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Abstract—Peer review (e.g., grading assignments in Massive Open
Online Courses (MOOCs), academic paper review) is an effective and
scalable method to evaluate the products (e.g., assignments, papers)
of a large number of agents when the number of dedicated reviewing
experts (e.g., teaching assistants, editors) is limited. Peer review poses
two key challenges: 1) identifying the reviewers’ intrinsic capabilities
(i.e., adverse selection) and 2) incentivizing the reviewers to exert high
effort (i.e., moral hazard). Some works in mechanism design address
pure adverse selection using one-shot matching rules, and pure moral
hazard was addressed in repeated games with exogenously given and
fixed matching rules. However, in peer review systems exhibiting both
adverse selection and moral hazard, one-shot or exogenous matching
rules do not link agents’ current behavior with future matches and future
payoffs, and as we prove, will induce myopic behavior (i.e., exerting the
lowest effort) resulting in the lowest review quality.

In this paper, we propose for the first time a solution that simul-
taneously solves adverse selection and moral hazard. Our solution
exploits the repeated interactions of agents, utilizes ratings to sum-
marize agents’ past review quality, and designs matching rules that
endogenously depend on agents’ ratings. Our proposed matching rules
are easy to implement and require no knowledge about agents’ private
information (e.g., their benefit and cost functions). Yet, they are effective
in guiding the system to an equilibrium where the agents are incentivized
to exert high effort and receive ratings that precisely reflect their review
quality. Using several illustrative examples, we quantify the significant
performance gains obtained by our proposed mechanism as compared
to existing one-shot or exogenous matching rules.

1 INTRODUCTION

Peer review serves as an effective and scalable method for
performance evaluation in systems where the products to
evaluate significantly outnumber the dedicated reviewing
experts. One example of such systems is Massive Open
Online Courses (MOOCs), where the number of students
enrolled in a course is in the order of tens of thousands
and by far exceeds the number of teaching assistants [2]–
[5]. Another example is academic paper review, where the
number of papers submitted to a journal by far exceeds the
number of (associate) editors. Since the proposed mecha-
nism can be applied to general peer review settings, we keep
the discussion in this paper general.1
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1. We studied explicitly the academic paper review system in the
preliminary conference version [1] of this paper.

Peer review systems pose two key challenges. First,
the reviewers have different intrinsic capabilities (e.g., their
review quality functions, benefit and cost functions), which
are unknown. Hence, one challenge is how to identify their
unknown intrinsic capabilities; this is known in the game
theory literature as the adverse selection problem. Second,
the reviewers can choose to exert different levels of (costly)
effort (e.g., time and energy spent in reviewing), which is un-
observable. Hence, the other challenge is how to incentivize
reviewers to exert high effort; this is known in the game
theory literature as the moral hazard problem. A reviewer’s
ultimate review quality is determined by her intrinsic ca-
pabilities and effort. If the capabilities are unknown but the
effort is observable (i.e. pure adverse selection), there is hope
to identify their capabilities through mechanism design. If
the effort is unobservable but the capabilities are known
(i.e. pure adverse selection), there is hope to incentivize
high effort through social norms. However, in the presence
of both adverse selection and moral hazard, the problem
becomes significantly more challenging. In fact, no existing
work has addressed this problem systematically.

A natural candidate for solving the pure adverse selec-
tion problem is to use matching mechanisms [6]–[8]. Match-
ing mechanisms aim to efficiently allocate resources (e.g.,
hospitals, or reviewers in our setting) to agents (e.g., medical
students) or their products (e.g., assignments or papers
in our setting). Existing works on matching mechanisms
assume that the quality of resources depend only on the
types of the agents who provide and receive the resource,
but not on the providers’ effort. In other words, there is no
moral hazard problem. As a result, they focus on one-shot
interactions and design one-shot matching rules (i.e., each
agent is matched only once).2 However, their assumption
does not hold in peer review systems, where the review
quality depends crucially on the reviewers’ effort. We prove
that under one-shot matching rules, agents will behave
myopically by choosing the lowest effort (i.e., free-riding),
because their current effort does not affect future matches
and their future payoffs. Hence, the system performance (in
terms of the total review quality) is the worst since one-shot
matching does not address the moral hazard problem.

One way to address the pure moral hazard problem is

2. There are works on dynamic matching (see representative work
[9]). However, matching is called dynamic due to the dynamic arrival
and departure of the agents. Each agent is still matched only once.



to use social norms [10], where a central agency assigns the
agents with ratings that summarize their past behavior and
recommends a “norm” (i.e., desired behavior) that rewards
agents with good ratings and punishes those with bad
ratings. In this way, the agents are incentivized to conform
with the social norm (e.g., exert high effort in our setting),
even when they are randomly matched to each other based
on some exogenous matching rule. However, existing works
on social norms assume that the agents are homogenous. This
assumption does not hold in peer review systems, because
different reviewers have different intrinsic capabilities. Ide-
ally, the central agency should recommend different norms
to agents of different capabilities; in practice, it cannot
do this since the capabilities are unknown. In summary,
existing works in social norms [10]–[13] do not deal with
the adverse selection problem that is present in peer review.

This paper proposes the first mechanism to simultane-
ously solve the adverse selection and moral hazard prob-
lems in peer review. Our proposed mechanism exploits
the repeated interaction among agents (i.e., by submitting
multiple assignments or papers over time), and assigns
the agents with ratings, which are summaries of their past
review quality. Unlike the works on social norms [10]–[13],
we do not recommend desired behavior (i.e., a social norm)
to the agents, because they have unknown, different capa-
bilities and thus computing a recommended social norm is
impossible. Instead, we propose rules for repeated matching
that endogenously depend on agents’ ratings. Unlike exist-
ing one-shot [6]–[8] or exogenous [10]–[13] matching rules,
our proposed repeated endogenous matching rules provide
strong incentives for agents to exert high effort, because the
agents’ behaviors affect their future ratings and hence, their
future matches and future payoffs.

We provide design guidelines for endogenous match-
ing rules that are easy to implement without knowledge
of agents’ private information (e.g., their benefit, review
quality, and cost functions), yet powerful enough to guide
the system to desirable equilibria. In particular, in the equi-
librium the agents find it in their self-interest to exert high
effort, and receive ratings that truly reflect their capabilities.
We also provide case studies on specific matching rules with
different reward/punishment schemes. We show that differ-
ent reward/punishment schemes lead to different optimal
matching rules, which stresses the importance of tailoring
matching rules to reward/punishment schemes. Simulation
results demonstrate large performance improvement over
existing matching rules.

In the following, we discuss related works in Section 2.
Then we describe the model and formulate the design
problem in Section 3. We study general matching rules in
Section 4, and the baseline matching rule and its extensions
in Section 5. Section 6 demonstrates the efficiency of our pro-
posed mechanisms. Finally, Section 7 concludes the paper.

2 RELATED WORKS

2.1 Pure Adverse Selection
The pure adverse selection problem is the focus of a huge
literature on matching in resource allocation (e.g., allocation
of schools to applicants [6][7]) and exchange (e.g., kidney ex-
change [8]). These works ignore the moral hazard problem.

In particular, they do not consider “effort”. Once an agent
(e.g., an applicant) is matched to another (e.g., a school),
the benefit (obtained by this applicant) is fixed. In contrast,
in our work, the review quality depends crucially on the
reviewer’s effort. This additional moral hazard problem,
when ignored, will significantly degrade the system perfor-
mance (in terms of the total review quality).

Since these works [6]–[8] ignore moral hazard, their
matching rules are one-shot (i.e., match each agent only
once). In contrast, our matching rules are repeated and
changing over time based on agents’ ratings. Hence, our
matching rules can incentivize agents to exert high effort to
obtain better ratings and thus, favorable future matches.

2.2 Pure Moral Hazard
The pure moral hazard problem has been studied in re-
peated game theory, where anonymous agents are randomly
matched to interact with each other [10]–[13], as in our work.
However, these works [10]–[13] focus on the pure moral
hazard problem, and ignore the adverse selection problem
by assuming homogeneous agents. In this work, we assume
heterogeneous agents and deal with both the moral hazard
and adverse selection problems. In [10]–[13], due to the
homogeneity of agents, binary ratings are usually sufficient
to identify whether a player has behaved well or badly. In
contrast, in this work the rating is continuous, such that the
rating mechanism can identify not only whether a player
has behaved well or badly, but also its review quality.

Another key difference is that we design matching rules
that endogenously depend on agents’ ratings and directly
affect their incentives, while the matching rules in [10]–[13]
are fixed and exogenously given. In our setting, we will prove
that the latter type of matching rules will result in the lowest
review quality in the equilibrium.

2.3 Other Works on Peer Review
There are other works on peer review systems but with
different problems to solve. For example, there are works
focusing on how to aggregate reviewers’ scores/ratings to
obtain a final score/rating that accurately reflects the true
quality of the assignments (in MOOCs [3]–[5]), the proposals
(in NSF proposal reviewing [14]), or the papers (in academic
peer review [15]). In contrast, our focus is to incentivize
reviewers to exert high effort levels.

3 MODEL

3.1 Basic Setup
Consider a peer review system with a set N = {1, . . . , N}
of N agents. Each agent has its products reviewed by the
other agents. An agent benefits from the review by its
reviewer, and exerts effort in reviewing others’ products.
A designer (e.g., the instructor in MOOCs) aims to design a
mechanism that incentivizes the reviewers to produce high-
quality reviews. The mechanism includes two parts: (i) the
rating mechanism that assigns and updates a rating θi ∈ R+

for each agent i, and (ii) the matching rule that matches
agents with reviewers (possibly based on the ratings). In the
following, we write the rating profile, namely the ratings of
every agent, as θ = (θ1, . . . , θN ). The rating profile is known



only to the designer. We define the rating distribution,
denoted by a vector d(θ), as the ordered (from high to
low) list of all the ratings. The rating distribution d(θ)
does not count multiple agents with the same rating. For
example, if the rating profile is θ = (3, 5, 5, 3), the rating
distribution will be d(θ) = (5, 3). Write K as the number of
distinct ratings in θ (i.e., the dimension of the vector d(θ)),
and ki as agent i’s ranking (i.e., ordered position) in the
rating distribution. In the above example, we have K = 2,
k1 = k4 = 2, k2 = k3 = 1. Although K and ki depend on θ,
we write them simply as K and ki for notational simplicity
without causing confusion. Denote the kith element of the
rating distribution by d(θ)ki . Then we have θi = d(θ)ki .
Finally, notice that the rating distribution does not disclose
any information about the identities of the agents.

Note, importantly, that an agent’s rating indicates its
review quality, not the quality of its product.

Time is slotted into t = 0, 1, 2, . . .. In each time slot t, the
entities in the system moves in the following order:3

• The designer publishes the rating distribution d(θ),
and informs agent i of its rating θi and its ranking ki.

• Each agent submits its product to review.
• The designer matches each agent i’s product to other

agent(s) for review based on a probabilistic matching
rule mkikj : (d(θ)ki , d(θ)kj ) 7→ [0, 1]. The matching
rule determines the probabilitymkikj (d(θ)ki , d(θ)kj )
that the agent with the kith highest rating is matched
to the reviewer with the kjth highest rating. From
the definition we can see that the matching does not
depend on agents’ identities.

• Each reviewer j exerts an effort level etj ∈ [0, emax
j ],

where emax
j is j’s maximum effort level. Reviewer j’s

review quality then depends on its effort as qj(etj),
where qj : R+ → R+ is the review quality function.

• Each agent i receives benefit bi(qj(e
t
j)) from re-

viewer j’s review, where bi : R+ → R+ is i’s benefit
function, and incurs a cost of ci(eti) for reviewing a
product, where ci : R+ → R+ is i’s cost function.

• Each agent i sends a report rti about the reviewer
to the designer. We assume that the report accu-
rately reflects the reviewer’s review quality, namely
rti = qj(e

t
j). For examples, in MOOCs the report can

be made accurate by comparing the grading with
the true answers to the assignments (posted after the
submission of the assignments).

• The designer updates the agents’ ratings according
to the rating update rule π : (θtj , r

t
i) 7→ θt+1

j . For
fairness, the rating update rule is identical for all
reviewers, and is given by a convex combination of
the reviewer’s old rating and the report about its
review quality with a constant step size µ ∈ (0, 1):4

π(θtj , r
t
i) =

{
(1− µ) · θtj + µ · rti , j has reviewed

θtj , otherwise
(1)

3. Throughout the paper, the superscript (·)′ on a function refers to
the derivative, and the superscript (·)t refers to the variable under
consideration at time point t ∈ Z+.

4. Note that under the assumption that j’s review quality qj(ej) is
perfectly observed, it does not matter how many reports about j’s
review quality are received.

We make the following remarks on the agents’ ratings.
Each agent i has a maximum effort level emax

i , and hence
has a maximum review quality qi(e

max
i ). Since the new

rating is the convex combination of the old rating and
the review quality, given any initial rating θ0i , agent i’s
rating can only be in the interval [0, θmax

i ], where θmax
i ,

max
{
θ0i , qi(e

max
i )

}
. In other words, the possible ratings of

each agent i are contained in the compact set [0, θmax
i ].

Throughout the paper, we make the following reason-
able and standard assumptions on the monotonicity, con-
vexity, concavity, and differentiability of our functions.
Assumption 1 (Cost, Review Quality, and Benefit). Each

agent i’s cost function ci(·), review quality function qi(·),
and benefit function bi(·) satisfy the following:

• The cost ci(·) is strictly convex, strictly increasing,
and twice continuously differentiable in effort ei. In
addition, c′i(0) = 0.

• The review quality qi(·) is concave, strictly increas-
ing, and twice continuously differentiable in effort
ei. In addition, q′i(0) exists and is bounded.

• The benefit bi(·) is strictly increasing, concave, and
continuously differentiable in review quality qj . In
addition, b′i(0) exists and is bounded.

• We normalize ci(0) = 0, qi(0) = 0, and bi(0) = 0.

3.2 Information – Who Knows What

3.2.1 The designer
The designer receives reports ri of review quality, and keeps
the rating θti for each agent i at each time slot t. Hence, the
designer knows the identity of the agent at the kith position
of the rating distribution. However, it does not know the
review quality functions qi(·), the benefit functions bi(·), or
the cost functions ci(·).

3.2.2 Each agent i
Each agent i knows its own review quality function qi(·),
benefit function bi(·), and cost function ci(·), but does not
know the above functions of the other agents. It knows
the matching rule m and the rating update rule π. It also
knows its own rating θti , the rating distribution d(θ)t, and
its position in the rating distribution kti , but does not know
the others’ ratings or the identity of its reviewer.

3.3 Payoffs and Equilibrium

In each time slot t, agent i’s expected payoff is its expected
benefit from the reviewing of its product minus the expected
cost of reviewing other agents’ products. We write agent i’s
expected payoff as ui(m, θi, d(θ), e), which depends on the
matching rule m, its own rating θi, the rating distribution
d(θ), and all the agents’ effort levels e , (e1, . . . , eN ).
The expected payoff can be calculated as the expected benefit
minus the expected cost:

ui (m, θi, d(θ), e) =
∑
kj 6=ki

mkikj

(
d(θ)ki , d(θ)kj

)
· bi (qj (ej))

−

 ∑
kj 6=ki

mkjki

(
d(θ)kj , d(θ)ki

) · ci(ei). (2)



Each agent i aims to choose a sequence of effort levels
over time to maximize the discounted average of expected pay-
offs, i.e., to solve the dynamic optimization problem below:

max
{eti∈[0,emax

i ]}∞
t=0

E

{
(1− δi)

∞∑
t=0

δtiui
(
m, θti , d(θt), eti, e

t
−i
)}

, (3)

where et−i is the effort levels chosen by all the agents other
than i at time t, and δi ∈ [0, 1) is agent i’s discount factor.
An agent’s discount factor reflects its patience. We take
the expectation E{·} because the rating update is random,
namely an agent’s rating is either updated or kept the same
depending on whether it has reviewed a product.

Note that the optimization problem (3) is very hard, if
not impossible, to solve. The difficulty lies in the couplings
of one agent’s decisions over time and with other agents’
decisions. First, the agent’s current decision (i.e., effort level)
affects not only its current payoff (through the cost), but
also its future ratings and hence future payoffs. Second, the
agent’s payoff is affected by the others’ decisions (through
the benefit). However, since an agent has no knowledge
about the others, it cannot predict the others’ decisions
and the evolution of rating distributions. In summary, an
agent cannot solve the optimization problem (3) due to
computational complexity and lack of knowledge.

We propose a realistic behavioral model for the
agents. To choose the optimal effort level at each time
t, each agent i holds a conjecture that its future value
E
{

(1− δi)
∑∞
τ=t δ

τ−t
i ui(m, θ

τ
i , d

τ , eτi , e
τ
−i)
}

(i.e., its dis-
counted average payoff after time t) is the following:

fi
(
αi, β

t
i , θ

t
i , d(θt), eti

)
, αi · b̄i

(
θti , d(θt), eti

)
+ βti , (4)

where b̄i (θti , d(θt), eti) is the conjectured expected benefit of
agent i in time t+1, assuming that the others’ ratings remain
the same. We can calculate b̄i (θti , d(θt), eti) as

b̄i
(
θti , d(θt), eti

)
=

∑
kj 6=k+i

[
mk+i kj

(
π
(
θti , qi(e

t
i)
)︸ ︷︷ ︸

,θt+1
i

, d(θt+1
i ,θt−i)kj

)
· bi
(
d(θt+1

i ,θt−i)kj
) ]
, (5)

where d(θt+1
i ,θt−i) is the new rating distribution when i’s

rating is updated to θt+1
i , π (θti , qi(e

t
i)) and the others’

ratings remain the same, and k+i is i’s new ranking of its
new rating θt+1

i in the new rating distribution d(θt+1
i ,θt−i).

Note that i can compute d(θt+1
i ,θt−i) based on θt+1

i and
d(θt), without knowing θt−i.

Each agent i holds the conjecture (4) for two reasons.
First, it cannot predict the others’ effort levels or future
ratings. Hence, it holds a conjecture that the others’ ratings
remain the same, and that the others’ ratings precisely reflect
their review quality, namely d(θt)kj = qj(e

t
j). Second, it

conjectures that its future value is an affine function of its ex-
pected benefit. For consistency, both of the above conjectures
are required to be true in the equilibrium to be defined later.

The coefficient αi reflects how “optimistic” an agent
is about the rating mechanism. An agent with a larger
αi “believes in” the rating mechanism more, because it
anticipates a higher future value given the expected benefit.
The coefficient βti is updated in each time slot by agent i,

such that the conjectured future value converges to the true
future value in the equilibrium.

Then at each time t, each agent i simply solves the
following static problem for its optimal effort level eti:

eti = arg max
ei∈[0,emax

i ]
(1− δi) · ui

(
m, θti , d(θt), ei, e−i

)
+ δi · fi

(
αi, β

t
i , θ

t
i , d(θt), ei

)
. (6)

Note that the others’ current effort levels e−i only affect the
benefit term in the current payoff ui (m, θti , d(θt), ei, e−i),
which does not depend on i’s effort ei and can be considered
as a constant. Hence, each agent i has all the information
needed to solve the above static optimization problem.
Definition 1 (Conjectural Equilibrium [16]). Given any

matching rule m and any rating update rule π, a con-
jectural equilibrium (CE) is a triple {θ∗i , e∗i , β∗i }i∈N that
satisfies:

• Incentive compatibility constraints: for all i ∈ N ,

e∗i = arg max
ei∈[0,emax

i ]
(1− δi) · ui

(
m, θ∗i , d(θ∗), ei, e

∗
−i
)

+δi · fi (αi, β
∗
i , θ
∗
i , d(θ∗), ei) , (7)

• Stable and correct ratings: for all i ∈ N , θ∗i = qi(e
∗
i ),

• Consistent conjectures: for all i ∈ N ,

fi (αi, β
∗
i , θ
∗
i , d(θ∗), e∗i ) = ui (m, θ∗i , d(θ∗), e∗) . (8)

In the above definition, the incentive compatibility con-
straints ensure that the effort level e∗i is the best response
of each agent i. In other words, it will be in agent i’s self-
interest to choose e∗i . A CE also requires that each agent’s
rating truly reflects its review quality at the equilibrium
effort level e∗i , and hence each agent’s rating is stable,
namely π(θ∗i , qi(e

∗
i )) = θ∗i . Finally, a CE requires that each

agent’s conjecture about its future value is correct.
There may be many CEs. As a designer, it is desirable

that the system will converge to a CE from any initial rating
profile. The convergence is important, because the designer
can distinguish the true review quality of the reviewers
at the equilibrium. The choice of the matching rule plays
an important role in ensuring the convergence to a CE.
Aside from convergence, certain CEs are more desirable
than others, as discussed in the next paragraphs.

3.4 The Design Problem Formulation

The designer’s problem is to maximize the equilibrium re-
view quality. We write the designer’s objective as a function
of the equilibrium review quality W (q1(e∗1), . . . , qN (e∗N )).
Then the designer problem can be defined as

maxm,π W (q1(e∗1), . . . , qN (e∗N )) (9)
s.t. {θ∗i , e∗i , β∗i }i∈N is a CE under m,π.

Note that the designer does not maximize the social
welfare (i.e., the total benefit minus cost of the agents),
because it is more natural from the designer’s perspective to
maximize the total review quality. The designer of the peer
review system may not care about the cost of reviewing; in
fact, it would like to elicit more effort from the reviewers,
resulting in higher-quality reviews but higher costs.



4 CONVERGENCE TO CONJECTURAL EQUILIBRIA

In this section, we consider general matching rules, and pro-
vide important guidelines for designing the matching rules.
As discussed before, we would like to have a matching rule
under which the system will converge to a CE from any
initial rating profile under the best response dynamics. In
this way, the designer can distinguish the true quality of the
reviewers in the equilibrium. Before discussing the proper-
ties of the matching rules that ensure the convergence, we
first describe the best response dynamics.

At each time slot t, the best response dynamics consist
of the following three updates:

eti = arg max
ei∈[0,emax

i ]
(1− δi) · ui

(
m, θti , d(θt), ei, e

t
−i
)

+δ · fi
(
αi, β

t
i , θ

t
i , d(θt), ei

)
; (10)

θt+1
i =

{
(1− µ) · θti + µ · qi (eti) if i reviewed

θti otherwise
; (11)

βt+1
i = ui

(
m, θti , d(θt), et

)
− αi · b̄i

(
θti , d(θt), eti

)
. (12)

The update of effort levels in (10) and the update of
ratings in (11) are the same as (6) and (1), respectively. They
are rewritten here for the convenience of reference. When
determining the effort level in (10), although the current
payoff ui

(
m, θti , d(θt), ei, e

t
−i
)

depends on the others’ effort
levels et−i, the current payoff can be separated into the
benefit which depends only on the others’ effort et−i, and the
cost which depends only on agent i’s own effort ei. Hence,
when solving (10), agent i can treat the benefit as a constant,
and consider only the cost, which depends on its own effort
level and is known to itself.

The update of the parameter βi in (12) ensures that
the conjectured future payoff equals to the current pay-
off, namely fi

(
αi, β

t+1
i , θti , d(θt), eti

)
= ui (m, θti , d(θt), et).

When the system converges to a CE {θ∗i , e∗i , β∗i }i∈N , we will
have fi (αi, β

∗
i , θ
∗
i , d(θ∗), e∗i ) = ui (m, θ∗i , d(θ∗), e∗), which

fulfills the third requirement of “consistent conjectures” in
the definition of CE.

Next, we will provide the design guidelines on the
matching rules, such that the above dynamics (10)–(12)
always converge to a CE from any initial ratings. In fact, the
design guideline is simple and intuitive: the matching rule
should ensure that each agent’s expected benefit is concave
and increasing in its own rating.
Definition 2 (Desirable Matching Rules). A matching rule

m is desirable, if under any rating profile θ,

• each agent i’s (conjectured) expected benefit from the
reviewing of its product, namely∑

kj 6=ki

[
mkikj

(
d(θ)ki , d(θ)kj

)
· bi
(
d(θ)kj

)]
,

is concave and increasing in its own rating d(θ)ki ;
• each agent i’s expected number of products to review

is positive and fixed, namely∑
kj 6=ki

mkjki

(
d(θ)kj , d(θ)ki

)
= M > 0.

General matching rules

(Theorems 1, convergence)

Naive matching rules

(Proposition 1, inefficiency)
Proposed matching rules

Baseline matching rules

(Proposition 2, initial rating;

Theorem 2, convergence)

Extended matching rules

(Theorem 3, efficiency)

Fig. 1. Illustration of theoretical results.

The requirements of concavity and monotonicity are
very reasonable. The expected benefit should be increasing
in one’s rating, such that one has incentives to exert high
effort levels to increase its rating. In addition, if the expected
benefit is concave in one’s rating, since the marginal benefit
is decreasing, one will not dramatically increase its effort
level, which facilitates the convergence. The requirement of
a fixed number of products to review ensures the fairness
among the reviewers across time.

Despite the simplicity of the requirements for desirable
matching rules, we are able to prove its convergence under
proper rating update rules.
Theorem 1 (Convergence). Under any desirable matching

rule, starting from any initial θ0, there exists µ̄ > 0 such
that under any small step size µ ∈ (0, µ̄] in the rating
update rule, the system will converge to a CE through
updates (10)–(12).

Proof: See Appendix B.
We illustrate the theoretical results in this paper in Fig. 1.

Remark 1 (Uniqueness). Theorem 1 proves that any desir-
able matching rule ensures the convergence to a CE.
However, it is difficult to prove the convergence to
a particular CE. The reasons are that there is not a
single unique CE and the asymptotically reached CE
(through our matching and update rules) depends on
the history of the system and thus the probabilistic
matching assignments and the initial ratings. In our
technical analysis we prove the convergence by showing
that under the updates (10)–(12), the difference (in terms
of `-1 norm) between two consecutive rating profiles
strictly decreases over time. However, since the best re-
sponses are different under different rating profiles, the
mappings from the current rating profile to the next one
are different over time. Hence, the contraction mapping
theorem does not apply here. In fact, in Section 5, we
will show that under several desirable matching rules,
there are indeed multiple CEs, and the system converges
to different CEs under different initial ratings.

Remark 2 (Largest Step Size). For the convergence, we re-
quire the step size µ in the rating update rule to be small
enough. However, we would like the step size to be as
large as possible, subject to convergence, for two reasons.
First, a larger step size results in a fast convergence of the
ratings to the true review quality. Second, perhaps less
obviously, a larger step size provides higher incentives



for agents to exert high effort levels. This is because with
a larger step size, the influence of the current review
quality is higher on the next rating. In Appendix B, we
derive explicit upper bounds for the eligible step sizes.

5 DESIGN OF MATCHING RULES

The matching rule is the critical component of our design. In
this section, we will first prove that existing matching rules
are inefficient. Then we propose a baseline matching rule,
and analyze the properties of this baseline matching rule in
detail. Finally, we propose and study two extensions.

5.1 Inefficiency of Existing Matching Rules
We show the inefficiency of existing matching rules. In ex-
isting matching rules, the matching probabilities associated
with agent i, mkikj

(
d(θ)ki , d(θ)kj

)
, do not depend on i’s

ranking ki or its rating d(θ)ki . This is true for existing
matching rules in mechanism design [6]–[8], because there
is no notion of effort and hence no rating. It is also true for
existing matching rules in social norms [10]–[13], which are
uniformly random.
Proposition 1. Under any matching rule that is inde-

pendent of the rating of the agent whose product
will be reviewed, namely mkikj

(
d(θ)ki , d(θ)kj

)
=

mk′ikj

(
d(θ)k′i , d(θ)kj

)
, ∀ki, k′i, kj ,θ, there is a unique

CE, in which e∗i = 0 and θ∗i = qi(e
∗
i ) = 0 for all i.

Proof: See Appendix II.
The above proposition shows that the matching rule

that does not depend on agents’ ratings is the worst-case
matching rule that results in “free-riding” by everyone. This
underlines the importance of designing efficient matching
rules that take into account the ratings of both the reviewers
and the agents whose products are reviewed.

5.2 Design of The Baseline Matching Rule
The baseline matching rule works as follows:

1) For the agents with the same rating, match their
products among themselves using any one-to-one
mapping that does not match one’s product to itself.

2) For any agent i with a distinct rating (i.e., no other
agent has the same rating),

a) If it has the highest rating (i.e., ki = 1), match
its product to a reviewer with the second
highest rating with probability 1.

b) If it has the lowest rating (i.e., ki = K),
match its product to a reviewer with the sec-
ond lowest rating with probability d(θ)K

d(θ)K−1
.

Hence, its product gets no review with prob-
ability 1− d(θ)K

d(θ)K−1
.

c) If 1 < ki < K, match its product to its two
“neighbors” with the following probabilities
(which sum up to 1):

mki,ki−1(d(θ)ki , d(θ)ki−1) =
d(θ)ki

−d(θ)ki+1

d(θ)ki−1−d(θ)ki+1
,

and

mki,ki+1(d(θ)ki , d(θ)ki+1) =
d(θ)ki−1−d(θ)ki

d(θ)ki−1−d(θ)ki+1
.
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Fig. 2. Illustration of the baseline matching rule with 7 agents. The
highest-rating agent’s product is matched to the reviewer with the sec-
ond highest rating. The lowest-rating agent’s product is matched to the
reviewer with the second lowest rating with probability 0.5. The two
agents with the same rating 0.4 are matched to each other. The rest
are matched to their two nearest neighbors with probabilities inversely
proportional to the distances in ratings.

The above matching rule is illustrated in Fig. 2. Agents
with the same rating are matched to each other. For an agent
with a distinct rating, it matches its product with its two
nearest “neighbors” with probabilities that depend on how
close its rating is to its neighbors’ ratings.

We propose this matching rule, because it has the follow-
ing desirable properties:

• No agent will have to review more than 3 products.
This is because any agent will at most review a
product from an agent with the same rating (if there
is any), and two products from its neighbors (if they
have distinct ratings).

• As we will prove later, this matching rule is a desir-
able matching rule as defined in Definition 2.

5.2.1 The Choice of Initial Ratings
In the considered system, it is important to choose the initial
ratings correctly, because under different initial ratings, the
system may converge to different CEs. Since the designer
has no knowledge about the agents at the beginning, it is
reasonable to assign the same initial rating to all the agents
for fairness. In this case, the following proposition tells us
that we should not make the initial rating too low.
Proposition 2. There always exists a rating θ, such that any

initial rating profile with the same rating θ0 ≤ θ for all
agents is the equilibrium rating profile, and that each
agent i chooses an equilibrium effort level e∗i such that
qi(e

∗
i ) = θ0.

Proposition 2 implies that we should choose a high
enough initial rating. In particular, when the initial rating
is too low, it is optimal to choose an effort level e∗i that
satisfies qi(e∗i ) = θ0. The key reason is that no agent has
an incentive to reach a higher rating than the initial one,



because in this case it will get a distinct highest rating, and
get the same benefit but a higher cost compared to choosing
an effort level such that its rating remains the same as the
initial rating. In other words, the initial rating determines
the highest review quality produced by each agent.

5.2.2 Convergence
It is useful to classify agents into types based on their cost,
review quality, and benefit functions, etc. We define agents
of a certain type as follows.
Definition 3 (Types). The agents of the same type have the

same normalized marginal benefit to cost ratio, defined
as δiαiq

′
i(·)

(1−δi)c′i(·)
, the same review quality function qi(·), and

the same marginal benefit function b′i(·).

Definition 4 (Ordering of Capability). An agent i is more
capable than an agent j, if

δiαiq
′
i(e)

(1− δi)c′i(e)
≥

δjαjq
′
j(e)

(1− δj)c′j(e)
,∀e,

qi(e) > qj(e),∀e,
b′i(θ) ≥ b′j(θ),∀θ.

Definition 3 defines “types” of agents, in the sense that
agents of the same type will always choose the same effort
level and hence get the same rating. Definition 4 gives an
ordering of agents in terms of their “capability”. We will
prove that a more capable agent indeed gets a higher rating.

In the rest of this section, we make the following as-
sumption about the population size.
Assumption 2 (Large Population). There is more than one

agent of each type.

Assumption 2 is reasonable in practice, since the number
of agents in peer review systems is indeed large. Given the
same initial rating, the agents of the same type will choose
the same best response effort level, and hence have the same
rating. Assumption 2 ensures that for each agent, there is
always another agent with the same rating. According to
Property 1) in the baseline matching rule, each agent will
always have exactly one product to review all the time.
Theorem 2. Suppose that the large population assumption

(Assumption 2) holds. Then we have

• the baseline matching rule is a desirable matching
rule;

• starting from any initial rating profile, there exists
µ̄ > 0 such that under any small step size µ ∈ (0, µ̄]
in the rating update rule, the system will converge to
a CE through the best response dynamics (10)–(12);

• if the agents have the same initial rating, at any
point in the best response dynamics (10)–(12), more
capable agents will always have no lower ratings
than less capable agents.

Proof: See Appendix II.
Theorem 2 ensures the convergence of the best response

dynamics to a CE. In fact, we can say something stronger
about the best response dynamics. That is, a more capable
agent never has lower ratings than a less capable agent at
any point in the best response dynamics. This means that
the rating mechanism can distinguish the agents of different
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Fig. 3. An illustration of the first asymmetric extension of the baseline
matching rule. We only show the matching of the agent with rating 0.8,
who is matched to its two nearest neighbors with different probabilities
than in the baseline rule.

types, and rank them in the correct order. Note that more
capable agents produce reviews of high enough quality (that
result in higher ratings) in their self-interest, as a result of
maximizing their own payoffs; they are not obliged to do so
by the designer.

5.3 Two Classes of Extended Matching Rules

Previously, we have focused on the baseline matching rule.
The baseline matching rule is able to incentivize the agents
to exert high effort levels by increasing the benefit obtained
by an agent when its rating increases. Now we extend the
baseline rule in two different ways, both of which result in
a class of matching rules that allow us to tune the reward
and/or punishment provided by the matching rules.

In the first extension, we assign asymmetric probabilities
for matching an agent with a distinct rating to its higher and
lower neighbors. In particular, the asymmetric matching rule
is parametrized by γ such that any agent i with a distinct
rating and with ki ∈ [2,K − 1] is matched to its neighbors
with the following probabilities:

mki,ki−1(d(θ)ki , d(θ)ki−1) =
[
d(θ)ki

−d(θ)ki+1

d(θ)ki−1−d(θ)ki+1
+ γ · θi

]1
0
,

and

mki,ki+1(d(θ)ki , d(θ)ki+1) =
[
d(θ)ki−1−d(θ)ki

d(θ)ki−1−d(θ)ki+1
− γ · θi

]1
0
,

where [·]10 , min{max{·, 0}, 1}.
We illustrate this asymmetric extension in Fig. 3.
We can see that when γ > 0 (γ < 0), the resulting

matching rule rewards (punishes) the agent by increasing
its probability of being matched to the higher-rating (lower-
rating) neighbor. When γ = 0, the asymmetric matching
rule reduces to the baseline matching rule.

In the second extension, we allow an agent to be matched
to a reviewer with even higher or even lower ratings than
its two nearest neighbors. In particular, the matching rule is
parametrized by γr ∈ [0, 1] and γp ∈ [0, 1]. Then any agent i
with a distinct rating and with ki ∈ [3,K − 2] is matched to
its neighbors and neighbors of neighbors with the following
probabilities:

mki,ki−1(d(θ)ki , d(θ)ki−1) =
d(θ)ki

−d(θ)ki+1

d(θ)ki−1−d(θ)ki+1
· (1− γr),

mki,ki−2(d(θ)ki , d(θ)ki−2) =
d(θ)ki

−d(θ)ki+1

d(θ)ki−1−d(θ)ki+1
· γr,
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Fig. 4. An illustration of the second long-range extension of the baseline
matching rule. We show the matching of only one agent with rating 0.8,
who is matched to its four neighbors, instead of two nearest neighbors
as in the baseline rule.

and

mki,ki+1(d(θ)ki , d(θ)ki+1) =
d(θ)ki−1−d(θ)ki

d(θ)ki−1−d(θ)ki+1
· (1− γp),

mki,ki+2(d(θ)ki , d(θ)ki+2) =
d(θ)ki−1−d(θ)ki

d(θ)ki−1−d(θ)ki+1
· γp.

We refer to this extension as long-range matching rule; see
Fig. 4 for an illustration.

We can see that the parameters γr and γp reflect to what
extent the agents are rewarded and punished, respectively.
When γr = γp = 0, the matching rule reduces to the
baseline rule. When γr = 1 (γp = 1), the agent is rewarded
(punished) by being matched to a reviewer with the next
higher (lower) rating.

We summarize the key differences among the baseline
matching rule and its extensions in Fig. 5.

It is interesting to ask under each class of extended
matching rules, which matching rule is optimal in terms of
the equilibrium review quality? We first define the notion
that one matching rule is “better” than the other.
Definition 5. We say that a matching rule m′ is “better” than

another matching rule m, if for any equilibrium rating
profile θ∗ under m, we can find an equilibrium rating
profile θ∗′ under m′ that satisfies θ∗′ > θ∗.

The following theorem tells us how to design an ex-
tended matching rule that is better than the baseline rule.
Theorem 3. Suppose that the large population assumption

(Assumption 2) holds. Then we have:

• In the first asymetric extension, there exists a γ > 0
(i.e., extra reward) under which the asymmetric
matching rule is strictly better than the baseline
matching rule.

• In the second long-range extension, there exists γr =
0 and γp > 0 (i.e., extra punishment) under which
the long-range matching rule is strictly better than
the baseline matching rule.

Theorem 3 tells us if we reward or punish by assigning
higher or lower probabilities of being matched to the higher-
rating neighbor, it is beneficial to reward. On the contrary,
if we reward or punish by creating the possibility of being
assigned to the next higher- or lower-rating neighbors, it is
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Fig. 5. Comparison of the baseline matching rule and its two extensions.
We illustrate how an agent with a certain rating (the red dot) is matched.
In the baseline rule, it is matched to its nearest neighbors with equal
probability. In the first asymmetric extension, although the distances
between the ratings remain the same, the matching probabilities are
slightly changed. In the second long-range extension, it can be matched
to neighbors with even higher or lower ratings.

beneficial to punish. Note that we can get the benefit only
when we set the correct parameters in the two extended
matching rules. The technical reason is that we want to
increase the marginal expected benefit when an agent’s
rating is changed, in order to give more incentive for them
to exert high effort levels. The main message delivered by
our result is that we should carefully design the matching
rule based on the way we reward and punish.

6 ILLUSTRATIVE RESULTS

We consider a system with 10 types of agents. There are 100
agents of each type. All the agents have the same patience
δi = 0.8, the same cost function ci(ei) = e2i , and the
same benefit function bi(θ) = −θ2 + 2θ. Different types
of agents have different quality functions qi(ei) = pi · ei
with pi = 0.2, 0.4, 0.6, . . . , 2.0. They also have different
αi = 0.2, 0.4, 0.6, . . . , 2.0 in the conjecture functions.

6.1 Impact of Step Sizes in Rating Update

We show the best response dynamics under step sizes
µ = 0.1 and µ = 0.3 in Fig. 6 and Fig. 7, respectively. Note
that we only show the ratings of agents of types 1, 3, 5, 7, 9.
We first observe that under one-shot or exogenous matching
rules, the reviewers exert 0 efforts and get 0 ratings all the
time. Hence, the proposed endogenous matching greatly
improves the performance of the system.

Second, we can see that under a larger step size, the
agents’ equilibrium ratings are higher, indicating higher
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Fig. 6. Convergence under step size µ = 0.1.
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Fig. 7. Convergence under step size µ = 0.3.

equilibrium effort levels and higher equilibrium review
quality. This is consistent with our intuition in Remark 2.
Note that, when µ = 0.5, the best response dynamics do
not converge (type-1 agents’ ratings are oscillating). This
stresses the importance of choosing the step size: We want
to choose a step size as high as possible for better review
quality, subject to the constraint that the best response
dynamics converge.

6.2 Different Matching Rules

We compare the sum review quality and the social welfare
(i.e., the total benefit minus cost) at the equilibrium under
different matching rules.

In Table 1, we evaluate the first asymmetric extension
of matching rules under different parameters γ. We can see
that in our setting, the optimal γ should be 0.1, which results
in the highest sum review quality. This is consistent with our
theoretical results: we can find a rewarding matching rule
that outperforms the baseline rule. It is worth mentioning
that the matching rule that maximizes the sum review qual-
ity may not be the one that maximizes the social welfare.
This is reasonable because higher review quality also results
in higher cost. In fact, in terms of social welfare, the optimal
γ is -0.05, which results in lower review quality and thus
lower cost. How the review quality and the social welfare
are aligned depends on the benefit and cost functions.

In Table 2, we evaluate the second long-range extension
of matching rules under different parameters γr and γp. We
can see that the optimal sum review quality is achieved

TABLE 1
Equilibrium review quality and social welfare under the first asymmetric

extension of matching rules.

γ -0.2 -0.1 -0.05 0 0.05 0.1 0.2
Sum review quality 0.64 0.91 0.96 1.29 1.28 1.36 1.28

Social welfare 1.37 1.58 1.59 1.44 1.45 1.46 1.55

TABLE 2
Equilibrium review quality and social welfare under the second

long-range extension of matching rules.

(γr, γp) (0, 0) (0, .5) (0, 1) (.5, 0) (.5, .5) (.5, 1)
Sum review quality 1.29 1.31 1.40 1.11 1.28 1.33

Social welfare 1.44 1.41 1.35 1.27 1.57 1.43

when γr = 0 and γp = 1, which is a matching rule that
punishes to the most severe extent. The threat of being
matched to an even lower-rating reviewer provides more
incentive for agents to exert high effort. Again, such a
matching rule does not result in the optimal social welfare.
The optimal social welfare is achieved when γr = 0.5 and
γp = 0.5, where the agents are also rewarded.

7 CONCLUSION

In this work, we proposed the first rating and repeated
endogenous matching mechanisms to address the adverse
selection and moral hazard problems simultaneously in
peer review. Our proposed rating and matching mecha-
nisms are easy to implement, require no knowledge of
agents’ private information, and ensure the convergence
to an equilibrium in which the agents get their review
quality revealed by their ratings and are incentivized to
produce high-quality reviews. We thoroughly studied the
design of matching rules, in terms of the initial ratings, the
requirements for convergence, and the equilibrium ratings
and review quality. We also studied extensions to different
classes of matching rules, and proved the optimality of
different rewarding/punishing mechanisms under different
matching rules.

In future work, we will investigate the effect of inaccu-
rate and possibly biased reports about the review quality,
as well as more detailed modeling frameworks including
multiple agents and reviewers associated with each product.
An intriguing problem is the quest for the best matching rule
maximizing the review quality.

APPENDIX A
PROPERTIES OF BEST RESPONSE

For ease of reference, we recall agent i’s best response eti in
time slot t here:

eti = arg max
ei∈[0,emax

i ]
(1− δi) · ui(m, θti , d(θt), ei, e

t
−i)

+ δ · fi(αi, βti , θti , d(θt), ei). (13)

We denote the best response function by Bi : θt 7→ eti. We
need the following lemma summarizing the properties of
the best response for future reference.
Lemma 1. Consider the current best response as defined in

(13). The following statements hold:



1) The best response is unique for every t ≥ 0;
2) The best response function is a continuous and al-

most everywhere differentiable function (uniformly
in t) of θt;

3) For any t ≥ 0, the best response function satisfies∣∣Bi(θt+1)−Bi(θt)
∣∣ ≤ Li(µ) ·

∥∥θt+1 − θt
∥∥
1
, where

Li(µ) is a continuous function of the step size µ that
converges to zero as µ ↓ 0.

Proof: The current payoff ui(m, θti , d(θt), ei, e
t
−i) in

the current best response (13) has two terms:∑
kj 6=ki mkikj

(
θti , d(θt)kj

)
· bi
(
qj(e

t
j)
)
−M · ci(ei),

where the first term, namely the expected current ben-
efit, does not depend on agent i’s own effort. Simi-
larly, the conjecture function fi(αi, β

t
i , θ

t
i , d(θt), ei) = αi ·

b̄i (θti , d(θt), eti) + βti , where the second term βi does not
depend on agent i’s own effort. Hence, we can simplify the
best response as

eti = arg max
ei∈[0,emax

i ]
−(1− δi)Mci(ei) (14)

+ δiαib̄i
(
θti , d(θt), eti

)
.

Since the cost ci(ei) is strictly convex in ei, since the
grading quality qi(ei) is concave in ei, and since the conjec-
tured benefit is concave and increasing in (1−µ)θti+µqi(ei),
the objective function in (14) is strictly concave in ei. Thus,
the current best response is unique for each t ≥ 0.

With regards to statement 2): due to strict concavity, the
objective function in (14) is almost everywhere differen-
tiable with respect to ei and its derivative is equal almost
everywhere to a decreasing function of ei [18, Exercise
1.6.42]. Due to the Monotone Differentiation Theorem [18,
Theorem 1.6.25], the derivative itself is almost everywhere
differentiable with respect to ei as well. We concluded that
the objective function in (14) is almost everywhere twice
differentiable with respect to ei. As a consequence, the
unique best response eti is almost everywhere differentiable
with respect to θt due to the Implicit Function Theorem [17,
Ch. 5, Theorem 2.1]. In addition, since the objective function
is continuous (any concave function is continuous [17, Ch. 6,
Theorem 2.14]), and the feasible set does not depend on θt,
the unique best response ei is continuous in θt according
to Berge’s Theorem of Maximum [17, Ch. 7, Theorem 2.1].
In summary, the best response ei is continuous and almost
everywhere differentiable of θt. Notice that all of these
properties hold uniformly in t.

With regards to statement 3): Instead of studying Bi
directly, we study a closely related function B̂i : θ 7→ êti
defined as

êti = arg max
ei∈R
−(1− δi)Mci(ei) + δiαib̄i

(
θti , d(θt), eti

)
.

Note that the above optimization problem is almost the
same as (14), except that the feasible set is ei ∈ R instead of
ei ∈ [0, emax

i ]. In other words, the new optimization problem
is unconstrained. Following the same logic, we know that B̂i
is continuous and almost everywhere differentiable. More-
over, since the optimization problem is unconstrained, we
do not need to worry about the boundary of the feasible set.

Hence, êti is the unique solution to the first-order condition
(whenever the derivative exists):

0 = −(1− δi)Mc′i(ê
t
i) (15)

+ δiαiµq
′
i(ê

t
i) ·
∑
kj 6=k+i

[∂m
k
+
i

kj
(θt+1

i ,d(θt+1
i ,θt

i)kj
)

∂θt+1
i

· bi(d(θt+1
i ,θti)kj )

]
,

where θt+1
i = (1− µ)θti + µqi(ê

t
i). Note that when kj 6= k+i ,

bi(d(θt+1
i ,θti)kj ) = bi(θ

t
j) does not depend on θt+1

i . The best
response function Bi is related to B̂i in the following way:

Bi(θ
t) =

[
B̂i(θ

t)
]emax

i

0
,

where [·]e
max
i

0 = min {max {·, 0} , emax
i } is the projection of a

real number on the interval [0, emax
i ]. This is because at any

θt, due to strict concavity of the objective function, the first-
order derivative is decreasing and hence must be positive
for all ei < B̂i(θ

t). In other words, the objective function is
increasing in ei for all ei < B̂i(θ

t). If B̂i(θt) > emax
i , then

the objective function is increasing in ei for all ei ≤ emax
i . In

this case, the maximum of the objective function in (14) is
taken at eti = emax

i . Similarly, Bi(θt) = 0 if B̂i(θt) ≤ 0.
Now we can study B̂i(θ

t). In particular, we want to
know how êti changes when θt changes. To this end, we
apply the Implicit Function Theorem to (15) by taking the
derivative of the right-hand side of (15) with respect to θtj
and keeping in mind that êti = B̂i(θ

t) is a function of θtj .

Then we obtain ∂B̂i(θ
t)

∂θtj
for j 6= i in (16) and ∂B̂i(θ

t)
∂θti

in (17)

shown at the top of the next page, where d+i , d
(
θt+1
i ,θt−i

)
and d+i,kj , d

(
θt+1
i ,θt−i

)
kj

= θtj for kj 6= ki.

Based on the above derivations, we prove the following
important property about the best response function Bi.

First, we have:

∣∣Bi(θt+1)−Bi(θt)
∣∣ =

∣∣∣∣[B̂i(θt+1)
]emax

i

0
−
[
B̂i(θ

t)
]emax

i

0

∣∣∣∣
≤

∣∣∣B̂i(θt+1)− B̂i(θt)
∣∣∣ ,

where the inequality holds because the difference between
the projections of two numbers on the interval is no larger
than the difference between the two numbers.

Next, we write B̂i(θt+1)−B̂i(θt) as a “telescoping sum”
of N terms as follows:

B̂i(θ
t+1)− B̂i(θt)

=
∑N
j=1

[
B̂i
(
θt+1
1 , . . . , θt+1

j−1, θ
t+1
j , θtj+1, . . . , θ

t
N

)
− B̂i

(
θt+1
1 , . . . , θt+1

j−1, θ
t
j , θ

t
j+1, . . . , θ

t
N

)]
,

where the jth term is the best response under the rating
profile where the first j agents have ratings in period t+ 1,
minus the best response under the rating profile where the



∂B̂i(θ
t)

∂θtj
=

µ ·
{
δiαiq

′
i(ê

t
i)

[
∂2m

k
+
i

kj
(θt+1

i ,d+i,kj
)

∂θt+1
i ∂θtj

bi(θ
t
j) +

∂m
k
+
i

kj
(θt+1

i ,d+i,kj
)

∂θt+1
i

b′i(θ
t
j)

]}

(1− δi)Mc′′i (êi)− µδiαi

q′′i (êti)
∑
k 6=k+i

[
∂m

k
+
i

k
(θt+1

i ,d+i,k)

∂θt+1
i

bi(d
+
i,k)

]
+ µ [q′i(ê

t
i)]

2
∂2m

k
+
i

kj
(θt+1

i ,d+i,kj
)

∂[θt+1
i ]

2 bi(θtj)


(16)

∂B̂i(θ
t)

∂θti
=

µ ·
[

(1− µ)δiαiq
′
i(ê

t
i)
∑
k 6=k+i

∂2m
k
+
i

k
(θt+1

i ,d+i,k)

∂[θt+1
i ]

2 bi(d
+
i,k)

]

(1− δi)Mc′′i (êi)− µδiαi
∑
k 6=k+i

[
q′′i (êti)

∂m
k
+
i

k
(θt+1

i ,d+i,k)

∂θt+1
i

bi(d
+
i,k) + µ [q′i(ê

t
i)]

2
∂2m

k
+
i

k
(θt+1

i ,d+i,k)

∂[θt+1
i ]

2 bi(d
+
i,k)

] (17)

first j−1 agents have ratings in period t+1. As a result, we
have: ∣∣∣B̂i(θt+1)− B̂i(θt)

∣∣∣
=

∑N
j=1

∣∣∣B̂i (θt+1
1 , . . . , θt+1

j−1, θ
t+1
j , θtj+1, . . . , θ

t
N

)
− B̂i

(
θt+1
1 , . . . , θt+1

j−1, θ
t
j , θ

t
j+1, . . . , θ

t
N

)∣∣∣
=

N∑
j=1

∣∣∣∣∣∣
∫ θt+1

j

θtj

∂B̂i
(
θt+1
1 , . . . , θt+1

j−1, θj , θ
t
j+1, . . . , θ

t
N

)
∂θj

dθj

∣∣∣∣∣∣
≤

∑N
j=1

∣∣∣θt+1
j − θtj

∣∣∣ ·
ess supθj∈[θtj ,θ

t+1
j ]

∣∣∣∣∂B̂i(θt+1
1 ,...,θt+1

j−1,θj ,θ
t
j+1,...,θ

t
N)

∂θj

∣∣∣∣ ,
where we take the essential supremum, since the derivative
may not exist for all θj ∈ [θtj , θ

t+1
j ], but exists almost

everywhere except on a subset of measure zero.
We define

Lij(µ) , ess supθ
∂B̂i(θ)

∂θi
(µ), subject to

∂B̂i(θ)

∂θi
exists,

where we write ∂B̂i(θ)
∂θi

(µ) to emphasize the fact that ∂B̂i(θ)
∂θi

is a function of the step size µ. We further define

Li(µ) , maxj∈N Lij(µ).

We can see from (16) and (17) that ∂B̂i(θ)
∂θi

(µ) is contin-
uous in µ and is 0 when µ = 0. Hence, due to Berge’s
Theorem of Maximum [17, Ch. 7, Theorem 2.1], Lij(µ)
is continuous in µ, and Lij(0) = 0. Similarly, Li(µ) is
continuous in µ, and Li(0) = 0. Therefore, we have∣∣Bi(θt+1)−Bi(θt)

∣∣ ≤ ∑N
j=1

∣∣∣θt+1
j − θtj

∣∣∣ · Lij(µ)

≤ Li(µ) ·
∥∥θt+1 − θt

∥∥
1
.

APPENDIX B
PROOF OF THEOREM 1
Before we prove the convergence of the updates (10)–(12),
we show that if they converge to a triple {θ∗i , e∗i , β∗i }i∈N ,
this triple {θ∗i , e∗i , β∗i }i∈N is a CE. Note that when the
updates converge, each agent i has a fixed rating θt+1

i =

θti = θ∗i , a fixed effort level eti = e∗i , and a fixed payoff
ui (m, θti , d(θt), et) = ui (m, θ∗i , d(θ∗), e∗). First, the best
response (10) becomes

e∗i = arg max
ei∈[0,emax

i ]
(1− δi) · ui(m, θ∗i , d(θ∗), ei, e

∗
−i)

+ δi · fi(αi, β∗i , θ∗i , d∗, ei),

which is exactly the first requirement of “incentive compati-
bility” in the definition of CE. Second, the rating update (11)
ensures θ∗i = qi(e

∗
i ), which fulfills the second requirement

of “stable and correct rating” in the definition of CE. Finally,
the update of β in (12) becomes

β∗i = ui (m, θ∗i , d(θ∗), e∗)− αi · b̄(θi, d(θ∗), e∗i ).

Rearranging terms and using the definition of the conjecture
function (4), we have

fi(αi, β
∗
i , θ
∗
i , d(θ∗), e∗i ) = ui (m, θ∗i , d(θ∗), e∗) .

In other words, the conjecture is indeed equal to the true
payoff, which fulfills the third requirement of “correct con-
jectures” in the definition of CE.

Next, we prove that the updates (10)–(12) do converge
under a small enough step size µ in the rating update rule.
Consider a sequence of rating profiles {θt}∞t=0 generated by
the updates (10)–(12). Our goal is to prove that there exists
a ρ ∈ (0, 1) such that∥∥θt+2 − θt+1

∥∥
1
≤ ρ ·

∥∥θt+1 − θt
∥∥
1

for all t ≥ 0. If the above is true, the sequence {θt}∞t=0 will
be a Cauchy sequence in RN+ , and hence will converge.

We prove the contraction property of the differences
between consecutive rating profiles. Note that the rating
update rule (11) is asynchronous. Hence, agent i’s rating
will not be updated if it did not grade an assignment. Recall
Lemma 1. For each agent i, there are two cases:

• If there is rating update at time t+ 1, we have∣∣θt+2 − θt+1
∣∣ ≤ Li(µ) ·

∥∥θt+1 − θt
∥∥
1
,

where Li(µ) is as in Lemma 1.
• If there is no rating update at time t + 1, we have

θt+2
i = θt+1

i , and hence∣∣θt+2 − θt+1
∣∣ = 0 ≤ Li(µ) ·

∥∥θt+1 − θt
∥∥
1
.



Hence, the above inequality holds despite the asynchronous
rating update.

Moreover, since qi is concave and thus has a decreasing
derivative, we have∣∣qi (Bi(θt+1)

)
− qi

(
Bi(θ

t)
)∣∣ ≤ q′i(0)

∣∣Bi(θt+1)−Bi(θt)
∣∣

≤ q′i(0)Li(µ) ·
∥∥θt+1 − θt

∥∥
1
.

As a result, we have∥∥θt+2 − θt+1
∥∥
1

=
N∑
i=1

∣∣θt+2
i − θt+1

i

∣∣
≤

N∑
i=1

[
(1− µ) ·

∣∣θti − θt−1i

∣∣+ µ
∣∣qi (Bi(θt+1)

)
− qi

(
Bi(θ

t)
)∣∣]

≤ (1− µ)
∥∥θt − θt−1∥∥

1
+ µ ·

(
N∑
i=1

q′i(0)Li(µ)

)
·
∥∥θt − θt−1∥∥

1

=

[
(1− µ) + µ ·

(
N∑
i=1

q′i(0)Li(µ)

)]
·
∥∥θt − θt−1∥∥

1
.

Due to property 3 of Lemma 1, we can find a small enough
step size µ > 0 such that

∑N
i=1 q

′
i(0)Li(µ) < 1, and hence

ρ , (1− µ) + µ ·
(∑N

i=1 q
′
i(0)Li(µ)

)
< 1.

APPENDIX C
PROOF OF RESULTS IN SECTION 5
Proof of Proposition 1: We analyze the best response defined
in (14). According to (14), the best response maximizes
an objective function that consists of two terms. Under a
matching rule that is independent of the author’s rating, the
second term of the objective function in (14), namely

δiαi
∑
kj 6=k+i

mk+i kj

(
(1− µ)θti + µqi(ei), θ

t
j

)
· bi(θtj),

is independent of i’s rating, and hence is independent of its
effort level. Hence, i’s best response is an effort level that
maximizes the first term of the objective function, namely

−(1− δi)Mci(ei).

Since each agent i’s cost is strictly increasing in its effort
level, its best response is then eti = 0 under any rating profile
θt. Since student i chooses eti = 0 at any time t, its rating
will converge to θ∗i = qi(0) = 0. �

Proof of Proposition 2: Given the same current initial
rating θ0 of everyone, based on Property 1) of the matching
rule, agent i is matched to a reviewer with the same rating
θ0 with probability 1. Hence, agent i incurs a current cost of
−ci(ei) by choosing effort ei.

Next, we look at agent i’s conjectured future payoff,
which depends on the new rating (1− µ)θ0 + µqi(ei) when
agent i exerts effort ei. If (1 − µ)θ0 + µqi(ei) ≥ θ0, namely
qi(ei) ≥ θ0, based on Properties 2)-a) and 2)-c) of the
matching rule, agent i is matched to a reviewer with rating
θ0 with probability 1. If (1 − µ)θ0 + µqi(ei) < θ0, namely
qi(ei) < θ0, based on Property 2)-b) of the matching rule,
i is matched to a reviewer with rating θ0 with probability
(1−µ)·θ0+µ·qi(ei)

θ0 . In summary, i’s belief function at time 0,
fi(αi, βi, θ

0, d(θ0), ei), can be calculated as{
αi · bi(θ0) + βi, when qi(ei) ≥ θ0

αi · (1−µ)·θ
0+µ·qi(ei)
θ0 · bi(θ0) + βi, when qi(ei) < θ0

.

At time 0, agent i chooses its effort level e0i by solving the
optimization problem (14), which is equivalent to solving

e0i = arg max
ei

{
−(1− δi)ci(ei) + δifi(αi, βi, θ

0, d(θ0), ei)
}
.

Since fi(αi, βi, θ0, d(θ0), ei) is a constant and does not
increase with the effort level ei when qi(ei) ≥ θ0, we restrict
ourselves (without loss of generality) to qi(ei) ≤ θ0. To find
the solution e0i , we look at the derivative of the objective
with respect to ei for any θ0 > 0 and ei ∈ [0, q−1i (θ0)):

Fi(ei, θ
0) , −(1− δi)c′i(ei) + δiαiµq

′
i(ei)

bi(θ
0)

θ0
.

The left derivative of the objective with respect to ei when
ei = q−1i (θ0) is

Fi(q
−1
i (θ0), θ0) , lim

ei↑q−1
i (θ0)

Fi(ei, θ
0)

= −(1− δi)c′i(q−1i (θ0)) + δiαiµq
′
i(q
−1
i (θ0))

bi(θ
0)

θ0
.

Since qi(ei) is strictly increasing in ei, q−1i (θ0) is strictly
increasing in θ0. Due to strict convexity of ci, c′i(q

−1
i (θ0))

is strictly increasing in θ0. Since qi is concave and strictly
increasing in ei, q′i(q

−1
i (θ0)) is positive and decreasing in

θ0. Since bi is concave and strictly increasing in θ0, bi(θ
0)

θ0 is
positive and decreasing in θ0. As a result, Fi(q−1i (θ0), θ0) is
strictly decreasing in θ0.

Moreover, due to continuous differentiability assump-
tions of ci, qi, and bi, Fi(q−1i (θ0), θ0) is continuous in θ0.

In addition, due to our assumptions, c′i(0) = 0, q′i(0) >

0, and limθ0↓0
bi(θ

0)
θ0 = b′i(0) > 0. Hence, we have

Fi(q
−1
i (0), 0) > 0.

Since Fi(q−1i (θ0), θ0) is strictly decreasing and continu-
ous in θ0, and since Fi(q−1i (0), 0) > 0, there exists a small
enough θi such that Fi(q−1i (θ0), θ0) ≥ 0 for any θ0 ≤ θi.
We define θ , maxi θi. Then for any θ0 ≤ θ, we have
Fi(q

−1
i (θ0), θ0) ≥ 0 for all i.

For any θ0 ≤ θ, due to strict concavity of the objective
function, the derivative of the objective with respect to ei,
Fi(ei, θ

0), is decreasing in ei and thus satisfies Fi(ei, θ0) ≥ 0
for all ei ≤ q−1i (θ0). Therefore, each agent i chooses effort
e0i = q−1i (θ0) at time 0, and gets the same rating θ1i = θ0 at
time 1, under which it chooses the same effort e1i = q−1i (θ0).
As a result, the system will stay the same. Hence, the
equilibrium rating is θ0, and the equilibrium effort level is
e∗i = q−1i (θ0). �

Proof of Theorem 2:
Claims 1-2: First, we prove the first claim that the baseline

matching rule is a desirable rule. Under the large population
assumption (i.e., Assumption 2), there are multiple agents of
the same type. These agents of the same type will choose the
same effort level and hence have the same rating. According
to Property 1) in the baseline matching rule, they will always
have exactly one product (from another student of the same
rating) to review, namely M = 1.

It remains to show that the conjectured expected benefit
is increasing and concave in the effort level. Under the



baseline matching rule, the conjectured expected benefit can
be explicitly computed as follows:∑

kj 6=ki
[
mkikj (θi, d(θ)kj ) · bi(d(θ)kj )

]
(18)

=
θi − d(θ)ki+1

d(θ)ki−1 − d(θ)ki+1
· bi(d(θ)ki−1)

+
d(θ)ki−1 − θi

d(θ)ki−1 − d(θ)ki+1
· bi(d(θ)ki+1)

=
bi(d(θ)ki−1)− bi(d(θ)ki+1)

d(θ)ki−1 − d(θ)ki+1
· θi

+
d(θ)ki−1 · bi(d(θ)ki+1)− d(θ)ki+1 · bi(d(θ)ki−1)

d(θ)ki−1 − d(θ)ki+1
.

We can see that the expected benefit is a piecewise linear
function of θi. When i is ranked at ki, the slope of the
function is bi(d(θ)ki−1)−bi(d(θ)ki+1)

d(θ)ki−1−d(θ)ki+1
. Since bi is an increasing

function of θ, we have bi(d(θ)ki−1)−bi(d(θ)ki+1)

d(θ)ki−1−d(θ)ki+1
≥ 0 for all ki.

Hence, the expected benefit is increasing in θi.
Since bi is a concave and increasing function of θ,

we have bi(d(θ)ki−1)−bi(d(θ)ki+1)

d(θ)ki−1−d(θ)ki+1
≤ bi(d(θ)ki

)−bi(d(θ)ki+2)

d(θ)ki
−d(θ)ki+2

.

Hence, the slope decreases when i is ranked higher. There-
fore, the expected benefit is concave in θi. Since (1− µ)θi +
µqi(ei) is increasing and concave in ei, the expected benefit∑

kj 6=ki
[
mkij((1− µ)θi + µqi(ei), d(θ)kj ) · bi(d(θ)kj )

]
is increasing and concave in the effort level ei.

In summary, the baseline matching rule is a desirable
rule. The second claim on the convergence then follows due
to Theorem 1.

Claim 3: Now we prove the third claim that a more capa-
ble agent always gets no lower ratings than a less capable
agent. More specifically, we will prove that as long as a
more capable agent has a no lower current rating, he/she
will exert effort high enough such that his/her next rating
is no lower than that of a less capable agent. Then under
the same initial rating for all the agents, the third claim
follows. Our proof strategy is to first derive the sufficient
and necessary conditions for the best response effort levels,
and then show (by contradiction) that if a less capable agent
exerts a high effort level that results in a next rating higher
than that of a more capable agent, this high effort level
violates the conditions and cannot be the best response.
The main technical difficulty arises since the best responses
may be at the smooth or non-smooth points of the objective
function, which results in different sufficient and necessary
conditions and needs separate treatments.

Sufficient and necessary conditions for best responses: First,
we look at i’s best response at time t:

eti = arg max
ei∈[0,emax

i ]
−(1− δi)ci(ei)+

δiαi
∑
kj 6=ki

mkikj

(
(1− µ)θti + µqi(ei), d(θt)kj

)
·bi
(
d(θt)kj

)
.

Under the baseline rule, if the next rating θt+1
i = (1 −

µ)θti + µqi(ei) lies between d(θt)k and d(θt)k+1 for some

k ∈ {1, . . . , N − 1}, the expected benefit is calculated as:∑
kj 6=ki

mkikj

(
(1− µ)θti + µqi(ei), d(θt)kj

)
· bi
(
d(θt)kj

)
=

bi(d(θt)k)− bi(d(θ)tk+1)

d(θt)k − d(θt)k+1
·
[
(1− µ)θti + µqi(ei)

]
+

d(θt)k · bi(d(θt)k+1)− d(θt)k+1 · bi(d(θt)k)

d(θt)k − d(θt)k+1
.

Removing all the terms that are unrelated to ei, the best
response can be simplified into:

eti = arg max
ei∈[0,emax

i ]
−(1− δi)ci(ei) (19)

+ δiαi
bi(d(θt)k)− bi(d(θ)tk+1)

d(θt)k − d(θt)k+1
· µqi(ei).

Recall that the expected benefit is piecewise linear in θti .
Hence, the objective function in (19) is a piecewise smooth
function of ei. There are N nonsmooth points where the
effort ei satisfies θt+1

i = (1 − µ)θti + µqi(ei) = d(θt)k for
some k ∈ {1, . . . , N}.

Since the objective function is strictly concave, the best
response eti should satisfy the following conditions. When
eti results in a nonsmooth point, namely θt+1

i = (1− µ)θti +
µqi(e

t
i) = d(θt)k, the left derivative at eti must be nonnega-

tive and the right derivative at eti must be nonpositive, i.e.:

(1− δi)c′i(eti) ≤ δiαiµq′i(eti) ·
bi (d(θt)k)− bi (d(θt)k+1)

d(θt)k − d(θt)k+1
,

and

(1− δi)c′i(eti) ≥ +δiαiµq
′
i(e

t
i) ·

bi (d(θt)k−1)− bi (d(θt)k)

d(θt)k−1 − d(θt)k
.

When eti results in a smooth point, namely (1 − µ)θti +
µqi(e

t
i) ∈ (d(θt)k, d(θt)k+1), the derivative of the objective

in (19) exists and should be 0, namely

0 = −(1− δi)c′i(eti) (20)

+δiαiµq
′
i(e

t
i) ·

bi (d(θt)k)− bi (d(θt)k+1)

d(θt)k − d(θt)k+1
.

Proof by contradiction: Now pick two arbitrary agents i
and j with i being more capable than j. We prove that if
θti ≥ θtj , their best responses must satisfy

(1− µ)θti + µqi(e
t
i) ≥ (1− µ)θtj + µqj(e

t
j).

We distinguish two cases depending on whether eti results
in a smooth point or not. In each case, we further separate
our discussions into two subcases depending on whether etj
results in a smooth point or not.

• Case 1: eti results in a smooth point, namely (1 −
µ)θti + µqi(e

t
i) ∈ (d(θt)k, d(θt)k+1). Then eti must

satisfy (20), which is equivalent to

(1− δi)c′i(eti)
δiαiµq′i(e

t
i)

=
bi (d(θt)k)− bi (d(θt)k+1)

d(θt)k − d(θt)k+1
.

Suppose that j chooses a best response etj such that

(1− µ)θti + µqi(e
t
i) < (1− µ)θtj + µqj(e

t
j).



Since θtj ≤ θti , and since qj(e) < qi(e), we must

have etj > eti, and hence
(1−δj)c′j(e

t
j)

δjαjq′j(e
t
j)

>
(1−δj)c′j(e

t
i)

δjαjq′j(e
t
i)
≥

(1−δi)c′i(e
t
i)

δiαiq′i(e
t
i)

. Moreover, for any k′ ≤ k, we have

bj(d(θt)k′)−bj(d(θt)k′+1)
d(θt)k′−d(θt)k′+1

≤ bi(d(θt)k)−bi(d(θt)k+1)
d(θt)k−d(θt)k+1

,

which leads to

(1− δj)c′j(etj)
δjαjµq′j(e

t
j)

>
bj (d(θt)k′)− bj (d(θt)k′+1)

d(θt)k′ − d(θt)k′+1
, (21)

for any k′ ≤ k.

– Subcase 1: If etj results in any smooth point
(1−µ)θtj +µqj(e

t
j) ∈ (d(θt)k′ , d(θt)k′+1) with

k′ ≤ k, then (21) violates the condition (20).
– Subcase 2: If etj results in any nonsmooth point

(1−µ)θtj+µqj(e
t
j) = d(θt)k′ with k′ ≤ k, then

(21) violates the optimality condition (20).

In summary, in both subcases, etj cannot be the best
response, which leads to contradiction. Hence, in
Case 1 we must have

(1− µ)θti + µqi(e
t
i) > (1− µ)θtj + µqj(e

t
j).

• Case 2: eti results in a nonsmooth point, namely (1−
µ)θti + µqi(e

t
i) = d(θt)k. Then eti must satisfy (20),

which leads to

(1− δi)c′i(eti)
δiαiµq′i(e

t
i)
≥ bi (d(θt)k−1)− bi (d(θt)k)

d(θt)k−1 − d(θt)k
.

Suppose that j chooses a best response etj such that

(1− µ)θti + µqi(e
t
i) < (1− µ)θtj + µqj(e

t
j).

Then we must have etj > eti. Following the same logic
that leads to (21), we have

(1− δj)c′j(etj)
δjαjµq′j(e

t
j)

>
bj (d(θt)k′)− bj (d(θt)k′+1)

d(θt)k′ − d(θt)k′+1
, (22)

for any k′ ≤ k − 1.
Similar to Case 1, since (1 − µ)θtj + µqj(e

t
i)e

t
j >

d(θt)k, we have two subcases: (1 − µ)θtj +
µqj(e

t
i)e

t
j = d(θt)k′ , and (1 − µ)θtj + µqj(e

t
i)e

t
j ∈

(d(θt)k′ , d(θt)k′+1), where k′ ≤ k − 1. Since the
inequality (22) violates (20) and (20), etj cannot be
the best response in either subcase.
Hence, in Case 2 we must have

(1− µ)θti + µqi(e
t
i) ≥ (1− µ)θtj + µqj(e

t
j).

We have shown that if a more capable agent has a current
rating no lower than that of a less capable agent, then its
next rating is no lower. Under the same initial rating, more
capable agents always have no lower ratings. �

Proof of Theorem 3: A rating profile θ∗ is an equilibrium
rating profile if each student i’s effort e∗i = q−1i (θ∗i ) is the
best response. Under the baseline matching rule, we have
derived the sufficient and necessary conditions for e∗i to be
the best response in (20)–(20). Hence, a rating profile θ∗

and the associated effort profile e∗ with e∗i = q−1i (θ∗i ) are

an equilibrium rating profile and the associated equilibrium
effort profile if and only if: when ki = 1,

(1− δi)c′i(e∗i ) ≤ δiαiµq′i(e∗i ) ·
bi(d(θ

∗)ki
)−bi(d(θ∗)ki+1)

d(θ∗)ki
−d(θ∗)ki+1

; (23)

when ki ∈ {2, . . . , N − 1},

(1− δi)c′i(e∗i ) ≤ δiαiµq′i(e∗i ) ·
bi(d(θ

∗)ki
)−bi(d(θ∗)ki+1)

d(θ∗)ki
−d(θ∗)ki+1

, (24)

(1− δi)c′i(e∗i ) ≥ δiαiµq′i(e∗i ) ·
bi(d(θ

∗)ki−1)−bi(d(θ∗)ki
)

d(θ∗)ki−1−d(θ∗)ki
; (25)

and when ki = N ,

(1− δi)c′i(e∗i ) ≥ δiαiµq′i(e∗i ) ·
bi(d(θ

∗)ki−1)−bi(d(θ∗)ki
)

d(θ∗)ki−1−d(θ∗)ki
. (26)

Following the same procedure, we can show that under
the asymmetric extension with γ > 0, a rating profile θ̂∗

and the associated effort profile ê∗ with ê∗i = q−1i (θ̂∗i ) are
an equilibrium rating profile and the associated equilibrium
effort profile if and only if: when ki = 1,

(1− δi)c′i(ê∗i ) ≤ δiαiµq′i(ê∗i )
[
bi(d(θ̂

∗)ki
)−bi(d(θ̂∗)ki+1)

d(θ̂∗)ki
−d(θ̂∗)ki+1

+ γ

]
(27)

when ki ∈ {2, . . . , N − 1},

(1− δi)c′i(ê∗i ) ≤ δiαiµq′i(ê∗i )
[
bi(d(θ̂

∗)ki
)−bi(d(θ̂∗)ki+1)

d(θ̂∗)ki
−d(θ̂∗)ki+1

+ γ

]
(28)

(1− δi)c′i(ê∗i ) ≥ δiαiµq′i(ê∗i )
[
bi(d(θ̂

∗)ki−1)−bi(d(θ̂∗)ki
)

d(θ̂∗)ki−1−d(θ̂∗)ki

+ γ

]
(29)

and when ki = N ,

(1− δi)c′i(ê∗i ) ≥ δiαiµq′i(ê∗i )
[
bi(d(θ̂

∗)ki−1)−bi(d(θ̂∗)ki
)

d(θ̂∗)ki−1−d(θ̂∗)ki

+ γ

]
(30)

Observe that the defining inequalities for the baseline
matching rule and those for the first extension are identical
up to the additive term γ. For any equilibrium rating profile
θ∗ under the baseline rulem, we can define θ̂∗ = θ∗+ε·1N ,
where ε > 0 is a small constant. In the following we show
that a strictly positive and small enough ε > 0 leads to a
strictly better equilibrium rating profile θ̂∗ > θ∗.

Since θ̂∗i = qi(ê
∗
i ) and θ∗i = qi(e

∗
i ), and since qi is strictly

increasing in ei, we have ê∗i = e∗i + εi, where εi > 0. Since
ci is convex and qi is concave, we have c′i(ê

∗
i ) > c′i(e

∗
i ) and

q′i(ê
∗
i ) < q′i(e

∗
i ). Since bi is concave and increasing, we have

bi(d(θ̂∗)ki−1)− bi(d(θ̂∗)ki)

d(θ̂∗)ki−1 − d(θ̂∗)ki
<
bi(d(θ∗)ki−1)− bi(d(θ∗)ki)

d(θ∗)ki−1 − d(θ∗)ki

for any ki = 2, . . . , N . Therefore, if the inequalities with
“≥”, i.e., (25) and (26), hold for θ∗ and e∗, then the inequal-
ities with “≥”, i.e., (29) and (30), hold for θ̂∗ and ê∗ as long
as γ > 0 is small enough. For any such γ, if the inequalities
with “≤”, i.e., (23) and (24), hold for θ∗ and e∗, then the
inequalities with “≤”, i.e., (27) and (28) hold for θ̂∗ and ê∗

as long as εi(γ) > 0 is small enough. In conclusion, we can
find an equilibrium rating profile θ̂∗ under the extended
rule that satisfies θ̂∗ > θ∗.



Under the second long-range extension with γr = 0 and
γp > 0, a rating profile θ̂∗ is an equilibrium rating profile
iff:

0 ≤ −(1− δi)c′i(ê∗i ) + δiαiµq
′
i(ê
∗
i ) ·[

bi(d(θ̂
∗)ki

)−bi(d(θ̂∗)ki+1

d(θ̂∗)ki
−d(θ̂∗)ki+1

+ γp
bi(d(θ̂

∗)ki+1)−bi(d(θ̂∗)ki+2)

d(θ̂∗)ki
−d(θ̂∗)ki+1

]
,

when ki = 1,

0 ≤ −(1− δi)c′i(ê∗i ) + δiαiµq
′
i(ê
∗
i ) ·[

bi(d(θ̂
∗)ki

)−bi(d(θ̂∗)ki+1

d(θ̂∗)ki
−d(θ̂∗)ki+1

+ γp
bi(d(θ̂

∗)ki+1)−bi(d(θ̂∗)ki+2)

d(θ̂∗)ki
−d(θ̂∗)ki+1

]
,

0 ≥ −(1− δi)c′i(ê∗i ) + δiαiµq
′
i(ê
∗
i ) ·

bi(d(θ̂
∗)ki−1)−bi(d(θ̂∗)ki

d(θ̂∗)ki−1−d(θ̂∗)ki

,

when ki ∈ {2, . . . , N − 1}, and

0 ≥ −(1− δi)c′i(ê∗i ) + δiαiµq
′
i(ê
∗
i ) ·

bi(d(θ̂
∗)ki−1)−bi(d(θ̂∗)ki

d(θ̂∗)ki−1−d(θ̂∗)ki

,

when ki = N .
Following similar reasoning as in the first extension, we

can find an equilibrium rating profile θ̂∗ under the second
extended rule that satisfies θ̂∗ > θ∗. �
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