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Abstract—In this paper, we consider the resource reciproca-
tion among self-interested peers in peer-to-peer (P2P) networks,
which is modeled as a stochastic game. Peers play the game by
determining their optimal strategies for resource distributions
using a Markov decision process (MDP) framework. The optimal
strategies enable the peers to maximize their long-term utility.
Unlike in conventional MDP frameworks, we consider heteroge-
neous peers that have different and limited ability to characterize
their resource reciprocation with other peers. This is due to the
large complexity requirements associated with their decision
making processes. We analytically investigate these tradeoffs and
show how to determine the optimal number of state descriptions,
which maximizes each peer’s average cumulative download rates
given a limited time for computing the optimal strategies. We also
investigate how the resource reciprocation evolves over time as
peers adapt their reciprocation strategies by changing the number
of state descriptions. Then, we study how resulting download rates
affect their performance as well as that of the other peers with
which they interact. Our simulation results quantify the tradeoffs
between the number of state descriptions and the resulting utility.
We also show that evolving resource reciprocation can improve
the performance of peers which are simultaneously refining their
state descriptions.

Index Terms—Evolution of resource reciprocation, Markov de-
cision process (MDP), peer-to-peer (P2P) network, resource recip-
rocation, stochastic game.

I. INTRODUCTION

I N recent times, peer-to-peer (P2P) architectures for content
distribution have been emerging as a key technology in the

Internet and various research has been devoted to making P2P
applications more efficient and robust (e.g., [1]–[5]).

In this paper, data-driven approaches adopting pull-based
techniques [3], [4], [6], [7] are considered, where different
types of data are divided into chunks of uniform length and are
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then disseminated over the P2P network. Each peer possesses
several chunks, which are shared among interested peers, and
information about the availability of the chunks is periodi-
cally exchanged among the associated peers. Based on this
information, peers can form groups, collections of peers, with
which they can continuously exchange their chunks. While this
approach has been successfully deployed in various applica-
tions over P2P networks, key challenges such as determining
optimal resource reciprocation strategies among self-interested
peers still remain largely unaddressed. For example, several
multimedia streaming protocols over P2P networks have been
designed based on the assumption that peers cooperate with
each other on disseminating multimedia chunks or peers are
altruistic [4], [8], [9]. However, such protocols do not provide
efficient solutions for a self-interested peer, which would like
to maximize its own utility (e.g., [10]) by reciprocating its
available resources.

The peer selection strategy deployed in BitTorrent systems is
based on a tit-for-tat (TFT) strategy, where a peer selects some
of its associated peers (i.e., leechers), which are currently up-
loading at the highest rates, and provides them its content for
downloading [3]. While this strategy is currently deployed in
BitTorrent systems, a key disadvantage of the peer selection
strategies in BitTorrent systems is that peers decide how to deter-
mine their resource reciprocation by evaluating only the current
upload rates which it receives from its associated peers, and does
not consider how this reciprocation will impact their upload
rates in the future. Moreover, these strategies do not consider the
P2P system’s dynamics, which will impact the resource recipro-
cation, because a peer should optimally determine its uploading
policy based on the experienced dynamics and its expectation
of how these dynamics will evolve in the future. In other words,
each peer decides its peer selection and resource reciprocation
to the other peers myopically. Since peers in P2P networks are
generally involved in repeated and long-term interactions, such
myopic decisions on peer selection and bandwidth allocation
can result in a suboptimal performance for the involved peers.
To take into account the repeated nature of the resource recip-
rocation among self-interested peers, an evolutionary instanti-
ation of the prisoner’s dilemma and the generalized prisoner’s
dilemma is proposed in [11] and [12] as a resource reciproca-
tion model. However, these works only consider the case where
peers have a limited set of simple actions, i.e., full coopera-
tion (allowing download) or defection (ignoring download re-
quests), but does not address how to divide each peer’s avail-
able resources (i.e., the level of cooperation). Thus, they do not
provide solutions for self-interested peers to allocate their re-
sources such that they can maximize their cumulative download
rates through long-term interactions.

1053-587X/$26.00 © 2010 IEEE
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To address these challenges, in our previous work [13], we
model the resource reciprocation among self-interested peers
as a resource reciprocation game, where each peer decides
its actions (i.e., peer selection and resource allocations) by
considering the probabilistic resource reciprocation behavior
of its associated peers. The resource reciprocations among the
peers are formulated as a Markov decision process (MDP) [14],
which enables peers to take foresighted actions that maximize
their expected cumulative utilities (e.g., download rates and
multimedia quality). Note that this game theoretic modeling
is only used here to formulate the dynamic and repeated in-
teractions emerging among peers. However, the focus of this
paper is on determining optimal strategies based on which the
peers can “play” the reciprocation game in order to maximize
their long-term performance. As shown in [13], the MDP-based
foresighted strategies improve the performance of existing P2P
applications, and thus, they can be incorporated into existing
solutions as peer selection and resource allocation strategies.
However, it is not investigated in [13] how heterogeneous peers
decide the state granularity (i.e., how accurately describe the
download rates) and how they interact with each other based
on their different abilities.

Unlike in conventional MDP frameworks, where peers can
completely recognize their states from their associated peers,
we consider heterogeneous peers that have different and limited
abilities to characterize their resource reciprocation due to their
computational complexity and delay constraints. Hence, the re-
source reciprocation of each peer is described based on a finite
number of state descriptions. While using more state descrip-
tions enables the peers to more accurately model their resource
reciprocation, it enlarges the state space, leading the peers to re-
quire more time to compute their optimal policies in an MDP
framework. To address this tradeoff, we analytically show that
an optimal number of state descriptions exists, which leads peers
to maximize their time averaged cumulative download rates and
multimedia quality given a limited time for computing the op-
timal strategies.

The optimal strategy computed based on a peer’s MDP model
only identifies one optimal action for each state. However, peers
cannot differentiate among all possible download rates from
their associated peers because they have a limited number of
state descriptions to characterize them. Consequently, a peer
may have multiple actions that are optimal because these ac-
tions do not alter its associated peers’ states, and thus, they do
not alter the resource reciprocation of these peers. This obser-
vation motivates the peers to mutually improve their resource
reciprocation strategies over time. We analytically show that
multiple optimal actions exist for heterogeneous peers who have
different abilities to describe their resource reciprocation. More-
over, we show that peers can mutually improve their download
rates (in addition to the download rates obtained by the optimal
strategy determined using the MDP) only if they simultaneously
refine their state descriptions. We also investigate that the het-
erogeneity of peers will drive their group formation, and con-
clude that peers prefer to form groups with other peers, which
not only have similar or higher upload rates, but also similar
abilities to refine their state descriptions.

Fig. 1. Group update process and related processes.

This paper is organized as follows. In Section II, the proposed
resource reciprocation model for P2P networks is presented. In
Section III, an MDP-based resource reciprocation strategy is
discussed. In Section IV, we analytically show that an optimal
number of state descriptions exists for MDP-based resource re-
ciprocation, which enables the peers to achieve their maximum
average download rates. In Section V, we analytically study how
the peers with different capabilities to refine their state descrip-
tions can evolve their resource reciprocation strategies and dis-
cuss its impact on their download rates. Simulation results are
shown in Section VI and conclusions are drawn in Section VII.

II. RESOURCE RECIPROCATION MODELS

In general P2P networks, peers continuously interact with
each other by repeatedly reciprocating their resources (i.e., up-
load bandwidth). In this paper, we focus on studying the re-
source reciprocation among directly connected peers based on
the assumption that each peer can access its previous actions and
observed actions from its associated peers.

A. Resource Reciprocation in Groups of P2P Networks

In data-driven P2P networks (e.g., [3], [4], [6], and [7]), peers
would like to associate themselves with other peers which pos-
sess content in which they are interested. When peers possess
content which another peer desires and vice versa, they nego-
tiate how to share their content with each other (i.e., resource
reciprocation). The set of peers which share their content and
resources (i.e., associated peers) is referred to as a group in this
paper.1 The set of peers indexed by in the group of
peer is denoted by , . Note that if peer
is in group , then it implies that peer is also included in the
group of peer , i.e., . Due to the dynamics introduced
by peers joining, leaving, or switching P2P networks, informa-
tion about groups needs to be regularly (periodically) updated or
it needs to be updated when group members change. The group
update process and related processes are depicted in Fig. 1. We
assume that each peer decides its resource reciprocation in its
group using an MDP, which enables each peer to maximize its
cumulative expected download rates.

Next, we briefly discuss the MDP-based resource reciproca-
tion model in this paper. A similar MDP-based resource recip-
rocation model can be found in [13].

1A set of associated peers and a group are interchangeably used. Some exam-
ples of groups in P2P networks are swarms [7], partnerships [4], etc.
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B. Resource Reciprocation Model

For a peer , an MDP is a tuple , where is
the state space, is the action space,

is a state transition probability function that maps the state
at time , corresponding to an action and the

next state at time to a real number between
0 and 1, and is the reward derived in state .2

The details are explained as follows.
1) State Space : A state of peer represents the received

resources from the peers in . Let be peer ’s
resources received from its associated peers in , where

denotes the resources provided to
peer by peer having its available maximum upload band-
width . Hence, is a peer ’s download rate from peer

(i.e., upload rates of peer to peer ). For peer , down-
load rates are recognized and represented by discrete values3

based on a function , i.e., a download rate from peer is
mapped into . Hence, the state
space of peer can be expressed as

Since a state is represented by a set of values of
and each of is selected among discrete values of

, is referred to as a set of state
descriptions in this paper. Note that it can be easily observed
that using more state descriptions results in higher accuracy
for describing download rates. The impact of the number
of state descriptions on resource reciprocation, evolution of
resource reciprocation, and group formation is discussed in
Sections IV–VI, respectively.

2) Action Space : An action of peer is its resource allo-
cation to the associated peers in . We assume that the upload
bandwidth of peer is decomposed into “units” of bandwidth
[16], denoted by . Thus, the actions are the number of units
of bandwidth that are allocated to the associated peers, i.e.,

where . Hence, action determines peer ’s down-
load rate from peer , i.e., . Note that the actions
of a peer determine the states of its associated peers.

3) State Transition Probability : A state transition
probability represents the probability that an action of a peer in
a state will lead to another state. Thus, given a state at
time , an action of peer can lead to another
state at with probability , expressed as

2We assume that a resource reciprocation requires time duration ��, which
can be introduced due to estimating or measuring each peer’s download rates
[15].

3A continuous value of � can be discretized by peer � based on its quan-
tization policy, as the bandwidth of each peer can be decomposed into several
“units” of bandwidth by the client software, e.g., [16].

In this paper, we assume that the state transition probabilities
of peers are known; that is, they have been efficiently identified
based on, e.g., [13], and available.

4) Reward : The reward of a peer in a state represents
its total download rate in that state. Since the state of peer

represents the set of individual download rates from its as-
sociated peers, the total download rates in a state can be ex-
plicitly determined. In this paper, we assume that the reward
in a state represents a guaranteed down-
load rate, i.e., , where denotes
the guaranteed download rates from peer . Note that the re-
ward in a state can alternatively represent the average or max-
imum download rates by defining the function accordingly.
A more detailed discussion of the function will be given in
Section IV-A.

5) Resource Reciprocation Policy : The solution to the
MDP is represented by peer ’s optimal resource reciprocation
policy , which is a mapping from the states to optimal actions,
i.e., for all . Hence, peer can decide its op-
timal actions in each state based on the optimal policy . The
optimal policy can be obtained using well-known algorithms
such as value iteration and policy iteration [14]. Note that it is
known that these algorithms always converge to given state
space, action space, reward function, and state transition proba-
bility function. We assume that the optimal policy is periodically
updated to capture and cope with changes in the resource recip-
rocation behavior of associated peers. Moreover, the policy can
be updated when a new peer joins or leaves the group.

III. MDP-BASED RESOURCE RECIPROCATION

A. MDP-Based Resource Reciprocation Process

As discussed in Section II, a set of download rates from asso-
ciated peers within a group is modeled as a peer’s state. Given
a state, a peer can decide its corresponding optimal action (i.e.,
upload bandwidth allocations) based on its optimal policy deter-
mined by the MDP. In addition to the optimal action, as will also
be shown in Section V, a peer may have multiple actions that
are optimal. This is because these actions do not alter its asso-
ciated peers’ states, and therefore, they do not alter the resource
reciprocation from these peers. By selecting such actions, re-
source reciprocation can evolve for the peers that can succes-
sively refine their states, which leads them to mutually improve
their download rates besides the rates obtained by the optimal
strategy determined using the MDP. These general resource re-
ciprocation processes, including MDP-based resource recipro-
cation and the evolution of resource reciprocation, are depicted
in Fig. 2.

To cope with the dynamics introduced by peers joining or
leaving P2P networks, each peer needs to update its optimal
policy. Some examples that require policy updates include: 1)
when a new peer joins the group, 2) an associated group member
leaves, or 3) the resource reciprocation behavior of an associ-
ated peer changes. Note that for 3), even if the group members
of a peer do not change, the resource reciprocation behavior of
its associated peers can change as a result of changes in their
corresponding groups. Hence, to adapt to dynamics that can



1208 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010

Fig. 2. Resource reciprocation process in group � .

propagate across the entire network, each peer needs to regu-
larly update its own policy. The policy update processes play
a similar role to the periodic rechoke in BitTorrent [3], [7],
where a peer periodically (typically every 10 s) updates cur-
rent download rates from its associated peers and shares its re-
sources with the peers selected based on the TFT strategy. The
rechoke process needs to be additionally performed whenever
swarms are changed [7]. Hence, in the proposed approach, we
assume that the optimal policy is updated regularly (with period

), or is additionally updated within the period (i.e., )
when group member is changed. Note that it takes time for peers
to update their policies as they need to find new policies, and
the complexity of this computation depends on how the peers
model their resource reciprocation (i.e., the number of states).4

Thus, the peers should decide how accurately they model the
resource reciprocation, as they may take actions that are not
optimal while updating their policies, which can lead to worse
cumulative download rates. An illustrative example for regular
policy update and the corresponding cumulative (discounted)
expected download rates (CEDR) is shown in Fig. 3.

Note that the time required to update policy , denoted by
, and CEDR given policy , denoted by ,

depends on the accuracy for modeling the resource reciproca-
tion, as it determines the size of the state space, which will
be discussed in Section IV. In the next section, we study the
MDP-based resource reciprocation strategy, where the policies
are determined by the MDP framework.

B. MDP-Based Resource Reciprocation Strategy

As discussed in Section II-B, each peer’s action represents
the upload bandwidth allocation to its associated peers, and can
be determined based on each peer’s policy . Peers that use the

4For the value iteration algorithm, the complexity is quadratic in the number
of states [17].

Fig. 3. Regular policy update and CEDRs. In previous period, time � was re-
quired for policy update.

MDP framework for their resource reciprocation aim to maxi-
mize their CEDRs by strategically allocating their upload band-
width. The CEDRs at time can be expressed as

(1)

where is a constant referred to as a discount
factor,5 which determines a tradeoff between immediate reward
and future reward, and for

. More precisely, the expression in (1) can be
rewritten as (2), shown at the bottom of the page. Hence, peer
can determine a set of actions that maximizes in
(2) for every state in , which leads to an optimal policy .
The optimal policy thus maps each state into a cor-
responding optimal action , i.e., .

As shown in (2), an optimal policy and the corresponding op-
timal actions are primarily affected by the state transition prob-
ability. Moreover, the number of state descriptions determines
the possible state transitions which in turn have an impact on the
state transition probabilities. Therefore, the granularity of states
(i.e., the number of state descriptions) of the peers has an impact
on their policy as well as their corresponding actions, which ul-
timately affects the resulting download rates of all peers. This
will be discussed next.

IV. OPTIMAL NUMBER OF STATE DESCRIPTIONS

A. Different State Granularity for Heterogeneous Peers

As discussed in Section II-B, for a peer with
state descriptions, a function can map a download
rate from peer into a state description , i.e.,

5Note that the discount factor � in the considered P2P network can represent
the belief of peer � about the validity of the expected future rewards, which is
discussed in the Appendix and quantitatively discussed in Section VI-A.

(2)
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. Specifically, we use a
uniform quantization function defined as

if

if

if

(3)

where and denote peer ’s maximum and minimum

upload bandwidths, respectively, and .
Moreover, guaranteed download rates of peer from peer in

can be correspondingly defined as

if

if

which is the lower bound of the quantization interval in (3). As
shown in (3), if a smaller number of state descriptions is used
given and , each state description represents a larger in-
terval, which leads to peer becoming more insensitive to down-
load rate variations from its associated peers. For example, sup-
pose that a download rate , which is determined as an optimal
action for peer , is currently mapped into based
on (3) for peer with state descriptions. Then, peer cannot
recognize a download rate variation if

Hence, although peer may reduce its resource reciprocation by
from , peer cannot recognize this resource variation.

Thus, it is possible for peer to reduce its upload rate to peer
without affecting peer ’s state transition model. Hence, peer
can reduce the resources to peer , while achieving the same

CEDRs from peer , since peer will continue to determine the
same optimal policy as long as the state transitions are not af-
fected. On the other hand, if peer increases the number of state
descriptions, such that it can recognize the resource reciproca-
tion variation , the resource variation will change peer ’s
state. Hence, peer may take a different optimal action based on
a new policy, resulting in a different CEDRs for peer .

In this paper, we assume that the peers increase or decrease
the number of state descriptions by a factor of 2, i.e., for integer
, one state description can be refined using (if ) state

descriptions or (if ) state descriptions can be merged,
which is equivalent to using more or less “bits” in order to
describe the resource reciprocation.

B. State Granularity and CEDRs

Recall that the number of state descriptions of a peer de-
termines the size of state space, and thus, it affects the peers’
policies and the corresponding CEDRs. A basic result for the
relationship between the number of state descriptions and the
CEDRs is stated in Lemma 1.

Lemma 1: Given a policy for state descriptions, a peer
can improve its CEDRs by using more state descriptions.

Proof: Let be a resource allocation from peer to
peer , and it is represented by for peer
. As discussed in (1), CEDRs in state ,

for , are expressed as

(4)

where . If a peer uses more bits to
describe the resource reciprocation of peer , then is refined
using state descriptions for all . We denote
the refined state descriptions of by . Thus, the
state can be represented by

, where
for . Since is defined as download rates that are
guaranteed in , we have , for all

and . This leads to

Since policy is determined for state descriptions, ac-
tions that correspond to the refined state descriptions remain
unchanged, i.e., for . Therefore

From Lemma 1, we can conclude that a peer does not worsen
its benefit from (unilaterally) refining its state descriptions for
the download rates from associated peers, as it guarantees an
improvement to their CEDRs. In Lemma 2, we quantitatively
show the improvement of the maximum CEDRs if the number
of state descriptions increases.

Lemma 2: The maximum CEDR improvement for each addi-
tional bit used for state descriptions is exponentially decreasing.

Proof: Suppose that peer uses state descriptions for
peer , and assume that and without loss
of generality. Assume that a resource allocation from peer

is mapped into , i.e.,
. Hence, . If peer increases

the number of state descriptions by (i.e., more state
descriptions are used in each state description), the expected

based on the refined state descriptions can be expressed
as

where is the probability that the
download rate is mapped into the th refined state descrip-
tion of state . Since a set of possible probability distri-
butions can be expressed as
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for all , the maximum improvement can be
expressed as

where the maximum can be achieved if and

if
otherwise

as for , .
Thus, the maximum improvement of by using two ad-
ditional state descriptions (i.e., 1-bit increase) from
state descriptions can be represented by

(5)

Since (5) holds for all , the maximum CEDR im-
provement for each additional bit used for the state descriptions
is exponentially decreasing.

Lemma 2 shows that the maximum CEDR improvement can
be bounded as the number of bits used for the state descriptions
increases. Thus, for example, while the first two more state de-
scriptions (i.e., ) can lead to 50% improvement, adding
two more state descriptions (i.e., ) can lead to only 25%
additional improvement. However, the complexity required to
compute the optimal policy based on an MDP increases as the
number of state descriptions increases [17]. For example, as
shown in [17], the value iteration algorithm requires
complexity for each iteration, where and denote the
number of actions and the number of states. Moreover, the max-
imum number of iterations needed to find an -op-
timal policy also increases, as it is given by

(6)

where denotes bits used to represent state descriptions and
is the discount factor [17]. Thus, increasing the number of

state descriptions obviously leads to higher computational com-
plexity, which implies that it takes a longer time to compute the
optimal policy. Hence, peers cannot always increase the number
of state descriptions in order to improve their CEDRs. These
tradeoffs should be explicitly considered when peers determine
their numbers of state descriptions. Considering the CEDR im-
provement and the corresponding time required to compute an
optimal policy, a peer can determine an optimal number of state
descriptions that can maximize its time averaged CEDRs in a
period. As shown in Fig. 4, the average CEDRs in a period
can be expressed as

(7)

where the CEDRs that can be achieved by policies and
from state at time and are denoted

Fig. 4. Regular policy update and CEDRs. Time averaged CEDR is given by
��� � ���.

by and , re-
spectively. and represent the time required to
compute the optimal policies and with and bits
for state descriptions, respectively. Proposition 3 shows the ex-
istence of an optimal number of state descriptions that leads to
the maximum average CEDR in a period.

Proposition 3: Given a limited time for computing
the optimal policy (period ), there exists an optimal
number of state descriptions such that peer can maxi-
mize its average CEDRs in the current period. Moreover,
the optimal number of state descriptions is upper-bounded
by , where
for and

.
Proof: The CEDRs are bounded and the number of state

descriptions is determined by the number of used bits, which
are discrete. Thus, it is enough to show the existence of bounds
for the number of bits.

Let be a period for a regular policy update. We assume that
peer is currently using bits for its state descriptions for peer

, and it can refine each state description using more state
descriptions (i.e., more bits). Since maximum time required
to compute an optimal policy cannot exceed the policy updating
period, the maximum number of bits that can be increased can
be obtained using (6) as follows:

where , and
and denote the time and the number of iterations
required to compute the last optimal policy, respectively. To find
the upper bound of , let be a minimum value of such
that it exceeds , i.e.,

(8)

where . Since
, in (8) can be rewritten as
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which leads to

(9)

Therefore, . Hence, the pos-
sible number of bits that peer can use has a bound, expressed
as

which completes the proof.
Negative values of mean that peer can decrease the

number of its state descriptions. Note that is determined
by , which enables peers to consider only a small
number of possible values of in practice. Hence, an algorithm
that simply computes and compares the average CEDRs ob-
tained using different number of bits for state descriptions can
be deployed.

Recall that we designed our system such that the number of
state descriptions can be increased or decreased by a factor of 2.
Such state description refinements are simple to implement, and
more importantly, enable each peer to estimate its new state tran-
sition probability functions efficiently as shown in [18] when the
number of state descriptions changes. However, even if an op-
timal number of bits that maximizes the average CEDRs is
determined, there are still possible state descriptions in the
interval . In order to find an optimal number of state
description in the interval , interpolation techniques
can be used, such that average CEDRs for
state descriptions are computed. For this extension, however,
peers need to estimate their new state transition probability func-
tions by observing new resource reciprocations, whenever they
change the number of their state descriptions. This may result in
significant delays in addition to , which is undesirable.
Hence, we assume that only state descriptions are available
in this paper.

Note that it may not be practical to explicitly compute the
average CEDRs when peers decide the number of state descrip-
tions. This is because computing the average CEDRs requires
finding optimal policies. However, as shown in Lemma 2, since
the CEDR improvement is exponentially decreasing in the
number of additional bits used for state descriptions, peers can
approximate the average CEDRs when they determine an op-
timal number of state descriptions. The process for determining
the number of state descriptions of peer is summarized in
Algorithm 1.

After peers determine the number of their state descriptions
that maximizes their CEDRs, they can additionally improve
their mutual download rates by evolving their resource recip-
rocation strategies if multiple optimal actions are available to
them. This will be discussed in the next section.

V. EVOLUTION OF RESOURCE RECIPROCATION

As discussed in Section IV, each peer can determine its op-
timal number of state descriptions given a limited time for com-
puting its policy. If peers have other optimal actions besides an

optimal action determined by the policy, the peers can improve
their download rates by selecting their actions cooperatively.
In this section, we show the existence of the multiple optimal
actions and study the impact of cooperative resource recipro-
cation. Note that we assume that each peer’s optimal policy is
determined given a number of state descriptions using the ap-
proach in Section IV. Hence, the peers do not need to compute
their new policies, while evolving their resource reciprocation
in this section.

To highlight the impact of the different number of state
descriptions on the peers’ interactions, we first study the
case where a peer having finer state descriptions interacts
with several associated peers having coarser state descrip-
tions. We assume that peer uses the finest state descriptions
among its associated peers in . Moreover, we assume that

and for all
, that is, the unit of bandwidth for each peer’s upload

bandwidth allocation is small enough compared to the interval
that corresponds to each state description. We consider a peer

in a state interacting with the peers in and deter-
mining its optimal actions based on its optimal policy . A
result for the interactions among the peers in is summarized
in Lemma 4.

Lemma 4: If the unit of bandwidth for each peer’s upload
bandwidth allocation is small enough, then peers can have mul-
tiple optimal actions in each of their states.

Proof: Let be an optimal action of
a peer in state determined by , i.e., . There
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exists an action , where
for all and for some , such that

for all . Then, is also optimal, since it does not change
the states of peer . Hence, peer can have multiple optimal
actions given its state and optimal policy .

Lemma 4 shows that peers can have multiple optimal actions.
A set of multiple optimal actions, referred to as optimal action
set, for peer in state is denoted by , which is defined
as

for all (10)

where for . Hence, given a policy ,
using different optimal actions in results in the same
CEDRs for peer , unless the associated peers refine their state
descriptions such that they can differentiate the actions. As will
be shown in Proposition 5, peer and peer , which are inter-
acting with each other and have multiple optimal actions, can
improve their download rates, only if both of them increase the
number of their state descriptions simultaneously.

Proposition 5: Suppose that two peers, peer and peer ,
have multiple optimal actions and interact with each other. If
they simultaneously refine their state descriptions, then actions
exist which can improve both peers’ download rates.

Proof: Let and be optimal sets of peer
and peer for all and for all at time ,

respectively. Consider the following interactions.
Case 1: No Associated Peer Is Refining Its States. By defini-

tion, different actions
of peer at time do not change the states of
its associated peers because

for all . This implies that peer may not improve its
average CEDRs by taking different actions in ,
i.e., peer is indifferent to actions .

Case 2: Only One Peer Is Refining Its States. Suppose
that peer can refine its states for peer and
let

be an optimal action determined by
at time . While peer can take

such that
instead of at time , peer cannot

differentiate between and unless peer refines its state.
Thus, this interaction becomes Case 1.

Case 3: Both Peer and Peer Are Refining Their States
Simultaneously. Suppose that peer and peer
can both refine their states and let

and

be optimal actions determined by their policies,
respectively. If peer takes action
and peer takes action , where

Fig. 5. Illustrative example for evolution of resource reciprocation. (a) Peers
can take actions determined by their policies or take alternative optimal actions.
(b) Corresponding changes of the download rates. Peer � and peer � mutually
improve their download rates.

, then this interaction becomes Case 2. How-
ever, if , then they can agree on taking
actions and

such that
and , as both peer and peer mutually

improve their download rates.
Therefore, both peers can improve their download rates only

if they simultaneously increase the number of their state descrip-
tions.

Since multiple optimal actions are available for peers, succes-
sively increasing the number of state descriptions can provide
the peers successive improvement of their download rates, i.e.,
the resource reciprocation evolves. The evolution of resource
reciprocation is quantitatively evaluated through simulation re-
sults in Section VI.

Fig. 5 shows an illustrative example for Proposition 5. In this
example, we assume that peer has an optimal action

determined by . Based on , peer finds
an alternative optimal action , leading to the optimal action
set at time . Similarly, peer
has multiple optimal actions , where

and such that . We also
assume that both peer and peer can refine their states but
peer cannot. As discussed in Proposition 5, if peer and peer

refine their states, their resource reciprocations can evolve by
enabling peers to select cooperative actions which improve their
download rates. In this example, peer selects instead of ,
and peer can also select its action such that it benefits peer
, e.g., . Therefore, both peer and peer can

mutually improve their download rates. However, peer would
not select its alternative action against peer ’s alternative ac-
tion , because peer cannot differentiate between and

. The resulting download rate changes are shown in Fig. 5(b).
We note that the maximum improvement of the download rates
through this evolution of resource reciprocation is bounded by
the number of state descriptions when the optimal policy is com-
puted. This is because the multiple optimal actions can be found
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only after optimal actions are determined based on the optimal
policy, as shown in (10).

The result from Proposition 5 can be extended to the case
where multiple peers increase their number of state descriptions
simultaneously, which is summarized in Corollary 6.

Corollary 6: If a peer and its associated peers
have multiple optimal actions and they simultaneously

increase their number of state descriptions, actions exist which
can improve each peer’s download rates.

Proof: Let be an optimal action set for peer in
state . If peers increase the number
of their state descriptions, then there exists a set of actions

for peer such that

for all (11)

With the same arguments in Proposition 5, if peer and peers
refine their states, they can agree that peer takes

an action in (11) and each peer also takes its ac-
tion such that . This lead them to mutually improve
their download rates.

From Proposition 5 and Corollary 6, we can conclude that
the resource reciprocation among peers which simultaneously
increase their number of state descriptions can constructively
evolve, leading to higher download rates for the involved peers.
Moreover, these results also highlight that peers that use a fixed
number of state descriptions in their resource reciprocation
games will be penalized by their associated peers that can keep
refining their state descriptions. Therefore, peers tend to form
groups with peers having similar abilities to refine their state
descriptions. These observations are quantitatively verified
through several illustrative simulation results in Sections VI-B
and VI-C. The evolution of resource reciprocation process
between peer and peer is summarized in Procedure 2.

VI. SIMULATION RESULTS

In this section, we quantify the impact of the number of state
descriptions on each peer’s performance, and study the evolu-
tion of resource reciprocation among peers that have multiple
optimal actions. Then, we investigate how heterogeneous peers
form their groups. Note that in our previous work [13], we com-
pared the proposed MDP-based resource reciprocation strate-
gies to existing solutions such as the TFT strategy in BitTorrent
systems, and showed that the MDP-based approach improves
the performance.

Fig. 6. Time required to compute optimal policies for different number of state
descriptions.

Fig. 7. Relationship between � and � (�� � ���, � � ����).

A. Interactions Among Peers With Different
Number of State Descriptions

In this section, we evaluate the impact of the number of state
descriptions and the corresponding average CEDRs, which is
studied in Sections III and IV. In our simulations, we consider
an illustrative interaction scenario, where a peer forms a group
with three other associated peers. To study the impact of the dis-
count factor on the CEDRs, we compare among three different
discount factors . The solution to the MDP
is implemented based on a well-known value iteration method
[14]. The stopping criteria of this method is assumed to be 0.1
(i.e., ), which affects the computation time. The simu-
lation results are shown in Fig. 6. In Fig. 6, the elapsed time is
actually measured using a MATLAB simulation and the theoret-
ical upper bounds are computed considering the required com-
plexity and the maximum number of required iterations, which
are discussed in Section IV. In these results, we assume that the
state transition probability functions are given, i.e., these results
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Fig. 8. Download rates of peers when no state description is refined. (a) Instance. (b) Average.

TABLE I
AVERAGE CEDRS FOR DIFFERENT VALUES OF � AND DIFFERENT

NUMBER OF STATE DESCRIPTIONS

are generated with no consideration of the time required to es-
timate the state transition probability functions for each of state
descriptions. Because increasing the number of state descrip-
tions enlarges the state space, and deploying a larger discount
factor requires more consideration of the future impact of cur-
rent actions on the rewards, it is obvious that both of them re-
quire more time to compute the optimal policy.

The average CEDRs corresponding to different values of dis-
count factors and different numbers of state descriptions in a
regular policy update period are shown in Table I. As discussed
in Section IV-A, we assume that the peer can increase or de-
crease its state descriptions by the power of 2 in these results.
We assume that the regular policy update period 25 s.
The CEDRs of the previous period is 83.6 kb/s and the average
CEDRs are computed based on (7) given period .

Note that the CEDRs for different discount factors should not
be compared against each other, since different discount fac-
tors reflect different P2P networks’ dynamics, as discussed in
Section III-B and the Appendix. However, as shown in Table I,
it is clearly observed that a higher value of discount factor can
lead to higher CEDRs given a number of state descriptions, as it
can consider a longer impact of current actions on the CEDRs.
This can illustrate the case of a stationary regime of P2P net-
works, where each peer’s state transition probability does not
change for a longer time. For example, the relationship between
the maximum discount factor and a limited time for com-
puting the optimal policy , which is discussed in the Appendix,
is shown in Fig. 7 given parameters of 0.2 s (required time
for a resource reciprocation) and a threshold . Hence,

the values of in Table I can be used for P2P
systems if the state transition probability holds for 0.2, 1.2, and
8.6 s (i.e., ). Note that is determined based
on how fast the system dynamics change.

The optimal number of state descriptions can also be deter-
mined for this illustrative example. Although CEDRs generally
improve as the number of state descriptions increases, com-
puting optimal strategy based on the MDP framework can ex-
ceed the time limit (e.g., period or ). Based on the average
CEDRs, the peer can determine the number of its state descrip-
tions in this period as 4, 2, and 2.

In summary, we can conclude that if the networks are sta-
tionary, more refined state descriptions or a higher value of dis-
count factor can be used, which leads to higher average CEDRs.
Inversely, a coarsely refined state descriptions or a lower value
of the discount factor needs to be used if the networks are highly
dynamic.

B. Evolution of Resource Reciprocation in a Period

In this section, we investigate and study the evolution of re-
source reciprocation among peers that have multiple optimal ac-
tions. To highlight the impact of the evolution of resource re-
ciprocation, we assume that each peer currently adopts the op-
timal policy and the initial resource reciprocation is determined
by the policy. In the following simulations, we consider a total
of 1000 peers that are reciprocating resources. While recipro-
cating resources, each peer counts the downloaded data mea-
sured in bytes from its associated peers and estimates the down-
load rates every 10 s. The groups of peers can be formed based
on the chunk availability in the network. Direct and indirect im-
pacts on resource reciprocation among the group members are
captured in the process of estimating the state transition proba-
bilities. To simplify and highlight the presentation of the main
observations—the evolution of resource reciprocation—we fo-
cused only on showcasing the results of one group of peers (i.e.,
peer 1, peer 2, and peer 3) out of the total 1000 peers.

1) No State Description Improvement: If peers cannot im-
prove their state descriptions during a period, then they simply
select one available optimal action out of their set of optimal
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Fig. 9. Download rates of peers when a peer (peer 1) is refining its states. (a) Instance. (b) Average.

actions. In the simulations, an action is randomly chosen. The
simulation results are shown in Fig. 8.

Fig. 8(a) and (b) shows each peer’s instant or averaged down-
load rates (over 100 independent simulations) over time deter-
mined by the resource reciprocations, respectively. Due to each
peer’s random action selections at each resource reciprocation,
fluctuations in download rates are observed in Fig. 8(a). How-
ever, Fig. 8(b) shows nearly constant average download rates
over time, as the optimal multiple actions of each peer are de-
termined such that the other peers do not change their current
states. Hence, we can conclude that if there is no state descrip-
tion improvement, there is no evolution of resource reciproca-
tion among peers.

2) One Peer’s State Description Improvement: Unlike the
above experiment, we investigate the impact of one peer’s state
description improvement. In the simulations, we assume that
only one peer improves its state descriptions over time, while in-
teracting with its associated peers that keep the same number of
their current state descriptions. The simulation results are shown
in Fig. 9.

Fig. 9(a) and (b) shows each peer’s instant or average down-
load rates over time determined by the resource reciprocations,
respectively. Without loss of generality, we assume that peer
1 refines its state description at its 13th, 38th, 78th, and 94th
resource reciprocation. As shown in Fig. 9(a), we can observe
that the variation of download rates for peer 1 decreases as it in-
creases the number of its state descriptions. Since increasing the
number of state descriptions of peer 1 also increases the number
of states, peer 1 can differentiate smaller variations of resource
reciprocation. As the associated peers select their actions to peer
1 such that they do not change peer 1’s state, the variation of
download rates of peer 1 can decrease. However, as shown in
Fig. 9(b), note that increasing the number of state descriptions
of one peer does not guarantee its download rate improvement,
as it cannot enforce the associated peers to select actions that
are beneficial to peer 1. Rather, the associated peers still ran-
domly select their actions among the multiple optimal actions.
By comparing the results from Fig. 8(b) and Fig. 9(b), the av-

erage download rates of peer 1 are the same when it does not
increase the number of state descriptions.

3) Evolution of Resource Reciprocation Among Evolving
Peers: Unlike the above two cases, where no peer or only
one peer improves the number of state descriptions, we now
consider the case where multiple peers consecutively refine
their state descriptions. For illustration, in the considered group,
peer 1 and peer 2 can refine their state descriptions, while peer
3 cannot. Without loss of generality, we assume that the peers
simultaneously refine their state description by doubling the
number of state descriptions for each state (i.e., using 1 bit
more for state descriptions) at their 13th, 38th, 78th, and 94th
resource reciprocation. Fig. 10 shows the resulting download
rates among the peers in the group.

Fig. 10 clearly shows that two peers (i.e., peer 1 and peer
2) can improve their download rates by simultaneously in-
creasing the number of state descriptions, while peer 3 cannot.
In Fig. 10(a), we can verify that increasing the number of both
peers’ state descriptions can improve their download rates as
well as decrease the variation of download rates, as already
discussed in Proposition 5 and Section VI-B2. Fig. 10(b) shows
that the average download rates of peer 1 and peer 2 improve
as refined state descriptions are used. With a similar argument
to Lemma 2, the additional download rate improvement is ex-
ponentially decreasing. For example, in Fig. 10(b), the average
download rate improvement for each additional state-descrip-
tion bit of peer 1 is 48.6%, 27.1%, and 11.4% respectively,
which coincides with the conclusion of Lemma 2. We can also
verify that the improvement by increasing the number of state
descriptions in this resource reciprocation process is bounded,
as this resource reciprocations are initiated by a fixed number of
state descriptions that is determined by the MDP. Therefore, we
can conclude that if peers simultaneously increase their number
of state descriptions, they can improve their download rates. If
only two peers can evolve their resource reciprocation strategies
in a group as shown in this example, then they can directly use
the maximum available state descriptions to maximize their
download rates. However, the same conclusion does not apply
when more than two peers evolve their resource reciprocation
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Fig. 10. Evolution of resource reciprocation. Peer 1 and peer 2 are refining their states. (a) Instance. (b) Average.

Fig. 11. Resulting average video qualities.

strategies, because they do not know how much their associated
peers can refine their states. In this case, each peer needs to
successively refine its state descriptions if its associated peers
refine their state descriptions. Hence, this result can also be
extended and applied to the case where more than two peers
evolve.

The resulting average video qualities, measured in
peak-signal-to-noise ratio (PSNR) for Y-component, for
the above cases are shown in Fig. 11. In these experiments,
the video files are at CIF (352 288) resolution, 30 frames/s,
and encoded in a prioritized manner using the H.264/AVC
encoder [19]. Specifically, the encoding structure for all se-
quences is “IPP P,” where each group of pictures (GOP)
consists of 30 frames. We assume that packets for the I-frame
have higher priority than packets for P-frames. For P-frame
packets, higher priority is given to packets with shorter delay
deadlines. The quantization parameters (QPs) for sequences are
Foreman (I:28, P:32), Coastguard (I:29. P:38), and Silent (I:28,

P:37) targeting bitrates at 250, 250, and 150 kb/s, respectively.
The encoded video files are partitioned into uniform 20-kb
chunks, and peers first download the chunks that have higher
priority. Moreover, a single video file has 100-s duration,
which was obtained by concatenating ten identical MPEG test
sequences. Peers 1, 2, and 3 are downloading video sequences
Foreman, Coastguard, and Silent, respectively. If there is no
state description improvement among peers, or only one peer
refines its state descriptions, then their download rates do
not improve, as discussed in Sections VI-B1 and VI-B2 [see
Figs. 8(b) and 9(b)]. Therefore, the resulting average video
qualities do not improve. However, if several peers refine their
state descriptions, and hence, they can improve their download
rates through the evolution of resource reciprocation, then their
download rates can improve [see Fig. 10(b)], thereby enabling
the peers to achieve higher resulting average video qualities. If
further quality improvement is required, several modules such
as scheduling schemes, coding techniques, error resilient tech-
niques, etc. (e.g., [16], [19]–[23]) can be incorporate into the
proposed framework. These strategies for efficient multimedia
transmission can be incorporated into the proposed framework.

C. Clustering Among Heterogeneous Peers

In this section, we study how heterogeneous peers are clus-
tered, i.e., how they form their groups in the proposed MDP
framework. For this, peers consider the expected download rates
achieved by the CEDR as well as the evolution of resource re-
ciprocation. Note that several clustering behaviors of peers in
BitTorrent systems are discussed in [7].

Fig. 12 shows the distribution of probabilities that each peer
forms a group with the other peers. To highlight the impact of
peers’ heterogeneity on clustering, in these simulations, we as-
sume that peers are classified into five categories based on their
ability to refine their state descriptions or based on their avail-
able upload bandwidth.

Fig. 12(a) shows the probability distributions for five cate-
gories of peers, where the peers in each category have the same
ability to refine their state descriptions. We assume that peers
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Fig. 12. Clustering among heterogeneous peers. (a) Peers with different ability to refine state descriptions. (b) Peers with different available upload bandwidth.

with peer index 1–10, 11–20, 21–30, 31–40, and 41–50 are in
each category, categories 1–5, respectively. It can be observed
that if peers are differentiated only by their state description
refinement, peers with similar abilities form a group. This is
because peers that can increase the number of state descriptions
can improve their download rates only by reciprocating their
resources with the other peers that can also increase the number
of state descriptions, as discussed in Proposition 5. Note that,
however, peers that cannot increase the number of state de-
scriptions can be penalized if they are reciprocating resources
with the peers refining their state descriptions. Fig. 12(b) shows
the probability distribution that peers form their groups if
their maximum available bandwidths are different, while their
abilities to refine their state descriptions are the same. In this
simulation, we assume that peers in each category have the
same maximum available bandwidth, and the available band-
width for peers in category is higher than category for ,

. Unlike the results shown in Fig. 12(a),
peers would like to associate with peers that have higher band-
width. This is because the peers with higher available upload
bandwidth may provide higher CEDRs.

From the above results, we can conclude that peers prefer to
make groups with peers who have the same ability to refine their
state descriptions, and who have a higher available bandwidth.

VII. CONCLUSION

In this paper, we study the interactions among multiple self-
interested peers by sharing their content and resources in P2P
networks. Since the resource reciprocation based on the MDP
framework is largely affected by the number of each peer’s state
descriptions, we analytically investigate the impact of peers’
heterogeneous ability to refine their state descriptions on their
interactions of resource reciprocation and group formation. We
show that more refined state descriptions enable peers to achieve
higher download rates, while requiring more time to compute
the optimal policy. Therefore, we conclude that both the number

of state descriptions and the discount factor need to be deter-
mined by considering these tradeoffs. Moreover, we also inves-
tigate the impact of the number of state descriptions on the evo-
lution of resource reciprocation, and show that peers can achieve
higher download rates only if they simultaneously improve their
state descriptions. Finally, group formation for heterogeneous
peers is discussed, showing that peers prefer to form groups with
other peers that have a similar ability to refine state descriptions,
but also have higher upload bandwidths.

APPENDIX

The discount factor in the considered P2P network can
represent the belief of peer about the validity of the expected
future rewards.

Let be a time constraint for computing optimal policy and
be a time required for one resource reciprocation. Then, the

maximum number of resource reciprocation in can be com-
puted as

since . Therefore, given a threshold
that indicates the effectiveness of the impact of cur-

rent action on future rewards (i.e., future rewards discounted by
will be ignored in CEDRs), a set of possible values of

discount factor can be expressed as .
Hence, the maximum value of discount factor can be pa-
rameterized by parameters of , , and , and can be found in
set , which is expressed as

Hence, given and , it is observed that in-
creases (or decreases) as increases (or decreases) because

is a nondecreasing function of . Note that time
constraint can be determined based on dynamics introduced
by peers joining, leaving, or switching groups in P2P systems
[24]. For example, if a P2P system is so dynamic that the policy
update process needs to be performed frequently, then
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for a regular policy update period (e.g., transient regime
[25]). However, if the system is in, e.g., a stationary regime [25],
then the policy update process can be performed at each regular
policy update period, i.e., . Therefore, the discount factor
can represent P2P networks’ dynamics.
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