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Bargaining Strategies for Networked
Multimedia Resource Management
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Abstract—Multiuser multimedia applications such as enterprise
streaming, surveillance, and gaming are recently emerging, and
they are often deployed over bandwidth-constrained network
infrastructures. To ensure the Quality of Service (QoS) required
by the delay-sensitive and bandwidth intensive multimedia data
for these applications, efficient resource (bandwidth) management
becomes paramount. We propose to deploy the well-known game
theoretic concept of bargaining to allocate the bandwidth fairly
and optimally among multiple collaborative users. Specifically,
we consider two bargaining solutions for our resource man-
agement problem: the Nash bargaining solution (NBS) and the
Kalai–Smorodinsky bargaining solution (KSBS). We provide
interpretations for the two investigated bargaining solutions for
multiuser resource allocation: the NBS can be used to maximize
the system utility, while the KSBS ensures that all users incur the
same utility penalty relative to the maximum achievable utility.
The bargaining strategies and solutions are implemented in the
network using a resource manager, which explicitly considers the
application-specific distortion for the bandwidth allocation. We
show that the bargaining solutions exhibit important properties
(axioms) that can be used for effective multimedia resource al-
location. Moreover, we propose several criteria for determining
bargaining powers for these solutions, which enable us to pro-
vide additional flexibility in choosing solution by taking into
consideration the visual quality impact, the deployed spatiotem-
poral resolutions, etc. We also determine the complexity of these
solutions for our application and quantify the performance of
the proposed bargaining-based resource strategies for different
scenarios.

Index Terms—Bargaining power, cooperative game, generalized
Nash bargaining solution (NBS), Kalai–Smorodinsky bargaining
solution (KSBS), multimedia streaming, resource allocation.

I. INTRODUCTION

Aplethora of collaborative multimedia networking applica-
tions such as multicamera surveillance and multiuser en-

terprise streaming are recently emerging. These applications are
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often deployed over time-varying and bandwidth-constrained
infrastructures such as the Internet and wireless networks. These
infrastructures do not provide support for the Quality of Service
(QoS) required by the delay-sensitive and bandwidth-intensive
multimedia data. To ensure the necessary QoS, recent research
has focused on innovative solutions that provide efficient band-
width allocation, rate-adaptation or joint source-channel coding
to cope with the rapidly varying resources [1]. However, these
adaptation techniques have been performed in isolation, at each
multimedia transmitter, and suffer from the important limita-
tion of not considering their interactions (in terms of resource
utilization) with other devices sharing the same network infra-
structure. For example, over the Internet, ReSerVation Protocol
(RSVP) [2], [3] was used to allocate bandwidth for a multimedia
bitstream based on the traffic specification provided by the video
application. In wireless LAN standards (e.g., IEEE 802.11e [4]),
a similar resource allocation mechanism is deployed. The dis-
advantage of these static reservation-based solutions is that they
do not scale to the number of users and time-varying network re-
sources. Moreover, since the allocation is static and performed
prior to transmission time, it does not consider the video se-
quence characteristics, etc. Alternatively, the resource allocation
can be determined dynamically based on the currently available
resources, participating users and their video content character-
istics. In this case, fairness policies are needed to allocate the
available resources among the multiple multimedia users. Sev-
eral resource allocation policies have been proposed in the lit-
erature. One of the simplest resource allocation policies is to
equally allocate resources to the participating users. An impor-
tant disadvantage of this policy is that it does not consider video
content characteristics. Alternatively, the notion of proportional
fairness was introduced in [5] to allocate resources based on the
users’ rate requirements. While this fairness criterion was suc-
cessfully deployed in several applications [6], [7], it is not suit-
able for content-aware multimedia applications since it does not
consider explicitly the resulting impact on video quality.

To address the above limitations, we propose a distributed re-
source management approach for multiuser multimedia trans-
mission based on the well-suited game-theoretic concept from
economics: the notion of bargaining [8]–[12]. Unlike inefficient
conventional heuristic techniques for resource allocation, the
proposed solution attempts to solve this problem directly in the
multimedia utility domain and it leads to significantly better so-
lutions for surveillance and enterprise streaming applications
because it enables collaboration for the derivation of the global
optimum operational point in terms of utility and it is robust to
changes in the network infrastructure or the type and number

1053-587X/$25.00 © 2007 IEEE



PARK AND VAN DER SCHAAR: BARGAINING STRATEGIES FOR NETWORKED MULTIMEDIA RESOURCE MANAGEMENT 3497

TABLE I
SUMMARY OF NOTATIONS AND ABBREVIATIONS

of participating transmitters. This ensures that the resulting re-
source allocation can simultaneously consider the network con-
straints, video characteristics, and the number of participating
users. Notice that bargaining is particularly suitable for such
collaborative multimedia applications since each device can be
considered as a trustworthy entity, which has incentives or is
required to participate in the global system optimization. The
resource exchanges are made possible by jointly adapting the
compression and transmission strategies of the participating de-
vices. Game theory was previously proposed to resolve resource
allocation issues for various networks in a distributed and scal-
able manner [13]–[17]. However, prior research has not con-
sidered the dynamic bandwidth exchanges among collaborative
devices and the resulting impact on the multimedia quality for
various content-aware and delay-sensitive applications.

The main contribution of our paper is the use of bargaining
solutions for collaborative multimedia streaming applications.
We define an application-specific utility function and fairness
criterion that enables an optimal allocation of resources among
multimedia users. Unlike alternative resource allocation strate-
gies that consider solely the network condition [18], we con-
sider an application-specific utility which explicitly considers
the content characteristics, resolutions, and delay constraints.
Efficient resource allocation is especially important for multi-
media applications as the necessary bandwidth for these appli-
cations is very huge and varies continuously based on the con-
tents. We introduce the bargaining powers to fairly distribute
the resources among users. We consider two bargaining solu-
tions providing different fairness policies that can be used in var-
ious resource management problems: the generalized Nash bar-
gaining solution (NBS) and the Kalai–Smorodinsky bargaining
solution (KSBS). We show that these solutions exhibit impor-
tant properties that can be used for effective resource allocation.
Note that the bargaining solutions do not require global objec-
tive functions unlike conventional optimization methods such

as Lagrangian or dynamic programming [19]. This is especially
significant for video applications, where objective functions for
the system utility cannot be easily defined as they need to jointly
consider videos at different spatiotemporal resolutions. Alter-
natively, in our bargaining-based solution, independent utilities
(with different parameters) can be deployed for the different
users. We also determine the complexity of these solutions for
our application and analyze the effect of different bargaining
powers on the various users’ performances.

This paper is organized as follows. In Section II, several basic
concepts and definitions about cooperative game theory based
on bargaining are reviewed. In Section III, we define the distor-
tion-rate based utility function and prove the convexity of the
feasible utility set, which enables us to deploy bargaining solu-
tions. In Section IV, we analyze the NBS with a simple example
and interpret the properties of this solution for our collaborative
multimedia streaming problem. In Section V, we provide an al-
ternative bargaining solution called KSBS and analyze a simple
example for multimedia applications. In Section VI, we define
a mechanism to implement the resource management and dis-
cuss possible strategies to assign bargaining powers. Simulation
results to investigate the effect of the bargaining powers are pre-
sented. Conclusions are drawn in Section VII and several proofs
used in the paper can be found in the Appendix.

II. BACKGROUND

In this section, we will briefly review several basic defini-
tions and concepts related to bargaining solutions of coopera-
tive game theory. Since there are many notations and abbrevi-
ations in this paper, we summarize them in Table I for reader’s
convenience.

In cooperative games, players (in our case, multimedia trans-
mitters or cameras) are assumed to try reaching an agreement
that gives mutual advantage. Our resource management can be
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formulated as follows. There are (video) users, which co-
operate or “bargain” to divide the available network resource
(bandwidth). Each user has its own utility function
that can be derived from the allocated resource (rate ) and
it has also a minimum desired utility , called the dis-
agreement point. The disagreement point is the minimum utility
that each user expects by joining the game without cooperation.
Hence, we assume that the initial desired resource is at least
guaranteed for each user in the cooperative game. Assume

is a joint utility set (or a fea-
sible utility set) that is nonempty, convex, closed, and bounded
and let be
the disagreement point. The pair defines the bargaining
problem. We define the Pareto optimal points/surface for a game
among multiple users such that it is impossible to find another
point that leads to a strictly superior advantage for all the users
simultaneously [17].

Definition 1 (Pareto Optimality): The resource alloca-
tion point is Pareto optimal if for each

and , then
.

Note that the inequality between two vectors in this paper rep-
resents component-wise inequality. In addition, it is known that
there might exist an infinite number of Pareto optimal points in
a game of multiple users [17]. Hence, we need criteria for de-
ciding which Pareto optimal point is the best for the system, i.e.,
we need selection criteria for the bargaining solution. Multiple
bargaining solutions that have different properties can be con-
sidered for our resource management problem (e.g., they pro-
vide consideration of optimality and fairness) [10], [20]. Specif-
ically, we investigate two well-known solutions, which are the
NBS and the KSBS.

A. NBS

NBS gives a unique and fair Pareto optimal solution
that fulfills the following axioms [21]. Let be a function

.
Definition 2 (Bargaining Set ) [10]: The bargaining set is

the set of all individually rational, Pareto optimal payoff pairs
in the cooperative payoff region .

Definition 3 (NBS): is said to be an NBS
in for the disagreement point , if the following axioms are
satisfied.

1) Individual Rationality: for all .
2) Feasibility: .
3) Pareto Optimality: is Pareto optimal.
4) Independence of Irrelevant Alternatives: If

and , then .
5) Independence of Linear Transformations: For any linear

scale transformation , .
6) Symmetry: If is invariant under all exchanges of users,

for all possible users , .
The axioms 1, 2, and 3 define the bargaining set . Thus, the

NBS is located in the bargaining set. The axioms 4, 5, and 6
are called axioms of fairness. The axiom 4 states that if the bar-
gaining solution of the larger set is found on a smaller domain,
then the solution is not affected by expanding the domain. This

axiom provides a powerful property for our resource manage-
ment problem when there are utility limits for each user. For
example, if the utility is defined as the quality of multimedia
content, it might be possible that in a specific application, a
higher quality level [e.g., 40 dB of peak signal-to-noise ratio
(PSNR)] is not required. In this case, the NBS is invariant by
limiting the maximum achievable utility if the axiom 4 is satis-
fied. The axiom 5 states that the bargaining solution is invariant
if the utility function and disagreement point are scaled by a
linear transformation. This axiom can also be used to obtain the
NBS in a linearly transformed domain when the utility function
and the disagreement point has a form of linear transformation.
This is especially useful when the utility is a linear function of
the rate like in, e.g., MPEG-FGS video coders [22]. In this case,
defining the bargaining solution in the utility or resource space is
equivalent. The axiom 6 implies that if users have the same dis-
agreement points and utility functions, they will have the same
utility regardless of their indices. This represents an important
fairness criteria for our problem that gives incentives to mul-
timedia users to collaborate, as they can rely on the system to
provide their equal treatment when their utility-resource trade-
offs vary over time.

B. KSBS

Another well-known bargaining solution is the KSBS [20].
The KSBS preserves all the axioms of the NBS except the
independence of irrelevant alternatives that is replaced by the
axiom of individual monotonicity [20]. This axiom states that
increasing the bargaining set size in a direction favorable to
user always benefits user . For example, let and
be two bargaining problems, where and the maximum
achievable utilities of all users are the same except user .
Individual monotonicity states that the user gains more utility
in than in . A simple example for this axiom is
shown in Fig. 1. More details on the KSBS will be discussed in
Section V. This axiom can be used to solve application specific
problems. For instance, it might be necessary to improve the
quality of some selected users (e.g., users transmitting more
important content) by allocating them additional resources. In
this example, the KSBS guarantees that this requirement keeps
the optimality for all users.

III. DISTORTION-RATE BASED UTILITY AND CONVEXITY

In this section, we define the utility function based on the
distortion-rate (DR) model. Since the requirement of the gen-
eralized NBS is a feasible utility set that is closed, convex, and
bounded, we need to show that the feasible utility set of our
problem is indeed convex.

A. Definition of Utility Function

Several DR models for wavelet video coders have been
proposed [23]–[25]. Since the DR model proposed in [24] is
well-suited for the average rate-distortion behavior [26] of
the state-of-the-art video coders [27], we choose it as our DR
model. The DR model in [24] is given by

(1)
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Fig. 1. A simple example to illustrate the axiom of individual monotonicity of
the KSBS. In this example, there are two bargaining sets S and S such that
S � S and the maximum achievable utility of user 1 is fixed in both bar-
gaining problems while the maximum achievable utility of user 2 is increased
(i.e., X > X ). In this case, the KSBS always allocates more utility
to user 2 due to the axiom of individual monotonicity of the KSBS.

where is the distortion of the sequence, measured as the mean
square error (MSE), and is the rate for the video sequence. ,

, and are the parameters for this DR model, which are de-
pendent on video sequence characteristics, spatial and temporal
resolutions, and delay. Note that the parameters is positive and

is nonnegative. The corresponding PSNR is given by

PSNR (2)

Correspondingly, we define the utility function that is from the
definition of PSNR without considering the logarithm and con-
stant multiplication as

(3)

where is a nonnegative constant and subscript represents user
(i.e., represents the utility function for allocated rate

to user ). Note that by the above definition of the
utility function, thus, the disagreement point is the origin in
our problem. Moreover, since each user expects a higher utility
than the disagreement point, we assume that more than of
resource is allocated to user (i.e., ). Thus, the util-
ities are positive (i.e., ). Note that the total avail-
able resource is the constraint of this resource allocation
problem.

In the next two sections, we will show that the utility func-
tion defined in (3) has two good properties: it leads to a convex

feasible utility set and the physical meaning of the NBS and the
KSBS corresponds to the desired resource optimization of our
system.

IV. CONVEXITY OF FEASIBLE UTILITY SET

In this section, we show that the feasible utility set of our
problem is a convex set.

Theorem 1: The feasible utility set is convex.
Proof: A set is convex if for any and any

with , . Let and be two joint
utility points in the feasible utility set . To show the convexity
of the set , we must show that for any with

(4)

where and are rate pairs which sat-
isfy the rate constraints (i.e., for every , , ,
and , ).
and represent utilities when the rate and
are allocated to user , respectively. Since

from the definition of the utility function and
from the rate

constraint , the feasible utility set is ex-
pressed as

(5)

To show the convexity of this set, we must show that

(6)

for any with . From (6), the following in-
equalities hold, as shown in (7) at the bottom of the
page. The last inequality is from the fact that the function

is convex for all (see Appendix I), and thus,
for all . Therefore, we

showed that the conditions of convexity in (6) hold for any two
joint utility points and , concluding that the feasible utility
set is convex.

if

if

otherwise.

(7)
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Fig. 2. A simple example of the NBS for two-user case with bargaining power
� and �.

V. NBS

In this section, we analyze the NBS and verify its optimality
for the investigated resource allocation problem. We also ana-
lyze the complexity of the NBS and provide a simple illustrative
example of how the NBS-based resource allocation can be used
in practice.

A. Analysis of the Generalized NBS

The function is the generalized NBS for the
two-user game corresponding to the bargaining powers and
[10] if

(8)
where the set is the feasible utility set defined in (5) with
and is the disagreement point. The point is in the bargaining
set of the set and the line through , , and is a sup-
porting line to at . Note that and are the intersections of
the supporting line and the horizontal and vertical lines through
the disagreement point . The point and the supporting line
are chosen to ensure that . Then, the general-
ized NBS with bargaining powers and becomes the point
, which is unique. Note that this satisfies all the axioms except

the axiom 6 described in Section II-A. If the bargaining powers
are the same (i.e., ), the axiom 6 is also satisfied.
Moreover, the generalized NBS is the maximizer of the Gener-
alized Nash Product (GNP) for the two-user case [10]. A simple
example of the generalized NBS for two-user case is depicted
in Fig. 2.

The extension of the generalized NBS for the two-user game
to the generalized NBS for the user game can be found in
[10]. The function is the generalized NBS for
user game corresponding to the bargaining powers for each
user , if

(9)
where the set is the feasible utility set defined in (5) and
is the disagreement point. is a point in the bargaining set
of the set . The dimensional plane through
and satisfying (9) is a supporting plane to at . Then, this

generalized NBS with bargaining powers , ,
is unique and is satisfying the axioms except the axiom 6 de-
scribed in Section II-A. If the bargaining powers are the same
(i.e., for all ), the axiom 6 is also satisfied. (See
Appendix II). Moreover, the generalized NBS is the maximizer
of the GNP for the user case, which is shown later. Recall that
the disagreement point is the origin in this problem. Thus, we
can set where represents a unit vector of user ’s
utility axis . Hence, the generalized NBS is the point such
that

(10)
where the bargaining set of the set is given by

(11)

Since the dimensional supporting plane at is also de-
termined by the normal vector at this point, the plane is perpen-
dicular to the gradient at . The gradient at is given by

(12)

Since the supporting plane includes all the points of , the
gradient at is perpendicular to the vector for any

, . This relationship gives

(13)

By changing the variable , we have

(14)

or, equivalently

(15)

Recall that represents the utility
and is an allocated rate to

user . Moreover, since the generalized NBS
should be in the bargaining set in (11), it must satisfy

(16)

or, equivalently

(17)
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Using (14) or (15), we can express based on for
or express based on for all . Since

(16) or (17) is generally an th degree polynomial of or ,
there is no general solution for . The solution, however,
can be obtained efficiently by simple numerical methods such
as the Newton’s method or the bisection method [28]. Since we
know, for instance, the lower and upper bound of the utility or
the rate, we can easily apply the bisection method to obtain the
rate of user 1. To use this algorithm, we change the problem
with one scalar variable. In this example, we focus on obtaining

. can be obtained in a similar way. The relation between
, and from (15) is given by (18) shown at the

bottom of the page, where
. The set of should satisfy the constraint

. We apply the bisection method described in Algorithm
1 with this constraint to obtain satisfying

(19)

Since the generalized NBS is unique when the bargaining
powers are given, is the optimal solution. Based on the
optimal solution , we can obtain all other optimal solutions

, using (18). Note that the bisection method
requires exactly iterations.

Algorithm 1: Bisection Method

Require: lower bound , upper bound
, tolerance

repeat
1) set to be the mid-point of and ;
2) obtain based on using (18)
3) check the feasibility of for the

constraint
4) if feasible , else

until difference between and is less than the tolerance
;

Note that the tolerance represents the interval in which
the optimal point is located.

B. Optimality of the Generalized NBS

In this section, we verify the optimality of the generalized
NBS that we obtained in Section IV-A. There exists only one

generalized NBS that satisfies the six ax-
ioms and the generalized NBS is the solution of the following
optimization problem [10], [17]:

(20)

where is the joint utility point in the feasible
utility set defined in (5) with , denoting bargaining power
of user . Recall that the disagreement point is
the origin in our problem. We assume that the bargaining powers
are given. We will verify that the generalized NBS is the op-
timal solution of the optimization problem in (20). For any op-
timization problem with differentiable objective and constraint
functions for which strong duality holds, any pair of primal
and dual optimal points must satisfy the Karush-Kuhn-Tucker
(KKT) conditions. Moreover, if the primal problem is convex,
the KKT conditions are sufficient for the points to be primal and
dual optimal [28]. We verify that the generalized NBS is the so-
lution of the optimization problem in (20) by showing that it
satisfies the KKT condition. Since is a concave function
(see Appendix III) and is a convex set, the primal problem
is convex. Since the is also nondecreasing function, the
optimal solution should be in bargaining set . Thus, we can
express the equivalent optimization problem

(21)

where , for all . Since the objective func-
tion and constraint functions are differentiable, we have the fol-
lowing KKT conditions:

1) Primal Constraints:
, for all ;

2) Dual Constraints: ;
3) Complementary Slackness: for all ;
4) Gradient of Lagrangian with respect to vanishes:

for all ;
where represents th element in the vector of

and and are Lagrange multipliers associated with

if

if
(18)
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th inequality constraint and equality constraint, respectively.
The gradient of the object function is

(22)

Next, we check that the generalized NBS satisfies all the KKT
conditions. The condition 1 (primary constraints) is satisfied
because the generalized NBS is a point in the bargaining set.
The condition 3 (complementary slackness) is satisfied by set-
ting because for all due to the assump-
tion that a higher utility than the disagreement point is allo-
cated to each user. Hence, condition 2 (dual constraints) is ob-
viously satisfied. From the condition 4, we have

for all . Since is a constant, we can
obtain the relation between and by setting th and th
rows to be equal. Thus, we have

(23)

This is exactly the same as the generalized NBS in (14) because
is located in the bargaining set by the condition 1. Therefore,

the generalized NBS satisfies all the KKT conditions, being the
optimal solution of the optimization problem for the GNP.

Let us now investigate the physical meaning of the general-
ized NBS and the extended GNP for our resource management
problem. From (20) with and the generalized NBS

, we have

PSNR (24)

where PSNR was achieved by the resource allocation provided
by the generalized NBS or for the th user (i.e., video se-
quence of user ). We can interpret (24) as the weighted sum
of PSNR according to the bargaining powers (i.e., importance)
of users or video sequences. In other words, the total resource

is divided into small bandwidth segments that are al-
located to the user that has the highest increase of utility by
gaining this resource. This allocation is repeated until the entire
resource is used and it can be interpreted as assigning resources
to the user with the largest rate-quality slope. This allocation
also can be viewed as a fairness criterion, which maximizes the
system utility represented by the weighted sum of PSNRs given
the total rate and the bargaining powers. Therefore, we
conclude that the generalized NBS is the optimal and fair solu-
tion for resource allocation that leads to the maximum system
utility.

C. Complexity of the Generalized NBS

In this section, we investigate the complexity for the gener-
alized NBS. We use the “flop” (floating-point operation) as a
measure of complexity. Flop counts can give us a good estimate
of the computation time of a numerical algorithm, and how the
time grows with an increasing problem size [28]. We assume
that the each operation of addition, substraction, multiplication,
and division counts one flop.

The generalized NBS is analyzed in Section IV-A. The gen-
eralized NBS is given in (18) with the constraint

. As an example, we used the bisection method to ob-
tain . Since the number of iterations for the bisection method
is exactly and one iteration requires at most

flops in (18) (given , computation
of each requires flops, the sum of them requires

flops, and one comparison operation is required), where
, 1, 2 denotes some constant flops required for square root

and comparison operation, respectively, the total number of re-
quired flops for obtaining for all is

. Therefore, we conclude that the complexity
for the NBS is if we use the bisection method.

D. Example: Generalized NBS for the Two-User Case

In this section, we determine the generalized NBS for the two-
user case, which is the simplest form of cooperative game. In
this example, we focus on the rate allocation instead of the utility
allocation due to the simplicity of calculation, since the rate and
utility have a one-to-one mapping. For the two-user case, we use
(15) to determine the rates allocated to user 1 and user 2. Let
and be an optimal rate allocation by the generalized NBS for
user 1 and user 2, respectively. Then, (15) gives

(25)

with rate constraint , ,
and . Since , we can obtain
explicitly from (25). Note that since there are two solutions for

, we should choose the one of them which satisfies the rate
constraint (i.e., , , ). The
generalized NBS for some different bargaining powers and two
different video sequences with are in Fig. 3. Note that
since we use the constant , we can interpret
(utility) as PSNR. We observe that the resource (i.e., rate) is
proportionally allocated by the bargaining powers such that the
normalized sum of PSNRs is maximized. It implies that user
which has a higher bargaining power derives a higher utility.

It should be noted that the bargaining powers can be suc-
cessfully used to enable different tradeoffs between the utili-
ties of the various users based on the visual quality impact and
not only the objective qualities (PSNR). For instance, when the
total rate equals 1 Mbps (i.e., ) in Fig. 3(b),
the achieved PSNRs of user 1 and user 2 with the bargaining
powers are approximately 38 dB (no visual arti-
facts visible) and 29 dB (poor video quality), respectively. How-
ever, to provide a fairer allocation of resources that considers the
visual impact, the bargaining powers are set to and
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Fig. 3. Plots of bargaining set and the NBS with different bargaining powers for Foreman and Coastguard sequences (a) and Foreman and Mobile sequences (b).

, leading to a PSNR of approximately 36 dB for user
1 and 31 dB for user 2. By adjusting the bargaining powers, the
visual quality of the two users becomes comparable. Moreover,
in this case, the visual satisfaction increment for the user 2 due
to the additional 2 dB in PSNR is much higher than the visual
satisfaction decrement experienced by the user 1. Therefore, the
bargaining powers form an important tool to influence the visual
satisfaction of the users. Other possible criteria for choosing the
bargaining powers will be discussed in Section VI-B.

VI. ALTERNATIVE BARGAINING SOLUTION: KSBS

In this section, we present an alternative bargaining solution
called the KSBS. The KSBS can be used when the feasible
utility set is not convex. (Recall the NBS requires the convexity
of the feasible utility set). Moreover, the KSBS provides dif-
ferent type of fairness as opposed to the NBS. We analyze the
KSBS and the complexity of the KSBS.

A. Analysis of the Generalized KSBS

In this section, we analyze the KSBS. The KSBS for two users
satisfies [20], [29]

(26)

where denotes the feasible utility set defined in (5) with
and is the KSBS in the set and
is the disagreement point.
is called the ideal point [30], which is the point of the best
achievable utility for user 1 and 2 in the set and is
the maximum value of such that . A
simple example of the KSBS for the two-user case is depicted in
Fig. 4. The extension of the two-user KSBS to the -user KSBS
satisfies

(27)

where is the feasible utility set defined in (5) with and
is the KSBS and is the dis-

agreement point, which is the origin in our problem.
is the ideal point for users and

Fig. 4. Simple example of KSBS for the two-user case.

is the maximum value of such that
. As we stated in Section IV-A, the bargaining set is defined as

(28)

The KSBS is the intersection between the bargaining set and
the line defined by

(29)

where since the disagreement point is the
origin. We can solve these equations by setting

for a constant and it makes possible
to express each for all . Since this point
should be in the bargaining set, we substitute these ’s into

and solve
this equation. As aforementioned in Section IV-A, this equation
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Fig. 5. Plots of bargaining set and the KSBS with different bargaining powers for Foreman and Coastguard sequences (a) and Foreman and Mobile sequences (b).

is generally an th degree polynomial of . Thus, the same nu-
merical method such as the bisection method can be applied to

(30)

With , we can obtain all using . There-
fore, we obtain the KSBS.

Let us now investigate the physical meaning of the KSBS.
Since the KSBS is located in the bargaining set as well as in the
line in (29), the bargaining solution must satisfy

(31)

where , , for all .
Taking in (31) with , we have

PSNR PSNR

PSNR PSNR (32)

and equivalently

PSNR

PSNR (33)

where PSNR is the maximum achiev-
able PSNR for user and PSNR is achieved PSNR by the KSBS

. The PSNR drop denoted by PSNR PSNR
PSNR represents the quality decrease (or drop) from user ’s
maximum achievable quality. If the same bargaining powers are
used in (33), the KSBS allocates resources such that the quality
drop for all users are the same. Importantly, note that the KSBS
can be thus interpreted as an utility-based fair resource alloca-
tion, since all users incur the same utility penalty by partici-
pating in the resource management game. If different bargaining
powers are used, the user with a higher bargaining power obtains
a higher PSNR than the other users.

B. Complexity of the Generalized KSBS

The KSBS is analyzed in Section V-A. The KSBS is given in
(27) with in (30) as

(34)

The same analysis in Section IV-C can be applied to the KSBS.
The required flops for are
in (30) and computation of each utility ,

requires flops. Therefore, the total required
flops is and it also has a
complexity of if we use the bisection method for obtaining

.
Summarizing, since the complexity of the two bargaining so-

lutions is , the two bargaining solutions provide efficient
methods for the resource management that can be easily used in
practice.

C. Example: Generalized KSBS for the Two-User Case

In this section, we present the optimal solution by the KSBS
for the two-user case. We set the line given in (29) as

(35)

where . Setting
results in

(36)

Since the KSBS is in the bargaining set , the solution
should satisfy

(37)

Hence, we can obtain by solving the quadratic equation (37),
and choose the solution such that is in the bar-
gaining set . The KSBS for different bargaining powers and
different video sequences is illustrated in Fig. 5. The KSBS
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TABLE II
MODEL PARAMETERS FOR VIDEO SEQUENCES. (VIDEO TYPE, TEMPORAL LEVEL (TL), FRAME RATE)

gives proportional allocation of utility according to bargaining
powers. Note that the KSBS is generally different from the NBS.

VII. SYSTEM SETUP AND SIMULATION RESULTS

In this section, we define a mechanism or system to imple-
ment the previously analyzed bargaining solutions in a network
infrastructure. Then we briefly discuss the possible criteria to
determine the bargaining powers, provide several simulation re-
sults, and compare the achieved quality (i.e., PSNR) using the
various bargaining solutions and resource allocation scenarios.
In our simulations, we assume that there are two or three users
and assume “ideal” network conditions (i.e., no loss, the entire
network resources (bandwidth) are allocated to the participating
users). This scenario can be extended for wireless communi-
cations, congested networks, etc. The parameter values for the
DR model are given in Table II determined based on a state-of-
the-art wavelet video coder [27], which performs a number of
temporal decomposition levels (TL) and adaptive motion com-
pensated temporal filtering for each TL.

A. System Setup

The system configurations for the resource management are
followings. There are multiple users, which try to transmit mul-
timedia streams (e.g. video sequences) having different char-
acteristics such as different resolutions, delay constraints, etc.,
over the same network. To allocate the available resources to
users, there exists a resource manager, which decides the bar-
gaining powers and distributes the entire available resources to
users based on the bargaining powers. To do this, multiple users
in a network send their information of parameters
to the resource manager and the resource manager decides the
bargaining powers for the bargaining solutions based on the
information of the total available resource in a network, de-
sired quality level for multimedia streams, and parameters that
users sent. Subsequently, the resource manager computes the
bargaining solutions and informs the users the rate at which they
(transmitted videos) can operate.

B. Discussion About Assignment of Bargaining Powers

In this section, we present how to determine the bargaining
powers for the various bargaining solutions. As we discussed in
Section IV, the bargaining solutions are strongly dependent on
the bargaining powers. Therefore, the bargaining powers should
be determined appropriately based on applications and network
constraints. Note that the bargaining solutions can be repeatedly
applied every time a user’s content characteristics change or

the network constraints change. The following criteria can be
considered for determining the bargaining powers.

1) Content Characteristics: Different motion and texture
information can be extracted from the videos and higher bar-
gaining powers can be assigned to the high motion or complex
texture content. For example, the bargaining powers can be
determined by explicitly considering the nonlinear behavior
of the Human Visual System [31]. Moreover, in our previous
work [32], we have shown that this behavior can strongly
depend on the specific users’ Human Visual System. This can
be easily exploited in the presented bargaining-based resource
allocation by adjusting the bargaining powers depending on the
instantaneous content and user characteristics.

2) Semantics of Videos: The semantic relevance of the var-
ious content can be extracted on the fly and a higher bargaining
power can be assigned to the more important video sequence.

3) Spatio-Temporal Resolution of Videos: Different spatial
resolution for video sequences such as the CIF and QCIF format
and different temporal resolutions for the video sequences such
as 30 and 10 Hz can be deployed. The lower spatial and temporal
resolutions lead to a higher PSNR benefit for the same allocation
resource. However, PSNR does not account for the decreased
resolution and this is compensated by increasing the bargaining
power of the higher resolution sequence.

4) Channel Condition: Different users experience different
channel conditions (e.g., different path loss, SNR, fading, etc.).
We can allocate a higher bargaining power to users with a bad
channel condition or a good channel condition.

5) Delay of Application Characteristics: Different delay
constraints are required for multimedia applications. For ex-
ample, interactive applications such as video conferencing or
surveillance system require stringent delay constraint (less than
200 ms) while for multimedia streaming applications delays
of 1–5 s are tolerable [33]. A possible allocation of bargaining
powers would be to allocate a higher power to low-delay video
to facilitate its transmission.

Examples of the influence of bargaining powers on the bar-
gaining solutions will be illustrated in the next sections.

C. Comparison of the Generalized NBS and Equal Rate
Allocation Scenario (ERAS)

Based on (18), the generalized NBS allocates resources ac-
cording to the video characteristics and bargaining powers. We
compare this solution with the same bargaining powers to ERAS
[34] that allocates the same amount of resource to each user
without considering the video characteristics or their impor-
tance. Assume that there are three users and set the same bar-
gaining powers, i.e., for the generalized
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Fig. 6. Plots of each user’s achieved PSNR and average PSNR by the generalized NBS and ERAS. User 1: Foreman (CIF, TL = 4, 30 Hz), user 2: Coastguard
(CIF, TL = 4, 30 Hz), user 3: Mobile (CIF, TL = 4, 30 Hz).

TABLE III
ALLOCATED RATES BY THE GENERALIZED NBS AND ERAS. FOREMAN, COASTGUARD, AND MOBILE (CIF, TL = 4, 30 Hz)

NBS and compare the system performance with ERAS. For this,
we determined the average PSNR for the generalized NBS and
ERAS solutions as

PSNR (38)

PSNR (39)

where , , and are determined by the generalized
NBS. Recall that the generalized NBS is the maximizer of the

PSNR . Thus, (38) leads to the maximum value at the
generalized NBS for the same bargaining powers. Note that the
average PSNR for the generalized NBS is always higher than
that of ERAS since the generalized NBS always achieves the
maximum value of PSNR .

Fig. 6 shows the average PSNR for the generalized NBS with
the same bargaining powers and ERAS. User 1, user 2, and user
3 trasmit the Foreman, Coastguard, and Mobile sequences at
CIF resolution 30 Hz, respectively. Table III shows the allo-
cated rates to each user by the generalized NBS and ERAS for
different total available rates . We observe that the gen-
eralized NBS gives always a higher average PSNR value than
that of ERAS. This is especially true at low rates (when the re-
sources are scarce), where a judicious use of resource is essen-
tial. Therefore, we conclude that the generalized NBS always
provides better average PSNR than ERAS even though we are

not considering the bargaining powers (i.e., the same bargaining
powers are used).

D. Comparison of the NBSs With Different Bargaining Powers

Previously, we compared the average PSNR for the general-
ized NBS with the same bargaining powers and ERAS. In this
section, we compare the weighted PSNR for the generalized
NBS with different bargaining powers to examine the effect of
bargaining powers. By the definition of the generalized NBS,
more resource is allocated to the user having higher bargaining
powers. Different bargaining powers are essential when we con-
sider fairness for the cooperative game theory. For example,
consider the two-user case with different spatial resolution video
sequences. User 1 transmits Foreman sequence at CIF resolution
at 30 Hz and user 2 transmits Foreman sequence at QCIF reso-
lution at 30 Hz. Definitely user 2 always achieves higher PSNR
than user 1 if the same rate is allocated. In this case, the resource
manager could allocate more rates to user 1 to achieve a similar
level of quality between users. We consider another example for
different temporal resolution video sequences. User 1 transmits
Foreman sequence at CIF resolution at 30 Hz while user 2 trans-
mits Foreman sequence at CIF resolution at 15 Hz. Obviously,
user 2 always achieves higher PSNR that user 1 if the same rate
is allocated. In this case, the resource manager could allocate
more rate to user 1 to achieve similar level of quality between
users. These arbitrations are performed by changing bargaining
powers to achieve a similar level of quality between users. In
this paper, we present the simulation results that show that the
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Fig. 7. Different spatial resolution: plots of individual PSNRs and weighted sum of PSNRs for the same and different bargaining powers. User 1: Foreman (CIF,
TL = 4, 30 Hz), user 2: Foreman (QCIF, TL = 4, 30 Hz).

Fig. 8. Different temporal resolution: plots of individual PSNRs and weighted sum of PSNRs for the same and different bargaining powers. User 1: Foreman (CIF,
TL = 4, 30 Hz), user 2: Foreman (CIF, TL = 4, 15 Hz).

change of bargaining powers plays an important role in perfor-
mance and fairness. We provide a simple algorithm in Algorithm
2, as an illustration, to obtain bargaining powers to allocate re-
sources such that each user achieves similar quality. Our future
study will investigate the optimal and fair decision of bargaining
powers.

Algorithm 2: Determine Bargaining Powers to Achieve a
Similar Quality Level

Require: Desired Quality: , DR Model Parameters: , ,

1) Calculate rates corresponding to the desired quality
for each user from the DR model.

2) Determine bargaining powers such that
for all .

Fig. 7, Fig. 8, Fig. 9, and Fig. 10 show the weighted sum
of PSNR and individual PSNR of each user achieved by the
generalized NBS for the same and different bargaining powers
for sequences that are different spatial resolution, temporal
resolution, application delays, and video, respectively. The
bargaining powers are obtained using Algorithm 2 such that

the each user’s achieved PSNR is similar quality. Note that
in the figures represents the generalized NBS for the

bargaining powers and for user 1 and user 2, respectively,
Fig. 7 shows individual PSNRs and the weighted sum of

PSNRs, which are achieved by the generalized NBS with
the same and different bargaining powers, for the two users
that transmit different spatial resolution sequences. User 1
transmits Foreman sequence at CIF resolution 30 Hz and user
2 transmits Foreman sequence at QCIF resolution 30 Hz. In
this case, user 2 can achieve higher PSNR than that of user 1
if the same bargaining powers are used. To achieve a similar
level of quality, the bargaining powers can be adapted by the
Algorithm 2 with the desire quality level . For these
sequences, the determined bargaining powers are
and . Since the bargaining power for user 1 is
decreased than the equally divided bargaining power while
the bargaining power for user 2 is increased than the equally
divided bargaining power, we expect that user 1 achieves less
PSNR and user 2 achieves more PSNR compared with the
same bargaining power case. This argument is verified from
the individual PSNR and the weighted sum of PSNR in Fig. 7.
This can be viewed as a tradeoff between fairness and system
performance. We can focus on the fairness at the expense of the
overall system performance (i.e., the weighted sum of PSNR).
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Fig. 9. Different delay: plots of individual PSNRs and weighted sum of PSNRs for the same and different bargaining powers. User 1: Foreman (CIF, TL = 4,
30 Hz), user 2: Foreman (CIF, TL = 2, 30 Hz).

Fig. 10. Different video sequences: plots of individual PSNRs and weighted sum of PSNRs for the same and different bargaining powers. User 1: Foreman (CIF,
TL = 4, 30 Hz), user 2: Mobile (CIF, TL = 4, 30 Hz).

The same arguments can be applicable to other simulation
results.

Fig. 8 shows individual PSNRs and weighted sum of PSNRs
for the same and different bargaining powers for the sequences
that are different temporal resolution. User 1 transmits Foreman
sequence at CIF resolution 30 Hz and user 2 transmits Foreman
sequence at CIF resolution 15 Hz. Since two sequences are dif-
ferent from the temporal resolution, they can achieve different
PSNRs at the same rate (i.e., the sequence of lower temporal res-
olution can achieve higher PSNR than that of higher temporal
resolution if the same rates are allocated). By changing the bar-
gaining powers using the Algorithm 2 with the desired quality
level , the individual PSNRs and the weighted sum
of PSNRs with the bargaining powers are in Fig. 8.

Fig. 9 and Fig. 10 show the individual PSNRs and weighted
sum of PSNRs for the sequences that are different delay and
different video. In Fig. 9, higher delay is due to the larger
number of temporal level in a state-of-the-art wavelet video
coder [27]. User 1 transmits 1 transmits Foreman sequence
at CIF resolution 30 Hz with 4 temporal levels and user 2
transmits Foreman sequence at CIF resolution 30 Hz with 2
temporal level. Since the sequence of the user 2 has lower tem-
poral level, user 2 can achieve lower PSNR with lower delay.

Thus, the resource manager allocates more rate to user 2 to
achieve a similar level of quality between users. In Fig. 10, the
different PSNRs come from the different video characteristics.
User 1 and user 2 transmit the Foreman and Mobile sequences
at CIF resolution 30 Hz. Due to the own characteristics of
each sequence, the user 1 can achieve higher PSNR than user
2 if the same rates are allocated. Hence, the resource manager
would allocate more rates to user 2 to achieve a similar level
of quality.

From above examples, therefore, we conclude that bar-
gaining powers of the generalized NBS play an important role
for the tradeoff between fairness and performance and they
need to be chosen appropriately depending on the application
requirements.

E. Comparison of the KSBS With Different Bargaining Powers

In this section, we investigate an alternative bargaining solu-
tion and compare the KSBS with the same and different bar-
gaining powers. In this simulation, we assume that there are
three users that transmit three different video sequences. The
achieved PSNRs for the same and different bargaining powers
are listed in Table IV. The different bargaining powers are also
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TABLE IV
ALLOCATED PSNR BY KSBS (SAME BARGAINING POWERS � = � = � = 1=3 AND DIFFERENT BARGAINING POWERS � = 0:0832, � = 0:1543,

� = 0:7625. USER 1: FOREMAN (CIF), USER 2: COASTGUARD (CIF), USER 3: MOBILE (CIF)

determined by the Algorithm 2 to achieve a similar level of
quality, and they are , , and

. Compared with the same bargaining powers (i.e.,
), only the user 3 has higher bargaining powers

after adapting bargaining powers. Hence, we expect that the user
3 obtains higher PSNRs in different bargaining power case. In
Table IV, we observe that the user 3 achieves higher PSNR after
adapting bargaining powers. Moreover, the achieved PSNR for
each user is a similar level of quality after changing bargaining
powers even though the average PSNRs are lowered compared
with the same bargaining case. Therefore, the KSBS also has a
tradeoff between fairness and performance.

VIII. CONCLUSION

In this paper we propose an alternative and novel solution
to the problem of rate allocation for collaborative video users,
based on the bargaining methodology from game theory. As
shown in this paper, in axiomatic bargaining theory, a solution
is selected out of the set of possible choices that satisfies a set
of rational and desirable axioms. Hence, unlike the conventional
rate allocation methods, which require a global objective func-
tion, the purpose is not to maximize a system utility, but rather
select a solution from the Pareto optimal surface and satisfy
several rational properties in making the choice. We provided
physical interpretations for the two investigated bargaining so-
lutions. We found that the NBS and the KSBS can be interpreted
as two different fairness criteria from which a resource manager
can choose depending on the application scenario. The NBS
can be used to maximize the system utility (i.e., weighted sum
of PSNRs of the users), while the KSBS ensures that all users
incur the same utility penalty relative to the maximum achiev-
able utility. We also showed that the complexities for the bar-
gaining solutions are both linear to the number of users. In ad-
dition, the bargaining powers can be used to provide additional
flexibility in choosing solution by taking into consideration the
visual quality impact, the deployed spatiotemporal resolutions,
etc. Summarizing, the proposed bargaining solutions can pro-
vide a good solution for fair and optimal resource allocation
for multi-user multimedia transmission with reasonable com-
plexity, robustness, and flexibility.

APPENDIX I
PROOF OF THE CONVEXITY OF THE FUNCTION

To show that the function
is convex, the second deriva-

tive of must be nonnegative for all . Let
be th term of . The second derivatives of is given by

(40)

Since is positive, is nonnegative, and is a positive con-
stant, is obviously nonnegative. From the
constraint , we have , and thus

since and are positive. With the same
argument, we have . Hence, for , we
have

(41)

Sum of two inequality in (41) gives
. Thus, the second derivative of the function is positive,

and it means that the function is convex. Since the sum of
convex function is also convex, is convex.

APPENDIX II
PROOF OF THE UNIQUENESS OF THE GENERALIZED NBS FOR

THE -USER CASE

In this section, we will prove that the generalized NBS for
-user case is unique and satisfies the axioms described in the

Section II-A. Note that this proof is an extension for -user case
from the proof in [10] for the two-user case.

A bargaining solution is a function with the
property that is in the set , where is the feasible
utility set and is the disagreement point. A generalized NBS
is a function such that ,

, for all as in (9). We can rewrite the
axioms.

1) Independence of Linear Transformations: For any linear
scale transformation , .

2) Pareto Optimality: (i) . (ii)
.

3) Independence of Irrelevant Alternatives: If ,
then .



3510 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 7, JULY 2007

4) Symmetry: If is invariant under all exchanges of users,
for all possible user , .

Note that any generalized NBS satisfies the axioms
1, 2, and 3 [10]. We will show that there are the only bargaining
solutions that satisfy the axioms. That is, if sat-
isfies the axioms 1, 2, and 3, then is a generalized NBS for
bargaining powers for all .

First, consider the simple bargaining problem in which
the disagreement point is the origin and the feasible utility set
consists of all payoff pairs that satisfy . By the
axiom 2, the solution for the bargaining problem

lies somewhere on the dimensional plane joining
for all , where represents a unit vector of user ’s

utility axis . Choose satisfying , for
all so that .

Next consider any bargaining problem . Let
, where G is the generalized NBS corre-

sponding to the bargaining powers , . Then,
, where is defined in (9). The aim is to prove

that . By choosing linear transformation
functions such that and
for all , the linear transformation function has
the property that , for all . Since
linear transformation functions preserve convexity, the image
of the dimensional plane through and ,
remains a supporting plane to the image of the set . That is,
the dimensional plane through
and is a supporting plane to the convex set . Thus,
by the axioms 1

(42)

Since , by the axiom 3. Since
and , it follows from (42) that

. Thus

(43)

where is the inverse function to . Applying the axiom 1,
we have

(44)

This completes the proof for the uniqueness of the generalized
NBS.

If the generalized NBS satisfies the axiom 4, it requires that
the solutions be symmetric since the bargaining problem
is symmetric. Therefore, the bargaining powers should be

for .

APPENDIX III
PROOF OF CONCAVITY OF THE GNP

In this section, we show that the GNP is concave function. We
prove that the GNP is concave by showing that the Hessian of
the GNP is negative semidefinite on the convex set . The GNP
is given by with , ,

and for all . The gradient of the GNP is given in (22)
and the Hessian of the GNP is given by

if

if

(45)

The function is concave if and only if is nega-
tive semidefinite (i.e., for all nonzero vectors

since is real symmetric matrix). Direct computation
of for nonzero vector gives

(46)

(47)

(48)

The inequality from (47) to (48) is from the Jensen’s inequality
since the function is convex, , and

for all . Therefore, is negative semidefinite,
and thus, the function is concave.
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