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Abstract— In this paper, we model the various users in a 

wireless network (e.g. cognitive radio network) as a collection of 
selfish, autonomous agents that strategically interact in order to 
acquire the dynamically available spectrum opportunities. Our 
main focus is on developing solutions for wireless users to 
successfully compete with each other for the limited and time-
varying spectrum opportunities, given experienced dynamics in 
the wireless network.  To analyze the interactions among users 
given the environment disturbance, we propose a stochastic game 
framework for modeling how the competition among users for 
spectrum opportunities evolves over time. At each stage of the 
stochastic game, a central spectrum moderator auctions the 
available resources and the users strategically bid for the 
required resources. The joint bid actions affect the resource 
allocation and hence, the rewards and future strategies of all 
users. Based on the observed resource allocations and 
corresponding rewards, we propose a best response learning 
algorithm that can be deployed by wireless users to improve 
their bidding policy at each stage. The simulation results show 
that by deploying the proposed best response learning algorithm, 
the wireless users can significantly improve their own bidding 
strategies and hence, their performance, in terms of both the 
application quality and the incurred cost for the used resources. 
 

Index Terms— Delay-Sensitive Transmission, Multi-user 
Resource Management, Wireless Networks, Interactive 
Learning, Reinforcement Learning, Stochastic Games.  
 

I. INTRODUCTION 
Dynamic resource management in heterogeneous 

wireless networks is a challenging problem [3]. The 
wireless stations and radio systems that must coexist in such a 
network differ in their individual utility functions, 
transmission actions, resource demands, and capabilities. 
Thus, various levels of strategic1 interaction and adaptation 
are necessary to cope with the widely varying dynamics. In 
this paper we focus on synthesizing new, dynamic and 
informationally- decentralized resource management 
mechanisms for achieving high utility in competitive and 
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1 By strategic users we mean users which are not price-takers, and do not 

have an a-priori consensus on resources allocation. 

heterogeneous wireless networks (including cognitive radio 
networks [1][2][3]). Specifically, our focus is on designing 
associated communication algorithms that enable self-
interested, autonomous wireless stations to strategically 
compete for the available spectrum resources in either ISM 
bands [1] or bands shared with licensed users, according to a 
priori mandated or negotiated rules.  

Our paper is primarily concerned with the tensions and 
relationships among autonomous adaptation by secondary 
(unlicensed) users (SUs), the competition among these users, 
the interaction of these users with spectrum moderators having 
their own goals, e.g. making money, imposing fairness rules, 
ensuring compliance to FCC [1], and local regulations with 
respect to primary (licensed) users (PUs) etc. Unlike the 
previous works on resource management [6][21][26], our 
main focus is on discussing how users can adapt, predict, learn 
and determine how they compete for the time-varying 
resources, and how they select the associated transmission 
strategies, given the experienced “dynamics”.  

In wireless networks, these dynamics can be categorized 
into two types: one is the disturbance due to the 
“environment” and the other is the impact caused by 
competing users. The disturbance due to the environment 
results from variations (uncertainties) of the wireless channels 
or source (e.g. multimedia) characteristics. For example, the 
stochastic behavior of the primary users, the time-varying 
channel conditions experienced by the SUs and the time-
varying source traffic that needs to be transmitted by the SUs 
can be considered as environment disturbances. These types 
of dynamics are generally modeled as stationary processes. 
For instance, the usage of each channel by the primary users 
can be modeled as a two-state Markov chain with ON (the 
channel is used by PUs) and OFF (the channel is available for 
the SUs) states [7]. The channel conditions can be modeled 
using a finite state Markov model [24]. The packet arrival of 
the source traffic can be modeled as a Poisson process2 [11].  

Conventionally, wireless stations have only considered 
these environment disturbances when adapting their cross-
layer strategies [12] for delay-sensitive transmission. The 
other type of dynamics - the impact from competing users, 
which is due to the non-collaborative, autonomous and 
strategic SUs in the network transmitting their traffic - is less 
well studied in wireless communication networks.  
 

2 Other packet arrival models can also been used in our proposed 
framework. 
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The goal of this paper is to provide solutions and associated 
metrics that can be used by an autonomous SU to analyze and 
predict the outcome of various dynamic interactions among 
competing SUs in dynamic multi-user communication systems 
and, based on this forecast, adapt and optimize its 
transmission strategy. In our considered wireless networks, 
the SUs are modeled as rational and strategic. We model the 
spectrum management as a stochastic game [22] in which the 
SUs simultaneously and repeatedly make their own resource 
bids. The competition for the dynamic resources is assisted by 
a central coordinator (similar to that in existing wireless LAN 
standards such as 802.11e HCF [13]). We refer to this 
coordinator as the central spectrum moderator (CSM). The 
role of the CSM is to allocate resources to the SUs based on 
pre-determined utility maximization rule3.  

In this paper, to explicitly consider the strategic behavior of 
the autonomous SUs and the informationally-decentralized 
nature of the competition for wireless resources, we assume 
that the CSM deploys an auction mechanism for dynamically 
allocating resources. Auction theory has been extensively 
studied in economics [19] and it has also been recently applied 
to network resource allocation [4][5][6].  Note that the role of 
the CSM 4 in our resource management game for our 
considered wireless networks will be kept minimal. Unlike 
alternative existing solutions [21], the CSM will not require 
knowledge of the private information of the users and will not 
perform complex computations for deciding the resource 
allocation. Its only role will be the implementation of the 
spectrum etiquette rules as in [8], and ensuring that the 
available spectrum holes are auctioned among users.  In order 
to capture the network dynamics, we allow the CSM to 
repeatedly auction the available spectrum opportunities based 
on the PUs’ behaviors. Meanwhile, each SUs is allowed to 
strategically adapt its bidding strategy based on information 
about the available spectrum opportunities, its source and 
channel characteristics, and the impact of the other SUs 
bidding actions.  

Using this stochastic wireless allocation framework, we 
develop a learning methodology for SUs to improve their 
policies for playing the auction game, i.e. the policies for 
generating the bids to compete for the available resources. 
Specifically, during the repeated multi-user interaction, the 
SUs can observe partial historic information of the outcome of 
the auction game, through which the SUs can estimate the 
impact on their future rewards and then adopt their best 
response in order to effectively compete for the channel 
opportunities. The estimation of the impact on the expected 
future reward can be performed using different types of 

 
3 Other fairness rules can also be deployed in the CSM such as air-time 

fairness, utility-based fairness, etc. [12] 
4 It should be noted that this approach can also allow for multiple CSMs to 

manage the spectrum, by dividing their responsibilities fairly, e.g. based on 
their geo-location or frequency band in which they are operating, or by 
competing against each other for the number of SUs that will associated with 
them. 

 

interactive learning [18]. In this paper, we focus on 
reinforcement learning [17][27] because this allows the SUs to 
improve their bidding strategy based only on the knowledge 
of their own past received payoffs, without knowing the bids 
or payoffs of the other SUs. Our proposed best response 
learning algorithm is inspired from the Q-learning for the 
single agent interacting with environment. Unlike Q-learning, 
the proposed best response learning explicitly considers the 
interactions and coupling among SUs in the wireless network. 
By deploying the best response learning algorithm, the SUs 
can strategically predict the impact of current actions on future 
performance and then optimally make their resource bids.  

The paper is organized as follows. In Section II, we 
introduce a stochastic game formulation for multi-user 
interaction in wireless networks. In Section III, we show how 
a one-stage auction mechanism can be used to divide the 
spectrum allocation among strategic SUs. In Section IV, we 
present the state definition, state transition model and stage 
reward function for the SUs in the stochastic game. In Section 
V, we discuss the bidding strategies of the SUs for playing the 
stochastic game. In Section VI, we propose a best response 
learning approach for the SUs to predict their future rewards 
based on the observed historic information. In Section VII, we 
present the simulation results, followed by the conclusions 
and future research in Section VIII.  

 

II. STOCHASTIC GAME FORMULATION FOR DYNAMIC MULTI-
USER INTERACTION 

We consider a spectrum consisting of N  channels, each 
indexed by {1,..., }j N∈ . The N  wireless channels are 
originally licensed to a primary network (PN) whose users 
(i.e. PUs) exclusively access the channels. In the secondary 
network (SN), M ( )M N≥  autonomous SUs, each indexed 
by {1,..., }i M∈ , transmitting delay-sensitive data compete 
for the spectrum opportunities released by the PUs in these N  
channels. Although the available transmission opportunities 
(TxOps) for SUs depend on the access patterns of PUs and the 
detection systems [2], we do not discuss the detection methods 
in this paper, but rather rely on the existing literature for this 
purpose [3]. Instead, we assume that the available TxOps in 
each channel change over time due to the primary users 
joining or leaving the network and can be modeled as a two-
state Markov chain as in [7][10]. Our goal is to develop a 
general framework for multi-user interaction in the SN, where 
users can compete for the dynamically available TxOps. 
Moreover, we also aim to provide solutions for SUs to 
improve their strategies for playing the repeated resource 
management game, by considering their past interactions with 
other SUs.  

The communications of the PUs are assumed to follow a 
synchronous slot structure. The time slot has length TΔ  
seconds. We assume that during each time slot, each channel 
is either exclusively occupied by PUs or that there is no PU 
accessing the channel [7][10].  Hence, during each time slot, 
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the channel is in one of the following two states: ON (this 
channel is currently used by the PUs) or OFF (this channel is 
not used by the PUs and hence, the SUs can use this channel). 
Note that if this is an unlicensed band, the channel will always 
be in the OFF mode, and can be utilized by the SUs at all 
times. The TxOp of channel j  at time slot t ∈  is denoted 
by  { }0,1t

jy ∈ , with t
jy  being 0 if the channel is in the ON 

state, and being 1 if it is in the OFF state. In this paper, the 
TxOp t

jy  of channel j  is modeled by a two-state Markov 
chain with transition probability 

( )1 0 | 1FN t t
j j jp p y y+= = =  and 

( )1 1 | 0NF t t
j j jp p y y+= = = . The TxOp profile of the N  

channels is represented by [ ]1,...,
t t t

Ny y=y . 
As in [13], we assume that a polling-based medium access 

protocol is deployed in the SN, which is arbitrated by a CSM. 
The polling policy is changed only at the start of every time 
slot. For simplicity, we assume that each SU can access a 
single channel and that each channel can be accessed by a 
single SU within the time slot. The SUs can switch the 
channels only when crossing time slots. Note that this simple 
medium access model used for illustration in this paper can be 
easily extended to more sophisticated models [10], where each 
SU can simultaneously access multiple channels or the 
channels are being shared by multiple SUs etc. When using 
this time division channel access, we assume that the wireless 
users deploy constant transmission power and experience no 
interference. Furthermore, we assume that the wireless users 
move slowly and thus, their experienced channel conditions 
change slowly. 

During each time slot, an SU needs to first determine how 
to compete with the other SUs for the time-varying TxOps. 
This represents its external actions, since they determine the 
interaction between this SU and the other SUs and determine 
the amount of resources allocated to that SU. The external 
actions at time slot t  are denoted by ti ia A∈ , where iA  is the 
set of possible external actions available to SU i . Based on 
the allocated resources, the SU determines how to transmit its 
traffic (application layer data) by selecting the various 
strategies at the different layers of the OSI stack (e.g. through 
cross-layer adaptation [12]). These actions are referred to as 
internal actions, since they only determine the SU’s utility at 
the current time. The internal actions at time slot t  are 
denoted by ti ib B∈ , where iB  is the set of possible internal 
actions available to SU i . In this paper, we propose an 
auction mechanism deployed in the CSM. Hence, the external 
action t

ia  of SU i  is the bid it submits to CSM. The auction 
mechanism will be detailed in Section III. The environment 
experienced by an SU i  can be characterized by its current 
“state” t

i is S∈   which will be discussed in Section IV. At 
each time slot t, SU i  generates the external action t

ia  to 
compete for the TxOps ty . The competition result is t

iϑ , 
based on which SU i  performs its internal action t

ib  and 

obtains the reward t
ir  at this time slot. After the packet 

transmission, SU i  transits to the next state 1t
i is S+ ∈ . The 

conceptual overview of the multi-SUs interactions in the 
repeated auctions is illustrated in Figure 1. The repeated 
competition among the SUs can be modeled as a stochastic 
game [16][22].  The time slot corresponds to the term “stage”, 
which is commonly used in stochastic games. In the remainder 
of the paper, we use the terms “time slot” and “stage” 
interchangeably.   

We define the stochastic game for the SN resource 
allocation as 1, , , , , ,M

i i i i i i iS A B O q r = Y , where each SU i  

is associated with a tuple , , , , ,i i i i i iS A B O q r . Specifically, 
• Y  is finite set of possible TxOps available for SUs. In 

this paper, { }= 0,1 NY�  and t ∈ Yy  is the available 
TxOps at stage t  which is a common information for 
SUs. 

• iS  is a finite local state space of SU i . We let 

1
:

N
kk

S S
=

= ∏  be the global state space of all SUs and 

:-i kk i
S S

≠
= ∏  be the global state space of SUs other 

than i . At stage t , the global state is denoted by 
( ) ( )1, , ,t t t t t

M i is s s −= =s s  where i−  represents all 
the SUs other than i . 

• iA  is a finite set of external actions performed by SU i  
to compete for the available TxOps. The external action 
vector at stage t  for all SUs will be ( )1, ,t t t

Ma a=a .  

•  iB  is a finite set of internal actions performed by SU i  
to determine the packet transmission.  

• iO  is a finite set of possible output from multi-SU 
competition. In this paper, the output t

i iOϑ ∈  is the 
auction result computed by the CSM for SU i  at stage t . 
We will give the specific form of the output in Section 
III.  

• iq is the state transition probability for SU i . Thus, 
( )1 1, | , , ,t t t t t t
i i i i iq s s bϑ+ +y y  is the probability that the 

state of SU i  transits from t
is  to 1t

is
+   and the TxOp 

transits from ty  to 1t+y  if the competition output is t
iϑ  

and the internal action is t
ib . The reason that the 

transition probability includes the common TxOp ty  is 
because the channel condition transition of SU i  depends 
on the available TxOp. 

• ir  is the stage reward (immediate reward) received by SU 
i , where ( ): , ,i i i ir S O B . It should be noted that 
the reward function ir  depends on the competition output 
and hence, indirectly depends on other SUs’ external 
actions.  

To design a stochastic game for the SN with strategic SUs, we 
have to consider: (i) what auction mechanism can be deployed 
to resolve the competition among the SUs; (ii) how the 
dynamic environment experienced by each SU can be 
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modeled; and (iii) how the SUs can forecast the impact of 
their bids made at the current time, on their future 
performance. 

III. AUCTION MECHANISM – ONE STAGE RESOURCE 
ALLOCATION 

In this paper, we assume that the CSM is aware of the 
TxOp ty  and allocates (through polling the SUs) those 
channels with 1t

jy = to the SUs. To efficiently allocate the 
available resources (opportunities), the CSM needs to collect 
information about the SUs [21]. However, as mentioned in 
Section Error! Reference source not found., in a wireless 
network, the information is decentralized, and thus, the 
information exchange between the SUs and the CSM needs to 
be kept limited due to the incurred communication cost. On 
the other hand, the SUs competing with each other are selfish 
and strategic, and hence, the information they hold is private 
and they may not desire to reveal this information to the CSM. 
Therefore, one of our key interests in this paper is to 
determine what information should be exchanged between the 
SUs and the CSM, and how this information should be 
exchanged. In the following, we present an auction 
mechanism for dynamically coordinating the interactions 
among SUs and discuss the computation complexity in the 
CSM and the communication cost between SUs and CSM.  

First, the CSM announces the auction by broadcasting the 
TxOp ty . The SUs receive the announcement and determine 
the external action (i.e. the bid vector) 

[ ]1,...,
t t t N
i i iNa a a= ∈  based on the announced information 

and their own private information about the environment they 
experience, which is discussed in details in Section IV. 
Subsequently, each SU submits the bid vector to the CSM. 
After receiving the bid vectors from the SUs, the CSM 
computes the channel allocation [ ]1,..., {0,1}t t t N

i i iNz z= ∈z  
for each SU i  based on the submitted bids. To compel the 
SUs to declare their bids truthfully [23], the CSM also 
computes the payment t

iτ −∈  that the SUs have to pay for 
the use of resources during the current stage of the game. The 
negative value of the payment means the absolute value that 
SU i  has to pay the CSM for the used resources. Hence, the 
competition output t

iϑ  in this auction mechanism includes the 
channel allocation t

iz  and the payment t
iτ , i.e. 

( ),t t t
i i iϑ τ= z . The competition output is then transmitted 

back to the SUs. The computation of the channel allocation 
t
iz  and payment t

iτ  is described as follows. 
After each SU submits the bid vector, the CSM performs 

two computations: (i) channel allocation and (ii) payment 
computation. Note that most existing multi-user wireless 
resource allocation solutions can be modeled as such repeated 
auctions for resources. If the resources are priced or the users 
may lie about their resource needs, taxes associated with the 
resource usage will need to be imposed [14]. Otherwise, these 

taxes can be considered to be zero throughout the paper. 
We denote the channel allocation matrix [ ]t t

ij M NZ z ×=  

with t
ijz  being 1 if channel j  is assigned to SU i , otherwise 

0. The feasible set of channel assignments is denoted as 

1 1
{ | , , 1, , {0,1}}

M Nt t t t t t
ij j ij iji j

Z z y j z i z
= =

= = ∀ ≤ ∀ ∈∑ ∑Z

. The channel allocation matrix without the presence of SU i  
is denoted ( 1)[ ]t t

i kj M NZ z− − ×=  and the corresponding feasible 

set is 
1, 1

{ | , , 1,
M Nt t t t t

-i i kj j kjk k i j
Z z y j z− = ≠ =

= = ∀ ≤∑ ∑Z  

, {0,1}}t
kjk i z∀ ≠ ∈ , where { }1,..., 1, 1,...,i i i M− = − + . 

During the first phase, the CSM allocates the channels to SUs 
based on its adopted fairness rule, e.g. maximizing the total 
“social welfare”5:   

 ,

1 1

arg max
t t

M N
t opt t t

ij ij
Z i j

Z z a
∈ = =

= ∑∑Z
. (1) 

If the resources are priced, we will consider in this paper, 
for illustration, a second price auction mechanism [19][23] for 
determining the tax that needs to be paid by SU i  based on 
the above optimal channel assignment ,, [ ]t optt opt

M NijZ z ×= . 
This tax equals: 

 ,

1, 1 1, 1

max
t t
i -i

M N M N
t optt t t t

i kj kj kjkj Zk k i j k k i j

z a z aτ
− ∈= ≠ = = ≠ =

= −∑ ∑ ∑ ∑Z
. (2) 

Note that when 1N = , the generalized auction mechanism 
presented above becomes the well-known  second price 
auction [19]. Although the optimization problems in Eqs. (1) 
and (2) are discrete optimizations, they can be efficiently 
solved using linear programming. As argued in [20], the linear 
optimization problem can be solved in polynomial time and 
hence, the CSM requires only limited computational 
complexity.  

 The information exchange between the CSM and the SUs 
is illustrated in Figure 2. From Figure 2, we note that, at each 
stage, the CSM first broadcasts the available TxOps to all the 
SUs for the auction and then, each SU submits its own bid 
vector over all the available TxOps. After receiving the bids, 
the CSM computes the auction results and sends back to the 
users the channel allocations and the corresponding payments. 
The signaling required for the auction is most often 
implemented at the application layer. In the worst case, the 
amount of data communicated between the CSM to the SUs 
equals ( )1M N nN+ +  bits, where n  is the amount of bits 
representing the payment for each SU. The amount of data 
communicated by each SU to the CSM is n N′ bits, where n ′  
is the amount of bits representing the bid submitted to the 
CSM on each channel.  

Compared to traditional one-stage resource allocation 
methods, our proposed auction mechanism has the following 
advantages:   
 

5 Note that other fairness solutions than maximizing the social welfare 
could be adopted and this will not influence our proposed solution. 
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• Unlike traditional centralized resource allocation methods 
[30], our proposed auction mechanism is not required to 
know the SUs’ utility functions or preferences, which is 
often the private information of the users and is not 
common knowledge. In fact, our auction mechanism only 
requires the SUs to submit their bid vectors for the 
available TxOps. The bid vector computation is 
performed by the SUs, but not the CSM, based on their 
utilities, preferences, action sets, experienced 
environment characteristics etc.   

• Unlike traditional decentralized resource allocation 
methods [28] where multiple iterations are required 
before convergence, our proposed auction mechanism 
only requires the SUs to submit the bid vectors once. 
Hence, our proposed auction mechanism is suitable for 
on-line resource management. Moreover, we do not 
assume as in [29] that users are price-takers and that there 
is consensus about what is a fair distribution of the 
resources. Instead, in the proposed framework, users are 
strategic and are able to determine their own bid vectors 
for resources based on their knowledge, utilities, 
preferences etc. 

IV. USER MODELING IN THE STOCHASTIC GAME FRAMEWORK 

A. Definition of SU States  
As discussed in the introduction, each SU needs to cope 

with two types of “uncertainties”: disturbances from the 
environment and interactions with other SUs. The 
environment is characterized by the packet arrivals from the 
source (i.e. source/traffic characterization) connected with the 
transmitter and the channel conditions. In this section, we will 
illustrate how these disturbances can be modeled. However, 
note that other models of the environment existing in the 
literature can be adopted. The use of a specific model will 
only affect the performance of the proposed solution, and not 
the general framework for multi-user interaction proposed in 
this paper. 

For illustration, we assume that each SU i  maintains a 
buffer with limited size iX , which can be interpreted as a 
time window that specifies which packets are considered for 
transmission at each time based on their delay deadlines. 
Expired packets are dropped from the buffer. This model has 
been extensively used for delay-sensitive data transmission, 
e.g. leaky bucket model for video transmission [25]. The 
number of packets in the buffer at time slot t  is denoted as t

ix  
( 0 t

i ix X≤ ≤ ). We assume that the packets arrive from the 
source at the beginning of each time slot, i.e. t

ix  is updated 
only at the beginning of a time slot. The number of packets 
arriving into the buffer during one time slot is a random 
variable independent of the time t  and denoted as iχ . iχ  
follows the Poisson distribution with the average arrival rate 
iχ  packets/second [11]. However, note that the Poisson 

process is simply used for illustration purposes and other 

traffic models (e.g. renewal process, etc.) can also be used in 
our framework. The average number of packets arriving 
during one time slot equals i TχΔ  [11].   

The condition of channel j  experienced by SU i  is 
represented by the Signal-to-Noise Ratio (SNR) and denoted 
as t

ijρ  in dB. When 1t
jy = , we assume that the channel 

condition of each channel can be represented by a set of 
discrete SNR values, i.e. 1{ ,..., }t K

ij ij ijρ σ σ∈ . Note that the 
number of discrete SNR values, K , can be determined by SU 
i  by trading-off the complexity (larger K  leads to a larger 
state space) and the resulting impact on the performance. 
When 0t

jy = , we set t
ijρ  equal to −∞  which means that the 

channel is unavailable to SUs at that time. As shown in [24], 
when 1t

jy = , the channel condition (in terms of SNR) can 
also be modeled as a finite-state Markov chain, where the 
transition from channel condition l

ijσ  at time t  to channel 

condition k
ijσ  at time 1t +  takes place with  probability 

l k
ijp
→ . These transitions probabilities can be easily estimated 

by SU i , by repeatedly interacting with the channel. We 
denote by k

ijp
−∞→  the probability that the channel condition is 

k
ijσ  at time 1t + , knowing that 0t

jy = and 1 1t
jy
+ = . The 

probability that the channel condition transition to −∞ , 
knowing that 1 0t

jy
+ = , is 1 on matter what condition the 

channel j  is at time t . Then the combination ( ),t t
j ijy ρ  is still 

a Markov chain with state transition probability as follows:  
( )
( )

1 1

1 1

1 1

, | ,

1 1, , 1,

0, 1,

1, , 0

1 . .

t t t t
j ij j ij

FN l k t t l t t k
j ij j ij ij j ij ij

NF k t t t k
j ij j j ij ij

FN t t l t
j j ij ij j

NF
j

p y y

p p if y y

p p if y y

p if y y

p ow

ρ ρ

ρ σ ρ σ

ρ σ

ρ σ

+ +

→ + +

−∞→ + +

=

⎧ − = = = =⎪⎪⎪⎪⎪ = = =⎪⎪⎨⎪ = = =⎪⎪⎪⎪ −⎪⎪⎩

(3) 

To model the dynamics experienced by SU i  at time t  in 
the SN, we define a “state” ( , )t t t

i i i is v= ∈ Sρ , where 

( )1, ,t t t
i i iNρ ρ=ρ . The state encapsulates the current buffer 

state as well as the state of each channel. iS  is the set of 
possible states6. The total number of possible states for SU i  
equals ( 1) ( 1)Ni iX K= + × +S . We will show later in 
this paper that the state information is sufficient for SU i  to 
compete for resources (make bid vector) at the current time.  

B. State Transition and Stage Reward 
We will now discuss the state transition process. Remember 

that the state of SU i  includes the buffer state t
iv  and the 

channel state t
iρ . In this paper, we assume that the channel 

state transition is independent of the buffer state transition. In 

 
6 We assume that the channel state and the transmission buffer 

independently evolve as time goes by. 
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the above, we describe the transition of the channel state t
iρ  

and the TxOp ty . The buffer state transition is determined by 
the number of packets arriving and the channel allocation t

iz  
as well as the internal action t

ib  during that time slot. The 
number of packets transmitted at stage t  is denoted by 

( ), ,t t t
i i i is bzN . Given the channel allocation, SU i  can adapt 

its own internal action to maximize the number of transmitted 
packets, i.e.  

 ( ) ( ), max , ,
t
i i

t t t t t
i i i i i i i

b B
n s s b

∈
=z zN  (4) 

The optimization can be performed by a cross-layer adaptation 
algorithm as in [5][12][21]. Since our focus is on the multi-SU 
interaction, we assume that the internal action will be always 
performed in order to maximize the number of transmitted 
packets. We simply use ( ),t t

i i in s z  to represent the number of 
transmitted packets and omit the internal actions in the 
following notations.  

The evolution of the buffer state is captured by the equation 
( )1 min{( , ) , }t t t t t

i i i i i iv v n s Xχ+ += − +z . We define 

( )1 ( , )t t t t
i i i ih v v n s+ += − − z . Based on the packet arrival 

model, the buffer state transition probability is computed as  

( )

( )

1( | , )

( )
, 0 ( , )

!
( )

, ( , )
!

i

i

buf t t t
i i ii

h T
i t t t

i i i i

k T
i t t t

i i i i
k h

p v v

T e
if h X v n s

h
T e

if h X v n s
k

μ

μ

μ

μ

+

− Δ
+

∞ − Δ
+

=

=

⎧ Δ⎪⎪ ≤ < − −⎪⎪⎪⎨ Δ⎪⎪ = − −⎪⎪⎪⎩
∑

z

z

z

.(5) 

The state transition combined with TxOps, given current 
resource allocation t

iz , can be computed as  

 ( )

+1 +1

1 1 1
1

buffer state transition channel state transition

( , | , , )

( | , ) , | ,

t t t t t
i i i i

Nbuf t t t t t t t
i i i j ij j iji j

q s s

p v v p y yρ ρ+ + +
=

=

∏

y y z

z , (6) 

where the first term represents the buffer state transition, 
which is independent of the second term of the channel state 
transition. 
Based on the channel allocation t

iz , the SU transmits the 
available packets in the buffer. In the next time slot, new 
packets arrive into the buffer. Newly incoming packets may 
lead to packets already existing in the buffer being dropped, 
whenever the buffer is full or their delay deadline has passed. 
Clearly, the performance of the application (e.g. video quality) 
improves when fewer packets are lost. Hence, we can interpret 
a negative value of the number of lost packets as the stage 
gain, which is denoted by t

ig , i.e 

( ) ( )( ), ( , )t t t t t t t
i i i i i i i i ig s v n s Xχ ++= − − + −z z . The 

reward at time t  for SU i  is expressed using the quasi-linear 
form ( ),t t t t

i i i i ir s gϑ τ= + . Note that the gain t
ig  and 

payment t
iτ  depend on the states and bids of all the competing 

SUs in the SN. Hence, the reward is also rewritten as 

( ), ,t t t
ir s y a . 

V. BIDDING STRATEGY FOR PLAYING THE STOCHASTIC GAME 

A. Best Response Bidding Policy 
In the SN, we assume that the stochastic game is played by 

all SUs for an infinite number of stages. This assumption is 
reasonable for applications having a long duration, such as 
video streaming. In our network setting, we define a history of 
the stochastic game up to time t  as 

0 0 0 0 0 1 1 1 1 1{ , , , , ,..., , , , , , , }t t t t t t t t− − − − −=h s y a z s y a z s yτ τ  
t∈H , which summarizes all previous states, available 

TxOps, and the actions taken by the SUs as well as the 
outcomes at each stage of the auction game and tH  is the set 
of all possible history up to time t . However, during the 
stochastic game, each SU i  cannot observe the entire history, 
but rather part of the history th . The observation of SU i  is 
denoted as t t

i io ∈O  and t t
i ⊂o h . Note that the current state 

t
is  can be always observed, i.e. t t

i i∈s o . In this paper, we 
focus on the external action selection for the SUs. The 
external action selection for SU i  to play the stochastic game 
is also referred to as a bidding policy :t t

i i iAπ O  for SU 
i  at the time t  and defined as a mapping from the 
observations up to the time t  into the specific action, i.e. 

( )t t t
i i iπ=a o . Furthermore, a policy profile iπ  for SU i  

aggregates the bidding policies about how to play the game 
over the entire course of the stochastic game, i.e. 

0( ,..., ,...)t
i i iπ π=π . The policy profile for all the SUs at time 

slot t  is denoted as ( ) ( )1,..., ,t t t t t
M i iπ π π −= =π π .  

The policy iπ  is said to be Markov if the bidding policy 
t
iπ for t∀  is, given the current state tis  and current available 

TxOp ty , independent of the states, TxOps and actions prior 
to the time t , i.e. ( ) ( , )t t t t t

i i i iπ π=o s y .  The policy iπ  is said 

to be stationary, if the bidding policy t
i iπ π=  for t∀ . The 

reward ( ), ,k k k
ir s y a  of the stage k  is discounted by factor 

( )k tiα −  at time t . The factor ( )0 1i iα α≤ <  is the 
discounted factor determined by a specific application (for 
instance, for video streaming applications, this factor can be 
set based on the tolerable delay). The total discounted sum of 
rewards ( , , )t t t

iQ s y π  for SU i  can be calculated at time t  

starting from the state profile ts , assuming that all SUs 
deploy stationary and Markov policies ( ),i iπ −=π π , as:  
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 (7) 

The total discounted sum of rewards in Eq. (7) consists of two 
parts: (i) the current stage reward and (ii) the expected future 
reward discounted by iα . Note that SU i  cannot 
independently determine the above value without explicitly 
knowing the policies and states of other SUs. The SU 
maximizes the total discounted sum of future rewards in order 
to select the bidding policy, which explicitly considers the 
impact of the current bid vector on the expected future 
rewards. 

 We define the best response iβ  for SU i  to other SUs’ 
policies i−π  as  
 ( ) arg max ( , ,( , ))

i

t t t
i i i i -iQ

π
β π− = s yπ π  (8)  

The central issue in our stochastic game is how the best 
response policies can be determined by the SUs. In the 
repeated auction mechanism discussed in Section III, the 
procedure each SU i follows to compete for the channel 
opportunities is illustrated in Figure 3. In this procedure, the 
bidding strategy t

iπ  is continuously improved by the “bidding 
strategy improvement” module. In Section V.B, we discuss 
the challenges involved in building such a module, and in 
Section VI we develop a best response learning algorithm that 
can be used for improving the bidding strategy. 

B. Challenges for Selecting the Best Response Bidding Policy  
Recall that during each time slot, the CSM announces an 

auction based on the available TxOps and then SUs bid for the 
resources. To enable the successful deployment of this 
resource auction mechanism, we can prove, similarly to our 
prior work in [21], that SUs have no incentive to misrepresent 
their information, i.e. they adhere to the “truth telling” policy. 
We assume that at each time slot t , SU i  has preference t

iju  
over the channel j , which capture the benefit derived when 
using that channel. The preference t

iju  is interpreted as the 
benefit obtained by SU i  when using channel j , compared to 
the benefit when this channel is not used. Note that this 
benefit also includes the expected future rewards. The optimal 

bid ,t opt
ija  that SU i  can take on the channel j  at time t  is the 

bid maximizing the net benefit t t
ij iu τ+ . In auction discussed 

in Section III, the optimal bid that SU i   can make is 
,t opt t

ijija u= , i.e. the optimal bid for SU i  is to announces its 
true preference to the CSM [21]. The proof is omitted here 
due to space limitations, since it is similar to that in [21]. The 
payment made by SU i  is computed by the CSM based on the 
inconvenience incurred by other SUs due to SU i  during that 
time slot [23]. 

Next, we define the preference t
iju  in the context of the 

stochastic game model. Using the channel j , SU i  obtains 
the immediate gain ( ), ,t t t

i i jg s y e  by transmitting the packets 
in its buffer, where je  indicates that  channel j  is allocated to 
SU i  during the current time slot. SU i  then moves into next 
state 1t

i
+s  from which it may obtain the future reward 

( )1 1 1, ,t t t
iQ
+ + +s y π . On the other hand, if no channel is 

assigned to SU i , it receives the immediate gain ( ), ,t t t
i ig s 0y  

and then moves into the next state 1t
is
+  from which it may 

obtain the future reward ( )1 1 1, ,t t t
iQ
+ + +s y π . We define a 

feasible set of channel assignments to SU i ’s opponents, 
given SU i ’s channel allocation t

iz , as ( )t t
-i izZ , with 

1,
( ) { | , ,

Mt t t t t t
-i i i kj j ik k i

Z z y j− = ≠
= = − ∀∑Z z z  

1
1, , {0,1}}

N t t
kj kjj
z k i z

=
≤ ∀ ≠ ∈∑ . 

The preference over the current state can be then computed 
as 
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From this equation, it is clear that the true value t
iju  depends 

on its own current state tis , but also the other SUs’ states t i−s , 
the channel allocations ( )t

i j− eZ  to the other users when 

channel j  is assigned to SU i , ( )t
i− 0Z  when SU i  is not 

assigned to any channel, and the state transition models 
( )1 1, | , , ,t t t t t
k k kkq s s k+ + ∀y y z . However, the other SUs’ 

states, the channel allocations and the state transition models 
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of other SUs are not known to SU i , and it is thus impossible 
for each SU to determine its preference ( ),t t t

iju s y .  
Without knowing the other SUs’ states and state transition 

models, SU i  cannot derive its optimal bidding strategy 
( ), ,t opt t t t
ijija u= s y . However, if SU i  chooses the bid vector 

by only maximizing the immediate reward t t
i ig τ+ , i.e. the 

total discounted sum of reward degenerates in 
( , , ) ( , , ( ( , ))) ( ( , )t t t t t t t t t t t t
i i i i iQ g s τ= +s y y z s y s yπ π π  by 

setting 0iα = . Then, the preference over channel j  
becomes ( ) ( ) ( ), , , , ,t t t t t t t t t

ij i i j i iu g s g s= − 0s y y e y . Since 

now t
iju  only depends on the state t

is , SU i  can compute 
both the optimal bid vector as well as the optimal bidding 
policy. We refer to this optimal bidding policy as the 
“myopic” policy, since it only takes the immediate reward into 
consideration and ignores the future impact. The myopic 
policy is referred to as myopic

iπ .  To solve the difficult 
problem of optimal bidding policy selection when 0iα ≠ , an 
SU needs to forecast the impact of its current bidding actions 
on the expected future rewards discounted by iα . The forecast 
can be performed using learning from its past experiences. 

VI. INTERACTIVE LEARNING FOR PLAYING THE RESOURCE 
MANAGEMENT GAME 

A. How to Evaluate Learning Algorithms? 
In Section V.B, it was shown that an SU needs to know 

other SUs’ states and state transition models in order to derive 
its own optimal bidding policy. This coupling among SUs is 
due to the shared nature of the wireless resources. However, 
an SU cannot exactly know the other SUs’ models and private 
information in the wireless networks. Thus, to improve the 
bidding policy, an SU can only predict the impacts of 
dynamics (uncertainties) caused by the competing SUs based 
on its observations from past auctions. In this paper, we 
propose a learning algorithm for predicting these impacts. We 
define a learning algorithm iL  for SU i  as a function taking 
the observation t

io  as input and having the bidding policy t
iπ  

as output.  
Before developing a learning algorithm, we first discuss 

how to evaluate the performance of a learning algorithm in 
terms of its impact on the SU’s reward. Unlike existing multi-
agent learning research, which is aimed at achieving converge 
to an equilibrium point for the interacting agents, we develop 
learning algorithms based on the performance of the bidding 
strategy on the SU’s reward. We denote a bidding policy 
generated by the learning algorithm iL  as i

iπ
L . An SU will 

learn in order to improve its bidding policy and its rewards 
from participating in the auction game. The performance of 
the bidding strategy iπ  is defined as the time average reward 
that SU i  obtains in a time window with length T  when it 
adopts iπ : 

 
1

1
( )i

T
k
i

k

T r
T

π

=
= ∑V  (10) 

Using this definition, the performance of two learning 
algorithms can be easily compared. For instance, given two 

algorithm i ′L  and i ′′L , if i i
i iπ π′ ′′

>
L L

V V , then we say that 
learning algorithm i ′L  is better than i ′′L .  

B. What Information to Learn from? 
First let us consider what information the SU can observe 

while playing the stochastic game in our SN. As shown in 
Figure 1, at the beginning of time slot t , the SUs submit the 
bids ,tia i∀ . Then, the CSM returns the channel allocation 

,tiz i∀  and ,ti iτ ∀ . If SU i  is not allowed to observe the bids, 
the channel allocations and payments for other SUs, then the 
observation of SU i  becomes 

0 0 0 0 0 1 1 1 1 1{ , , , , , ..., , , , , , , }t t t t t t t t
i i i i i i i i i ia a− − − − −= s y z s y z s yο τ τ .  

If the information is exchanged among SUs or broadcasted 
and overheard by all SUs, the observed information by SU i  
becomes 

0 0 0 0 0 1 1 1 1 1{ , , , , , ..., , , , , , , }t t t t t t t t
i i i i

− − − − −= s y a z s y a z s yο τ τ . 
Now, the problem that needs to be solved by SU i  is how it 
can improve its own policy for playing the game by learning 
from the observation t

iο . In this paper, we assume that SU i  
observes the information 

0 0 0 0 0 1 1 1 1 1{ , , , , , ..., , , , , ,t t t t t t
i i i i i i i i ia a− − − − −= s y z s y zο τ τ  , }t t

is y .  

C. What to Learn? 
In Section VI.A, we introduced learning as a tool to predict 

the impacts of dynamics and hence, improve the bidding 
policy. However, a key question is what needs to be learned. 
Recall that the optimal bidding policy for SU i  is to generate 
a bid vector that represents its preferences for using different 
channels. From Eq. (9), we can see that SU i  needs to learn: 
(i) the state space of other SUs, i.e. i−S ; (ii) the current state 
of other SUs, i.e. t

i−s ; (iii) the transition probability of other 

SUs, i.e. ( )1 1, | , ,t t t t t
k k kkk i
q s s+ +

≠∏ y y z ; (iv) the resource 

allocation ( ),t
-i j j∀Z e  and ( )t

-i 0Z ; and (v) the discounted 

sum of rewards ( )1 1 1, ,t t t
iQ
+ + +s y π .  

However, SU i  can only observes the information 
0 0 0 0 0 1 1 1 1 1{ , , , , , ..., , , , , ,t t t t t t

i i i i i i i i ia a− − − − −= s y z s y zο τ τ  , }t t
is y  

from which SU i  cannot accurately infer the other SUs’ state 
space and transition probability. Moreover, capturing the 
exact information about other SUs requires heavy 
computational and storage complexity.  Instead, we allow SU 
i  to classify the space i−S  into iH  classes each of which is 
represented by a representative state , , {1,..., }i h ih H− ∈s . We 
discuss how the space i−S  is decomposed in Section VI.D. 
By dividing the state space i−S , the transition probability 

( )1 1, | , ,t t t t t
k k kkk i
q s s+ +

≠∏ y y z  is approximated by 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. X, XXX 2008 
 

( )1 1, | , ,t t t t t
i i i iq s s+ +

− − −y y z , where t
is−  and 1t

is
+

−  are the 

representative states of the classes that t
i−s  and 1t

i
+

−s  belong 
to. This approximation is performed by aggregating all other 
SUs’ states into one representative state and assuming that the 
transition depends on the resource allocation t

iz . The 
transition probability approximation is also discussed in 
Section VI.D. The discounted sum of rewards 

( )1 1 1, ,t t t
iQ
+ + +s y π  is approximated by 

( )( )1 1 1 1, ,t t t t
i i iV s s+ + + +

− y . Note that the classification on the 
state space i−S  and approximation of the transition 
probability and discounted sum of rewards affects the learning 
performance. Hence, a user can tradeoff an increased 
complexity for an increased performance. After the 
classification, the preference computation can be 
approximated as  
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In this setting, to find the approximated preference and 
thus, the approximated optimal bidding policy, we need to 
learn the following from the past observations: (i) how the 
space i−S  is classified; (ii) the transition probability 

( )1 1, | , ,t t t t t
i i i iq s s+ +

− − −y y z ; (iii) the approximated future 

rewards ( )( )1 1 1 1, ,t t t t
i i -iV s s+ + + +y . 

D. How to Learn? 
In this section, we develop a learning algorithm to estimate 

the terms listed in Section VI.C.  
1) Decomposition of the space i−S  

As discussed in Section VI.B, only 
0 0 0 0 0 1 1 1 1 1{ , , , , ,..., , , , , , , }t t t t t t t t

i i i i i i i i i ia a− − − − −= s y z s y z s yο τ τ  
are observed. From the auction mechanism presented in 
Section III, we know that the value of the tax t

iτ  is computed 
based on the inconvenience that SU i  causes to the other SUs. 
In other words, a higher value of t

iτ  indicates that the 

network is more congested7. Based on the bid vector t
ib ,  the 

channel allocation t
iz  and the tax t

iτ , SU i  can infer the 

 
7 When the CSM deploys a mechanism without tax for the resource 

management, the space classification for other SUs can also be done based on 
the announced information and corresponding resource allocation. 

network congestion and thus, indirectly, the resource 
requirements of the competing SUs. Instead of knowing the 
exact state space of other SUs, SU i  can classify the space 
i−S  as follows.  
We assume the maximum absolute tax is Γ . We split the 

range [ ]0,Γ  into [ ) [ ) [ ]0 1 1 2 1, , , ,..., ,
i iH H−Γ Γ Γ Γ Γ Γ  with 

0 10
iH= Γ ≤ Γ ≤ ≤ Γ = Γ . Here, we assume that the 

values of { }1 1,...,
iH −Γ Γ  are equally located in the range of 

[ ]0,Γ . (Note that more sophisticated selection for these values 
can be deployed, and this forms an interesting area of future 
research.)  

We need to consider three cases to determine the 
representative state t is−  at time t .  

(i) If the resource allocation t
i ≠ 0z , then the 

representative state of other SUs is chosen as  

 [ )1, ,t t
i i h hs h if τ− −= ∈ Γ Γ . (12) 

(ii) If the resource allocation t
i = 0z  but t ≠ 0y , the tax 

is 0. In this case, we cannot use the tax to predict the network 
congestion. However, we can infer that the congestion is more 
severe than the minimum bid for those available channels, 
i.e.

{ }
{ }

: 0
min
t
l

t
ij

j l y
a

∈ ≠
. This is because, in this current stage of the 

auction game, only SU i ′  with t t
iji ja a′ ≥  can obtain channel 

j  which indicates that 
{ }

{ }
: 0

min
t
l

t t
i ij

j l y
aτ

∈ ≠
≥ , if SU i  is 

allocated any channel. Then the representative state of other 
SUs is chosen as 

 
{ }

{ } [ )1
: 0

, min ,
t
l

t t
i ij h h

j l y
s h if a− −

∈ ≠
= ∈ Γ Γ  (13) 

(iii) If the resource allocation t
i = 0z  and t = 0y , there is 

no interaction among the SUs in this time slot. Hence, 
1t t

i is s −
− −= . 

2) Estimating the transition probability 
To estimate the transition probability, SU i  maintains a 

table F  with size ( )1i iH H N× × +  . Each entry , ,h h jf ′ ′′ in 
the table F  represents the number of transitions from state 
t
is h− ′′=  to 1t

is h+
− ′=  when the resource allocation 

t
i j=z e (or 0 if 0j = ). It is clear that iH  will influence 

significantly the complexity and memory requirements etc. of 
SU i . The update of F  is simply based on the observation 
t
io  and the state classification in the above section.  Then, we 

use the frequency to approximate the transition probability 
[15], i.e. 

 ( ) , ,1

, ,

| , h h jt t
i i ji

h h j
h

f
q s h s h

f
′ ′′+

− −−
′ ′′

′

′ ′′= = =
∑

e  (14) 

3) Learning the future reward 
By classifying the state space i−S  and estimating the 

transition probability, SU i  can now forecast the value of the 
average future reward ( )( )1 1 1 1, ,t t t t

i i -iV s s+ + + +y  using 
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learning. Eq. (7) can be approximated by 
( )( )

( )

( )

( )( )
( )1 1

1 1

1 1

, ,
1 1 1 1

, , ,

( , , ( ( , ))) ( ( , ))

, | , , ( ( , )

, | , , ( ( , ))

, ,
t t

ii i

t t t t
i i i

t t t t t t t t t
i i i i

t t t t t t t
i i i i

t t t t t t t
i i i i i
s s S

t t t t
i i -i

Q s s

g s

q s s

q s s

V s s

τ

α
+ +

−

−

+ +

+ +
− − −

∈ + + + +

+ +

⎧ ⎫⎪ ⎪×⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪×⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
S

y

y z s y s y

y y z s y

y y z s y

y

π

π π

π

π
( )

{ }1 0,1
i

Nt
−

+ ∈

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

∑
y

(15) 

Similar to the Q-learning established in [17], we also use 
the received rewards to update the estimation of future 
rewards. However, the main difference between our proposed 
algorithm and Q-learning is that our solution explicitly 
considers the impacts of other SUs’ bidding actions through 
the state classifications and transition probability 
approximation.  

We use a 3-dimensional table to store the value 
( )( ), ,i i -iV s s y  with i is S∈ , i is− −∈ S . The total number 

of entries in iV  is 2Ni iS H× × . SU i  updates the value of 
( )( ), ,i i -iV s s y  at time t  according to the following rules:  
( )( )

( ) ( )( )

( )( )
( ) ( )

( )( )

1

1

, ,

1 , ,
, , ,

, , ,

, ,

t
i i -i

t t
i i i -i

t t t
i -i i -it t

i i i i

t
i i -i

V s s

V s s
if s s s s

Q s s

V s s otherwise

γ

γ

−

−

−

=

− +
= =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y

y
y y

y

y

π
(16) 

where [0,1)t
iγ ∈  is a learning rate factor satisfying 

1
t
it

γ
∞

=
= ∞∑  and ( )

2

1
t
it

γ
∞

=
< ∞∑  [17], In summary, 

the learning procedure that is developed for an SU is shown in 
Table 1. 

E. Complexity of Learning 
In section III, we have discussed the computation 

complexity incurred by the CSM and the communication cost 
between the CSM and the SUs. In this section, we further 
quantify the complexity of learning in terms of the 
computational and storage burden. We use the “flop” 
(floating-point operation) as a measure of complexity, which 
will provide us an estimation of the computational complexity 
required for performing the learning algorithm. Also, based on 
this, we can determine how the complexity grows with the 
increasing number of SUs [20].  At each stage, the SU 
performs the classification of other SUs’ states, which, in the 
worst case, requires a number of “flops” of approximately N . 
The number of “flops” for estimating the transition probability 
of other SUs’ states as in Eq. (14) is approximately ( )1iH + . 
The number of “flops” for learning the future reward is 
approximately ( )2 6i iS H + . Therefore, the total number of 
“flops” incurred by the SU is 2 7i i iN H S H+ + + , from 
which we can note that the complexity of learning for each SU 
is proportional to the number of possible states of that SU and 
the number of classes in which the other SUs’ state space is 
decomposed.  

To perform the learning algorithm, the SU needs to store 2 
tables (i.e. transition probability table and state-value table) 

which have totally ( )( )2 1 2Ni i iH N S H+ +  entries. We 
also note that the storage complexity is also proportional to 
the number of possible states of that SU and the number of 
classes in which the other SUs’ state space is decomposed. 

VII. SIMULATION RESULTS 
In this section, we aim at quantifying the performance of 

our proposed stochastic interaction and learning framework. 
We assume that the SUs compete for the available spectrum 
opportunities in order to transmit delay-sensitive multimedia 
data. First, we compare the performance of various bidding 
strategies. Next, we quantify the performance of our proposed 
learning algorithm in various network environments. We will 
present here only several illustrative examples. However, the 
same observations can be obtained using a larger number of 
SUs or channels.  

A. Various Bidding Strategies for Dynamic Multi-user 
Interaction 

In this section, we highlight the merits of the stochastic 
game framework proposed in Section II by comparing the 
performance of different SUs, which deploy different bidding 
strategies. The SUs are required to submit the bid vector on 
the available channels. The SUs can deploy different bidding 
strategies to generate their bid vector:  

1. Fixed bidding strategy fixed
iπ : this strategy generates a 

constant bid vector during each stage of the auction 
game, irrespective of the state that SU i  is currently in 
and of the states other SUs are in. In other words, 
fixed
iπ does not consider any of the dynamics defined in 

Section IV. 
2.  Source-aware bidding strategy source

iπ : this strategy 
generates various bid vectors by considering the 
dynamics in source characteristics (based on the current 
buffer state), but not the channel dynamics. 

3. Myopic bidding strategy myopic
iπ : this strategy takes into 

account the disturbance due to the environment as well 
as the impact caused by other SUs, as discussed in 
Section V.B. However, it does not consider the impact 
on the future rewards. 

4. Bidding strategy based on best response learning i
iπ
L : 

This strategy is produced using the learning algorithm 
proposed in Section VI.  i

iπ
L  considers the two types of 

dynamics defined in Section IV, and the interaction 
impact on the future reward. 

In terms of the required information, the above bidding 
strategies are illustrated in Figure 4. For instance, the fixed 
bidding strategy fixed

iπ  does not require information about SU 
i ’s state or other SUs’ states. The source-aware bidding 
strategy buff

iπ  considers the source characteristics based on 
the current buffer state. However, the myopic bidding strategy 
myopic
iπ  requires full information about SU i ’s state. The 
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bidding strategy based on best response learning i
iπ
L  also 

requires information about the states of other SUs.  
In this simulation, we consider the SN as an extension of 

WLANs with spectral agile capability [9]. In the following, 
we first simulate the case that two SUs compete for the 
channel opportunities and then extend to the case with 
multiple (five) SUs. 

1) Competition among two SUs for channel opportunities 
We first consider a simple illustrative network with two 

SUs competing for the available TxOps. The packet arrivals of 
the SUs are modeled using a Poisson process with the same 
average arrival rate of 1Mbps. For illustration simplicity, the 
channel condition of SU 1 (SU 2) on each channel takes only 
three values ( 3K = ), which are 18dB, 23dB and 26dB. The 
transition probabilities are 

0 1 0 2 0 30.4, 0.2ij ij ijp p p→ → →= = = , 
1 2 3

1 1 10.4, 0.2l l l
j j jp p p→ → →= = = , , ,i j l∀ . The transition 

probability of the availability of the channels to the SUs are 
0.5NF FN

j jp p= = . For illustration simplicity, the 
environment parameters experienced by the two SUs are the 
same. The length of the time slot TΔ  is 210− s. 

In this simulation, we consider five scenarios. In scenario 
(1), both SU 1 and 2 deploy the fixed bidding strategy 1

fixedπ . 
In scenario (2)~(5), SU 1 deploys the fixed bidding strategy 

1
fixedπ , source-aware bidding strategy 1

sourceπ , myopic bidding 

strategy 1
myopicπ  and best response learning based bidding 

strategy 1
1π
L , respectively, and SU 2 always deploys the 

myopic bidding strategy 2
myopicπ . The discounted factor for 

the best response learning algorithm is set to 0.8. As discussed 
in Section IV.B, the stage reward is defined as 

( )t t t
i i ir g τ= + , with ( )t t

i ig τ− −  being the number of 
packet lost plus the tax charged by the CSM (note that 

0t
iτ ≤ ). This can be interpreted as the cost incurred at each 

stage. Similar to Eq. (10), we use the average cost over the 
time window 1000T =  to evaluate the performance of the 
bidding strategies. Hence, the lower the average cost, the 
better the performance of the bidding strategy is. The packet 
loss rate, average tax and cost per time slot are presented in 
Table 2. The accumulated packet loss and cost of SU 1 for the 
five scenarios are plotted in Figure 5(a) and (b), respectively.  

From this simulation, comparing scenario 2 with scenario 1, 
we observe that when SU 2 deploys the myopic strategy 
against SU 1 which adopted the fixed bidding strategy, SU 2 
reduces its average cost by around 42% and the average 
packet loss rate by around 16.6%. This significant 
improvement is because SU 2 can value the channel 
opportunities more accurately by modeling and considering its 
experienced dynamics, i.e. source characteristics, channel 
conditions and availability.  

In scenario 3, SU 1 improves its bidding strategy (i.e. it 
deploys now a source-aware bidding strategy) by partially 

considering its experienced environment, i.e. SU 1 generates 
its bid vector by only considering the source dynamics though 
its current buffer state. Compared to scenario 2, if SU 1 
considers more information about its own state, it can further 
reduce its packet loss rate by an average of 4.5% and an 
average cost by around 5.4%. This observation verifies that 
the information about the SU’s state improves the bidding 
strategy. 

In scenario 4, SU 1 deploys a myopic bidding strategy 
which is more advanced than the source-aware bidding 
strategy since it considers both types of dynamics defined in 
Section IV (including the dynamics regarding to the source 
characteristics, channel conditions, and channel availability, 
and the interaction with other SUs in the auction mechanism). 
The significant improvement in terms of packet loss rate (13% 
reduced) and average cost (25% reduced), compared to 
scenario 2, indicates that the myopic bidding strategy provides 
the optimal bid vector when only current benefits are 
considered as shown in Section V.B.  

In scenario 5, SU 1 improves further the bidding strategy 
using the best response learning algorithm developed in 
Section VI. Using learning, SU 1 reduces the packet loss rate 
to 15.14% and the average cost to 1.7428 (11.8% lower 
compared to scenario 4). This significant improvement is due 
to the ability of the SU to learning and forecast the future 
impact of its current actions.  

It is also worth to note that the reduction of the packet loss 
rate of SU 1 in scenarios 2~5 comes from two parts: one is the 
advanced bidding strategies, which allows the SU to take into 
consideration more information about its own states and the 
other SUs’ states and, based on this, better forecast the impact 
of various actions, and the other one is the increase in the 
amount of resources consumed by SU 1 which corresponds to 
higher tax charged by the CSM, as shown in Table 2. 

We further note that the bidding strategy deployed by SU 1 
will affect the performance of SU 2. For example, comparing 
scenario 2 with scenario 4, the fixed bidding strategy of SU 1 
in scenario 2 leads to a lower average cost (15% reduced) for 
SU 2. This is because SU 1 uses a fixed bidding strategy, 
which does not account for the dynamic changes in its 
environment, while SU 2 minimizes its current cost (the 
number of packets lost plus the tax) based on its current state. 
However, when comparing scenario 5 with scenario 4, SU 1 
using learning not only improves its prediction of the current 
environment dynamics but also better predicts the impact on 
the future cost based on the observations. The improvement 
leads to higher resource allocation (hence, incurring higher 
tax, see in Table 2) for SU 1, thereby resulting in worse 
performance for SU 2 (i.e. the average cost is increased by 
22.2%). 

2) Multiple SUs competition for channel opportunities 
In this simulation, we consider five SUs competing for the 

available TxOps in the WLAN-like SN. The packet arrivals of 
all the five SUs are modeled using a Poisson process with the 
same average arrival rate of 1Mbps. The number of channels 
is 3 and the channel condition of all the five SUs on each 
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channel takes only three values ( 3K = ), which are 18dB, 
23dB and 26dB. The transition probabilities are 

0 1 0 2 0 30.4, 0.2ij ij ijp p p→ → →= = = , 1 2
1 1 0.4,l l
j jp p→ →= = , 

3
1 0.2l
jp
→ = , , ,i j l∀ . The parameters of the model of the 

availability of the channels to the SUs are 
0.7, 0.3NF FN

j jp p= = . The length of the time slot  TΔ  is 

also 210− s. Similar parameters are used for the five SUs in 
order to clearly illustrate the performance differences obtained 
based on the different strategies.  

In this simulation, we consider only two scenarios. In 
scenario (1), all SUs deploy a myopic bidding strategy 

, 1,2,...,5myopic
i iπ = , while in scenario (2), SU 5 deploys the 

multi-user learning-based bidding strategy 5
5π
L  with the 

discount factor of 0.5 and the other SUs deploy the myopic 
bidding strategy , 1,..., 4myopic

i iπ = . The packet loss rate and 
cost per time slot incurred by the SUs are presented in Table 
3. The accumulated packet loss and cost of SU 5 for the five 
scenarios are plotted in  Figure 6(a) and (b), respectively. 

Similar to the two-SU network, SU 5 significantly reduces 
the packet loss rate by 14.6% and average cost by 16.1% by 
adopting the best response learning-based bidding strategy. 
Figure 6 (a) and (b) further verify the improvement of the 
performance for SU 1. However, other SUs’ performances are 
decreased, as they need now to compete against a learning SU 
(i.e. SU 5), which is able to make better bids for the available 
resources. 
B. Multi-user Learning and Delay Impact in a Wireless Test-
Bed  

To validate the performance of the multi-user learning and 
the impact of various delays in a realistic network setting, we 
considered two SUs competing for the available transmission 
opportunities in our 802.11a-enabled wireless test-bed [31]. 
The channel condition experienced by the SUs varied between 
10dB to 30dB, and we represented this variation using 10 
states ( 10K = ). The parameters of the TxOp model are 

0.6, 0.4NF FN
j jp p= = . The length of the time slot  TΔ  is 

also 210− s. The SUs stream the delay-sensitive video traffic 
(e.g. the Mobile sequence encoded using an H.264 video 
encoder) to their own destinations with an average data rate of 
1.5Mbps. We compare three scenarios. In scenario (1), both 
SUs deploy a myopic bidding strategy , 1,2myopic

i iπ = . In 
scenario (2), SU 1 deploys the learning-based bidding strategy 

1
1π
L  with a discount factor of 0.5 and SU 2 deploys a myopic 

strategy 2
myopicπ . In scenario (3), both SUs deploy the 

learning-based bidding strategy , 1,2i
i iπ =L . In the above 

three scenarios, the video applications are considered to 
tolerate a delay8 of 533 ms, which is used in some real-time 
video streaming applications. In scenario (4), SU 1 deploys 

 
8 During the simulations, for simplicity, we assume that the packets within 

one Group of Picture (GOP) have the same delay deadline.  

the learning-based bidding strategy 1
1π
L  with a discount factor 

of 0.5 and SU 2 deploys a myopic strategy 2
myopicπ . However, 

in this scenario, SU 1 streams the video sequence which can 
only tolerate a delay of 266ms, which is typical for video 
conferencing applications. 

Table 4 shows the average video quality in terms of Peak 
Signal to Noise Ratio (PSNR)9 and incurred cost for both SUs 
under various scenarios. Comparing scenario (2) with scenario 
(1), we observe that the SU using the learning-based bidding 
strategy improves the received video quality by 2.2dB and 
reduces the incurred cost by 9.3%. However, as the 
performance of SU 1 improves, this also results in worse 
performance for SU 2. This observation is similar to the 
results in Section VII.A.1) and has the same explanation. 

In scenario (3), both SUs deploy the learning-based bidding 
strategies and are able to better predict the impact of their 
current bidding actions on the future cost based on their 
observations. Thus, compared to scenario 1, the performance 
of both SUs has been improved: SU 1 (SU 2) increases by 1 
dB (1.2dB) in terms of PSNR and reduces its cost by 4.3% 
(4.0%). Compared to scenario (2), if SU 2 also deploys the 
learning-based approach, then SU 2 also observes its 
estimated future reward and will increase its bid, thereby 
reducing the performance of SU 1. From Table 4, we note that 
the PSNR of SU 1 is decreased by 1.2dB, while the PSNR of 
SU 2 is increased by 2dB. We also observe that the cost of SU 
1 is increased by around 5.6%, while the cost of SU is 
decreased by 9.1%. 

In scenario (4), since SU 1 streams a video application with 
a lower delay deadline, it has to bid more to ensure that the 
packets with stringent delay deadline are transmitted to the 
destination and hence, SU 1 incurs a higher transmission cost 
(41% increased) compared to scenario 2. Although SU 1 bids 
more for the limited available resources, the video quality of 
SU 1 is reduced by 1.8dB due to its stringent delay deadline. 
Interestingly, the stringent delay deadline of the SU 1’s 
application also increases the transmission cost of SU 2 and 
also reduces its video quality. This is because the higher bid of 
SU 1 on the limited resources automatically increases the bid 
of SU 2. 

C. Learning with Imperfect Information 
In this section, we consider that SU 1 deploys the learning-

based bidding strategy and SU 2 deploys the myopic strategy. 
The environment parameters are the same as in Section VII.B. 
To quantify the impact of imperfect information about the 
environment on the SUs’ performance, we assume that SU 1 
has the transition probability of TxOps, 

0.55, 0.45NF FN
j jp p= = , which is slightly different from 

the true one (i.e. 0.6, 0.4NF FN
j jp p= = ). Table 5 shows the 

PSNRs and corresponding cost of both SUs when SU 1 has 

 
9 PSNR is a widely adopted metric to objectively measure the video 

quality. A PSNR difference of 1 dB is significant, and can be seen by an 
untrained human observer. 
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perfect or imperfect information about the TxOps.  
From Table 5, we observe that an inaccurate model of 

TxOps reduces the performance of SU 1 (i.e. the PSNR 
decreases by 0.3dB and increases the cost by 4.2%). We 
further note that this will also affect the performance of SU 2. 
In this simulation, the PSNR of SU 2 is reduced by 0.2dB and 
the cost is increased by 3.5%. This performance loss can be 
explained as follows: since SU 1 has an inaccurate model 
about the available TxOps, it may generate a suboptimal bid 
vector at each stage, which will accordingly result in a 
suboptimal allocation (TxOps and payment) among the SUs. 
This suboptimal allocation will also lead to the performance 
loss of other SUs. Hence, it is essential for the users to learn 
and accurately predict their environment. 

D. Impact of various dynamics on learning 
In Section VII.A, we demonstrate that the best response 

learning algorithm improves the bidding strategy, thereby 
leading to a reduced packet loss rate and average cost. In this 
simulation, we further investigate how various dynamics 
impact the learning algorithm proposed in Section VI.D. 
Specifically, we compare the learning performance under 
different channel dynamics, i.e. various available spectrum 
opportunities for the SUs as discussed in Section II. The 
source characteristics and channel conditions experienced by 
the SUs are kept the same as in Section VII.A.1). We consider 
three types of channel dynamics corresponding to scenarios 
1~3. The transition probabilities of the TxOps for all three 
scenarios are listed in Table 6. In each scenario, we compare 
two cases: in the first one, both SUs deploy myopic bidding 
strategies, and in the second one, SU 1 deploys best response 
learning-based bidding strategy, while SU 2 still uses the 
myopic bidding strategy. 

Table 7 shows the average packet loss rate and cost 
experienced by the SUs under various channel dynamics. 
Interestingly, we observe from these results that even though 
the learning algorithm reduces the packet loss rate, it does not 
reduce the cost associated with SU 1, when the channel 
resources are abundant as in scenario 1. As the resources 
become increasingly scarce, the learning algorithm helps SU 1 
to simultaneously reduce the packet loss rate and cost, e.g. in 
scenario 2 and 3.  This observation can be explained as 
follows: when the resources are abundant, the cost (including 
the packet loss and tax) is small, i.e. the “value” of the channel 
is limited, and hence, the learning-based bidding strategy does 
not significantly benefit. On the other hand, when the 
resources are scarce, the bid vectors of the SUs in the current 
time slot will significantly affect the transition of their states 
through the channel allocation comparing to the case when the 
resources are abundant. For example, if an SU makes low bids 
as compared to other SUs, it might have no resources 
(channels) allocated to it when resources are scarce (i.e. the 
SN is congested).  In this case, the learning-based bidding 
strategy will carefully plan the bid by considering the future 
impact and thus, it is able to successfully improve the 
performance of SU 1 in terms of reducing the average cost. 

VIII. CONCLUSIONS AND FUTURE RESEARCH 
In this paper we model the dynamic resource allocation 

problem as a “stochastic game” played among strategic SUs. 
At each stage of the game, the CSM deploys a generalized 
second price auction mechanism to allocate the available 
spectrum resource. The SUs are allowed to simultaneously 
and independently make bid decision on that resource by 
considering their current states, experienced environment as 
well as the estimated future reward. To improve the bid 
decision at each stage, we propose a best response learning 
algorithm to predict the possible future reward at each state. 
The simulation results show that our proposed learning 
algorithm can significantly improve the SUs’ performance.  

We note that, the constraint of the perfect information about 
the available wireless resources can be relaxed for the case 
when the CSM and the wireless users do not have the perfect 
information about the available resources. In this case, the 
wireless users can estimate and build a belief about the 
available resource. Hence, the stochastic game model can be 
extended to partially observably stochastic games [32]. This is 
one of our interesting future research topics. We also note 
that, we can allow the wireless users to adapt their 
transmission power, which will lead to different interference 
levels to other users. In this case, the wireless users compete 
with each other for lower interference levels incurred by other 
users [6], instead of competing for the transmission time. This 
can also be formulated as a stochastic game and similar 
learning algorithms can be developed. This forms another 
interesting topic of our future research. This forms another 
interesting topic of our future research. Our future work also 
includes analyzing the performance of SNs where multiple 
SUs are deploying various learning strategies and protocols. 
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Figures and tables 
 

 
Figure 1. Conceptual overview of the multi-SU interaction in the SN 

 

 
Figure 2. Information exchange between the CSM and SU i  
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Figure 3. The procedure for SU i  to play the auction game at time slot t  

 
Figure 4. The illustration of bidding strategies based on the required information 
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(a) (b) 

Figure 5. The accumulated packet loss and cost of SU 1 in the five scenarios, (a) accumulated packet loss 
over the time slot; (b) accumulated cost over the time slot 
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Figure 6. The accumulated packet loss and cost of SU 5 in the two scenarios, (a) accumulated 
packet loss over the time slot; (b) accumulated cost over the time slot 

 
Table 1. Learning Procedure 

Initializing: ( )( )0 , , 0i i -iV s s ⇐y  for all possible states i is S∈ , i is− −∈ S .  
Learning: 
       At time t , SU i :  

b. Observes the current state tis  and ty ; 
c. Chooses an action [ ]1,...,

t t t
i i iNa u u= as computed in Eq. (11) by replacing 

( )( )1 1 1 1, ,t t t t
i i -iV s s+ + + +y  with ( )( )1 1 1 1, ,t t t t

i i -iV s s− + + +y , and then submits it to the CSM; 

d. Receives the allocation tiz  and payment t
iτ ; 

e. Computes the representative state t is−  as in Section VI.D.1) and update the transition probability 
as in Section VI.D.2); 

f. Computes the expected total discounted sum of the rewards ( )( ), , ,t t t t
i i iQ s s− y π  as in Eq. (15); 

g. Updates the future reward table ( )( ), ,t
i i -iV s s y  at the state ( ),t t

i is−s  and TxOp ty  using the 

learning rate factor t
iγ ,  according to Eq. (16). 

 
Table 2. Performance of SU 1 and 2 with various bidding strategies in the two SUs network 

SU 1 SU 2  
Bidding 

Strategies 
Packet 

loss rate 
(%) 

Average 
tax 

Average 
cost 

Packet 
loss rate 
(10%) 

Average 
tax 

Average 
cost 

Scenario 1 
1 2,fixed fixedπ π  32.53 0.4875 2.8966 31.05 0.5095 2.6104 

Scenario 2 
1 2,fixed myopicπ π  34.36 0.1222 2.6337 14.39 0.5495 1.5105 

Scenario 3 1 2, myopicsourceπ π  29.83 0.3147 2.4915 18.11 0.6048 1.6116 
Scenario 4 

1 2,myopic myopicπ π  21.55 0.4669 1.9767 19.55 0.3763 1.7837 
Scenario 5 1

1 2, myopicπ πL  15.14 0.6923 1.7428 27.29 0.4197 2.2967 
 

Table 3. Performance of SU 1~5 with various bidding strategies in the five SUs network 
 SU 1 SU 2 SU 3 SU 4 SU 5 

 

Packet 
Loss 
Rate 
(%) 

Average 
cost 

Packet 
Loss 
Rate 
(%) 

Average 
cost 

Packet 
Loss 
Rate 
(%) 

Average 
cost 

Packet 
Loss 
Rate 
(%) 

Average 
cost 

Packet 
Loss 
Rate 
(%) 

Average 
cost 

1 21.14 1.2002 19.99 1.1666 22.05 1.2123 21.37 1.1949 24.17 1.3101 
2 25.03 1.2992 24.20 1.2993 25.72 1.3338 26.02 1.3568 9.56 1.0988 
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Table 4. Performance of SU 1 and 2 with various bidding strategies in the more realistic network 
SU 1 SU 2  Bidding 

strategies PSNR (dB) Average cost PSNR (dB) Average cost 
Scenario 1 1 2,myopic myopicπ π  30.8 5.8951 30.7 5.8845 

Scenario 2 1
1 2, myopicπ πL  33.0 5.3449 29.9 6.2236 

Scenario 3 1 2
1 2,π πL L  31.8 5.6493 31.9 5.6536 

Scenario 4 1
1 2, myopicπ πL  31.2 7.5439 29.2 6.6748 

 
Table 5. Performance comparison between the scenarios whether SU 1 has perfect information or not 

SU 1 SU 2  Bidding 
strategies PSNR (dB) Average cost PSNR (dB) Average cost 

Scenario 1  
(SU 1 has perfect information) 

1
1 2, myopicπ πL  33.0 5.3449 30.7 6.2236 

Scenario 2  
(SU 1 has imperfect information) 

1
1 2, myopicπ πL  32.7 5.5685 30.5 6.4385 

 
Table 6. Channel availability probability  

Channel 1 Channel 2 
 

1
NFp  1

FNp  Number of 
opportunities 2

NFp  2
FNp  Number of 

opportunities 
Scenario 1 0.8 0.2 3502 0.8 0.2 3498 
Scenario 2 0.5 0.5 2490 0.5 0.5 2462 
Scenario 3 0.4 0.6 1960 0.4 0.6 1968 

 
Table 7. Average packet loss rate and cost for the SUs under various resource constraints 

SU 1 SU 2 
 Packet 

loss rate 
Average 

cost 
Packet 

loss rate 
Average 

cost 

1 2,myopic myopicπ π  3.08 0.2678 2.90 0.2844 
Scenario 1 

1
1 2, myopicπ πL  2.69 0.3092 4.17 0.4110 

1 2,myopic myopicπ π  21.36 1.8954 23.85 1.7471 
Scenario 2 

1
1 2, myopicπ πL  14.54 1.6764 30.67 2.1744 

1 2,myopic myopicπ π  45.01 3.6283 45.42 3.8289 
Scenario 3 

1
1 2, myopicπ πL  35.21 3.2590 56.44 4.5162 

 
 


