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Abstract—Distributed medium access control (MAC) protocols
are essential for the proliferation of low-cost, decentralized wire-
less local area networks (WLANs). Most MAC protocols are de-
signed with the presumption that nodes comply with prescribed
rules. However, selfish nodes have natural motives to manipulate
protocols in order to improve their own performance. This often
degrades the performance of other nodes as well as that of the
overall system. In this paper, we propose a class of protocols that
limit the performance gain from selfish manipulation while incur-
ring only a small efficiency loss. The proposed protocols are based
on the idea of a review strategy, with which nodes collect signals
about the actions of other nodes over a period of time, use a sta-
tistical test to infer whether or not other nodes are following the
prescribed behavior, and trigger a punishment if a deviation is in-
ferred.We consider the cases of private and public signals and pro-
vide analytical and numerical results to demonstrate the properties
of the proposed protocols.

Index Terms—Deviation-proof protocols, game theory, medium
access control (MAC) protocols, repeated games, review strategy.

I. INTRODUCTION

I N WIRELESS communication networks, multiple nodes
often share a common channel and contend for access. To

resolve contention among nodes, many different medium ac-
cess control (MAC) protocols have been developed and are cur-
rently used in international standards (e.g., IEEE 802.11a/b/g
protocols) [1]. When a MAC protocol is designed, two types
of node behavior can be considered. One is compliant nodes
that comply with prescribed protocols, and the other is selfish
nodes that are willing to manipulate prescribed protocols to im-
prove their own performance.1 With compliant nodes, a MAC
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1There can also be malicious nodes that aim to degrade the performance of
other nodes. In this paper, we deal with selfish nodes exclusively. For a model
with both selfish and malicious users, see [2].

protocol can be designed to optimize the system performance
without taking into account the possibility of selfish manipula-
tion (see, for example, [3]–[6]). However, when such a protocol
is used with selfish nodes, they may deviate from the protocol in
pursuit of their self-interest [7], yielding a suboptimal outcome,
different from the one desired by the protocol designer (see, for
example, [8]–[10]). On the other hand, a MAC protocol can be
designed assuming selfish nodes so that the protocol is devia-
tion-proof in the sense that selfish nodes do not find it profitable
to deviate from the protocol. However, incentive constraints im-
posed by selfish behavior in general restrict the system perfor-
mance (see, for example, [6]). In this paper, we aim to resolve
the tension between selfish manipulation and optimal perfor-
mance by proposing a class of MAC protocols that limit the per-
formance gain from selfish manipulation while incurring only
a small efficiency loss compared to the optimal performance
achievable with compliant nodes. Our design and analysis are
conducted in the context of slotted multiaccess communication
networks where nodes transmit data in a single hop interfering
with each other.
Recently, selfish behavior inMACprotocols has also been an-

alyzed using game theory. In [11], the authors establish the sta-
bility region for a slotted Aloha system with multipacket recep-
tion and selfish nodes. In [12], the authors study the existence of
and convergence to Nash equilibrium in a slotted Aloha system
where selfish nodes have quality-of-service requirements. It is
often observed that selfish behavior leads to suboptimal out-
comes. For example, a prisoners’ dilemma phenomenon arises
among selfish nodes adopting the generalized slotted Aloha pro-
tocols of [5]. A decrease in system throughput, especially when
the workload increases due to the selfish behavior of nodes, is
observed in [6]. In the 802.11 distributed MAC protocol, com-
petition among selfish nodes results in an inefficient use of the
shared channel in Nash equilibria [8].
In order to improve suboptimal outcomes with selfish nodes,

various incentive schemes have been proposed in the litera-
ture. In [13], selfish nodes are induced to behave cooperatively
in a slotted multiaccess network by introducing an intervening
node that monitors the actions of nodes and decides its interven-
tion level accordingly. Pricing has also been used as a method
to incentivize selfish nodes. In [6], the degradation of system
throughput due to selfish behavior is prevented by adding a
cost of transmissions and retransmissions. In [14], the network
charges nodes for each successfully transmitted packet in order
to achieve a desired operating point. The above approaches,
however, require a central entity, which may not be available in
a distributed environment. In the case of an intervention scheme,
an intervening node that is capable of monitoring and inter-
vening should be present in the system. In the case of a pricing
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scheme, a billing authority is needed to charge payments de-
pending on the usage of the network. In this paper, we propose a
decentralized approach where nodes carries out monitoring and
punishment.
To this end, we rely on the theory of repeated games to

sustain cooperation among selfish nodes. When the nodes in
a system interact repeatedly, they can make their decisions
dependent on their past observations. Thus, nodes can trigger
a punishment when they observe a deviation from a prede-
termined operating point. If the loss in future payoff due to
punishment outweighs the current gain from deviation, selfish
nodes do not have an incentive to deviate from the prede-
termined operating point. The idea of using a repeated game
strategy to build a deviation-proof protocol has recently been
applied to several problems in communications and networking
(see, for example, [15], [16]). However, most existing work
assumes perfect monitoring, where players observe decisions
that other players make. With perfect monitoring, deviations
are always detected, and thus it is relatively straightforward to
construct a deviation-proof protocol by having a sufficiently
strong punishment triggered following a deviation.
In the scenario considered in this paper, the problem of

constructing a deviation-proof protocol is complicated due to
imperfect monitoring. The decisions of nodes are their trans-
mission probabilities, but it is impossible for nodes to observe
the transmission probabilities of others directly. Instead, they
need to rely on their channel access outcomes or channel states
in order to make inferences about the transmission probabili-
ties. The deviation-proof protocol we construct is based on the
idea of a review strategy [17], [18], with which nodes collect
imperfect signals about the decisions of other nodes, perform
a statistical test to determine whether or not a deviation has
occurred, and trigger a punishment if they conclude so.
The main contributions of this paper can be summarized as

follows.
• We model a slotted multiaccess communication scenario
as a repeated game, which allows us to design a protocol
based on a repeated game strategy, including a review
strategy.

• We first consider the case where nodes observe private sig-
nals on the channel access outcomes. We design devia-
tion-proof protocols assuming that a deviating node can
employ only a constant transmission probability. We pro-
vide a necessary and sufficient condition for a given pro-
tocol to be deviation-proof. We show that the efficiency
loss of a deviation-proof protocol can be made arbitrarily
small if there is a statistical test that becomes perfect as
more signals are accumulated.

• We also consider the case where nodes observe public sig-
nals on the channel access outcomes. We show that with
public signals it is possible to design near-optimal devi-
ation-proof protocols even when deviating nodes can use
any deviation strategy.

• We discuss how our design methodology can be applied to
CSMA/CA networks.

• We illustrate the properties of the proposed protocols with
numerical results.

The proposed protocols are fully distributed in the sense that
they require no central entity to coordinate the operation of

nodes (with a possible exception of initial synchronization) and
that nodes make decisions depending solely on their own local
information without communicating with other nodes.
The rest of this paper is organized as follows. In Section II,

we formulate a repeated game model for slotted multiaccess
communications. In Section III, we propose and analyze de-
viation-proof protocols based on a review strategy when sig-
nals are private, with an example presented in Section IV. In
Section V, we investigate deviation-proof protocols when sig-
nals are public, with an example presented in Section VI. In
Section VII, we discuss a possible extension of the proposed
protocols to a CSMA/CA network with selfish nodes. We con-
clude the paper in Section VIII.

II. REPEATED GAME FRAMEWORK FOR SLOTTEDMULTIACCESS
COMMUNICATIONS

A. Stage Game

We consider a single-hop wireless communication network
where a set of nodes aims to transmit
data to their receivers. Time is divided into slots of equal length,
and in each slot, a node has a packet to transmit (i.e., saturated
arrivals) and can attempt to send the packet or wait. Due to inter-
ference, a packet is transmitted successfully only if there is no
other packet transmitted in the same slot. Otherwise, a collision
occurs, and no packet is transmitted successfully. We model the
interaction of nodes in a single slot as a noncooperative game in
normal form, called the random access game.
The set of pure actions available to node in a slot

is , where stands for “transmit” and for
“wait.” We denote the pure action of node by and
a pure action profile by . A
mixed action for node is a probability distribution on . Since
there are only two pure actions, a mixed action for node can
be represented by a transmission probability , and the
set of mixed actions for node can be written as . A
mixed action profile is denoted by

. The payoff function of node is defined by
, where if and for all ,
and otherwise. That is, a node receives payoff 1
if it has a successful transmission, and 0 otherwise. Then, the
expected payoff of a node is given by the probability that it has
a successful transmission, and with a slight abuse of notation,
the payoff of node when mixed action profile is chosen can
be written as

The random access game is defined by the tuple
. It is well known from the static

analysis of the random access game that there is at least one
node choosing at any Nash equilibrium (NE) [9], [13].
That is, when nodes myopically maximize their own payoffs,
there is at least one node always transmitting its packets, and
thus there can be at most one node obtaining a positive payoff.
Moreover, in the unique symmetric NE, every node transmits
with probability 1, which results in zero payoff for every node.
On the other hand, the symmetric Pareto-optimal (PO) outcome
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is achieved when each node chooses , which yields a
positive payoff for every node. We
call the cooperation probability and the optimal payoff.

B. Repeated Game

We now formulate the repeated random access game, where
the actions of a node can depend on its past observations or in-
formation histories. Time slots are indexed by . At
the end of each slot, nodes obtain signals on the pure action pro-
file chosen in the slot. Let be the finite set of signals that each
node can receive. Let be a mapping from to , where

represents the signals that nodes receive given pure action
profile .2 A signal structure is specified by the pair . In
this paper, we restrict attention to symmetric signal structures
where the signal that a node received is preserved under per-
mutations of indices for nodes. We say that signals are private
if there exist and such that

for some and . We say that signals
are public if they are not private. That is, signals are private if
it is possible for nodes to receive different signals, whereas sig-
nals are public if signal realization is the same for all nodes. We
present two examples of signal structures that will be used later
in this paper.
Example 1 (ACK Signals): In the slotted Aloha protocols

in [5] and [19], a node receives an acknowledgement (ACK)
signal if it transmits its packet successfully, and no signal oth-
erwise. In the ACK signal structure, the signal space can be
written as , where means that node re-
ceives an ACK signal and means that it does not. Provided
that there is no error in the transmission and reception of ACK
signals, the signal determination rule is such that the th el-
ement of is , while all the other elements are if there
exists such that and for all , and

otherwise. ACK signals are private because
when a success occurs, only one node receives signal , while
all the other nodes receive signal .
Example 2 (Ternary Signals): In the ternary signal struc-

ture as in [20] and [21], we have and
if , if there

exists such that and for all , and
otherwise. That is, signals 0, 1, and repre-

sent that the channel state is idle, success, and collision, respec-
tively. Ternary signals are public because all the nodes obtain
the same signal no matter what pure action profile is chosen.
The history of node in slot , denoted by , contains the

signals that node has received by the end of slot . That
is, , for , where represents
the signal that node receives in slot and is set as an ar-
bitrary element of .3 The set of all possible slot histories
of a node is given by , and the set of all
possible histories is . The (behavior) strategy for

2If signals are determined randomly given an action profile (e.g., due to er-
rors), we can use instead, where is the set of all
possible probability distributions over .
3In slot , node also knows its past mixed actions and

their realizations . However, since we focus on repeated game
strategies using only past signals, we do not include them in our history speci-
fication.

a node specifies a mixed action for it in the stage game con-
ditional on a history it reaches. Thus, it can be represented by
a mapping . We use to denote the set of all
strategies for a node. We define a protocol as a strategy profile

. To evaluate payoffs in the repeated
game model, we use the limit of means criterion since the length
of a slot is typically short.4 A protocol induces a probability
distribution on the sequences of mixed action profiles ,
where is the mixed action profile in slot . The payoff of
node under protocol can be expressed as

assuming that the limit exists, where denotes expectation
with respect to the probability measure on induced by . If
the limit does not exist, we replace the operator by .5

We say that a protocol is symmetric if it prescribes the same
strategy to every node, i.e., . Note that a sym-
metric protocol can be represented by its common strategy, and
thus we will sometimes refer to a strategy as a protocol
in order to mean . In the following, we focus on
symmetric protocols, which yield the same payoff to each node.

C. Deviation-Proof Protocols and the Efficiency Loss

The goal of this paper is to build a protocol that fulfills the fol-
lowing two requirements: 1) selfish nodes do not gain from ma-
nipulating the protocol; and 2) the protocol achieves an optimal
outcome. We formalize the first requirement using the concept
of deviation-proofness while evaluating the second requirement
using the concept of efficiency loss. Since nodes are noncoop-
erative (i.e., they are not able to form coalitions), we can focus
on unilateral deviations. That is, a deviating node will compare
its payoffs when it uses a deviation strategy and when it follows
the prescribed strategy, provided that every other node follows
the prescribed strategy. We use to denote the payoff
that a node obtains when it uses strategy , while every other
node follows strategy .
Definition 1: A protocol is deviation-proof (DP)

against a strategy if

When is DP against , a node cannot gain by deviating to
while other nodes follow . Hence, if a deviating node has

only one possible deviation strategy , a protocol that is DP
against can prevent selfish manipulation. However, in prin-
ciple, a deviating node can choose any strategy in , in which
case we need a stronger concept than deviation-proofness. Let

be the set of all constant strategies that prescribe a fixed
transmission probability , called the deviation prob-
ability, in every slot regardless of the history.
Definition 2: A protocol is robust -deviation-proof

(robust -DP) if

for all

4For example, the slot duration of the 802.11 DCF basic access method is
20 s [1].
5Although we consider the limit of means criterion, the following results can

be extended with a complication to the case of the discounting criterion as long
as the discount factor is close to 1, as in [17].
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TABLE I
SUMMARY OF MAIN RESULTS

In other words, if a protocol is robust -DP, a node cannot
gain more than by deviating to a constant strategy using a fixed
deviation probability. If there is a fixed cost of manipulating a
given protocol and a deviation strategy is constrained to con-
stant strategies, then a robust -DP protocol can prevent a de-
viation by having smaller than the cost. When there is no re-
striction on possible deviation strategies, the following concept
is relevant.
Definition 3: A protocol is an -Nash equilibrium

( -NE) if

for all

We define the system payoff as the sum of the payoffs of
all the nodes. Then, the system payoff when all nodes follow
a protocol is given by . Since is the
maximum system payoff achievable with a symmetric mixed
action profile, the efficiency loss of a protocol ismeasured
by

(1)

Definition 4: A protocol is -Pareto optimal ( -PO) if

A -PO protocol is a protocol that yields an efficiency loss
less than or equal to . Let be the strategy that prescribes the
cooperation probability in every slot regardless of the his-
tory.6 Then, , and thus achieves full effi-
ciency (i.e., 0-PO). However, is not DP against a constant de-
viation strategywith as a deviating node can increase its
payoff from to . We construct DP
protocols that achieve a near-optimal system payoff in the fol-
lowing sections, whose main results are summarized in Table I.

III. DEVIATION-PROOF PROTOCOLS WHEN SIGNALS ARE
PRIVATE

A. Description of Protocols With Private Signals

In this section, we consider private signals. As pointed out
in [22], when signals are private, it is difficult, if not impossible,
to construct an NE that has a simple structure and is easy to com-
pute. Thus, we focus on a simpler problem of constructing a DP
protocol against a constant deviation strategy . Since a
simple protocol such as is DP against with ,
we restrict our attention to deviation strategies with .

6Note that corresponds to a slotted Aloha protocol that does not distinguish
new and backlogged packets as in [12].

Fig. 1. Review strategy with private signals.

Note that the restriction to constant deviation strategies is rel-
evant when a deviating node has a limited deviation capability
in the sense that it can reset its transmission probability only at
the beginning.
We build a protocol based on a review strategy. When a

node uses a review strategy, it starts from a review phase for
which it transmits with probability and collects signals.
When the review phase ends, the node performs a statistical
test whose null hypothesis is that every node transmitted with
probability during the review phase, using the collected sig-
nals. Then, the node moves to a reciprocation phase for which
it transmits with probability (cooperation phase) if the test
is passed, and with probability 1 (punishment phase) if the test
fails. When the reciprocation phase ends, a new review phase
begins. A review strategy, denoted by , can be characterized
by three elements, , where is a statistical test
and and are natural numbers that represent the lengths
of a review phase and a reciprocation phase, respectively.
Thus, we sometimes write as . With a protocol
based on review strategy , each node performs the
statistical test after slot based on the signals

collected in the recent review
phase, for . A schematic presentation of a review
strategy with private signals is provided in Fig. 1.

B. Analysis of Protocols With Private Signals

1) Existence of Deviation-Proof Protocols: For the sake of
analysis, we consider a fixed constant deviation strategy
and the corresponding deviation probability .

Given a symmetric protocol that prescribes a review strategy,
we can compute two probabilities of errors.
• False punishment probability : probability that
there is at least one node whose test fails after a review
phase when nodes follow a protocol .
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• Miss detection probability : probability that
there is no node among those following whose test fails
after a review phase when there is exactly one node devi-
ating to .

Since the payoff of every node is zero when there are two or
more punishing nodes, we need to have a small false punishment
probability to achieve a small efficiency loss. On the other hand,
in order to punish a deviating node effectively, we need to have
a small miss detection probability. Indeed, as will be shown in
Proposition 2, achieving small and is sufficient to design
a near-optimal DP protocol.
The payoff of a node when every node follows a review

strategy is given by

The payoff of a node choosing deviation strategy while other
nodes follow is given by

By Definition 1, is DP against if and only if

(2)

The following theorem provides a necessary and sufficient con-
dition for a review strategy to be DP against .
Theorem 1: Given , protocol

is DP against if and only if and
, where

(3)

and

Proof: The net payoff gain from deviating to the deviation
strategy is given by

(4)

The first term in (4) is the gain during a review phase, while the
second term is the loss during a reciprocation phase. By (2),
is DP against if and only if . It is
easy to check that and
imply . Suppose that

. Since , we must have
, which in turn implies .

Theorem 1 shows that for a given statistical test , we can
construct a DP protocol based on the test if and only if there ex-
ists a natural number such that . Once we find
such , we can use it as the length of a review phase and then

choose a natural number satisfying
to determine the length of a reciprocation phase. An immediate
consequence of Theorem 1 is that if protocol is DP
against , then protocol with is also
DP against . Thus, can be interpreted as the
minimum length of a reciprocation phase to make
DP against . The following result provides a sufficient condi-
tion on under which we can find such that
and thus a DP protocol based on can be constructed.
Corollary 1: Given , suppose that satisfies

and . Then,
there exists such that .

Proof: By (3),
and imply that

. Thus, for
sufficiently large .
Combining Theorem 1 and Corollary 1, we can see that if

test is “asymptotically perfect” in the sense that the two prob-
abilities of errors converge to zero as the test is performed using
more signals, then we can always design a review strategy based
on that is DP against .
2) Near-Optimal Deviation-Proof Protocols: Suppose that

every node follows a review strategy . Since signals provide
only imperfect information about the transmission probabili-
ties of other nodes, it is possible that a punishment is triggered,
which results in an efficiency loss as confirmed in the following
proposition. We use to denote the set of all review strategies
with private signals.
Proposition 1: for all (with equality if

and only if ).
Proof: Fix a protocol . By (1), we can

express the efficiency loss of as

(5)

Since is concave, we have
for , with equality if and only if .

Using , we obtain the result.
Proposition 1 says that there is always a positive efficiency

loss resulting from a review strategy unless there is a perfect
statistical test in the sense that punishment is never triggered
when every node follows (i.e., ). Punishment results
in an efficiency loss because the system payoff is the same as

when there is only one punishing node, while it is zero
when there are two or more. Hence, a longer punishment in-
duces a larger efficiency loss. As can be seen from (5), for given
and , is nondecreasing (and increasing if )

in . Therefore, if we find such that ,
choosing minimizes the efficiency loss
while having DP against , where denotes the
ceiling function. This observation allows us to reduce the design
choice from to .
We can see from (5) that there are two ways to achieve

a small efficiency loss. One is to have large ratio ,
and the other is to have close to zero. If we do not re-
quire deviation-proofness, we can achieve an arbitrarily
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small efficiency loss by increasing even when does not
converge to zero. However, if we impose deviation-proof-
ness, we cannot make arbitrarily large because
of the relationship . We have

, and since is
bounded above, is bounded above as well. Hence, with
deviation-proofness, increasing itself does not guarantee a
small efficiency loss. To guarantee a small efficiency loss as
increases, we need converging to zero. The following

proposition provides a sufficient condition on the statistical test
for constructing a near-optimal DP protocol.
Proposition 2: Given , suppose that satisfies

and . Then,
for any , there exist and such that is
DP against and -PO.

Proof: Since , there exists
such that for all . By Theorem 1,

is DP against for all .
Since is nondecreasing in , we have

(6)

Note that , and
thus the right-hand side of (6) converges to zero as goes to
infinity, which implies . Therefore, there
exists such that for all . Choose

and to obtain a protocol
with the desired properties.
Proposition 2 shows that the efficiency loss of a DP protocol

can be made arbitrarily small when there is an asymptotically
perfect statistical test. It also points out a tradeoff between op-
timality and implementation cost. In order to make the effi-
ciency loss within a small desired level, should be chosen
sufficiently large, which requires large by the relationship

. At the same time, as and become
larger, each node needs to maintain longer memory to execute a
review strategy, which can be considered as higher implemen-
tation cost.
We note that the constructed DP protocols are DP against

a more general class of deviation strategies with which a per-
manent deviation to occurs in an arbitrary slot (determined
deterministically or randomly). A deviating node cannot gain
starting from a review phase after a deviation occurs, and
without discounting its temporary gain is always smaller than
the perpetual loss.

IV. PROTOCOLS BASED ON THE ACK RATIO TEST

A. Description of Protocols Based on the ACK Ratio Test

In this section, we illustrate the results in Section III by con-
sidering the ACK signal structure, introduced in Example 1 in
Section II-B. We propose a particular statistical test called the
ACK ratio test. The test statistic of the ACK ratio test is the
ratio of the number of ACK signals obtained in a review phase
to the length of a review phase, i.e., ,

Fig. 2. Automaton representation of a review strategy based on the ACK ratio
test with parameters satisfying .

where is an indicator function and represents a slot
when a review phase begins. The test is passed if the statistic
exceeds a threshold value, , where
and , and fails otherwise. Note that is the ex-
pected value of the ACK ratio when every node transmits with
probability . If there is a deviating node, the ACK ratio tends
to be smaller because its expected value is reduced to

. The ACK ratio test is designed to dis-
tinguish between these two events statistically while having
as a “margin of error.” Since the ACK ratio test can be identified
with , we use instead of to represent the ACK ratio test.
A review strategy based on the ACK ratio test, ,

can be represented formally as follows:

,
,

,

for . Fig. 2 shows an automaton representation of
the review strategy for so that a node
triggers punishment if it obtains less than two successes in a
review phase. Each state transition is labeled by the set of signals
that induce the transition. In a reciprocation phase, a node goes
through either states P1 to (punishment phase) or states C1
to (cooperation phase) depending on the number of ACK
signals obtained in the review phase. Note that the number of
states in the automaton representation of protocol
is given by , where is
the natural number satisfying .

B. Analytical Results

Let be the cumulative distribution function of a
binomial random variable with parameters and , i.e.,
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where denotes the floor function. Suppose that every node
transmits with probability in a review phase. Then, the
number of ACK signals that a node receives in the review
phase follows a binomial distribution with parameters and .
Thus, the probability that a punishment is triggered by node
is given by

and the false punishment probability is given by

Suppose that there is exactly one deviating node using , i.e.,
transmitting with probability . Then, the second parameter
of the binomial distribution changes to , and thus the miss
detection probability is given by

The monotonicity of and with respect to the test param-
eter is readily obtained.
Proposition 3: Given and ,

and are nonincreasing and nondecreasing in
, respectively.

Proof: The proof is straightforward by noting that
and are nonin-

creasing in .
As the margin of error is larger, it is more likely that the test

is passed, yielding a smaller false punishment probability and a
larger miss detection probability. The following lemma exam-
ines the asymptotic properties of and as becomes large.
Lemma 1: Given , for all

, for all
, and for all .
Proof: Since , for , can be con-

sidered as i.i.d. random variables, we can apply the strong
law of large numbers to the ACK ratio [23]. When every node
transmits with probability , the ACK ratio converges almost
surely to as goes to infinity, which implies that the false
punishment probability goes to zero for all . When there
is exactly one node transmitting with probability , the ACK
ratio of a node transmitting with probability converges al-
most surely to as goes to infinity. Hence, if
(resp. ), the miss detection probability goes to zero
(resp. one).
Lemma 1 provides a sufficient condition on the ACK ratio

test to apply Proposition 2.
Proposition 4: Suppose that . For any ,

there exist and such that is DP against and
-PO.
Proof: The proposition follows from Lemma 1 and

Proposition 2.
Proposition 4 states that for given , we can con-

struct a protocol that is DP against and achieves an ar-
bitrarily small efficiency loss by setting such that

. Note that as is larger, it

is easier to detect a deviation, and thus we have a wider range
of that renders deviation-proofness and near-optimality.
So far, we have considered a constant deviation strategy

prescribing a fixed deviation probability and designed a pro-
tocol that is DP against . However, it is natural to regard
as a choice of a deviating node, and thus in principle it can be
any probability. Now we allow the possibility that a deviating
node can use any constant deviation strategy, and we obtain the
following result.
Theorem 2: For any and , there exist , , and
such that is robust -DP and -PO.
Proof: The proof is relegated to Appendix A.

We can interpret and as performance requirements. Re-
quiring smaller makes protocols more robust while requiring
smaller results in a higher system payoff. In addition to the
tradeoff between optimality and implementation cost already
mentioned following Proposition 2, we can identify a similar
tradeoff between robustness and implementation cost in that
smaller in general requires larger and to construct a ro-
bust -DP protocol.

C. Numerical Results

To obtain numerical results, we consider a network with
five nodes, i.e., and . Fig. 3 plots

and while varying for ,
0.06. Fig. 3(a) shows that exhibits a decreasing
tendency as increases, with discontinuities occurring at the
points where the floor function of has a jump. We
can also see that is smaller for larger , consistent with
Proposition 3. The upper threshold for the parameter to yield

in Lemma 1 is
for . We can see from Fig. 3(b) that has
a decreasing (resp. increasing) tendency as increases when
is smaller (resp. larger) than this threshold. Fig. 3(b) also

shows that, for fixed , is smaller for larger . That is, as
the deviation becomes greedier, it is more likely to be detected.
Fig. 4 plots the relationship between the length of a review

phase and the minimum length of a reciprocation phase
to have a DP protocol for different values

of and . In Fig. 4(a), we fix and consider
. Note that when , some values of

result in large minimum values of , which are not displayed
in Fig. 4(a). Also, the values of with which no DP protocol
can be constructed for given and (i.e., )
are indicated with in Fig. 4(a). For
example, we cannot construct a DP protocol using such that

or when and .
When , we can construct a DP protocol using any

. In Fig. 4(b), we fix and consider ,
0.85. For the considered values of , we observe that the
minimum length of a reciprocation phase is increasing in for
the most values of . Also, in general, a longer review phase
requires a longer reciprocation phase for fixed although a re-
verse relationship may be obtained, especially when is small.
Note that and have a linear relationship in
the limit since .
Fig. 5 plots efficiency loss against while setting

for different values of and . The
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Fig. 3. Error probabilities (a) and (b) versus the length of a review phase .

Fig. 4. Minimum length of a reciprocation phase versus the length of a review phase : (a) and (b) .

Fig. 5. Efficiency loss versus the length of a review phase : (a) and (b) .

points where efficiency loss is shown as 0 in Fig. 5(a) are where
no DP protocol exists for the given parameters. We can observe
that as increases, efficiency loss tends to decrease to 0, which
is consistent with Proposition 4. Fig. 5(a) shows that for fixed

, efficiency loss is smaller when than when
. This is because the false punishment probability of

the former case is smaller than that of the latter case as shown in
Fig. 3(a). Fig. 5(b) shows that efficiency loss is almost the same
for the two considered deviation probabilities when .
Lastly, we provide numerical results on Theorem 2. We con-

sider and , and compute min-
imum to have a robust -DP and -PO protocol while
using 0.004 and 0.007 when 0.015 and 0.025, respec-

tively. For (0.015, 0.06), (0.015, 0.08), (0.025, 0.06),
(0.025, 0.08), we obtain (1912 , 1245), (1424, 1169),
(1013, 1073), (707, 1053), respectively. We can see that as we
require smaller and , we need to have longer review and pun-
ishment phases.

D. Deviation-Proof Protocols With Complexity Considerations

We mention briefly how to incorporate complexity consider-
ations in the protocol design problem. One approach to mea-
sure the complexity of a repeated game strategy is to use the
number of the states of the smallest automaton that can imple-
ment the strategy [24]. With this approach, we can formulate the
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TABLE II
PARAMETERS AND THE EFFICIENCY LOSS OF OPTIMAL PROTOCOLS

following protocol design problem, assuming that the deviation
strategy is fixed as :

minimize

subject to is DP against

(7)

is the number of states in the automaton representa-
tion of the review strategy , as defined in Section IV-A, and

is the imposed upper bound on the number of states. The
second constraint can be interpreted as a complexity constraint
that bounds the number of states in the automaton representa-
tion of . Without a complexity constraint, efficiency loss can
be made arbitrarily small while satisfying the first constraint by
choosing sufficiently large , as shown in Proposition 4. Thus,
the second constraint prevents optimal from growing without
bound.
We propose the following method to find an optimal protocol

that solves the protocol design problem (7).
• Step 1. Determine a finite set as the set of
possible values of .

• Step 2. Fix . Identify the set of feasible in
the sense that satisfies the second constraint of (7)
given .

• Step 3. Fix feasible , and check whether in
(3) is positive. If so, choose as the smallest feasible
value of larger than or equal to , which
we denote by , if such a value exists. Then,

is a protocol that satisfies both con-
straints of (7).

• Step 4. By varying and , obtain protocols that satisfy
both constraints. Among these protocols, choose a protocol
that yields the smallest efficiency loss.

As an illustrative example, we consider and set
so that protocols can be implemented using 8-bit

memory. For simplicity, we fix at 0.04, i.e., .
Table II presents the parameters and the efficiency loss
of optimal protocols for different deviation probabilities. We
can see that the optimal protocols have different parameters for
different values of . Due to jumps in efficiency loss with re-
spect to as shown in Fig. 5, the optimal protocols do not nec-
essarily have the longest possible review phase.

V. DEVIATION-PROOF PROTOCOLS WHEN SIGNALS
ARE PUBLIC

A. Motivation

When signals are private, nodes do not know the results of
the test performed by other nodes. Hence, without a coopera-
tion phase, nodes cannot distinguish a deviating node from a
punishing node and thus cannot coordinate to begin a new re-
view phase in case some node moves to a punishment phase.

However, the existence of a cooperation phase creates a weak-
ness that can be exploited by a deviating node. A deviating node
can cooperate in a review phase to avoid punishment and then
defect in a reciprocation phase to obtain a payoff gain. To ex-
clude such a deviation, in Sections III and IV we have focused
on constant deviation strategies when designing DP protocols.
When signals are public, we can dispense with a cooperation
phase. With public signals, the result of the test is the same
across nodes, and thus nodes can coordinate whether to move to
a punishment phase or to begin a new review phase. Thus, with
public signals, it becomes possible to construct a protocol that
is DP against a larger class of deviation strategies. This added
robustness of protocols with public signals can be regarded as
the value of public signals when the signal structure is a design
choice.7

B. Description of Protocols With Public Signals

When signals are public, nodes receive a common signal, and
thus we use , without subscript , to denote the signal in slot .
A review strategy with public signals is the same as the one
described in Section III-A except that there is no cooperation
phase. That is, a new review phase begins immediately if the
statistical test is passed. If the test fails, a punishment phase
occurs as before. Since we focus on symmetric protocols, all
nodes use the same statistical test and perform the test based
on the same signals. Hence, all nodes obtain the same result of
the test, and thus they are always in the same phase. We use

to denote the review strategy with public signals
that uses test and has and as the lengths of a review
phase and a punishment phase, respectively.

C. Analysis of Protocols With Public Signals

We first consider a fixed deviation strategy that has the
same structure as the prescribed review strategy . That is, a
deviating node transmits with probability in a review phase
and with in a punishment phase. Since no node obtains a
positive payoff in a punishment phase, the choice of does not
affect the analysis, and thus only matters for analysis. For
the same reason as in Section III, we focus on the case where

.
As in the case of private signals, we can compute two proba-

bilities of errors: the false punishment probability and
the miss detection probability . Since a punish-
ment phase occurs with probability and results in zero payoff
for every node when all nodes follow a review strategy, we have

7Even when signals are private, we can dispense with a cooperation phase if a
node can broadcast the failure of its test, as in [18]. Then, all nodes can move to
a punishment phase if the test of some node fails, and begin a new review phase
otherwise. However, broadcasting the result of the test requires communications
among nodes, which we do not allow in the considered distributed protocols.
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Note that is the average length of an epoch, defined
as a review phase and the following punishment phase if one
exists, and is the accumulated expected payoff for a node in
an epoch. The payoff of a node choosing deviation strategy
while other nodes follow is given by

The efficiency loss of can be computed as

(8)

which is always nonnegative (positive if ). Note
that the nonnegativity of the efficiency loss does not require

, unlike in the case of private signals (see the proof
of Proposition 1). The following theorem is an analogue of
Theorem 1 for the case of public signals.
Theorem 3: Given , protocol

is DP against if and only if and
, where

and

Proof: if and only if
. Note that is the gain from

deviation in a review phase, while
is the expected loss from deviation in a punishment phase. The
result can be obtained by using a similar argument as in the proof
of Theorem 1.
Theorem 3 shows that for a given statistical test , we can

construct a DP protocol based on the test if and only if there
exists a natural number such that . As in
the case of private signals, we can reduce the design choices
for a review strategy from to by setting

. The next result is an analog of Proposition 2,
showing that if an asymptotically perfect statistical test is avail-
able, we can construct a near-optimal DP protocol.
Proposition 5: Given , suppose that satisfies

and . Then,
for any , there exist and such that is
DP against and -PO.

Proof: The proof is similar to that of Proposition 2, and
thus is omitted for brevity.

VI. PROTOCOLS BASED ON THE IDLE SLOT RATIO TEST

A. Description of Protocols Based on the Idle Slot Ratio Test

To illustrate the results in Section V, we consider the ternary
signal structure, introduced in Example 2 in Section II-B. We
consider a review strategy with which nodes use the fraction of
idle slots in a review phase, or the idle slot ratio, as the test sta-
tistics. If every node transmits with probability , the expected
value of the idle slot ratio is . On the other hand,

Fig. 6. Automaton representation of a review strategy based on the idle slot
ratio test with parameters satisfying .

if there is exactly one deviating node that transmits with prob-
ability during a review phase, the expected value is reduced
to . The idle slot ratio test is passed if
the idle slot ratio, , exceeds a threshold
value, , and fails otherwise. Fig. 6 shows an automaton
representation of a review strategy whose parameters satis-
fying . State transition occurs depending on
the received signals, as depicted in Fig. 6. When a review phase
ends, nodes either start a new review phase or move to a pun-
ishment phase depending on whether the number of idle slots in
the review phase exceeds or not.

B. Analytical Results

Suppose that every node follows a review strategy based on
the idle slot ratio test, . Then, every node trans-
mits with probability in a review phase, and the number of
idle slots occurring in a review phase follows a binomial dis-
tribution with parameters and . Thus, the false punishment
probability is given by

Since a deviating node using transmission probability
changes the second parameter of the binomial distribution from
to , the miss detection probability is given by

The monotonicity of and with respect to the margin of
error is stated as follows.
Proposition 6: Given and ,

and are nonincreasing and nondecreasing in
, respectively.

Proof: The proof is straightforward by noting that
and is nonincreasing

in .
The next lemma examines the asymptotic properties of and
as becomes large.
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Fig. 7. Error probabilities (a) and (b) versus the length of a review phase when .

Lemma 2: Given , for all
, for all

, and for all .
Proof: The proof is similar to that of Lemma 1, and thus is

omitted for brevity.
Lemma 2 gives a sufficient condition on the idle slot ratio test

to apply Proposition 5.
Proposition 7: Suppose that . For any ,

there exist and such that is DP against and
-PO.
Proof: The proposition follows from Lemma 2 and

Proposition 5.
Proposition 7 states that for given , we can always

construct a protocol based on the idle slot ratio test that is DP
against and achieves an arbitrarily small efficiency loss by
choosing such that .
As in the case of the ACK ratio test, we have a wider range of
that renders deviation-proofness as is larger.
We have considered deviation strategies that prescribe a con-

stant transmission probability in a review phase. We now con-
sider the case where a deviating node can use any strategy in ,
which includes strategies that adjust transmission probabilities
depending on the signals obtained in the current review phase.
The following theorem shows that we can construct a protocol
based on the idle slot ratio test that is approximately NE and
near-optimal.
Theorem 4: For any and , there exist , , and
such that is -NE and -PO.
Proof: The proof is relegated to Appendix B.

The interpretation of and as performance requirements as
well as the tradeoff between performance and implementation
cost, as discussed following Theorem 2, is still valid in the case
of public signals.
Remark (Protocols With Sliding Windows): Suppose that

more than idle slots have occurred before the end
of a review phase. Then, a deviating node, knowing that a
punishment will not occur regardless of the outcome in the re-
maining slots of the review phase, can increase its transmission
probability for the remainder of the review phase to obtain a
payoff gain. We can make a protocol based on a review strategy
robust to such a manipulation by having sliding windows for
review phases. In a review strategy with sliding windows,
a review phase begins in each slot unless there is a new or

ongoing punishment. Once the idle slot ratio test based on the
recent signals fails, a review stops and punishment occurs
for slots. Once a punishment phase ends, a review phase
begins in each slot until another punishment occurs. A detailed
analysis of protocols with sliding windows is left for future
research.

C. Numerical Results

To obtain numerical results on DP protocols with public sig-
nals, we again consider a network with and

while varying and the protocol parameters.
Fig. 7 plots and against for and
. As in the case of private signals, tends to decrease with
and approaches zero for large . Also, is smaller for a

larger margin of error . The upper threshold for to yield
in Lemma 2 is .

We can see that when is larger than this threshold, tends to
increase with and approaches 1 for large . On the contrary,
when is smaller than the threshold, approaches zero for
large , making the test asymptotically perfect.
Fig. 8 plots the minimum length of a reciprocation phase

to have a DP protocol as a function of the
length of a review phase . We can see that for fixed
, a longer reciprocation phase is needed for larger , ex-

cept when is small, and that DP protocols cannot be con-
structed with some small values of when (displayed
as ). Also, when , a longer re-
ciprocation phase is needed for than for . The
efficiency loss of DP protocols with the minimum length of a
reciprocation phase is shown in Fig. 9. We can see that larger
results in a smaller efficiency loss, because is smaller for
larger as shown in Proposition 6. Also, efficiency loss ap-
proaches zero as becomes large, which is consistent with
Proposition 7.
Lastly, we provide numerical results on Theorem 4. We set

the parameters in the proof of Theorem 4 as , ,
and , which determine and as functions of . For
the four considered pairs of (0.01,0.01), (0.01, 0.05),
(0.02, 0.01), (0.02, 0.05), we obtain (41, 820),
(19, 380), (34, 680), (16, 320), respectively. We can see that
we need to have longer review and punishment phases as and
are smaller.
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Fig. 8. Minimum length of a punishment phase versus the length of a review phase : (a) and (b) .

Fig. 9. Efficiency loss versus the length of a review phase : (a) and (b) .

VII. EXTENSION TO A CSMA/CA NETWORK WITH
SELFISH NODES

In this section, we discuss how the proposed protocols based
on a review strategy can be modified for a CSMA/CA network.
As in [9], we consider a CSMA/CA network in which selfish
nodes use a fixed contention window size. The authors of [9]
show a discrepancy between NE and Pareto optimum. The con-
tention window size of each node at the unique symmetric PO
outcome is denoted by , which results in a transmission
probability in the steady state. The optimal
payoff , i.e., the throughput at Pareto optimum, can be com-
puted using [9, Eq. (1)], which is based on the model of [25].
A review strategy in a CSMA/CA network can be described

as follows, assuming private signals (i.e., sensing information
is private). At the beginning, nodes are synchronized to start a
review phase. In a review phase, which lasts for time period,
each node sets its window size at . After a review phase, each
node computes its actual throughput, denoted by , and com-
pares it to , the expected throughput when no node has de-
viated from . A deviating node chooses its window size
smaller than in order to increase its transmission probability
from and thus to obtain a higher throughput. Since a devia-
tion decreases the throughput of the well-behaved nodes, we can
design a test such that the test performed by node is passed if
and only if for some constant .
If the test of node is passed, node moves to a cooperation
phase during which it continues to set its window size at .
Otherwise, it moves to a punishment phase during which it sets

its window size at the minimum value 1. A reciprocation phase
lasts for time period, and a new review phase begins after a
reciprocation phase.
As in a slotted multiaccess network, converges almost

surely to as goes to infinity, and thus the proposed test
can be made asymptotically perfect by choosing an appropriate
value of . Hence, when window sizes take discrete values,
we can construct a protocol that is DP against any constant de-
viation strategy and achieves a small efficiency loss, following
a similar approach to Theorem 2. We omit the details due to
space limitations.

VIII. CONCLUSION

It is well known that the decentralized operation of multiple-
access communication systems with selfish nodes often results
in an inefficient use of the shared medium. To overcome this
problem, we have proposed a new class of slotted MAC pro-
tocols that are robust to selfish manipulation while achieving
near-optimality. The proposed protocols are based on the idea
of a review strategy in the theory of repeated games. We have
provided conditions under which we can design deviation-proof
protocols with a small efficiency loss and illustrated general
results with particular statistical tests. Our framework and de-
sign methodology are not limited to multiple-access communi-
cations. They can be applied to other networking and communi-
cation scenarios in which agents obtain imperfect signals about
the decisions of other agents and a deviation influences the dis-
tribution of signals. An important future direction is to design
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deviation-proof protocols in multihop networks, where we need
to consider incentives for nodes to relay others’ packets.

APPENDIX A
PROOF OF THEOREM 2

Choose arbitrary and . Define
. Note that is the minimum deviation probability with

which a deviating node gains at least in a slot when other nodes
transmit with probability . Choose . Note
that for all . Define

Since is nonincreasing in , we have
for all , where

is defined in (3). Also, by Lemma 1, we have
and .

Therefore, , and thus there exists
such that for all , for all

. Define . Since
for all , protocol

is DP against all constant strategies using
, for all .

Since is nondecreasing in , we have

Therefore, , and there exists such that
for all . Choose and
. Then, is DP against all constant

strategies using and satisfies . Finally,
note that the payoff gain from deviating to a constant strategy
using is bounded above by . Hence,
is robust -DP and -PO. This completes the proof.

APPENDIX B
PROOF OF THEOREM 4

Consider the problem of a deviating node maximizing its
payoff given that all the other nodes use a review strategy

, i.e., . We can define a state
space with total states, where a state is a
pair consisting of the slot position and the number of idle slots
since the beginning of the current review phase in the case
of a review phase while it is the slot position in the case of a
punishment phase. Given the structure of a review strategy, the
relevant elements in histories are summarized in the states, and
thus the problem can be considered as a dynamic programming
problem with no discounting. By [26, Theorem 5], there exists
an optimal policy which is stationary, and we use to denote
the stationary optimal policy.

Suppose that the deviating node uses while all the other
nodes follow . Let be the expected value of the trans-
mission probability of the deviating node in slot of a review
phase (conditional on null history). Let . Since

, we have

(9)

where is the first slot of a review phase
and is the punishment probability, i.e.,

. Since , using
Markov’s inequality, we have

(10)

Combining (9) and (10), we obtain

(11)

for all .
Choose arbitrary and . As in [17], we relate the

choice of and to by and for
some , , and . By Chebychev’s
inequality

(12)

Also, note that

(13)

Since in (12) converges to zero as goes to infinity,
we can achieve an arbitrarily small efficiency loss in (13) by
choosing sufficiently large . In other words, for any ,
there exists such that for all . With

, we can show that the upper bound on the deviation
payoff in (11)

is decreasing in . Thus, the deviation payoff is bounded above
by .
Choose such that

Since , we have

(14)
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Since , we have

(15)

Then, by (14) and (15), we obtain

which proves that is an -NE. Lastly, since
, we have , and thus is -PO.
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