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in Flow Networks
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Abstract—Some users of a communications network may
have more information about traffic on the network than others
do—and this fact may be secret. Such secret information would
allow the possessor to tailor its own traffic to the traffic of others;
this would help the secret information possessor or informed
user and (might) harm other uninformed users. To quantitatively
study the impact of secret information, we formulate a flow
control game with incomplete information where users choose
their flows in order to maximize their (expected) utilities given
the distribution of the actions of others. In this environment, the
natural baseline notion is Bayesian Nash Equilibrium (BNE); we
establish the existence of BNE. Next, we assume that there is a
user who knows the realized congestion created by other users,
but that the presence of this informed user is not known by other
uninformed users; thus, the informed user has secret information.
For this environment, we define a new equilibrium concept: the
Bayesian Nash Equilibrium with Secret Information (BNE-SI)
and establish its existence. We establish rigorous estimates for the
benefit (to the informed user) and harm (to the uninformed users)
that result from secret information; both the benefit and the harm
become smaller for large networks. Interestingly, simulations
demonstrate that secret information may in fact benefit all users.
Secret information may also harm uninformed users in particular
scenarios. This analysis can be used as a starting point for securing
communications networks, both from the network manager and
the user’s perspectives.

Index Terms—Bayesian game, communication games, secret
information.

I. INTRODUCTION

T HE smooth functioning of many communication net-
works depends on the information users have about the

network and about other users. In such settings, it is of concern
that some users (whom we call informed users) might acquire
“illicit” information, and that this illicit information might aid
informed users and—perhaps more importantly—harm others
(whom we call uninformed users). This potential for harm
might reduce the willingness of uninformed users to pay for
network services; if the potential for harm is great enough,
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it might deter uninformed users from joining the network at
all. Thus the designer/manager of a network has an important
incentive to secure the network so that no users can obtain
illicit information. Because such security might be costly, it is
important to know the extent to which illicit information would
be useful to an informed user and harmful to uninformed users.

Many kinds of illicit information might be relevant; in this
paper we focus our attention on illicit information about the be-
havior of other users. We set our study in the context of flow
control. We consider a network of users of which only some
may be online at a given moment. Users are distinguished by
their utility functions, which we think of as their types. Each
of the users chooses a flow to send to the network and derives
a utility that depends on its own flow and on network conges-
tion, which we proxy by the ratio of total flow to the capacity of
the network. In our baseline scenario, the distribution of char-
acteristics of users is commonly known but the realization of
characteristics of users who are online at a given moment is not.
Hence users can work out—or learn—the distribution of con-
gestion, but not the realized congestion. For this scenario, an ap-
propriate solution notion is Bayesian Nash Equilibrium (BNE).
Under appropriate assumptions, we show that BNE exist. To ex-
plore the impact of secret information, we depart from the base-
line scenario by assuming that some (informed) user knows, not
only its own type or utility function and the distribution of types
of potential users, but also the realized congestion created by
other users. Furthermore, other users do not know this; thus,
the informed user has secret information.1 For this scenario, an
appropriate solution notion is what we call Bayesian Nash Equi-
librium with Secret Information (BNE-SI); under the same as-
sumptions as before, we show that BNE-SI exist.

To see the distinction in a simple setting, suppose there
are two players whose utilities depend on the actions of both
players. Player 1 chooses an action first, player 2 chooses an
action second. It is clear that the “correct” action for player 1
depends not only on whether or not player 2 sees the action of
player 1 before choosing his own action, but also on whether
or not player 1 knows whether player 2 sees his action. The
standard Harsanyi framework [3], [21] would incorporate a
probability that player 2 sees this action and assume that is
common knowledge. Hence, player 1 believes with probability

that player 2 sees player 1’s action, and player 2 believes that
player 1 believes with probability that player 2 sees player 1’s
action, and so forth. In our framework, player 1 believes (with
probability 1) that player 2 does not see, and player 2 knows
this. In the Harsanyi framework, the equilibrium behavior of

1We assume here that the informed user learns all the relevant informa-
tion—in this case, the realized congestion—at no cost. A more elaborate model
ought to take account of the amount of information that might be acquired and
the cost of acquiring it, and the steps that a network manager might undertake
to prevent users from acquiring such information.

1932-4553/$31.00 © 2012 IEEE



118 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 2, APRIL 2012

player 1 must take into account that player 2 might see the
action of player 1; in our framework, the equilibrium behavior
of player 1 does not take this into account. Hence, player 2’s
knowledge is secret. In our model, player 2 is the “informed”
player and player 1 does not know that player 2 is informed.

Back to the flow control game, information matters to the in-
formed user because a user who knows the congestion in the
network can choose to send a low flow when the network is
congested and a high flow when it is not. The behavior of the in-
formed user matters to the uninformed users because by sending
a high flow when the network is not congested the informed user
appropriates the benefits of low congestion that would otherwise
accrue to the uninformed users. The fact that information is se-
cret matters because it prevents uninformed users from coun-
tering the behavior of the informed user of this information. Se-
cret information always confers a benefit to the informed user.2
The behavior of the informed user is beneficial to other users
when it reduces congestion and detrimental to others when it
increases congestion. Both of these effects are attenuated when
there are many users in the network, most obviously because the
impact of any one user is attenuated when the network is large,
more subtly because the Law of Large Numbers reduces the use-
fulness of secret information, and more subtly still because the
latter effect feeds back into the behavior of an informed user.
To make this point, we establish upper bounds in terms of the
number of potential users and the capacity of the network on
the possible gain to an informed user and the possible harm to
uninformed users. These bounds show that, perhaps paradox-
ically, secret information may be less important in larger net-
works than in smaller networks. Simulations confirm our theo-
retical results; indeed they suggest that the bounds we provide
are quite conservative.

A. Related Literature

Game-theoretic tools have been applied to analyze the
behavior of users and their performance in communications
networks; for example see [1] and [2] and references therein.
Particularly, there is by now a substantial literature that uses
Bayesian games [3] to model the interactions among selfish
users with incomplete information who compete for access
to network resources (e.g., power and bandwidth). In these
models, action spaces typically represent power levels, trans-
mission probabilities, or expenditures on resources; user types
when considered typically represent channel gains. Much of
this literature asks about existence and uniqueness of Bayesian
Nash equilibrium and system performance at equilibrium. For
instance, [4] uses a Bayesian game to model the interaction
among wireless users who must have information about channel
conditions and must choose between frequency division mul-
tiplexing or full bandwidth spreading. [5] uses a Bayesian
game to study the power allocation problem in fading multiple
access channels, where users selfishly maximize their ergodic
capacity with incomplete information about the fading channel
gains. In [6], Bayesian games are used to model the power
allocation problem in multicarrier interference networks. In [7],
random-access protocols are formulated as Bayesian games and
their performance at equilibrium is analyzed. [8] uses Bayesian

2By contrast, information that an informed user is known to possess need not
confer a benefit on the informed user, and might actually be harmful.

games to design distributed resource allocation strategies in
TDMA networks. [9], [10] use Bayesian games to capture
the effects of information availability and asymmetry on the
problem faced by a profit-maximizing manager. [11] studies a
routing game with incomplete information, using a potential
function approach.

A literature that might seem parallel to ours but is actually
quite distinct considers the problem of malicious users: users
whose objective is to damage the network and/or increase the
cost incurred by other users; see for instance [12]–[14]. Our
informed users seek only to maximize their own utility; their
behavior may harm others, but this is a side consequence of their
own selfish maximizing behavior; it is not malicious.

B. Plan of the Paper

Following this Introduction, Section II formalizes our envi-
ronment, defines Bayesian Nash equilibrium (BNE), establishes
that BNE exists, and solves (numerically) for BNE in some
simple settings. Section III introduces secret information,
defines Bayesian Nash Equilibrium with Secret Information
(BNE-SI), establishes that it exists, and solves (numerically)
for BNE-SI in the same settings. Section IV defines the gain
and harm resulting from secret information, provides some
discussion and rigorous estimates for the gain and harm, and
simulations in (yet again) the same settings. Section V con-
cludes. All proofs are collected in the Appendix.

II. SYSTEM MODEL

We consider a network that admits at most users at
a given moment and has nominal flow capacity . The poten-
tial users in the network are of types where , the type
space; for convenience we assume the type space is
compact (closed, bounded, and non-empty). A user of type
is distinguished by a utility function that depends on
the flow the user sends to the network and on network con-
gestion , where is the total flow sent by all users.
Throughout we assume the following:

(A1) Flow choices lie in some compact non-empty in-
terval action space .
(A2) Utility is twice differentiable in and derivatives
are continuous in .3

(A3) For each : .
(A4) For each : is (weakly) decreasing in the
network congestion .
(A5) For each : is strictly concave in own flow

.4

Assumption (A3) says that a user receives zero utility if not
sending anything to the network regardless of its type and net-
work congestion. Assumption (A4) means that the utility for a
user decreases when the network congestion increases which
happens when other users send larger flows or the network ca-
pacity decreases. It is a practical assumption that captures the

3Continuity in � guarantees equicontinuity in �� �.
4Keep in mind that ���� �� �� depends on own flow � directly (in the first

argument) and indirectly (in the second argument via �), hence strict concavity
with � means that

� �

��
� � ��� �� �� �
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congestion effect. Assumption (A5) is commonly considered
for analysis tractability. Also, without any loss of generality
(w.l.o.g.), is assumed to be increasing with . Some of the
utility functions we have in mind have the form

, where (benefit) is strictly concave increasing
in , and (harm) is strictly convex increasing in . We interpret

as the benefit derived by a user with type who sends
flow and is the corresponding per-unit cost when the net-
work congestion is . We should note that such utility functions
exhibit negative externalities which is typical scenario in flow
control games in communications networks [16], [17]. Some
frequently studied benefit and cost functions are such as those
listed below; see [9], [10], [15]–[19] and references therein.5

• Benefit functions

— Quadratic functions: for
some positive constant .

— Logarithm functions: for some
nonnegative constant and gives proportional
fair utility function.

— -fair functions: for
.

• Cost functions
— Delay functions: or logarithm of

delay functions: where is the
nominal flow capacity.

— Linear cost function: .
The total flow is the sum of own flow and flow sent by
others , i.e., and hence, network congestion
is the sum of own congestion and congestion caused by others

. If is the congestion
caused by others we define

for utility as function of own flow , type and congestion
caused by others . We write for the maximum function

The types of users who are online at a given moment is
random; user types are drawn independently from a distri-
bution on . To allow for the possibility that the fewer
than users are online at a given moment, we adjoin
a “dummy” type to : . The dummy type

—the offline type—always sends a flow of 0 and derives utility
of 0: . We assume that the distribution of the
number of users online at a given moment is binomial, so the
distribution of types in is

That is, if a user is drawn at random from the probability the
user is online is and the probability the user is offline is ;
if the user is online its type is drawn from according to the

5The literature does not usually consider the capacity of the network in an
explicit way, and therefore uses total flow directly as a proxy for congestion.
We highlight capacity explicitly and use the ratio of total flow to capacity as
a proxy for congestion because it facilitates analysis of growing networks and
comparisons across networks.

distribution . Throughout we assume ; if then
the maximal number of users are online at all times.

III. SOME BASIC RESULTS ON THE BAYESIAN–NASH

EQUILIBRIUM

A. Existence of BNE

We assume for the moment that all of the above is common
knowledge; that is, each user knows the description of the envi-
ronment and his own type; each user knows that all other users
have the same knowledge; each user knows that all other users
know that all other users have the same knowledge, etc. (We de-
viate from the common knowledge assumption in the following
section when we introduce secret information.) In this context,
a strategy is a (measurable) function such that

(offline users send 0 flow). Given a strategy , con-
sider a user of type who sends the flow . If the profile of
other users is then the total flow of other
users is , the congestion caused by other
users is , and the utility of user with type is

. Hence, expected utility of a user of type who
sends the flow , assuming others send flows according to is

(1)

where denotes . is a Bayesian
Nash Equilibrium (BNE) if for (almost) every , the flow

maximizes expected utility, assuming others send flows
according to ; that is

for every . Several points should be noted.
1) Only pure strategies are considered. In fact, only pure

strategies are relevant since the best responses maxi-
mizing are in pure strategies and
are unique due to strict concavity of in own flow .

2) The definition requires that be optimal given the
distribution of flow choices of others, but in this con-
text this reduces to the requirement that be optimal
given the distribution of congestion caused by others. In
a long-standing network, the users of the network might
simply have learned the distribution of congestion—ei-
ther because congestion was observed or announced di-
rectly by the protocol designer or because it was inferred
from own utility over time. In particular, there is no need
to assume that users can solve for the strategies em-
ployed by others.

Theorem 1: Under assumptions A1)–A5), a Bayesian Nash
Equilibrium exists.

We caution the reader that BNE need not to be unique (al-
though it will be so in some circumstances), so that to assume
users follow a particular BNE equilibrium requires either that
they have learned to coordinate or that the network manager sug-
gests a particular BNE protocol and users follow that protocol.

B. Calculating BNE

To illustrate the nature of BNE and in particular the influence
of the number of users and the capacity, we offer a simple ex-
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ample. A preliminary remark may be useful. Fix a BNE and a
type . By definition, solves the following optimiza-
tion problem:

(2)

Strict concavity guarantees that the solution is determined by
the first order condition (possibly at the end points):

(3)

Substituting the definition of in (1) into
(3) provides a functional equation for the BNE. However, this
functional equation can be intractable and difficult or impos-
sible to solve in closed form—even if the utility function is
relatively simple and (so the number of users online is
not random). However, the following simple Example illustrates
how it can be solved—albeit not quite in closed form—in a spe-
cial case. (In the following sections, we extend this simple ex-
ample to allow for secret information and use it as the basis of
simulations.)

1) Example 1: There are users. Utility has the form

for some . Users choose flows in ; types
belong to and are uniformly distributed. The online
probability . The quadratic utility function has also been
used in [10] and [19] and many others.

To solve for BNE, assume for the moment that optimal flow
is interior. The functional equation for a type becomes

(4)

where is the expected congestion caused by others. If we write

(5)

for expected individual flow, then and we can solve
for in terms of . Allowing for the possibility that optimal
flow is not interior (i.e., that optimal flow might be 0 or 1) leads
to

(6)

Thus, we can solve for the entire BNE in terms of expected
individual flow . In turn, is determined from by (5). Note
that is increasing in , so there is a unique for which
(5) is satisfied; hence, BNE is also unique. Also, it can be seen
that the BNE is monotone increasing with .

Expected (or equilibrium) utilities at BNE are

(7)

Fig. 1. BNE flow ����: � � ���.

C. Simulations

In Fig. 1, we calculate and display BNE flow , fixing
and . We show BNE flow and expected utility as

functions of type for number of users ;
anticipating our analysis of secret information below, we take
capacity for which can be in-
terpreted as capacity scaling factor. We caution the reader that
flows are not piecewise linear, although the curvature is not no-
ticeable in the figures. We can observe the effect of the scaling
factor . When , i.e., the capacity grows at the same
rate as the number of users in the system, given a particular
type, users tend to send larger flows when there are more users.
In contradiction, for smaller values of , i.e., the network ca-
pacity grows slower than the number of users grows, users tend
to send smaller flows when there are more users. Particularly,
when , users send zero flow for a wide range of types

. This is because when the capacity of the system
grows slower than the number of users does, sending smaller
flows helps to create smaller congestion, especially when there
are large number of users. Note that the congestion is inversely
proportional to the capacity . On the other hands, when the ca-
pacity of the system grows fast enough, users tend to send larger
flows at equilibrium in the presence of more users.

Fig. 2 shows the expected utility at equilibrium . We can
see that the utility is increasing with type and is smaller when
there are more users in the network, especially when for small
values of . For , the utility of users is not so much
dependent on the number of users in the network since we proxy
the congestion as the ratio between the total flow and network
capacity.

A useful way to understand the results of these calculations
is to think about what happens if and . In
that case, we might imagine a “limit network” with a continuum
of users, for which each user’s contribution to total flow—and
hence to congestion—is negligible. Assuming that the Law of
Large Numbers holds exactly in the continuum limit, a user of
type maximizes , where is average
flow (and is independent of ). Solving yields

(8)
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Fig. 2. BNE utility ����: � � ���.

where, as before, is expected individual flow:
. For the above example, , and

thus, for small , is approximately equal to 1 for all
values of .

IV. SECRET INFORMATION: EQUILIBRIUM

To this point we have assumed that each user knows the dis-
tribution of other number and types of users who are online
and the strategies they follow, hence the distribution of con-
gestion, but not the realized number of users or the realized
congestion. We now consider a setting in which one user—the
informed user—has additional information.6 We focus on the
starkest scenario in which the informed user knows realized con-
gestion caused by others. It would be more than enough for user
0 to observe the types of other users, and hence, given a partic-
ular BNE, to infer their flow choices. However, it seems much
more natural to assume, as we do here, that user 0 observes
congestion directly, perhaps because it is able to observe net-
work information that is improperly secured. We assume that
the presence of an informed user is not common knowledge;
rather other users have the same beliefs as above, and hence use
the same strategies—and the informed user knows this. Thus,
the informed user has secret information.7 In this environment,
Bayesian Nash Equilibrium with Secret Information BNE-SI
consists of a strategy and a strategy

for the informed user 0 such that:
• for an uninformed user of type , the flow

maximizes where
is defined as in (1);

• for the informed user of type , the flow
maximizes .

Again, uninformed users behave according to the BNE (as
in Section II) but the informed user optimizes given the real-
ized congestion created other uninformed users in the network.
We emphasize that at BNE-SI equilibrium, the informed user
conditions her behavior on her own type and on the realized
congestion, while other users believe (wrongly) that all other

6A different advantage of information in wireless systems has been treated in
[20] where the authors showed that a user could improve its performance if it
had more information about the strategy of the competing user.

7If the presence of an informed user were common knowledge, our model
would reduce to a conventional Bayesian game with asymmetrically informed
agents.

users condition only on their own type (and follow the strategy
). Our informed user basically has the available information

and acts like the leader in Stackelberg Bayesian games [9], [10].
However, in Stackelberg games, the presence of the leader is
common knowledge.

Our approach to secret information departs from the usual
approach in the economics literature, which (almost) always as-
sumes that all details of the environment are common knowl-
edge; see [3], [21], and [22] for instance. The usual approach in
the economics literature would be to posit a commonly known
probability that some user is informed, and employ a no-
tion of equilibrium in which uninformed users take account of
the probability that some user is informed. Our approach seems
more appropriate to the problem at hand and more tractable as
well. Moreover, we can interpret that at BNE, users take actions
(choose flows) simultaneously without knowing the realized ac-
tions of other users. In order to optimize its expected utility,
users need to know the distribution of congestion (but not the
realized congestion). In the setting where one user is informed,
it is very reasonable to ask how that user becomes informed.
One possibility is that he acts last and covertly observes the
congestion on the network before sending his own flow. An-
other possibility is that he has learned the BNE from experience,
covertly observes the types of other users, and calculates the
flows they will send. More generally, the informed user might
secretly know something that is relevant—some signal of real-
ized congestion—even if he might not know everything that is
relevant. Here, we are treating the extreme case where he knows
everything that is relevant.

Our assumptions guarantee that the informed user’s optimiza-
tion problem always has a unique solution, so the assumptions
of the previous section guarantee the existence of a BNE-SI.

Corollary 1: Bayesian Nash Equilibrium with Secret Infor-
mation exists.

Note that optimal behavior of the informed user is completely
determined by the BNE strategy used by the uninformed users,
so there are exactly as many BNE-SI as there are BNE. To give
a little additional insight, we continue the example of Section II
to record the strategy of the informed user.

1) Example 2: Everything is in Example 1 except that one
user is informed. It is easily checked that if the informed user
has type and congestion caused by others is , the optimal flow
choice for the informed user is

(9)

Note that given a fixed , the flow of the informed user is still
monotone increasing in its type . We can see that the informed
user adapts its flow according to network congestion, sending
a larger flow when the congestion caused by others
is small and a smaller flow when is large. Also, compared to
(6), it can be seen that if and only if ,
i.e., the informed user will send smaller flow than the flow if it
were uninformed when the realized congestion caused by others
is larger than the average congestion and vice versa.
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Fig. 3. Equilibrium utility at BNE, and at BNE-SI for an informed user and an
uninformed user.

For the above example, Fig. 3 plots the equilibrium utility
with respect to type for a user at BNE, and for both an unin-
formed user and an informed user at BNE-SI for a network with
10 users for and . We can observe that while secret
information always (unsurprisingly) confers a benefit to the in-
formed user, it could be beneficial or harmful to the uninformed
user(s). The magnitudes of the gain or harm also depend on the
users’ types, the characteristic of the network, i.e., the param-
eter etc. More careful analysis follows next.

V. SECRET INFORMATION: BENEFIT AND HARM

A. Some Analysis

In addition we make technical assumptions about the deriva-
tives of for flow choices, congestion and types for which
utility is non-negative. Set

Note that (A3) guarantees that optimal choices will never
yield utility less than 0 so only tuples in are relevant for
optimization.

(A6) Utility and its first and second partials are uni-
formly bounded on .
(A7) The second derivative of with respect to own flow
is bounded away from 0 on .

Assumption (A7) requires that the curvature of is bounded
away from 0 on : for all

and some . We could have assumed that the curvature
of was bounded away from 0 everywhere which would be
a consequence of strict concavity if the relevant portion of the
domain of is compact. Assumption (A7) is weaker and is
commonly assumed in existing works [23], [24].

The benefit that information confers on an informed user
is the difference between the utility the informed user obtains
when uninformed users follow a given BNE but the informed
user conditions on its own type and on the realized congestion
of others, and the utility the informed user obtains when it
and the uninformed users follow the given BNE. Because the
informed user might have different incentives to acquire secret
information (which might be costly) depending on its type, we
fix the type of the informed user, and calculate expectations

over the types of the uninformed users. Hence, the gain to an
informed user of type is

(10)

where is the congestion created by uninformed users for
type profile . (We retain the subscripts

to emphasize that the gain to an informed user depends on
the size and capacity of the network.)

Because the informed user could always disregard his infor-
mation and others do not know he has it, the informed user must
do at least as well in a BNE-SI as in the corresponding BNE,
and will do strictly better except in degenerate scenarios. That
is, secret information always has positive value to the user who
possesses it: . The magnitude of this value will of
course depend on the particular environment, but we can bound
it above by an expression that depends on the parameters of the
network.

Theorem 2: There is a constant that depends only on the
bounds [given in Assumptions (A6), (A7)] on and its deriva-
tives on the set such that for every and every
we have

(11)

In particular, if capacity for some then

(12)

To see the importance of Theorem 2 consider two thought
experiments.

• Increase both the number of subscribers and the ca-
pacity . Because the quantity
as ; hence, if number of subscribers and capacity
grow in such a way that with , then

as uniformly for

Slightly imprecisely, if the number of users grows and the
capacity grows faster the square root of the number of
users, then the benefit an informed user derives from its
secret information tends to 0.

• Increase the number of subscribers keeping the capacity
fixed. Suppose the capacity is and the initial number of

subscribers is , where , . If the number
of subscribers increases -fold to , while capacity re-
mains at , the relationship between capacity and number
of subscribers will change to where

Hence, when the capacity remains unchanged, it will re-
quire a very substantial expansion of the network such that
(secret) information is of little benefit to the informed user.
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The harm inflicted on an uninformed user by the behavior
of an informed user is the difference between the (expected)
utility of an uninformed user when all users are uninformed
and the (expected) utility of an uninformed user when one
user is informed. The former utility depends on the type of
the uninformed user; the latter utility depends on the types of
both the uninformed user and the informed user. To define the
latter utility, fix a type of the uninformed user, a type of
the informed user, and a profile
of other uninformed users. As before, write for the con-
gestion caused by users ; the congestion caused
by the uninformed user is so the total congestion
caused by the uninformed users is .
Hence the informed user will send the flow
and the utility obtained by the uninformed user will be

. Taking expecta-

tions over profiles yields

(13)

where denotes and the harm in-
flicted on the uninformed user is

(14)

As we have noted, secret information is always of value to
the informed user, but the impact on uninformed users is not
obvious. Consider the flow sent by the informed user in com-
parison to the flow that would be sent if it were uninformed. If
the realized total flow of other users is high, the informed user
will tend to send a lower flow than if it were uninformed; if the
realized total flow of other users is low, the informed user will
tend to send a higher flow than if it were uninformed. Because
congestion is harmful to everyone, the actions of the informed
user will benefit everyone when the realized total flow of unin-
formed users is high and harm the uninformed users when the
realized total flow of uninformed users is low. In particular, the
behavior of the informed user with type will benefit an un-
informed user with type for at least some type realizations

of other uninformed users which can be shown to be
in the following set:

(15)

Whether the actions of the informed user will benefit the unin-
formed user on average depends on the elements of the environ-
ment. As an example, let us examine the case of linear per-unit
cost function, i.e., with BNE . The
harm inflicted on the uninformed user is

(16)

An immediate result is that is negative if
. In other words, the actions

of the informed user benefit uninformed user if its expected
flow is less than its flow if it were uninformed. Otherwise, the
effect of the informed user on the uninformed users cannot be
assessed. Our simulations (discussed below in Section IV-2
and also in Fig. 3) suggest that settings in which the benefit
dominates harm and settings in which harm dominates benefit
are both occurring. In any event, we can bound the harm above
by an expression that depends on the parameters of the network.

Theorem 3: There is a constant that depends only on the
bounds on derivatives of on the set [see Assumption (A6)]
such that if for some then

(17)

which gives as . In particular, if
with then

as

uniformly for (18)

The harm for each uninformed user tends to 0 as the network be-
comes large provided the capacity grows faster the square root
of the number of users. By definition,
is the expected total harm to uninformed users, so the second
conclusion is that expected total harm to uninformed users tends
to 0 as the network becomes large—provided the capacity of the
network does not grow too much more slowly than the number
of users.

B. Simulations

To illustrate Theorems 2 and 3, we present simulations in
Fig. 4 that show the maximum gain available to an informed
user and the average harm inflicted on others by the behavior
of an informed user. Utility is
and ; types are distributed uniformly on . In
all cases, we present the average of 15 000 draws. These simu-
lations suggest that the bounds presented in Theorems 2, 3 are
crude: convergence of gain and harm appear to be faster than
the bounds established in Theorems 2, 3.8 Moreover, the con-
vergence rate of the harm is faster than that of the benefit as an-
alytically demonstrated in Theorems 2 and 3. The simulations
also confirm that the behavior of the informed user has both pos-
itive and negative effects on the performance of the uninformed
users, depending on the environment parameters. We can see
that for , the behavior of the informed user is always
harmful to the uninformed users. This can be explained as fol-
lows. When the network capacity grows fast, the informed user
is able to take advantage of this capacity expansion and can send
higher flows (to derive more benefit) without causing (much)
more congestion. Again, note that congestion is defined as the
ratio between total flow and network capacity. Such behavior is
harmful to the uninformed users. However, for smaller values of

, the behavior of the informed user harms the uninformed users

8It seems likely that a better estimate for (expected) harm could be obtained if
we were careful to account separately for realizations for which secret informa-
tion leads to greater congestion and hence is harmful and realizations for which
secret information leads to less congestion and hence is beneficial.
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Fig. 4. Quadratic utility function; gain and harm: � � ���.

Fig. 5. Logarithm utility function; gain and harm: � � ���.

for small networks and benefits the uninformed users for larger
networks. This is because when the capacity grows slower than
the number of users, the informed user tends to send smaller
flows to reduce the network congestion which is dominant.

To demonstrate the a different effect of secret information on
the gain and harm, we consider another example using logarithm
utility function . The type space is

with uniformly distributed types. The action space is
. The nominal capacity is for

and . Different from the case of quadratic utility function, we
can see from Fig. 5 that secret information is always beneficial
to the uninformed users, for networks with any size. The con-
vergence of the gain and harm to 0 is also verified.

C. Several Informed Users

Our analysis presumes there is a single informed user but it is
also of interest to think about the possibility that there might be
multiple informed users. To properly analyze such a setting one
must first answer the question of what such users know about
each other. One possibility would be to assume that such users
are unaware of the existence of other informed users but still
manage to observe the flows of all others, including the flows of
other users with secret information. However, in that case there
would seem to be a problem of deciding which user moves first.
A second, more complicated, possibility would be to assume
that the informed users are aware of each other and play equi-
librium strategies in a game among themselves. A third, and still
more complicated, possibility would be to assume that informed
users are aware of the possibility of other informed users and
play some equilibrium strategies in a Bayesian game. Inspecting

the proof of Theorem 3 suggests that each of these possibilities
would lead to an estimate of the gain to each informed
user that is of the same order as the estimate provided by The-
orem 2, but with a different constant.

A crude estimate of the harm caused to others by the
presence of informed users can be obtained by noting that
the harm to uninformed users is bounded above by the harm
that would result by simply summing the flows chosen by each
of the informed users—ignoring strategic behavior among
informed users. This leads to the crude estimate

.

D. Large Informed User

In our analysis, we have presumed that the informed user is
identical to other users except that for possessing additional in-
formation. In particular, the informed user faces the same flow
constraints as the uninformed users. Informally: the informed
user is “the same size” as uninformed users. However, in some
circumstances it would seem natural to consider an informed
user who is “somewhat bigger” than uninformed users, and
hence faces weaker flow constraints—i.e., where

is a compact interval—or perhaps “much bigger”
than uninformed users, and hence faces no flow constraints at
all—i.e, . In the first case , the conclusions of The-
orems 2, 3 would remain unchanged, except that the constants

would depend on upper bounds of and its first and
second partial derivatives on the larger interval . In the second
case, it would seem necessary to supplement the arguments
used in the proofs of Theorems 2, 3 with careful estimates of
the distribution of the optimal flow of the informed user. To
obtain such careful estimates it would in turn seem necessary to
know more about strategies used by uninformed users in BNE,
which might in turn require additional assumptions on utility
functions. Further research seems needed here.

VI. CONCLUSION: THE COST AND BENEFIT OF

SECRET INFORMATION

We have considered here a scenario in which a single user,
otherwise no different from other users, has secret informa-
tion, which is complete and acquired at no cost. As noted, these
represent quite restrictive assumptions. More realistic scenarios
would envisage the presence of some (perhaps a small number)
of users who can acquire some information at some cost and
who might be different (perhaps larger) than other users. In
such a scenario, these users would face a tradeoff between the
cost of acquiring information and the benefit conveyed by that
information.

The analysis presented here has important implications for
the design and operation of networks. On the one hand, pre-
venting users on a network from obtaining information about
(the usage of) others might be expensive—and would typically
be more expensive for larger networks. On the other hand (as
our analysis suggests), the benefit of such information to users
who have it—and thus the incentives to acquire it—and the total
harm done by the availability of such information would seem
to be smaller for larger networks. Paradoxically, this suggests
that security may be less of a concern for large networks than
for small networks. Again, further research is needed.
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APPENDIX

PROOFS

Proof of Theorem 1: [25] shows that there is an equilib-
rium in mixed strategies. The assumption that utility is strictly
concave in own flow shows that best responses are unique, so an
equilibrium in mixed strategies is necessarily in pure strategies.

Proof of Corollary 1: The existence of BNE-SI follows
immediately from Theorem 1 and the existence of the informed
user’s best response.

Proof of Theorem 2: Fix a BNE and the type of
the informed user. Define

This is the expected congestion caused by uninformed users.
Recall that is the maximum function

(Keep in mind that is the fixed type of the informed user.)
If is a profile of types of unin-
formed users, we continue to write
for the congestion caused by these users. The definition
of Bayesian Nash equilibrium implies that

so

(19)

(20)

For any 9, define a partition of :

(21)

(22)

Define and split the right-hand
side of (20) as

(23)

To estimate the integral over , we first use the Envelope
Theorem [26] to see that

The assumptions guarantee that the partial derivatives of at
optimal choices are uniformly bounded, so
for some . The Mean Value Theorem guarantees that

(24)
for . Hence

(25)

9Later, we will set � � � to obtain the required bounds.

To estimate the integral over , we note that

Hence, Chebyshev’s Inequality guarantees that

. The assumptions guarantee that
and that is bounded; because takes its values in
the compact interval , . Hence there is a
constant (depending only on the upper bound of utility and
the length of ) such that

(26)

To obtain the bounds in Theorem 2, we set , define
, and combine the estimates for the integrals

over to obtain the first conclusion:

The second conclusion follows from setting .
Proof of Theorem 3: Fix a type of the informed user and

a type of an uninformed user. By definition, is
maximized when so strict concavity implies that

(27)
for each . Denote a
profile of types of other uninformed users and write

for the congestion caused by these users
and denote . Starting with the def-
inition, doing some algebra, applying the Cauchy–Schwarz in-
equality and using (27), we have

The last integral (inside the parentheses) is the utility gain to
an informed user of type given that the uninformed user of
type is online and taking expectations over the types of

other users. Arguing exactly as in the proof of Theorem 2,
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this gain is bounded by . Both conclusions now
follow immediately by algebraic substitution.
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