own utility is Deleted: generalized 
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maximized. However, as discussed in Section 3, SU i ’s policy iπ  depends on other SUs’ policies, which 

is formulated as: 
* argmax ( , | , , )

i
i i i i i iQ s

π
π π − −= s wπ ,                               (20) 

To solve this optimization, the following information is required by SU i : 

• the state transition model of SU i , ( )1 | , , ,t t t t
i i i i ip s s a b+

−a ; 

• the state transition model of other SUs, ( )1 | , , , ,t t t t
j j j j jp s s a b j i+

− ∀ ≠a ; 

• the state of other SUs, i−s ; 

• the policy of other SUs, i−π ; 

• the network resource state w . 

This coupling among SUs is due to the shared nature of the wireless resources [2]. However, an SU 

may not exactly know the other SUs’ actions and models, and it cannot know their private information. 

Thus, an SU can only predict these dynamics (uncertainties) caused by the competing SUs based on its 

observations from past interaction. In the cognitive radio network, there are different levels of information 

availability: 

o Private information: this private information includes the characteristics of the application traffic, 

channel gain or channel conditions (SINR, etc.). 

o Network information: the network information refers to the network resource states or the 

behaviors of PUs. 

o Opponents information: this information includes the states and possible actions of the opponents. 

This information can be for instance known when all the SUs adopt the same protocol, having the 

same set of states and actions. 

To reduce the uncertainty and increase the knowledge about the environment when selecting an 

action, an SU can deploy learning in games algorithms [23]. Depending on the information availability, 

different learning solutions can be deployed by a WSTA. The existing learning in games literature 

provides a broad spectrum of analytical and practical results on learning algorithms and underlying game 

structures for a variety of competitive interaction scenarios. In general, the main issue considered has 

been to characterize long term behavior in terms of a generalized equilibrium concept or characterize the 

lack of convergence for general classes of learning dynamics. However, when selecting learning solutions 

for wireless networks games, the specific constraints and features of wireless systems will need to be 

considered. For instance, the learning algorithm that should be deployed by a user in a wireless 
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environment strongly depends on what information an SU can observe about the other SUs, given the 

adopted protocols or spectrum regulation rules. Moreover, unlike a majority of work in learning in games 

solutions [23], where the main focus is on proving the existence of equilibriums, or where the only goal 

of the agents is to achieve different equilibrium conditions, learning solutions in wireless networks are 

deployed by self-interested and heterogeneous users, which have as only goal to improve their own 

performance. Thus, a learning algorithm iL  adopted by SU i  to efficiently play the spectrum 

allocation game will be evaluated based on the information that can be acquired (i.e. the observed 

information tio ) and exchanged t iI− , the complexity requirements, and the resulting (long-term or 

short-term) utility iU .  

4.2. Definitions of learning algorithms and beliefs  

The goal of learning for an SU in the multi-user games is to update its own policy and belief about the 

other SUs’ states and policies. Specifically, by learning from the observed and exchanged information, a 

user can build its belief on the other users’ strategies, and determine its own best response policy. In our 

stochastic game framework, the SU also needs to update its knowledge about the network resource state 

using learning. We note that a learning algorithm is built based on the observation tio  and exchanged 

information t
iI−  and hence, it is denoted as ( ),i i i−L o I  where ,i i−o I  are all the observation and 

exchanged information obtained by SU i .  

A learning algorithm iL  can be defined using the following equations: 

 ( ), , , ,
i i

t t t t t t t
i i i i wa b s B B Bπ

− −

⎡ ⎤ =⎢ ⎥⎣ ⎦ s π
 (21) 

 ( ), ,t t t tGame wΩ = s a  (22) 

 ( ), ,t t t t
i i i io O s b= Ω  (23) 

 ( )+1 , ,t t t t
i i i i io Iπ π −= F  (24) 

 ( )+1 , ,
i i i

t t t t
i iB B o I

− − − −=π π πF  (25) 

 ( )+1 , ,t t t t
w w w i iB B o I−= F  (26) 

 ( )+1 , ,
i i i

t t t t
i iB B o I

− − − −=s s sF  (27) 

where 
i

tB
−s , 

i

tB
−π  and t

wB  are the belief about the other SUs’ states i−s , policies i−π  and the network 

resource state w , respectively; tΩ  is the output of the multi-user interaction game ( t tΩ = r  in the 

centralized stochastic game and ( ){ }, ,t t t t
i ia e w−Ω = a  for the distributed stochastic game or repeated 

game);  tio  is the observation of SU i  and O  is the observation function which depends on the current 
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state, the current game output and the current internal action taken; F  is the update function about the 

belief and policies; t iI−  is the exchanged information with the other SUs.  

Eq. (21) shows that SU i  generates the external actions based on its own states, the belief about the 

other SUs’ states, policies and network resource state. After each SU executes its external actions, a 

multi-user spectrum access game is played and the results of the game are produced as shown in Eq. (22). 

The results of the multi-user game may or may not be fully observed by the SUs based on the game form 

or the implemented network protocol. Eq. (23) represents the observation function which depends on the 

network protocols and the SUs’ measurement methods. Different (accurate or inaccurate) observations 

may lead to different learning algorithms, which will be discussed in subsequent sections. Hence, an SU 

may have incentives to exchange information with other SUs. The exchanged information t iI−  may be 

used to update the belief about the other SUs’ states, policies as well as the network resource state.  Eqs. 

(24)-(27) represent the updates of the beliefs.  

In a wireless communication game, we differentiate two types of users based on their response 

strategies: 

o Myopic users: Users that always act to maximize their immediate achievable reward. They are 

myopic in the sense that, at each decision stage, they treat other users’ actions as fixed, ignore the impact 

of its competitors’ reactions over its own performance, and determine their responses to gain the maximal 

immediate rewards. 

o Foresighted users: Users that behave by taking into account the long-term impacts of their actions on 

their rewards. They avoid shortsighted (myopic) actions, anticipate how the other users will react, and 

maximize their performance by considering the responses of the other users [8][30]. Note that such 

foresighted users require additional knowledge about the other users to assist their decision making. We 

will discuss this in more detail later in this section. 

Before we proceed in detail with discussing how a learning algorithm is built, we discuss first how we 

can evaluate a learning algorithm for the cognitive radio network. 

4.3. Value of learning, value of information and regret computation 

As mentioned previously, the performance of a learning algorithm will depend on the resulting SU 

reward. We denote a policy generated by the learning algorithm iL  as i
iπ
L . An SU will learn in order to 

improve its policy and its rewards from participating in the spectrum access game. The performance of 

SU i  when adopting the learning algorithm iL  is defined as the time average reward obtained in a time 
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window with length T  in which this learning algorithm was used: 

 
( ) ( ), ,

1

1
( ) ( )

i i i i i ii

T
t
i i

t

T R
T

π π− −

=
= ∑

L LV
o I o I , (28) 

where the reward t
iR depends on both the learning approach iL  and on the observation tio  and information 

exchanged t
iI− . Thus, using this definition, the “value of a learning scheme” can be determined. For 

instance, given the same observation tio  and exchanged information t iI− , if the time average rewards of 

two algorithms i ′L  and i ′′L satisfy 
( )

( )
( )

( )
, ,i i i i i i

i iT Tπ π
′ ′′− −

>
o I o IL L

V V , then we say that learning algorithm 

i ′L  is better than i ′′L . The “value of information exchange” with respect to a learning algorithm iL  can 

be also similarly computed. This value of information will play a significant role on what information 

should be exchanged among WSTAs and how WSTAs should negotiate in a cooperative11 setting (e.g. in 

a bargaining or coalition setting). The value of making various observations and learning based on them 

can be similarly computed. Moreover, similar to [47], we define a generalized “regret” for the stochastic 

game at each time slot t  as  

 ( ) ( )max , | , , , | , ,i
i i i

i

t t t t t t t t t
i i i i i i wi iQ s w Q B s B B

π
π π

− −− −Δ − L
L ss ππ . (29) 

When the stochastic game is reduced to a repeated game, the regret can be computed as  

                                      ( )( ) ( )max , , , ,i
i t i

i

t t t t t t t
i i i i wia
R a e R a B B

−−Δ − L
L aa w                                                        (30) 

The regret is computed as the reward loss due to the lack of knowledge about the network resource and 

components’ states and actions. The regret can be computed and used by the SUs in order to adjust their 

learning strategies and improve their strategies for playing the game. 

4.4. Learning framework for wireless stochastic games 

One possible simplification for the stochastic learning is to assume that other SUs perform a fixed 

policy. This is a good assumption especially for the case when WSTAs adopt the same protocols, which 

implement the same policies. Hence, SU i  does not need to update its belief about other SUs’ policies 

(i.e. 
i

tB
−π ). Instead, SU i  needs to update its belief about other SUs’ states and state transition probability. 

However, to observe other SUs’ states in cognitive radio network is also difficult, and even impossible in 

some cases. To solve this problem, an SU can classify the states of other SUs based on the output of the 

game. For simplification, we assume that the network resource state is common information known by all 

                                                 
11 The term “cooperative” (in the cooperative game theory) does not mean that decision makers have interests that are completely 
aligned. Rather, cooperative game solution concepts are relevant in situations where a scare resource is to be rationed fairly 
among competing claimants that are strategically negotiating with each other, as in bargaining and coalition games. 
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participating SUs. However, the learning algorithm discussed in this section can also be extended to the 

case in which the network resource state and the corresponding state transition are unknown to the SUs. 

In this case, the WSTA needs to learn the state transition probability for each channel’s state based on the 

observation [51].  

A. What Information to Learn from? 

First, let us consider what information the SU can observe while playing the stochastic game in our 

cognitive radio network. As shown in Figure 3, at the beginning of time slot t , the SUs submit the bids 

,tia i∀ . Then, the CSM returns the channel allocation ,tiz i∀  and ,ti iτ ∀ . In cognitive radio network, if SU i  

is not allowed to observe the bids, the channel allocations and payments for other SUs, then the 

observation of SU i  becomes 0 0 0 0 0 0 1 -1 1 1 1 1{ , , , , , ,..., , , , , , }t t t t t t t t
i i i i i i i i i i i iw ,w− − − − −= s a b z s a b z sο τ τ .  If the 

information is fully exchanged among SUs or broadcasted and overheard by all SUs, the observed 

information by SU i  becomes t t
i = hο . Now, the problem that needs to be solved by SU i  is how it can 

improve its own policy for playing the game by learning from the observation t
iο . In this paper, we 

assume that SU i  observes the information 0 0 0 0 0 0 1 -1 1 1 1 1{ , , , , , ,..., , , , , , }t t t t t t t t
i i i i i i i i i i i iw ,w− − − − −= s a b z s a b z sο τ τ .  

B. What needs to be learnt? 

A key question is what needs to be learned within a wireless stochastic game in order to improve the 

policy of an SU. We focus here on the learning procedure for the external policy (generating external 

actions, i.e. bidding actions). 

In Section 4.1 we discussed the information that SU i  needs to learn in order to be able to solve the 

optimization in eq. (20). However, SU i  can only observe the information 
0 0 0 0 0 0 1 -1 1 1 1 1{ , , , , , ,..., , , , , , }t t t t t t t t

i i i i i i i i i i i iw ,w− − − − −= s a b z s a b z sο τ τ  from which SU i  cannot accurately infer 

the other SUs’ state space (i.e. i−S ), the current state of other SUs (i.e. t i−s ) and the transition probability 

of other SUs (i.e. ( )1 | ,t t t
k k kkk i
q +

≠∏ s s z ). Moreover, capturing the exact information about other SUs 

requires heavy computational and storage complexity.  Instead, we allow SU i  to classify the space i−S  

into iH  classes, each of which is represented by a representative state , , {1,..., }i h ih H− ∈s . By dividing the 

state space i−S , the transition probability ( )1 | ,t t t
k k kkk i
q +

≠∏ s s z  is approximated by ( )1 | ,t t t
i i iiq s s+

− −− z , 

where t
is−  and 1t

is
+

−  are the representative states of the classes that t
i−s  and 1t

i
+

−s  belong to. This 

approximation is performed by aggregating all other SUs’ states into one representative state and 

assuming that the transition depends on the resource allocation t
iz . Note that the classification on the state 

space i−S  and approximation of the transition probability and discounted sum of rewards affects the 
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learning performance. Hence, a user should tradeoff an increased learning complexity for an increased 

value of learning.  

In this setting, to find the approximated optimal bidding policy, we need to learn the following from 

the past observations: (i) how the space i−S  is classified; (ii) the transition probability ( )1 | ,t t t
i i iiq s s+

− −− z ; 

(iii) the average future rewards ( )( )1 1 1,t t t
i i iV s+ + +

−s . 

C. How to learn? 

In this section, we develop a learning algorithm to estimate the terms listed in the above section.  
Step 1. Decomposition of the space i−S  

As discussed in Section A, only 0 0 0 0 0 0 1 -1 1 1 1 1{ , , , , , ,..., , , , , , }t t t t t t t t
i i i i i i i i i i i iw ,w− − − − −= s a b z s a b z sο τ τ  are 

observed. From the auction mechanism presented in Section 3.D, we know that the value of the tax t
iτ  is 

computed based on the inconvenience that SU i  causes to the other SUs. In other words, a higher value of 
t
iτ  indicates that the network is more congested12. Based on the bid vector tib ,  the channel allocation t

iz  

and the tax t
iτ , SU i  can infer the network congestion and thus, indirectly, the resource requirements of 

the competing SUs. Instead of knowing the exact state space of other SUs, SU i  can classify the space 

i−S  as follows. We assume the maximum absolute tax is Γ . We split the range [ ]0,Γ  into 

[ ) [ ) [ ]0 1 1 2 1, , , ,..., ,
i iH H−Γ Γ Γ Γ Γ Γ  with 0 10

iH= Γ ≤ Γ ≤ ≤ Γ = Γ . Here, we assume that the values of 

{ }1 1,...,
iH −Γ Γ  are equally located in the range of [ ]0,Γ . (Note that more sophisticated selection for these 

values can be deployed, and this forms an interesting area of future research.)  

We need to consider three cases to determine the representative state t is−  at time t .  

(1) If the resource allocation t
i ≠ 0z , then the representative state of other SUs is chosen as  

 [ )1, ,t t
i i h hs h if τ− −= ∈ Γ Γ . (31) 

(2) If the resource allocation t
i = 0z  but t ≠ 0w , the tax is 0. In this case, we cannot use the tax to 

predict the network congestion. However, we can infer that the congestion is more severe than the 

minimum bid for those available channels, i.e.
{ }

{ }
: 0

min
t
l

t
ij

j l y
b

∈ ≠
. This is because, in this current stage of the 

auction game, only SU i ′  with t t
iji jb b′ ≥  can obtain channel j  which indicates that 

{ }
{ }

: 0
min

t
l

t t
i ij

j l y
bτ

∈ ≠
≥ , 

if SU i  is allocated any channel. Then the representative state of other SUs is chosen as 
 

{ }
{ } [ )1

: 0
, min ,

t
l

t t
i ij h h

j l y
s h if b− −

∈ ≠
= ∈ Γ Γ  (32) 

(3) If the resource allocation t
i = 0z  and t = 0w , there is no interaction among the SUs in this time 

slot. Hence, 1t t
i is s −

− −= . 

                                                 
12 When the CSM deploys a mechanism without tax for the resource management, the space classification for other 
SUs can also be done based on the announced information and corresponding resource allocation. 
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Step 2. Estimating the transition probability 

To estimate the transition probability, SU i  maintains a table F  with size ( )1i iH H N× × +  . Each 

entry , ,h h jf ′ ′′ in the table F  represents the number of transitions from state t is h− ′′=  to 1t
is h+

− ′=  when the 

resource allocation t
i j=z e (or 0 if 0j = ). Here, je  is a N -dimensional vector with the j -th element 

being 1 and otherwise being 0. It is clear that iH  will influence significantly the complexity and memory 

requirements etc. of SU i . The update of F  is simply based on the observation t
io  and the state 

classification in the above section.  Then, we use the frequency to approximate the transition probability 

[17], i.e. 

 ( ) , ,1

, ,

| , h h jt t
i i ji

h h j
h

f
q s h s h

f
′ ′′+

− −−
′ ′′

′

′ ′′= = =
∑

e  (33) 

Step 3. Learning the future reward 

By classifying the state space i−S  and estimating the transition probability, SU i  can now forecast the 

value of the average future reward ( )( )1 1 1,t t t
i i iV s+ + +

−s  using learning. Eq. (13) can be approximated by 

 ( ) ( ) ( ) ( )( )
( )1 1

1 1 1 1 1

,

, { ( , ) | , | , , }
t t

i

t t t t t t t t t t t t t t t
i i i i i i i i i i i i i ii i i i i

s

Q s g q q s V sτ α
+ +

−

+ + + + +
− − −− −

∈

= + + ∑
Sis

s s z s s z s z s  (34) 

The received rewards are used to update the estimation of future rewards, similarly to Q-learning [19]. 

However, the main difference between this algorithm [8] and Q-learning is that the former explicitly 

considers the impact of other SUs’ bidding actions through the state classifications and transition 

probability approximation.  

A 2-dimensional table can be used to store the value ( ),i i -iV ss  with i i∈s S , i is S− −∈ , where iS−  is 

the set of representative states for the other SUs. The total number of entries in iV  is i i−×S S . SU i  

updates the value of ( )( ),i i -iV ss  at time t  according to the following rules:  

 ( )
( ) ( ) ( ) ( ) ( )

( )

11 , , , ,
,

,

t t t t t t t t
i i i -i i i i -i i -i i -i

t
i i -i t

i i -i

V s Q s if
V s

V s otherwise

γ γ−⎧ − + =⎪⎪⎪= ⎨⎪⎪⎪⎩

s s s s s s
s

s
 (35) 

where [0,1)t
iγ ∈  is the learning rate factor. An interesting area of research is determining how the 

learning rate factor should be determined (and possibly adapted) in various cognitive radio settings, where 

different dynamics are experienced.   

D. Complexity of the learning algorithm 

In this section, we quantify the complexity of learning in terms of the computational and storage 

burden. We use the “flop” (floating-point operation) as a measure of complexity, which will provide us an 

estimation of the computational complexity required for performing the learning algorithm. Also, based 

on this, we can determine how the complexity grows with the increasing number of SUs.  At each stage, 
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the SU performs the classification of other SUs’ states, which, in the worst case, requires a number of 

“flops” of approximately N . The number of “flops” for estimating the transition probability of other SUs’ 

states as in Eq. Error! Reference source not found. is approximately ( )1iH + . The number of “flops” 

for learning the future reward is approximately ( )2 6i iS H + . Therefore, the total number of “flops” 

incurred by the SU is 2 7i i iN H S H+ + + , from which we can note that the complexity of learning for 

each SU is proportional to the number of possible states of that SU and the number of classes in which the 

other SUs’ state space is decomposed.  

To perform the learning algorithm, the SU needs to store 2 tables (i.e. transition probability table and 

state-value table) which have totally ( )( )2 1 2Ni i iH N S H+ +  entries. We also note that the storage 

complexity is also proportional to the number of possible states of that SU and the number of classes in 

which the other SUs’ state space is decomposed. 

4.5. Illustration of various bidding and learning strategies  

In this section, we highlight the performance of the learning framework presented in the previous 

section in a centralized stochastic game (introduced in Section 3). We assume that the SUs compete for 

the available spectrum opportunities in order to transmit delay-sensitive multimedia data. The SUs can 

deploy different bidding strategies to generate their bid vector:  

• Fixed bidding strategy fixed
iπ : this strategy generates a constant bid vector during each stage of the 

auction game, irrespective of the state that SU i  is currently in and of the states other SUs are in. In other 

words, fixed
iπ does not consider any source and channel dynamics. 

•  Source-aware bidding strategy source
iπ : this strategy generates various bid vectors by considering the 

dynamics in source characteristics (based on the current buffer state), but not the channel dynamics.  

• Myopic bidding strategy myopic
iπ : this strategy takes into account both the environmental disturbances 

and the impact caused by other SUs. However, it does not consider the impact on its future rewards. 

• Bidding strategy based on best response learning i
iπ
L : This strategy is produced using the learning 

algorithm presented in the previous section, which considers both the environmental dynamics and the 

interaction impact on the future reward.  

In this simulation, we consider the cognitive radio network as an extension of WLANs with cognitive 

radio capability [11]. (More simulation details can be found in [8].) To highlight the impact on the 

multimedia quality, in this illustrative simulation, we assume that both users are streaming to their 

receivers the Coastguard video sequence and they both tolerate an application layer delay of 500ms. For 
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illustration, the following four scenarios are considered. In scenario (1)~(4), SU 1 deploys a fixed bidding 

strategy 1
fixedπ , source-aware bidding strategy 1

sourceπ , myopic bidding strategy 1
myopicπ  and best response 

learning based bidding strategy 1
1π
L , respectively, and SU 2 always deploys the myopic bidding strategy 

2
myopicπ . The average video quality (PSNR), average tax and average reward per time slot (see Section 

3.E) are presented in Table 1.  

From this simulation, we observe that when SU 2 deploys the myopic strategy, SU 1 increase its own 

reward by adopting advanced learning algorithms (from fixed bidding strategy fixed
iπ  to best response 

learning based bidding strategy 1
1π
L ).  On the other hand, SU 2 starts to have an increased cost as SU1 

starts to deploy increasingly advanced learning algorithms.   

It is also worth to note that the improvement in video quality for SU 1 in scenarios 1~4 comes from 

two parts: one is the advanced bidding strategies, which allows the SU to take into consideration more 

information about its own states and the other SUs’ states and, based on this, better forecast the impact of 

various actions, and the other one is the increase in the amount of resources consumed by SU 1 which 

corresponds to higher tax charged by the CSM, as shown in Table 1.  

Table 1. Performance of SU 1 and 2 with various bidding strategies by the two competing SUs  
SU 1 SU 2  Bidding 

Strategies Video Quality 
(PSNR) 

Average 
tax 

Average 
reward 

Video Quality 
(PSNR) 

Average 
tax 

Average 
reward 

Scenario 1 
1 2,fixed myopicπ π  25 dB 0.1222 2.6337 36 dB 0.5495 1.5105 

Scenario 2 1 2, myopicsourceπ π  26 dB 0.3147 2.4915 33 dB 0.6048 1.6116 
Scenario 3 

1 2,myopic myopicπ π  29 dB 0.4669 1.9767 30 dB 0.3763 1.7837 
Scenario 4 1

1 2, myopicπ πL  35 dB 0.6923 1.7428 27 dB 0.4197 2.2967 

4.6 Learning in repeated games 

A simplification of the stochastic game is the case where each SU has only one state. In this case, the 

stochastic game is reduced to a repeated game. In this case, the policy for each SU becomes the same as 

the action that each SU selected. Thus, an SU only needs to update its belief about the other SUs’ actions.  

A. Myopic adaptation 

In wireless communication, a simple learning (or adaptation) method is myopic adaptation, where the 

SU does not update its belief about the other SUs’ actions. Instead, it maximizes its utility based on the 

aggregated observation of other SUs’ actions during the previous round of game, i.e.  
 ( )( ), 1arg max , ,

t
i

t myopic t t t t
i i ii a

a R a w−
−= Ο a , (36) 

where ( )1t
i
−

−Ο a  represents the aggregated observation of other SUs’ actions in time slot 1t − .  
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In power control games among WSTAs in interference channels, the myopic adaptation has been 

proved to converge to the Nash equilibrium point [49], which generally leads to a lower system 

performance for the user than the collaborative case, where a moderator will compel the WSTAs to 

operate on the Pareto surface.  

B. Reinforcement learning 

In the reinforcement learning solution, an SU does not need to know the actions of the other SUs. 

Hence, this method is very suitable in a variety of repeated wireless games, including the abovementioned 

power control games [38]. In this learning, the SU establishes a preference for each action. The 

preference is updated based on the utility that it obtains during the different stages of the game, without 

trying to explicitly model the other SUs’ actions. Then, based on its preference, the SU determines a 

mixed action to perform during each time slot. Formally, when adopting the reinforcement learning 

algorithm, SU i  computes its best response mixed action t
iA  as 

( )
( )
( )

( )
( )

i i

t
i it

i i t
i i

a

a
A a

a

φ ρ
φ ρ

∈

=
∑
A

,                                    (37) 

where ( )t
i iaρ  represents the preference [47] of SU i  choosing an action ia  at time slot t , and ( )φ ⋅  is a 

non-decreasing positive function (e.g. ( ) xx eφ = ), and ( )t
i iA a  is the mixed action. When an action ia  is 

adopted by SU i  at time slot t , the reward ( ),t
i i iR a −a  is obtained. This reward is used to update the 

preference as follows: 

 ( ) ( ) ( ) ( )[ ]1 1,t t t t
i i i i i i i i ia a R a aρ ρ α ρ− −

−= + −a , (38) 

where α  is a update step size. An adaptive reinforcement (AR) technique can also be implemented, in 

which an SU can adapt its preference with various frequencies corresponding to different learning speeds, 

based on a cost-benefit tradeoff. A faster learning speed provides more accurate belief updates (in 

equations (25)~(27)), however it also requires a slightly higher computational cost and higher private 

information feedback overheads associated with the increased observations (in equation (23)). 

C. Action-based learning 

In this setting, an SU explicitly models the exact actions of other SUs by directly exchanging 

information with other SUs (i.e. t
iI− ) about their taken actions. In this case, fictitious play and regret 

matching solutions can be used [47]. For instance, SU i  can adopt an adaptive fictitious play algorithm, 

where it maintains a set of strategy vectors  [ | ] { [ | ],  for all SUs }t t
i i i j j j ia a a a j i− − = ∈ ≠a a A  for all 
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possible actions i ia ∈ A , with [ | ]t
j j j ia a∈a A  representing the estimated strategy of the other users j i≠  

given that SU i  took action ia  at time slot t . The adaptive fictitious play algorithm models the actions of 

other SUs j i≠  as: 
( )

( )
( | )

( | )
( | )

j j

t
j j it

j j i t
j j i

a a
A a a

a a

φ ρ
φ ρ

∈

=
∑
a A

,                                              (39) 

where ( | )t
j j ia aρ  represents the anticipating preference of SU j  choosing an action ja  at time slot t , 

given that the anticipator SU i  taking an action ia . The preference can be updated similarly as in the 

reinforcement learning case. Moreover, adaptive versions of this action learning, which we refer to as 

adaptive action (AA) learning, can also be adopted, where an SU is modeling other SUs with different 

accuracies in order to reduce the informational overhead and the computational overhead. This is 

especially important in the dynamic power/spectrum management games, where the neighboring SUs can 

be classified by an SU based on their impact on its utility. For instance, a neighboring SU with a larger 

channel gain will have higher impact on its utility.  

4.7. Illustrative results for different learning approaches in repeated games 

Next, we show several illustrative results using the learning schemes discussed in the previous sections in 

the distributed power control repeated games. We assume that 5 SUs (distinct transmitter-receiver pairs) 

are in the network and share 3 frequency channels. Each user can choose its power level from a set 

{20, 40,60, 80,100}=P  (mW). Hence, there are a total of 15 actions for users to select. For the application 

layer parameters, we set the average packet length vL  = 1000 bytes, input rate vR  = 500 Kbps 

( /v v vR LΛ = ), and delay deadline 200vd =  msec for all the users. 

Besides the Adaptive Reinforcement (AR) scheme mentioned in Section 4.6B and the Adaptive 

Action learning (AA) scheme mentioned in Section 4.6C, we also consider the myopic best response 

without learning discussed in Section 4.6A, which leads to a Nash Equilibrium (NE). We select SU 1 to 

be the user who learns from the observed information.   

The results are presented in Table 2, where the reward is defined as in equation (18). From the results, 

it is interesting to see how the resulting reward of SU 1 improves when this user starts learning (when 

using AA and AR scheme) as opposed to the case that it is merely adopting a myopic best response (when 

using NE scheme). Using the AA scheme, users are able to exploit the spectrum more efficiently, due to 

the ability that the users can better model the strategies of other interference sources in the network. 
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However, this requires significant information overhead, which results in a worse performance then using 

the AR scheme. Note that although only SU 1 is learning, the average reward of using interactive learning 

schemes outperforms the myopic NE scheme. Thus, as discovered in [30], this foresighted user benefits 

both itself as well as the overall system performance. 

Table 2. Simulation results for various repeated games, using different learning techniques.  
Adopted 
schemes SU Reward 

(Kbit/joule) 
Average 
reward 

1 519.0 
2 195.2 
3 530.6 
4 2073.0 

Myopic 
scheme 

5 1132.9 

890.15 

1 555.2 
2 113.5 
3 345.6 
4 2830.2 

AR learning 
scheme 

5 1183.7 

1005.6 

1 529.3 
2 475.6 
3 476.8 
4 2831.2 

AA learning 
scheme 

5 1033.3 

1069.3 

4.8. Future research directions for learning in communication networks 

Learning in games offers significant potential as a paradigm for shaping dynamic wireless network 

interactions. As stated earlier, the majority of the research literature in this topic was aimed at proving 

that different types of equilibriums exist [23]. However, in wireless networks the focus is on constructing 

adaptive algorithms and protocols that allow SUs to interact with each other based on their knowledge 

level in order to improve their performance. Accordingly, there are important research directions 

remaining to be addressed to enable the SUs and the wireless system to achieve the optimal performance. 

In particular, typical assumptions on knowledge of utility functions in multi-agent learning are of the “all 

or nothing” type. That is, either an agent knows the utility function fully or can only measure payoffs 

online. A middle ground is the case where there is partial knowledge of the functional form, but subject to 

uncertain parameters that may be estimated online. For instance, in the discussed communication setting, 

users sharing the same protocol have the same states and actions. The only difference is that they 

experience different private information. Thus, model-based learning approaches can be deployed that 

take advantage of the fact that users in the same protocol class adopt the same utility functions. These 

methods allow a user to learn more effectively, since they only need to learn the model parameters. 

Moreover, this can be also extended to the case where both the parameters and the models are unknown.  
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5. Conclusions 

In this paper, we provided a unifying framework for dynamic spectrum access and learning, which can be 

used to design next-generation algorithms and implementations for competitive, heterogeneous and 

dynamic cognitive radio systems [45]. The presented framework can serve as a guideline for designing 

spectrum access solutions that are concerned with the tensions and relationships among autonomous 

adaptation by secondary (unlicensed) users, the explicit and implicit competition among these users, as 

well as the interaction of these users with spectrum moderators having their own goals (e.g. making 

money, imposing fairness rules, ensuring compliance to FCC [1] etc.).  

The proposed knowledge-driven framework can be used to design efficient solutions for the usage of 

the spectrum under a broad set of operating scenarios. These scenarios include “fresh” spectrum, where 

all radios are cognitive, interactions of cognitive radios with licensed (non-adaptive, high-priority) users, 

and interactions of cognitive radios with legacy radios in the ISM bands. This framework provides  

incentives for the secondary users to deploy advanced transmission strategies, to effectively gather  

information about the environment and learn from on it and, finally, to efficiently share the network 

resources. 

We would like to note though that a large body of research and development work will still need to 

take place before such a knowledge-driven framework can be deployed. For instance, enhanced learning 

solutions that make optimal tradeoffs between the resulting utility and implementation costs need to be 

developed. Moreover, the various solutions for both dynamic spectrum access and learning will need to 

be tested in heterogeneous and highly dynamic cognitive radio systems, where a variety of SUs are 

competing for resources. Also, spectrum owners and wireless users will need to decide whether to adopt 

centralized or distributed solutions for managing the resources, whether they would like to make money, 

what type of fairness rules they would like to enforce etc. 

Finally, we believe that such cognitive radio networking solutions, which are based on stochastic 

interactions among users rather than the fixed, predetermined solutions and regulations used in the current 

networks, will ultimately lead to a new generation of cyber-infrastructures, and also next-generation 

applications, services and intelligent devices. Such solutions are especially necessary to ensure the 

proliferation of delay-sensitive, high-bandwidth multimedia applications and services, because these are 

most impacted by the inefficient spectrum use. 
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