Machine Learning for Identifying the Value of Digital Breast Tomosynthesis using Data from a Multicentre Retrospective Study

A. Alaa, Fiona J. Gilbert, Y. Huang and M. van der Schaar

• We aim at using machine learning and data from the TOMMY trial to answer the following questions...

Which women benefit the most from DBT imaging? Age and breast density groups

What are the accuracy gains achieved by DBT compared to 2D mammography for different types of lesions?

• Limitations of standard 2D mammography: overlapping dense Fibroglandular tissue can decrease visibility of malignant abnormalities or simulate the appearance of an abnormality.

Digital Breast Tomosynthesis (DBT)

- Improve the conspicuity of mammography by reducing overlapping shadows from breast tissue that degrade the image quality in standard 2D projection imaging.
- Better differentiation between malignant and nonmalignant features.

Digital Breast Tomosynthesis (DBT)

• Using machine learning to <u>augment</u> radiological reports!

The TOMMY Study Design: Reading Study

Radiologist reports

Prognostic Modelling with

Age & breast density & Volpara measures

Prognostic Model	AUC-ROC	Prognostic Model	AUC-ROC
Logistic Regression	0.679 ± 0.033	Multinomial Naïve Bayes	0.541 ± 0.040
SGD Perceptron	0.512 ± 0.049	AdaBoost	0.666 ± 0.030
KNN	0.539 ± 0.012	Bagging	0.585 ± 0.020
Decision Tree	0.518 ± 0.012	Gradient Boosting	0.674 ± 0.029
Linear SVM	0.556 ± 0.021	XGBoost	0.674 ± 0.028
Gauss. Naïve Bayes	0.660 ± 0.024	MLP	0.482 ± 0.033
Bern. Naïve Bayes	0.499 ± 0.000	Random Forest	0.596 ± 0.023
LDA	0.663 ± 0.023	AutoPrognosis	0.685 ± 0.025

Prognostic Modelling with

Age & breast density & Volpara measures

Prognostic Model	AUC-PR	Prognostic Model	AUC-PR
Logistic Regression	0.271 ± 0.032	Multinomial Naïve Bayes	0.179 ± 0.024
SGD Perceptron	0.164 ± 0.021	AdaBoost	0.255 ± 0.030
KNN	0.167 ± 0.029	Bagging	0.201 ± 0.009
Decision Tree	0.162 ± 0.003	Gradient Boosting	0.256 ± 0.025
Linear SVM	0.182 ± 0.008	XGBoost	0.261 ± 0.024
Gauss. Naïve Bayes	0.266 ± 0.024	MLP	0.138 ± 0.013
Bern. Naïve Bayes	0.154 ± 0.000	Random Forest	0.201 ± 0.011
LDA	0.271 ± 0.032	AutoPrognosis	0.264 ± 0.028

Prognostic Modelling with Radiologist report extracted features

Radiological assessments are used as the predictors.

Prognostic Modelling with 2D radiologist reports

Prognostic Model	AUC-PR	Prognostic Model	AUC-PR
Logistic Regression	0.742 ± 0.057	Multinomial Naïve Bayes	0.296 ± 0.035
SGD Perceptron	0.719 ± 0.067	AdaBoost	0.765 ± 0.061
KNN	0.689 ± 0.060	Bagging	0.735 ± 0.051
Decision Tree	0.675 ± 0.053	Gradient Boosting	0.772 ± 0.057
Linear SVM	0.729 ± 0.058	XGBoost	0.775 ± 0.057
Gauss. Naïve Bayes	0.716 ± 0.059	MLP	0.760 ± 0.065
Bern. Naïve Bayes	0.286 ± 0.021	Random Forest	0.735 ± 0.063
LDA	0.743 ± 0.058	AutoPrognosis	0.776 ± 0.051

Prognostic Modelling with DBT radiologist reports

Prognostic Model	AUC-PR	Prognostic Model	AUC-PR
Logistic Regression	0.797 ± 0.043	Multinomial Naïve Bayes	0.347 ± 0.058
SGD Perceptron	0.797 ± 0.043	AdaBoost	0.808 ± 0.052
KNN	0.723 ± 0.057	Bagging	0.793 ± 0.047
Decision Tree	0.745 ± 0.042	Gradient Boosting	0.804 ± 0.045
Linear SVM	0.780 ± 0.030	XGBoost	812 ± 0.047
Gauss. Naïve Bayes	0.774 ± 0.046	MLP	0.812 ± 0.052
Bern. Naïve Bayes	0.304 ± 0.020	Random Forest	0.797 ± 0.048
LDA	0.799 ± 0.043	AutoPrognosis	0.812 ± 0.042

2D vs. DBT Diagnostic Accuracy

MLO vs. CC Diagnostic Accuracy

• Which of the two views (CC and MLO) is more predictive?

2D-CC	0.888 ± 0.025
2D-MLO	0.892 ± 0.023
2D-CC+MLO	0.915 ± 0.018

MLO is slightly more predictive

Both CC and MLO are complementary

MLO is slightly	more	predictive
-----------------	------	------------

Both CC and MLO are complementary

DBT-CC	0.918 ± 0.014
DBT-MLO	0.932 ± 0.009
DBT-CC+MLO	0.942 ± 0.009

How predictive are single radiological assessments?

• Suspicion scores are the most predictive.

Assessment Score	AUC-PR	Assessment Score	AUC-PR
2D-CC Sign	0.2375	DBT-CC Sign	0.2858
2D-CC Suspicion	0.5757	DBT-CC Suspicion	<u>0.6409</u>
2D-CC Conspicuity	0.2380	DBT-CC Conspicuity	0.2574
2D-MLO Sign	0.2405	DBT-MLO Sign	0.2900
2D-MLO Suspicion	0.5707	DBT-MLO Suspicion	<u>0.6407</u>
2D-MLO Conspicuity	0.2396	DBT-MLO Conspicuity	0.2564

How well can machine learning augment radiological assessment?

Machine learning constructs a scoring rule that combines the different assessments in a radiological report

Assessment Score	AUC-ROC
Most Accurate single 2D Radiological Assessment	0.8669
Most Accurate single DBT Radiological Assessment	0.9119
Machine Learning Accuracy	<u>0.9435</u>
Machine learning assessments for ML	applied to all O and CC images

Which Women Benefit the most from DBT Imaging?

Which Women Benefit the most from DBT Imaging?

Accuracy of DBT Imaging for different types of tumours

What is the accuracy of DBT for different types of tumours?

Three types of Malignant Tumours

Invasive ductal		
Invasive lobular		
Other + DCIS	Medullary	
	Mucinous	
	• Tubular	
	Intracystic papillary	
	• Lymphoma	
	Ductal In situ	

Accuracy of DBT Imaging for different types of tumours

What is the accuracy of DBT for different types of tumours?

Three types of Malignant Tumors

	Invasive ductal	Invasive lobular	Other invasive and DCIS
2D	0.919 ± 0.021	0.873 ± 0.014	0.875 ± 0.035
DBT	0.943 ± 0.011	0.905 ± 0.015	0.894 ± 0.029

- Machine learning combining different radiological assessments in a radiologist's report together with age and breast density improve predictions of malignancy.
- Suspicious assessments from MLO view are dominant predictive features in radiological reports.
- DBT improves accuracy (compared to 2D) for younger patients.
- Accuracy improvement with DBT is uniform over all types of tumours.