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Abstract—We propose a novel scheme for robust communica-
tions in scenarios where channel gains, interference levels, or other
measured values are uncertain or erroneously measured due to
channel variations, delayed feedback, and users’ mobility. When
the exact values of such measurements are known, it has been
shown in the literature that multiuser wireless interactions can
be modeled as additively coupled games (ACGs) in which users
converge to a unique Nash equilibrium by following a distributed
best-response algorithm. However, in practice, such measurements
are uncertain or erroneous, and hence, it is important to analyze
how these uncertainties and errors affect the performance of the
users playing ACGs. Most importantly, novel adjustment schemes
are needed to ensure that the utility of each user is preserved under
such uncertainties, i.e., introduce robustness against uncertainties
and errors in ACGs. We utilize the worst case robust optimization
techniques to analyze the impact of uncertainties on the users’
performance and to build robust ACGs (RACGs). We derive suf-
ficient conditions for the existence and uniqueness of their robust
equilibrium and compare the outcome of an RACG and an ACG
at their respective equilibria in terms of both utilities and the
actions taken by the users. To reach the RACG’s equilibrium, we
propose a novel distributed best-response algorithm and derive
sufficient conditions for its convergence. Our analytical results are
supported by simulations for power control games in interference
channels and for flow control in Jackson networks.

Index Terms—Resource allocation, robust game theory, varia-
tional inequalities, worst case robust optimization.

I. INTRODUCTION

D ISTRIBUTED designs for multiuser communication net-
works have been extensively developed during the past

decade to implement low-cost and scalable networks with lim-
ited overhead in terms of message passing between transmitter–
receiver pairs. In doing so, each transmitter–receiver pair with
local observations determines its transmit strategies in an au-
tonomous manner. To deploy such designs, it is essential to
know whether they converge to a (preferably unique) equi-

Manuscript received July 28, 2012; revised March 7, 2013 and June 14,
2013; accepted September 3, 2013. Date of publication October 3, 2013; date
of current version March 14, 2014. This work was supported in part by Tarbiat
Modares University, Tehran, Iran, by the Iran Telecommunications Research
Center under Ph.D. Research Grant TMU 88-11-124, and by the National
Science Foundation under NSF Grant CCF 0830556. This paper was presented
in part at the IEEE Global Telecommunications Conference (GLOBECOM),
Houston, TX, USA, December 5–9, 2011. The review of this paper was
coordinated by Prof. O. B. Akan.

S. Parsaeefard and A. R. Sharafat are with the Department of Electrical and
Computer Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran
(e-mail: sharafat@modares.ac.ir).

M. van der Schaar is with the Department of Electrical Engineering, Univer-
sity of California, Los Angeles, CA 90095 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2013.2284344

librium and to evaluate their performances at the emerging
equilibrium/equilibria.

Strategic noncooperative game theory is a framework for
analyzing and designing networking schemes in which each
user (i.e., a transmitter–receiver pair) is a rational and self-
interested player that aims to maximize its own utility by
choosing its transmit strategy. The notion of Nash equilibrium
(NE), at which no user can attain a higher utility by unilaterally
changing its strategy, is frequently used to analyze the perfor-
mance of a noncooperative game. To derive sufficient condi-
tions for NE’s existence and uniqueness, different approaches
such as fixed-point theory, contraction mapping, and variational
inequalities (V I) [2]–[4] have been applied in both wired
and wireless networks, including applications to routing in
Jackson networks, and to power control in interference channels
[5]–[10].

A game-theoretic approach to setting users’ strategies re-
quires utilization of local observations and measurements in
the network, whose values are often corrupted by noise or
are uncertain. Such uncertainties are attributable to many fac-
tors, including random delays in feedback channels, errors
in estimated values, and channel variations. Obtaining exact
measurements is not practical, and as we will demonstrate in
Section VIII-A1, performance of the network (the network’s
social utility) at its NE, e.g., its throughput or its delay, as
the case may be, fluctuates to a great extent, which is highly
undesirable. Hence, ensuring robustness against errors is of
paramount importance and is essential for the correct operation
of any network. Our proposed design in this paper is an effort to
address these real-world measurement errors and uncertainties.

To make an NE robust against uncertainties, robust opti-
mization theory has been widely used in the literature [11]–
[13], in which each uncertain parameter is a new optimization
variable. This involves converting the nominal optimization
problem (optimization without considering uncertainty) to its
robust counterpart (optimization with uncertainty) via two basic
approaches: the Bayesian approach, where the statistics of
uncertain parameters are considered and the utility of each user
is probabilistically guaranteed; and the worst case approach,
where a given closed region, called the uncertainty region, is
considered for the distance between the exact and the estimated
values of uncertain parameters and the utility of each user
is guaranteed for any realization of uncertainty within the
uncertainty region [14]–[17].

Both of these approaches have been applied to the power
allocation problem in spectrum sharing environments. For
example, in [18], the probability distribution function of
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uncertainty in interference of users on each other is assumed to
be uniform, and the Bayesian approach is utilized to study the
performance of the proposed robust power allocation scheme.
In [19], the interference channel gain is the only uncertain
parameter, and the worst case approach is used to study the
performance of the proposed robust power allocation game in
multicarrier systems. In [20], the dynamic worst case robust
power allocation game is proposed for multiple-input–multiple-
output systems to tackle uncertainty in interference channel
gains. In [16], the worst case robust power allocation game is
utilized to maintain the uncertain interference level of each user
below a given threshold.

To incorporate robustness in communication networks, there
exist multiple challenges, such as 1) how to implement robust-
ness in a wider class of problems, 2) how to derive the sufficient
conditions for the existence and uniqueness of the robust NE
(RNE), 3) determining the impact of considering uncertainties
on the system’s performance at its equilibrium compared with
that of the case with no uncertainty, and 4) how to design a
distributed algorithm for reaching the robust equilibrium.

We consider a general class of games—called additively
coupled games (ACGs)—in which each user’s utility depends
on its action and system parameters and is additively coupled
to other users’ actions or impacts [6]. ACGs can model any
problem in communication networks for which such additive
couplings exist, as in the three examples that are covered in this
paper, namely, transmit power allocation in interference chan-
nels in wireless networks, downlink transmit power allocation
in digital subscriber line access multiplexers (DSLAMs), and
routing delay minimization in Jackson networks [21].

To introduce robustness in a given ACG, we choose the worst
case robust approach, as it can preserve the utility of each user
under any condition of error in distributed networks. It has been
shown in [17], [22], and [24] that an error can be considered
to stay within an uncertainty region specific to the nature of
uncertainty. We assume that users’ impacts on each other are
uncertain, caused by variations in system parameters and in
other users’ strategies. This is different from the assumption in
other works (e.g., in [19], where the only cause of uncertainty
is variations in interference channel gains). We assume that
uncertainty in the additive impact is modeled by a bounded
error and that each user aims to maximize its utility for the
worst case condition of error [11]–[13]. As in the nomenclature
of robust optimization theory, we refer to an ACG in which
uncertainty is not considered and its equilibrium as a nominal
ACG (NACG) and a nominal NE, respectively; and refer to an
ACG in which uncertainty is considered (and the worst case
robust optimization is utilized) and its equilibrium as a robust
ACG (RACG) and an RNE, respectively. To derive sufficient
conditions for the existence and uniqueness of the RNE, we
apply V I [3] and show that when uncertainty is bounded and
convex, an RNE always exists. We also show that the RNE is
a bounded perturbed version of the nominal NE and derive the
condition for RNE’s uniqueness based on the condition for the
nominal NE’s uniqueness.

When the nominal NE is unique, we show that the social
utility (the sum of utilities of all users) at the RNE is always
less than that at the nominal NE and derive the upper bound

for differences between users’ actions at the RNE and at the
nominal NE. When the nominal NE is not unique, we show
that the social utility at the RNE may be higher than that at
the respective nominal NE and derive a sufficient condition for
this phenomenon. Finally, we use the proximal response map
associated with the worst case utility function to propose a
distributed algorithm for reaching the RNE and derive sufficient
conditions for its convergence.

The rest of this paper is organized as follows. In Section II,
the system model of the NACG is summarized, followed by
Section III, where we introduce the RACG and its RNE.
Section IV covers the sufficient conditions for existence and
uniqueness of the RNE, and in Section V, we simplify the
results for logarithmic utility functions. In Section VI, we pro-
pose distributed algorithms for reaching the RNE, followed by
Section VII, where we discuss the effects of robustness for the
case of multiple nominal NEs. In Section VIII, simulation re-
sults validate our analytical developments for the power alloca-
tion problem and for the Jackson networks. Finally, conclusions
are drawn in Section IX.

II. SYSTEM MODEL

Consider a set of communication resources divided into K
orthogonal dimensions denoted by K = {1, . . . ,K}, e.g., fre-
quency bands, time slots, or routes, which are shared between
a set of users denoted by N = {1, . . . , N}, where each user
consists of a transmitter and a receiver. We assume that users
do not cooperate with each other and formulate the resource
allocation problem as a strategic noncooperative game G =
{N , (vn)n∈N ,A}, where vn is the utility of user n, A =∏

n∈N An is the joint strategy space of the game, and An ⊆
R

K is the strategy space of user n, where the strategy of each
user in each dimension and the sum of its strategies over all
dimensions are bounded [6], [9], i.e.,

An =

{
an =

(
a1n, . . . , a

K
n

)
|akn ∈

[
amin
n,k , a

max
n,k

]
,

and
K∑

k=1

akn ≤ amax
n

}
(1)

where amax
n,k and amin

n,k are the maximum and the minimum
transmit strategies of each user in each dimension, and amax

n

is the upper bound on the sum of strategies of user n over all
dimensions. In practice, amin

n,k is much less than amax
n,k and can

even be negligible. The function vn(a) : A → R is the utility
function of user n, whose value depends on the chosen strategy
vector of all users a = [a1, . . . ,aN ], where an ∈ An is the
action of user n. The vector of actions of all users except user
n is a−n ∈ A−n, where A−n =

∏
m∈N ,m �=n Am is the strategy

space of all users except user n. In a noncooperative strategic
game, each user n aims to maximize its own utility subject to
its strategy space via maxan∈An

vn(a). Assume

vn (an, fn(a−n, sn)) =

K∑
k=1

vkn
(
akn, f

k
n(a−n, sn)

)
where fn(a−n, sn) = [f1

n(a−n, sn), . . . , f
K
n (a−n, sn)] is the

1 ×K vector of the additive impacts of other users’ strategies
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and system parameters on user n, whose elements are
fk
n(a−n, sn) =

∑
m∈N ,m �=n a

k
mxk

nm + ykn for all k ∈ K, where
sn = [xn1, . . . ,xn(n−1),xn(n+1), . . . ,xnN ,yn] is a 1 × (N ×
K) vector for user n, in which xnm = [x1

nm, . . . , xK
nm], and

xk
nm represents system parameters specific to the impact of the

transmitter of user m on the receiver of user n in dimension
k (e.g., interference), and yn = [y1n, . . . , y

K
n ] is the vector of

the system’s other parameters for the receiver of user n (e.g.,
ambient noise). The utility of each user is a function of its
action and additive impacts of other users’ actions and system
parameters. Hence, this class of games is called ACGs [6]. In
our setup, the receiver of each user measures the impacts of
actions of other users and values of system parameters and
sends them back to its transmitter via the feedback channel to
solve the given optimization problem.

The given formulation can model a number of practical prob-
lems in communication networks. For example, consider power
control in interference channels, where each user, consisting
of a transmitter-and-receiver pair, competes with other users
to maximize its total throughput over K distinct subchannels,
and the transmit power of user n over any subchannel is upper
bounded to pmax

n in [9]. We denote this upper bound as amax
n

in (1) so that our notations would be applicable in general
and not to a specific problem. The strategy of each user is
its transmit power in K subchannels. The additive impact of
other users on user n is their interference in subchannel k,
expressed by fk

n(a−n, sn) =
∑

m �=n a
k
mhk

nm + σk
n, where hk

nm

is the channel gain between user m and user n in subchannel
k, akn is the transmit power of user n in subchannel k, and
σk
n is the channel noise in subchannel k of user n. In this

example, interference channel gains between users and noise
in each subchannel are considered as system parameters, i.e.,
xnm = hnm, where hnm = [h1

nm, . . . , hK
nm], and ykn = σk

n.
In line with the existing literature, we also assume the

following: A1) As in [23], the utility function of each user is an
increasing, twice differentiable, and strictly concave function
with respect to an and has bounded gradients. A2) As in
[6], the utility function of each user is a decreasing, twice
differentiable, and strictly convex function with respect to
fn(a−n, sn). A3) As in [6] and [23], the second-order mixed
partial derivatives of utility functions, i.e., ((∂2vnk )/(∂a

n
k∂f

n
k ))

and ((∂2vnk )/(∂f
n
k ∂a

n
k )), exist.

For the power control game, the utility of user n is its
throughput over all subchannels, i.e.,

vn =
∑
k=1

log

(
1 +

aknh
k
nn∑

m �=n a
k
mhk

nm + σk
n

)
(2)

and Assumptions A1–A3 hold.
Interactions between users are studied at the nomi-

nal NE, which corresponds to the strategy profile a∗ =
[a∗1, . . . ,a

∗
N ], such that for any other strategy profile, we have

vn(a
∗
n, fn(a

∗
−n, sn)) ≥ vn(an, fn(a

∗
−n, sn)) for all an ∈ An

and n ∈ N , where a∗−n = [a∗1, . . . ,a
∗
n−1,a

∗
n+1, . . . ,a

∗
N ] [2]. In

what follows, the utility of user n and the social utility of ACG
(the sum of utilities of all users) at the nominal NE are denoted
by v∗n and v∗ =

∑N
n=1 v

∗
n, respectively. We derive the sufficient

conditions for the nominal NE’s existence and uniqueness via

reformulating the nominal NE through V I and show that, this
way, the nominal NE and the RNE can be analyzed in a similar
manner.

Remark 1: Consider the mapping vector F(a) =
(Fn(a))

N
n=1, where

Fn(a) = −∇an
vn (an, fn(a−n, sn)) (3)

in which ∇an
vn(an, fn(a−n, sn)) denotes the column gra-

dient vector of vn(an, fn(a−n, sn)) with respect to an. The
NE of G can be obtained by solving V I(A,F) (see [3,
Proposition 1.4.2]) as (a− a∗)F(a∗) ≥ 0 for all a ∈ A. Since
vn(an, fn(a−n, sn)) is a continuous and concave function with
respect to an ∈ An, F(a) is a continuous mapping. From
(1), set A is convex and compact. Therefore, the solution set
of V I(A,F) is nonempty and compact (see [3, Th. 2.2.1]).
Consequently, the NE of ACG exists.

Remark 2: For the mapping F(a), we have

αn(a)
Δ
= smallest eigenvalue of−∇2

an
vn(an, fn(a−n, sn))

βnm(a)
Δ
= ‖−∇anam

vn (an, fn(a−n, sn))‖2 ∀n �= m

where∇2
an
vn(an, fn(a−n, sn))and∇anam

vn(an, fn(a−n, sn))
are the K ×K Jacobian matrices of Fn(a) with respect to an
and am, respectively, and ‖ − ∇anam

vn(an, fn(a−n, sn))‖2 is
the l2-norm of vn(an, fn(a−n, sn)). Let

αmin
n

Δ
= inf

a∈A
αn(a) (4)

βmax
nm

Δ
= sup

a∈A
βnm(a) (5)

for all users, and as in [4, Sec. 12], define the N ×N matrix Υ
whose elements are

[Υ]nm =

{
αmin
n , if m = n

−βmax
nm , if m �= n.

(6)

When Υ is a P -matrix (matrix Υ is a P -matrix if for any
nonzero vector x, we have xi(Υx)i > 0, where xi is the ith
element of x [3]), the nominal NE is unique (see [4, Th. 12.5 in
Sec. 12.4.1]).

III. ROBUST GAMES

User n may encounter different sources of uncertainty caused
by variations in a−n and/or xnm, which cause variations in the
utility of that user and prevent it from attaining its expected
performance. We assume that all uncertainties in a−n and xnm

for user n can be modeled by variations in f̃n(a−n, sn), i.e.,
f̃n(a−n, sn)= fn(a−n, sn)+en(a−n, sn), where f̃n(a−n, sn)=

[f̃1
n(a−n,sn),. . . ,f̃

K
n (a−n,sn)], fn(a−n,sn)=[f

1
n(a−n,sn), . . . ,

fK
n (a−n,sn)], anden(a−n,sn)=[e1n(a−n,sn),. . . ,e

K
n (a−n,sn)]

are the estimated values, the exact values, and the error in the
impacts of other users on user n, respectively. In the worst case
robust optimization, uncertainties are assumed to be bounded to
the uncertainty region, i.e.,

�n(a−n) =
{
f̃n(a−n, sn) > 0K | ‖en(a−n, sn)‖2 ≤ εn

}
,

∀ n ∈ N (7)
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where 0K is the 1 ×K zero vector, εn ≥ 0 is the bound on

uncertainty, and ‖en(a−n, sn)‖2 = 2

√∑K
k=1 |ekn(a−n, sn)|2 is

the l2-norm of en(a−n, sn). Note that in (7), f̃n(a−n, sn) > 0K

means that each element of f̃n(a−n, sn) is greater than its cor-
responding element in 0K . Since in communication networks
the ellipsoid region (i.e., l2-norm) has been commonly used to
model uncertainty [17], [24], [25], we also use it in our robust
game. The uncertainty region for user n, denoted by �n(a−n),
depends on system parameters (e.g., the uncertainty region as
defined in [19] for interference channel gains) and on other
users’ actions.

The effect of uncertainty in f̃n(a−n, sn) is highlighted by
a new vector of variables in the utility function of each user.
We denote the utility of user n in the robust game by un,
which depends on uncertain parameters f̃n(a−n, sn), and write
un(an, f̃n(a−n, sn)) =

∑K
k=1 u

k
n(a

k
n, f̃

k
n(a−n, sn)). As in [14]

and [17], we have

vn (an, fn(a−n, sn)) = un

(
an, f̃n(a−n, sn)

) ∣∣∣
εn=0

(8)

for all n ∈ N , which means that when the uncertainty region
shrinks to zero (i.e., there is no uncertainty), utility functions of
the nominal and the robust optimization problems are identical.
The objective of the worst case approach is to find the optimal
strategy for each user that optimizes its utility under the worst
condition of error in the uncertainty region. In this approach,
the optimization problem of each user is formulated as [11]

ũn = max
an∈An

min
f̃n(a−n,sn)∈�n(a−n)

un

(
an, f̃n(a−n, sn)

)
(9)

where ũn is the achieved utility of user n in the worst case
approach. In (9), the minimization is due to the fact that we
adopt a worst case approach, and the maximization is due to the
fact that each user is aiming to maximize its own performance.
Note that (9) is obtained via applying the worst case approach
and A2 and means that the utility of each user is preserved
under the worst case condition of error [17]. The domain of op-
timization problem (9) is Ãn(a−n) = An ×�n(a−n), which
is a function of other users’ strategy. We represent the RACG
by G̃ = {N , (un)n∈N , Ã(a)}, where Ã(a) =

∏N
n=1 Ãn(a−n).

The strategy of each user is denoted by Ãn(a−n) to emphasize
that it is dependent on strategies of other users, and it is a
set-valued mapping. Consequently, Ã(a) is also a set-valued
mapping and is a function of a. The solution to (9) for user n is
a pair (ã′n, f

′
n(a−n, sn)) ∈ Ãn(a−n) that satisfies [15]

max
an∈An

un (an, f
′
n(a−n, sn))

= un (ã
′
n, f

′
n(a−n, sn))

= min
fn(a−n,sn)∈�n(a−n)

un (ã
′
n, fn(a−n, sn))) (10)

which is the saddle point of (9). Using the given formula, the
equilibrium of G̃ is defined below.

Definition 1: The RNE of RACG corresponds to the strategy
profile ã∗ = [ã∗1, . . . , ã

∗
N ] if and only if for any other strategy

profile ãn we have [11]–[13]

min
f̃n (̃a∗

−n
,sn)∈�n(a∗

−n)
un

(
ã∗n, f̃n(ã

∗
−n, sn)

)
≥

min
f̃n (̃a∗

−n
,sn)∈�n(a∗

−n)
un

(
ãn, f̃n(ã

∗
−n, sn)

)
, ∀ ãn ∈ An

(11)

where ã∗−n = [ã∗1, . . . , ã
∗
n−1, ã

∗
n+1, . . . , ã

∗
N ]. We denote the

achieved utility of user n at the RNE by ũ∗
n and the social

utility at the RNE by ũ∗ =
∑N

n=1 ũ
∗
n. From (11), the RNE is the

equilibrium of the game with uncertain parameters, and each
user aims to solve its worst case robust optimization problem.
At the RNE, each user reaches its maximum utility under the
worst condition of error, and no user can reach a higher utility
by unilaterally changing its strategy. Note the difference with
the nominal game, at whose NE each user aims to maximize
its utility by choosing a strategy from its strategy set without
considering uncertainty in fn. When εn = 0, the RNE and the
NE are identical.

IV. ROBUST NASH EQUILIBRIUM ANALYSIS: CONDITIONS

FOR ROBUST NASH EQUILIBRIUM’S EXISTENCE

AND UNIQUENESS

Now, we derive the characteristics of the RNE in the RACG
from the nominal NE in the NACG. For convenience, in what
follows, we omit the arguments a−n and sn in f̃n(a−n, sn).

A. Existence of the RNE

In analyzing the existence of the RNE, we encounter two
problems. First, by considering uncertainty in the utility of each
user, the utility may become nonconvex, and analyzing the RNE
may become impossible. Second, the strategy space of user n
changes to Ãn(a−n) = An ×�n(a−n), which is a set-valued
mapping and is a function of other users’ actions. Therefore,
convexity of the optimization problem of each user is not a
sufficient condition for the existence of RNE, and hence, we
need to establish the existence of the RNE via other approaches.

Lemma 1:

1) For the uncertainty region in (7), the strategy of each user
(i.e., Ãn(a−n)) is a convex, bounded, and closed set.

2) The function Ψn(an,a−n) is a concave and continuous
differentiable function of an for every a−n, where

Ψn(an,a−n) = min
f̃n∈�n(a−n)

un(an, f̃n) = un

(
an, f̃

∗
n

)
(12)

and f̃ ∗n = fn − εnϑn, where f̃ ∗n = [f̃1∗
n , . . . , f̃K∗

n ], ϑn =
[ϑ1

n, . . . , ϑ
K
n ], and ϑk

n is

ϑk
n =

∂uk
n(an ,̃fn)

∂f̃k
n√∑K

k=1

(
∂uk

n(an ,̃fn)

∂f̃k
n

)2
. (13)

The robust game is G̃ = {N , (Ψn)n∈N ,A}.
Proof: See Appendix A. �



1440 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 3, MARCH 2014

For the robust game in Part 2 of Lemma 1, the mapping for
G̃ is F̃(a) = (F̃n(a))

N
n=1, where F̃n(a) = −(∂Ψn(an,a−n))/

(∂an). Since F̃(a) is the set-valued mapping, the RNE can be
obtained via generalized VI (GVI) [13], i.e., ã∗ is the RNE if
and only if it is a solution to GV I(A, F̃). Now, we study the
existence of the RNE.

Theorem 1: For any set of system parameters, users’ actions,
and the bound on the uncertainty region, there always exists an
RNE for G̃.

Proof: It is easy to show that all the assumptions in [13,
Lemma 3.1 and Th. 3.2] hold, and GV I(A, F̃) has a solution.
Hence, G̃ has an RNE. �

B. Uniqueness of the RNE

Since the closed-form solution to (9) cannot be obtained, the
fixed-point algorithm and the contraction mapping cannot be
applied as in [6] and [9] to derive the sufficient conditions for
RNE’s uniqueness. However, we will show that the RNE is the
bounded perturbed version of the nominal NE of the NACG and
that the condition for RNE’s uniqueness can be derived without
a closed-form solution to (9).

Lemma 2: The mapping F̃(a) is a bounded perturbed ver-
sion of the mapping F(a), i.e., there exists a 0 < ℘ < ∞ such
that ‖F̃n(a)−Fn(a)‖2 ≤ ℘.

Proof: See Appendix B. �
From Lemma 1, Ã(a) is a closed and convex set, and from

Lemma 2, F̃(a) is a bounded perturbed version of the mapping
F(a). We use this point to derive a sufficient condition for
RNE’s uniqueness in Theorem 2 as follows.

Theorem 2: When Υ in (6) is a P -matrix, for any bounded
Δ = [ε1, . . . , εN ], the following statements hold.

1) G̃ has a unique RNE.
2) The social utility at the RNE is always less than or equal

to that at the nominal NE, i.e., ũ∗ ≤ v∗.
3) The distance between the strategy profiles at the RNE and

at the nominal NE is

‖a∗ − ã∗‖2 ≤ ‖Δ‖2
csm(F)

(14)

where csm > 0 is the strong monotonicity constant for
the mapping F , which guarantees (a1 − a2)(F(a1)−
F(a2)) ≥ csm‖a1 − a2‖22 for all a1, a2 ∈ A. In such a
case, F is a strongly monotone map [3].

Proof: See Appendix C. �
Recall that Υ in (6) being a P -matrix establishes strong

monotonicity of the mapping F(a), which is a sufficient condi-
tion for the uniqueness of the nominal NE as per [4, Th. 12.5 in
Sec. 12.4.1]. When this condition holds and the mapping F̃(a)
is a bounded perturbed version of the mapping F(a), as per
Lemma 3 in the proof of Theorem 2, F̃(a) is also strongly
monotone, which is a sufficient condition for the uniqueness
of the RNE as per [13, Th. 4.3]. Note that there may be other
sufficient conditions under which nominal game G has a unique

solution but robust game G̃ may not have a unique solution or
even any solution.

In addition, from Theorem 2, the difference between the
upper bound on users’ actions in (14) at the RNE and at
the nominal NE can be compared. Moreover, from (14), the
social utility’s decrement at the RNE (compared with that
at the nominal NE) can be approximated. Note that csm is
obtained from F (see [3, Sec. II] and [29, Sec. VI]). The
given discussion means that Theorem 2 provides the means to
determine how uncertainty affects the outcome of the robust
game and shows how to obtain the RNE from the nominal NE.
Consider W(a) = (Wk(a))Kk=1, where Wk(a) is an N ×N
matrix whose elements are

W k
nm ≡

⎛⎝ ∂vk
n(ak

n,f
k
n)

∂ak
n

, if m = n

∂vk
n(ak

n,f
k
n)

∂ak
m

xk
nm, if m �= n

⎞⎠ , m, n ∈ N .

(15)

In Appendix D, we show that the difference between social
utilities at the RNE and at the nominal NE is

‖v∗ − ũ∗‖2 ≈ ‖W(a∗)‖2 ×
‖Δ‖2
csm(F)

. (16)

In Appendix D, we also show that the gap between the exact
value of ‖v∗ − ũ∗‖2 and its approximation in (16) is always
less than or equal to ((‖J(F)‖2‖Δ‖22)/2), where J(F) is the
Jacobian matrix of F , and J(F) contains the second derivative
of vn. When the second derivative of vn is small, (16) is a tight
approximation for the difference between social utilities at the
RNE and at the nominal NE. When Υ in (6) is a P -matrix,
a∗n is the attractor for GV I(A, F̃) (see [3, Th. 5.4.4]), i.e.,
limΔ→0N

‖a∗ − ã∗‖2 = 0, which means that when uncertainty
approaches zero, the RNE converges to the nominal NE. From
the given discussion, we conclude that when Υ in (6) is a P -
matrix, the RNE can be obtained as a variant of the nominal
NE from estimated system parameters and the uncertainty
bound.

C. Numerical Validation

For the power control game, when the utility of user n is (2),
we have

−∇2
an
vn(an, fn) =diag

((
hk
nn

σk
n +
∑

m∈N akmhk
nm

)2
)K

k=1

−∇aman
vn(an, fn) =diag

(
hk
nmhk

nn(
σk
n +
∑

m∈N akmhk
nm

)2
)K

k=1

.

Consequently, for this game, (4) and (5) are as follows:

αmin
n = min

k∈K

(
hk
nn

σk
n +
∑

m∈N amax
m,kh

k
nm

)2

βmax
nm = max

k∈K

hk
nnh

k
nm(

σk
n +
∑

m∈N amin
m,kh

k
nm

)2 .
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In addition, for this game, (6) is a P -matrix if and only if

min
k∈K

hk
nnw

k
n(

σk
n +
∑

m∈N amax
m,kh

k
nm

)2 >

∑
m �=n

max
k∈K

hk
nmwk

m(
σk
n +
∑

m∈N amin
m,kh

k
nm

)2 ∀ n ∈ N , ∀ wk
n ∈ An

(17)

which is the condition for the uniqueness of the nominal NE.
Otherwise, the problem may have multiple nominal NEs.

To describe the physical meaning of (17), let Imax
n,k = (σk

n +∑
m∈N amax

m,kh
k
nm)2 be the maximum expected interference

caused by other users on user n in subchannel k and Imin
n,k =

(σk
n +
∑

m∈N amin
m,kh

k
nm)2 be the minimum expected interfer-

ence caused by other users on user n in subchannel k. In
addition, let mink∈K((h

k
nnw

k
n)/(I

max
n,k )) be the minimum ex-

pected signal-to-interference-plus-noise ratio (SINR) of user n
over all subchannels and ((hk

nmwk
m)/(Imin

n,k )) be the expected
normalized interference of user m on user n in subchannel k.
From (17), when the minimum expected SINRs of all users
are greater than the sum of the maximum expected normalized
interference levels, the nominal NE is unique. On the other
hand, when interference of users on each other is low and
channel gains between receivers and transmitters are high, the
nominal NE is unique. This is in line with [26, Proposition 5
and Corollary 7].

As a numerical example, consider two users and two sub-
channels, and assume amax

n = amax
n,k = 1, amin

n,k = 0.01, and
σk
n = 0.001 for all users in all subchannels. To ensure that (17)

holds and (6) is a P -matrix for the power control game, the
interference channel gain between users should be much less
than the direct channel gain between each transmitter and its
receiver, i.e., hk

nm < 0.01hk
nn. In our simulation, the matrix Υ

in (6) for the power control game is

Υ =

[
1.5432 −0.016
−0.0012 1.221

]
.

Since (17) is satisfied for the given matrix, it is a strongly
monotone matrix. Fig. 1 shows the surface of the social
utility of users 1 and 2 as their strategies in subchannels 1
and 2, respectively. When εn ≤ 0.8 for both users, simula-
tions show the following. 1) Both the NE and the RNE are
unique. 2) The social utility at the NE is v∗1 + v∗2 = 1.6. The
social utility at the RNE is ũ∗

1 + ũ∗
2 = 0.585, which is less

than that at the NE, as expected from Part 1 in Theorem 2.
3) At the NE, the allocated power to users 1 and 2 is
(a∗11 = 0.5, a∗21 = 0.5) and (a∗12 = 0.4, a∗22 = 0.6), respectively,
and RNEs for users 1 and 2 are (ã∗11 = 0.4, ã∗21 = 0.6) and
(ã∗12 = 0.9, ã∗22 = 0.1), respectively. The upper bound in (14)
is 1.3115, and the exact value of ‖a∗ − ã∗‖2 is 0.7211, which
is less than its upper bound in (14). Consider ‖Wk(a)‖2 =√
(λmax(W∗k(a)Wk(a)), where W∗k(a) is the conjugate

transpose of Wk(a), and λmax is the maximum eigenvalue of
the matrix. In our simulation, λmax(W

∗1(a)W1(a)) = 0.9091
and λmax(W

∗2(a)W2(a)) = 0.59. From (16), the distance

Fig. 1. Social utility for the power control game when Υ in (6) is a P -matrix.

between the social utilities at the RNE and at the nominal NE
is 1.02, and in this simulation, this difference is 1.015. This
simulation shows that (16) is a tight approximation for the
difference between social utilities at the NE and at the RNE for
the power control game. The given results numerically illustrate
Theorem 2. From the given discussion and Theorem 2, when Υ
in (6) is a P -matrix, the social utility at the RNE is less than that
at the nominal NE, which is not desirable. However, in case
studies in Section VIII, we show that users’ utilities are very
stable at the RNE as compared with those at the nominal NE.
In addition, when Υ in (6) is a P -matrix for the power control
game and variations in system parameters exceed the bound on
the uncertainty region, the mean of social utility may increase
at the RNE as compared with that at the nominal NE.

V. LOGARITHMIC UTILITY FUNCTIONS

We now consider logarithmic utility functions and assume
that only the system parameters are uncertain. In such cases, V I
becomes very simple, and the strong monotonicity requirement
is relaxed to the positive definiteness of the affine mapping. Let
the utility of each user be [27]

vkn
(
akn, f

k
n

)
=

⎧⎪⎨⎪⎩
log
(
ckn + ak

n

fk
n

)
, if θ = −1(

ckn+
ak
n

fk
n

)θ+1

θ+1 , if θ < 0 and θ �= −1
(18)

where ckn is the fixed system parameter related to dimension
k of user n. Assume that for the uncertain parameter of
user n, we have x̃k

nm = xk
nm + x̂k

nm, where x̃k
nm, xk

nm, and
x̂k
nm are the estimated value, the exact value, and the error,

respectively. The uncertainty region for each user is �k
n =

{
√∑N

m=1,m �=n(x̂
k
nm/xk

nn)
2 ≤ εkn} for all k, where εkn is the

bound on the uncertainty region for user n in dimension k. The
given formulation models the power control game when uncer-
tainty emanates from variations in the channel gain between
transmitter m and receiver n. The throughput of each user in
(2) corresponds to when in (18), we have θ = −1, and ckn = 1,
and fk

n is normalized with respect to xk
nn, i.e., the interference
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on user n in subchannel k is normalized with respect to its direct
channel gain. For this case, we also assume that [28]

amax
n <

K∑
k=1

amax
n,k , ∀ n ∈ N . (19)

Proposition 1: For an ACG with utility function (18), the
following statements hold.

1) The nominal NE is the solution to an affine V I (AVI),
denoted by AV I(A,M), where M(a) = (Mn(a))

N
n=1,

and

Mn(a) = �n +

N∑
m=1

MnmaTm (20)

where �n = (�k
n)

K
k=1, �k

n = ((ykn + ckn)/(x
k
nn)), and

Mnm = diag(xk
nm/xk

nn)
K
k=1.

2) Consider an N ×N matrix Mmax, where Mmax
nm =

maxk∈K(x
k
nm/xk

nn) if m �= n, and Mmax
nm = 0 otherwise.

The nominal NE is unique when

max
n∈N

‖an‖2>
∑
m �=n

Mmax
nm ‖am‖2, ∀ an∈An, ∀ n ∈ N . (21)

Proof:
1) From (18), the best response of the NACG is akn =

[μ
(1/θ)
n −((ckn+ykn)/x

k
nn)−

∑
m �=n(x

k
nm/xk

nn)a
k
m]

amax
nk

amin
nk

,

where Lagrange multiplier μn for user n is so chosen to
satisfy (23). When (19) holds, the best response obtained
via AV I is AV I(A,M), where M(a) = (Mn(a))

N
n=1,

and Mn is obtained from (20) [29].
2) For this case, the game has a unique NE when M(a)

is strongly monotone. From [28, Proposition 1], when
(21) holds, M(a) is strongly monotone, and hence, the
nominal NE is unique. �

From Proposition 1, when the impact of users on each other
is sufficiently low, the nominal NE is unique. For the example
of the power control game, Proposition 1 implies that when
interference between users is sufficiently low, the nominal NE
of the game is unique [28], [29]. We now derive the RNE’s
uniqueness condition for such cases.

Theorem 3: For utility function (18), the following state-
ments hold.

1) The AV I mapping of the RNE is M̃(a) = (M̃n(a))
N
n=1,

where

M̃n(a) ≤ Mn(a) + M̂n(a), ∀ n ∈ N (22)

where M̂n(a−n) = (εkn‖ak−n‖)Kk=1 and ak−n = [ak1 , . . . ,
akn−1, a

k
n+1, . . . , a

k
N ].

2) When (21) holds, the RNE of G̃ is unique for any bounded
εkn.

3) When (21) holds, the utility of each user at the RNE is al-
ways less than or equal to that at the nominal NE, and the
upper bound on the strategy profile of each user is ‖a∗ −
ã∗‖2 ≤ ((‖E‖2)/(λmin(M

max))), where Enm = ‖εn‖∞
if m = n, and Enm = 0 otherwise. λmin is the mini-
mum eigenvalue of matrix Mmax, εn = [ε1n, . . . , ε

K
n ], and

‖ · ‖∞ is the maximum element of the vector.

Proof: See Appendix E. �
From Theorems 2 and 3, we note that 1) the condition for

RNE’s uniqueness is not related to the size of the uncertainty
region; and 2) for a closed, bounded, and convex uncertainty
region, the RNE’s uniqueness condition is the same as the NE’s
uniqueness condition. The given discussion is contingent upon
strong monotonicity of F and F̃ . Now, one can obtain the
impact of uncertainty in the estimated values on the RNE. In
brief, the RNE can be easily derived from the NE.

Remark 3: By rearranging AV I of the RNE for utility
function (18), the best response of the RACG is ãkn = [μ

(1/θ)
n −

�k
n −
∑

m �=n((x
k
nmakm)/xk

nn)− εkn‖ak−n‖]
amax
nk

amin
nk

, where μn is

the Lagrange multiplier for the strategy space of user n in (1),
i.e.,

μn ×
(

K∑
k=1

akn − amax
n

)
= 0 (23)

which is similar to [19, eq. (13)] for the power control game in
spectrum sharing environments. From [19, Th. 2], a sufficient
condition for RNE’s uniqueness is related to the size of the
uncertainty region, whereas when we use AV I to analyze the
RNE, we obtain (21) as another sufficient condition for RNE’s
uniqueness, which is independent of the size of the uncertainty
region. These two sufficient conditions do not need to be the
same, and in fact, they are different because the approaches
for obtaining a sufficient condition for RNE’s uniqueness in
this paper and in [19] are not the same, and their respective
social utilities are not related. Moreover, in [19], uncertainty is
confined to channel gains, whereas in this paper, channel gains
and impacts of other users are uncertain.

VI. DISTRIBUTED ALGORITHMS

We now utilize the proximal-point method to propose a
distributed and efficient numerical algorithm for obtaining the
robust solution to G̃. The proximal-point method is a projection
method for solving problems that involve set-valued mappings,
where a sequence of subproblems is iteratively solved as per
[3, Sec. 12] and [4, Sec. 12.6.1]. The main advantages of utiliz-
ing the proximal-point method for our robust game are twofold:
1) the optimization problem in the proximal-point method can
be decomposed and solved in a distributed and efficient manner
as per [4, Sec. 12.6.1]; and 2) the users’ objective functions
in the game, i.e., Ψn, do not need to be strictly or strongly
convex for convergence of the distributed algorithm as per
[4, Sec. 12.2.4]. We will show that utilizing the proximal-point
method for our robust game can lead to a closed-form solution
for the problem at hand. For any b = [b1, . . . ,bN ] ∈ A, let
â(b) = [â1(b), . . . , âN (b)] be the solution to the following
optimization problem (see [4, Sec. 12.6.1]):

â(b) = argmax
a∈A

[
N∑

n=1

Ψn(an,b−n)−
1
2
‖a− b‖22

]
(24)

where â(b) is a proximal response map of game G̃. From
[4, Proposition 12.5 in Sec. 12.2.4], since Ψn is concave (Part 2
in Lemma 1), the fixed point of â(b) is the RNE of the robust
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TABLE I
DISTRIBUTED ALGORITHM FOR PROXIMAL POINT METHOD

game G̃. Now, (24) can be decomposed into N subproblems
(one for each user) as per [4, Sec. 12.6.1], i.e.,

ân(b) = argmax
an∈An

[
Ψn(an,b−n)−

1
2
‖an − bn‖22

]
(25)

for all n ∈ N . A distributed iterative algorithm is developed
as follows. Let ân(b) and bn be the solutions for user n in
its current and previous iterations, respectively. When user n
is informed about other users’ actions and estimates fkn at its
receiver, a solution to (25) can be obtained. The distributed
algorithm that is based on the proximal-point method is summa-
rized in Table I. In this algorithm, users update their actions at
discrete instances l in L = [1, . . . , L], where an(l) is the action
of user n at iteration l obtained from (25), and fn(l) are the
impacts of other users on user n at iteration l, which is observed
at the receiver of user n and sent to the respective transmitter.

In Theorem 4, we obtain the sufficient conditions for con-
vergence of the iterative algorithm. Note that the optimization
problem in (25) is strongly concave as per [4, Sec. 12.6.1],
where it is shown that the regularization term (1/2)‖a− b‖22
guarantees the strong concavity of each user’s optimization
problem, and hence, each ân can be obtained via efficient con-
vex optimization algorithms. When the distributed algorithm in
Table I converges, the regularization term ‖an − bn‖22 tends to
zero.

Theorem 4: As L → ∞, the distributed algorithm in Table I
converges to the unique RNE from any initial an(0), when
Υ in (6) is a P -matrix, and ((∂3vkn(a

k
n, f

k
n))/(∂

2akn∂f
k
n)) =

((∂3vkn(a
k
n, f

k
n))/(∂a

k
n∂

2fk
n)) = 0.

Proof: See Appendix F. �
Note that Theorem 4 does not add any new constraint for

the power control game. This is because when Υ in (6)
is a P -matrix, the condition of Theorem 4 holds for the
power control game. In this case, interference in the system
is very low, and consequently, the SINR of each user is
high, i.e., ((hk

nna
k
n)/f

k
n) � 1, and the utility function of each

user is vn(an, fn) ≈
∑K

k=1 log((h
k
nna

k
n)/f

k
n), which satisfies

((∂3vkn(a
k
n, f

k
n))/(∂

2akn∂f
k
n) = 0. From Theorem 4, the dis-

tributed algorithm converges to a unique NE when Υ in (6) is
a P -matrix irrespective of the size of the uncertainty region, so
long as the uncertainty region is closed and convex.

Remark 4: In solving (25), one has to obtain F̃n(a) =

−((∂Ψn(an,a−n))/(∂an)) [3]. When F̃n(a) is an affine map-
ping, solving (25) reduces to solving an AV I , which is easy
and straightforward. For example, for (18), solving (25) via
the proximal-point method at iteration l is similar to solving
V I(A,M(a(l − 1))) (see [3, Sec. 12.3]), where Mn(a(l −

1)) = (1/2)(�n +
∑N

m=1 MnmaTm(l − 1))− In, and In =
(akn(l)− akn(l − 1))Kk=1. The solution to (25) obtained via the
proximal-point method is

akn(l) =
1
2

[
μ

1
θ
n −�k

n −
∑
m �=n

xk
nmakm(l − 1)

xk
nn

− εkn
∥∥ak−n(l − 1)

∥∥+ akn(l − 1)

]amax
nk

amin
nk

(26)

where μn satisfies (23). Hence, in the power control game,
to solve the waterfilling-like formulation in (26) with few
calculations, each user n only needs to know the amount of
interference from other users and their actions, as well as its
own previous action.

When F̃n(a) is not an affine mapping, from Lemma 1,
Ψn(an,a−n) is concave. Hence, the Lagrange function
Ln(an, μn) = un(an, fn − εnϑn)− (1/2)‖an(l)− an(l − 1)
‖22 − μn(

∑K
k=1 a

k
n − amax

n ) is used to iteratively solve (25),
where μn is the Lagrange multiplier that satisfies (23) for
user n.

VII. EFFECTS OF ROBUSTNESS ON SOCIAL UTILITY FOR

THE CASE OF MULTIPLE NOMINAL NASH EQUILIBRIA

So far, we obtained the RNE’s uniqueness condition from
the nominal NE’s uniqueness conditions. Now, we study RNEs
when the NACG has multiple nominal NEs. In general, this
is not easy since the mapping F for NACG is nonmonotone
and nonsmooth [30]–[32]. To compare the case of multiple
nominal NEs with that of a unique nominal NE, consider the
numerical example in Section IV-C, but when Υ in (6) is not a
P -matrix, and hk

nm > 0.5hk
nn for all users in all subchannels.

The mapping F is nonmonotone for both users. As shown in
Fig. 2, there are multiple local optima in the utility function,
corresponding to multiple nominal NEs. At a nominal NE, the
convergence points for users 1 and 2 are (a∗11 = 0.534, a∗21 =
0.463) and (a∗12 = 0.417, a∗22 = 0.583), respectively, and v∗1 +
v∗2 = 3.0176. When uncertainty is εn < 0.8, the RNE converges
to (ã∗11 = 0.556, ã∗21 = 0.444) and (ã∗12 = 0.325, ã∗22 = 0.675),
and ũ∗

1 + ũ∗
2 = 3.077. In this simulation, the initial points in

G and G̃ are the same. This example shows that introducing
robustness may increase the social utility at the RNE when
the NACG has multiple nominal NEs, which is in line with
the simulation results in [18] and [19]. We observe that im-
plementing RACG in communication networks may increase
the social utility as compared with that of NACG. However,
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Fig. 2. Social utility for the power control game when Υ in (6) is not a
P -matrix.

since the optimal strategy of each user is a nonlinear function of
its uncertainty region and other users’ strategies, obtaining the
sufficient conditions under which the social utility increases is
not easy for all cases. Hence, instead of considering the general
case, we focus on a special case, in which both G and G̃ start
from the same initial point, and the strategy of each user is
a decreasing function of the bound on the uncertainty region.
Since F̃ is a bounded perturbed version of F from Lemma 2,
the converged RNE is in the proximity of the nominal NE.

Proposition 2: Consider W(a) = (W(a)k)Kk=1, where
W(a)k is defined in (15). If W(a) is a negative definite matrix
and ∇εnan < 0T

K for all users (i.e., when the strategy of each
user is a decreasing function of the bound on its uncertainty
region), the social utility at the RNE is higher than that at the
corresponding converged nominal NE.

Proof: Variation in the utility of user n due to variations
in the bound on the uncertainty region is

lim
ε→0

∇εun(an, f̃n)

= ∇an
vn(an, fn)× 1K ×∇εnan

+∇fnvn(an, fn)× xnm ×∇εmam

+ εn∇2
anfn

vn(an, fn)×Xnm ×∇εnan

+ εnXnm ×∇2
fnfn

vn(an, fn)×∇εmam + o(·) (27)

where Xnm is the K ×K matrix, [Xnm]kk = (xk
nm)2, 1K

is a 1 ×K vector whose elements are equal to one, ε =
[ε1, . . . , εN ], and ∇ is the column gradient vector. The last two
terms on the right-hand side (RHS) of (27) are always positive
because of Assumptions A1 and A2 in Section II. The first term
on the RHS of (27) is always negative because vn(an, fn) is an
increasing function of an, and ∇εnan < 0T

K . The second term
on the RHS of (27) is always positive because vn(an, fn) is a
decreasing function of fn, and ∇εnam < 0T

K . When W(a) is
a negative definite matrix, the negative terms on the RHS of
(27) are less than its positive terms, and the social utility of the
robust game is higher than that of the nominal game. �

From Proposition 2, when at the RNE, the reduction in the
utility of each user (caused by a reduction in its own strategy,
e.g., its own transmit power) is less than the increase in the same
user’s utility (caused by reductions in other users’ strategies),
introducing robustness in the game causes a net increase in
the social utility. In such cases, the social utility at the RNE
is higher than the social utility at the corresponding nominal
NE; however, there may be other cases as well, in which this
may not be valid.

Remark 5: When the solution of affine V I in Proposition 1,
denoted by AV I(A,M), is a monotone decreasing function
of εn (i.e., when ∇εnan < 0T

K for all users), M = (Mn)
N
n=1

is a negative definite matrix, where Mn =
∑N

m=1 Mnm (see
Appendix G). For the power control game, Proposition 2 is
simplified to

max
n∈N

‖an‖2 <
∑
m �=n

Mmax
nm ‖am‖2, ∀ an ∈ An (28)

for all n ∈ N . This means that when all interference chan-
nel gains are sufficiently greater than direct channels gains,
introducing robustness increases the social utility. This is an
opportunistic phenomenon when the robust game encounters
multiple nominal NEs. To benefit from this (i.e., increase the
social utility), we propose a distributed algorithm in Table II.
Obviously, checking the conditions of Proposition 2 in a dis-
tributed manner is not easy, and the social utility may be
increased when some other conditions prevail as well.

By considering these two issues, as shown in Table II,
all users first play the game G by utilizing the conventional
distributed algorithm, whose social utility at the nominal NE
is ũ(0). As an example, for the power control game, the
simultaneous iterative waterfilling algorithm (IWFA) can be
played between users in G [10], [33]. When G converges,
users play the game G̃ by assuming a small arbitrary value
for εn and calculate their new strategies. Users update their
strategies at iterations l1 = 1, 2, . . . , L1, where L1 is the bound
on iterations. At the end of iteration l1, each user measures fkn at
its receiver, calculates its achieved utility, and sends it to other
users so that all users can obtain the social utility ũ(l1). When
ũ(l1) > ũ(l1 − 1), each user’s uncertainty region is expanded.
Otherwise, the algorithm is terminated, and users’ strategies in
the previous iteration are applied. In the opportunistic algorithm
in Table II, vectors an(l1) and fn(l1) are the transmit strategies
and impacts of other users on user n at iteration l1, respectively.
Note that in the opportunistic algorithm in Table II, each user
needs to know other users’ utilities in addition to its own
strategy, which is not the case for the distributed algorithm in
Table I.

VIII. CASE STUDIES

A. Power Control Games

We use simulations for the power control game to provide an
insight into the performance of G̃ for different bounds on the
uncertainty region as compared with that of G where the utility
of each user is defined in (2). In the following simulations,
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TABLE II
OPPORTUNISTIC ALGORITHM FOR INCREASING SOCIAL UTILITY

Fig. 3. Impact of channel variations in robust and nonrobust games.

the value of εn is normalized to the estimated value of fn,
i.e., εn = (‖f̃n − fn‖)/(‖fn‖), and uncertainty for all users is
assumed to be the same, denoted by ε. In addition, for the
case of multiple nominal NEs, we only consider the cases
in which the simulation converges to a local nominal NE. In
simulations, we assume amin

n,k = 0.01, amax
n,k = 0.5, amax

n = 1,
and σk

n = 0.001 for all users in all subchannels.
1) Effect of Uncertainty on the Nominal NE: For the power

control game, we begin by studying the effect of uncertainty on
its performance in both G and G̃ in terms of utility variations at
their equilibria. To do so, we consider N = 3 users, K = 16,
and ε = 10% at the RNE. After convergence to the RNE and
to the nominal NE, channel gains between users are varied up
to 10% as well as 30% of their nominal values, which causes
variations in the utility of each user at the nominal NE and
at the RNE, as shown in Fig. 3 and summarized in Table III.
Note that variations in the social utility at the nominal NE are
considerable for both cases. In contrast, in the RACG, the social
utility at the RNE is stable for both cases. From Table III, the
mean of the social utility at the NE is greater than that at the
RNE when variations in system parameters are up to 10%;
however, its variance is considerably higher than that at the
RNE, which means that users experience more variations in
their social utility. When variations in system parameters are
up to 30%, the mean of the social utility is less than that at
the RNE, and its variance is greater than that at the nominal
NE. In addition, as can be seen in Table III, when variations

in channel gain are up to 70%, the average social utility at
the nominal NE is progressively reduced, and its variance is
increased, which means that users on the average experience
undesirable fluctuations in their respective quality of service.
In contrast, the social utility at the RNE is more stable, and
the reduction in the social utility at the RNE (caused by taking
into account uncertainties and variations in parameters’ values)
is less than that at the nominal NE. This simulation confirms
that the social utility at the nominal NE is very sensitive to
variations in system parameters. In contrast, the social utility
at the RNE is stable, which means that at the RNE, users’
utilities are protected under any condition of error. Moreover,
when variations in system parameters are greater than 10%,
the mean of social utility at the RNE is greater than that at the
nominal NE.

2) Effect of Size of Uncertainty Region on the RNE: To
demonstrate the results of Theorem 2 and Section VII on social
utilities at the nominal NE and at the RNE, in Fig. 4, we
compare the effect of uncertainty when Theorem 2 holds with
that of the case when it does not hold, in terms of the ratio of
social utilities at the RNE and at the nominal NE for different
amounts of uncertainty. Simulations are performed for Rayleigh
fading channels and bounded and uniformly generated errors
for each cross-subchannel gain. To satisfy the nominal NE’s
uniqueness condition (i.e., Υ in (6) being a P -matrix), channel
gains are such that hk

nm < 0.01hk
nn, and for multiple nominal

NEs, we have hk
nm > 0.5hk

nn. The ratio of the social utility in
Fig. 4 is obtained by averaging over 100 channel realizations.
When Υ in (6) is a P -matrix (i.e., when the NE and the RNE
are unique), the social utility of the robust game at its RNE
is decremented when the uncertainty region is expanded, as
expected from Theorem 2. However, for the case of multiple
nominal NEs, no uniformity in the social utility is observed,
and the social utility at the RNE may exceed that of the
corresponding nominal NE, as expected from the discussion in
Section VII. For example, when ε = 10%, the social utility at
the RNE is higher than that at the nominal NE, and when ε =
20%, the ratio substantially falls. The trend is not monotonic
for different values of uncertainty, e.g., the social utility at the
RNE is higher for ε = 50% as compared with those for ε =
40% and ε = 60%. This simulation is similar to the numerical
validation of Theorem 2 in Section IV-C, where it was shown
that when Υ in (6) is a P -matrix (i.e., when the NE and the
RNE are unique), the social utility of the robust game is reduced
when the uncertainty region is expanded, which also supports
Proposition 2 by showing that the social utility at the RNE can
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TABLE III
STATISTICS OF SOCIAL UTILITY AT NOMINAL NE AND RNE FOR DIFFERENT BOUNDS ON VARIATIONS IN SYSTEM PARAMETERS

Fig. 4. Ratio of social utilities at the RNE and at the nominal NE versus ε for
a unique nominal NE and for multiple nominal NEs.

Fig. 5. Convergence times of the proximal point method and the IWFA.

be higher than that at its corresponding nominal NE for the case
of multiple nominal NEs.

In Fig. 5, the users’ utilities versus iteration numbers are
shown for the proximal-point method when ε = 80%. Note
that the convergence time of the proximal-point method is
longer than that of the IWFA with no uncertainty for users.
In Table IV, for 10 000 channel realizations and ζ = 0.01, the
average number of iterations for convergence of the power
allocation game is shown. The number of iterations is increased
when the uncertainty region is expanded but remains below
that of the nominal game and [10]. For small values of ε, the
convergence time of the RACG and that of the IWFA (ε = 0 in
Table IV) are close to each other.

3) Performance of the Opportunistic Algorithm: In Fig. 6,
we compare the efficiency of the opportunistic approach with

that of the nominal game, defined by η = (
∑

n∈N uOP
n −

v∗)/v∗, where uOP
n is the achieved utility of user n at the end

of the opportunistic algorithm. The value of η is obtained by
averaging over 1200 channel realizations for N = [4, 6, 8], and
K = [32, 64] for different values of hk

nm. In this simulation, we
assume L1 = 100 and δ = 0.01 and only consider the results
when the nominal game converges to a local nominal NE.
Note that for very high interference levels, i.e., when hk

nm �
hk
nn, the efficiency of the proposed opportunistic approach is

considerably higher than that of moderate interference levels,
i.e., when hk

nm ≥ hk
nn. This is in line with Proposition 2. As

shown in Fig. 6, the efficiency of the opportunistic algorithm
is significantly better in high interference levels and when the
number of subchannels is high. The reason being that for a
higher number of channels, the probability of convergence to
orthogonal power allocation at the RNE is increased, resulting
in less interference between users and in a higher social utility,
as also shown in [19].

From Theorem 2 and as shown in Fig. 4, when Υ in (6) is
a P -matrix, the social utility at the RNE is less than that at the
nominal NE. In addition, the distributed algorithm for reaching
the RNE needs more message passing compared with the
distributed algorithm for reaching the nominal NE. Moreover,
in Fig. 5, the convergence time for the distributed algorithm at
the RNE is longer than that at the nominal NE. All of these
constitute the costs of robustness. In contrast, at the RNE, the
utility of each user is stable for different values of uncertainty in
the system, resulting in reliable communications for all users,
as shown in Fig. 3.

B. Other Examples of ACG

Finally, we introduce two other examples of the ACG,
namely, downlink transmit power allocation in DSLAMs and
routing delay minimization in Jackson networks. For the first
example, the basic system model is similar to the power control
problem in interference channels except that here, intercar-
rier interference (ICI) exists among different frequency bins.
For this example, we have fk

n(a−n, sn) =
∑

m �=n

∑K
j=1(γ(k −

j)hk
mna

k
m) + σk

n, where

γ(j) =

{
1, if j = 0

2

K2 sin2( π
K j)

, if −K
2 ≤ j ≤ K

2 , j �= 0

is an ICI coefficient that is symmetric and circular, i.e., γ(j) =
γ(−j) = γ(K − j). The utility of user n is the same as (2), and
its strategy is the allocated power in different frequency bins
(carriers). Since the results for this example are similar to the
results for the power control problem in interference channels
that have already been presented, for brevity, we refrain from
further discussions.
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TABLE IV
MEAN NUMBER OF ITERATIONS FOR CONVERGENCE OF THE POWER CONTROL GAME VERSUS ε

Fig. 6. Efficiency of the opportunistic algorithm in the power control game
versus interference levels.

Delay minimization in routing of packets in Jackson net-
works is another example of ACG in communication networks
[6], [21]. In this network, incoming packets to node n are
split into K = {1, . . . ,K} traffic classes. For class k, the input
rate and the service rate are ψk

n and ρkn, respectively. Each
node is a player, and ψk

n is the action of player n for class
k of input traffic. The total rate is subject to the minimum
rate constraint

∑K
k=1 ψ

k
n ≥ ψmin

n . A class k packet destined
to node m is routed to node n with probability rknm, or
exit the network with probability rk0m = 1 −

∑N
n=1 r

k
nm. We

have [Rk]nm = rknm, Θk = (1 −Rk)−1, and νknm = [Θk]nm.
It can be easily shown that the user’s utility for minimiz-
ing M/M/1 queueing delay can be expressed by dn(Ψ) =∑K

k=1(1/(ρ
k
n −
∑N

m=1 ν
k
nmψk

m)), where Ψ = [Ψ1, . . . ,ΨN ],
and Ψn = [ψ1

n, . . . , ψ
K
n ] ∀n ∈ N . The optimization problem

can be rewritten by maximizing vn(an, fn) subject to the min-
imum data rate constraint for each user, where vn(an, fn) =∑K

k=1(ρ
k
n −
∑N

m=1 ν
k
nmψk

m). In this network,
∑N

m=1 ν
k
nmψk

m

is the arrival rate to node n from other nodes (i.e., fk
n ), which

can be uncertain. The condition of Theorem 4 holds for this
utility function, and the proximal-point method can be used to
solve the robust game of the Jackson network in a distributed
manner.

To show the effect of uncertainty on the delay in Jackson
networks, consider a network with N = 5 nodes, K = 3 traffic
classes, and ε = 70%. Fig. 7(a) and (b) shows the effect of
uncertainty in ψk

n on the convergence of Jacobi update and
gradient play for reaching the NE and on the convergence of
the proximal-point method for reaching the RNE, respectively.
In these figures, we show D = (d̆− d∗)/(d∗%), where d̆ is the
total delay under perturbation, and d∗ is the delay at the NE.
Note that when robustness is not applied, neither the Jacobi
update nor the gradient play converge to the nominal NE;
however, the RNE converges to the vicinity of the nominal NE.
In this case, the total delay with Jacobi update and gradient play

Fig. 7. Total delay in Jackson network when ε = 70%. (a) At nominal NE via
gradient play and Jacobi update [6]. (b) At RNE via proximal point method.

Fig. 8. Probability of convergence to the RNE when Υ in (6) is a P -matrix
for different amounts of uncertainty versus (1 − rk0m) for N = 5 and K = 3.

increases up to 2% at the nominal NE, as compared with a total
delay of about 1.4% at the RNE. This shows that the delay at the
RNE is about the same as that at the nominal NE. In addition,
the proximal-point method converges very fast to the RNE.

Fig. 8 shows the probability of RNE’s convergence versus
the total routing probability (i.e., (1 − rk0m) for all m in N )
for different uncertainty regions. Note that by increasing un-
certainty, the system converges to the RNE for a smaller value
of (1 − rk0m) as compared with that of the nominal NE (i.e.,
ε = 0). For example, if ε = 40%, only for (1 − rk0m) < 0.3, the
system converges to its equilibrium, whereas for ε = 10%,
the value of (1 − rk0m) can be up to 0.5 for convergence to the
RNE. Fig. 8 shows that the effect of uncertainty is more
profound in a network with a high value of (1 − rk0m), causing
poor performance, i.e., large delays in the network. Therefore,
when the system encounters a high degree of uncertainty, a
lower value of (1 − rk0m) should be considered to maintain the
performance of the system.
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IX. CONCLUSION

We have studied the RNE for a wide range of problems in
communication networks when each user’s utility depends on
its actions and is additively coupled to other users’ actions.
In this game, the impact of other users on each user is uncer-
tain, and each user optimizes its own utility using the worst
case robust optimization. We showed that the theory of finite-
dimensional variational inequalities can be used to obtain the
sufficient conditions for the existence and uniqueness of the
RNE. We have also proposed a distributed algorithm for reach-
ing the RNE. In the case of multiple nominal NEs, simulations
showed that at the RNE, the social utility may be higher than
that at the corresponding NE, and we derived the sufficient
conditions under which this phenomenon can be observed.
Simulations confirmed our analysis for two examples, namely,
power control in interference channels and delay minimization
in Jackson networks.

APPENDIX A
PROOF OF LEMMA 1

1) Function fn is a linear function of other users’ strategies
and system parameters. Moreover, the norm function is
a convex function bounded to εn (see [34, Sec. 2.2.2]).
Hence, as per [34, Sec. 3.2], Ãn(a−n) is a convex,
bounded, and closed set.

2) To prove the concavity of (13) with respect to an, we
follow [34, Sec. 3.1]. Consider an = μa1n + (1 − μ)a2n
for any positive value μ ∈ [0, 1]. We have

Ψn(an,a−n) = min
f̃n∈�n(a−n)

un

(
μa1n + (1 − μ)a2n, f̃n

)
≥ min

f̃n∈�n(a−n)

μun

(
a1n, f̃n

)
+(1−μ)un

(
a2n, f̃n

)
=μΨn

(
a1n,a

1
−n

)
+ (1 − μ)Ψn

(
a2n,a

2
−n

)
.

(A.1)

Since (A.1) is based on the convexity of un(an, f̃n) with
respect to an, the function Ψn(an,a−n) is concave in
an. The same is true for the convexity of Ψn(an,a−n)
with respect to fn. Since Ψn(an,a−n) is concave,
the Lagrange dual function for (12) in the uncertainty
region is

L(an, f̃n, λn)

=

K∑
k=1

uk
n

(
akn, f̃

k
n

)
− λn

(
ε2n −

K∑
k=1

(
f̃k
n − fk

n

)2)
(A.2)

where λn is the nonnegative Lagrange multiplier that
satisfies

λn ×
(
ε2n −

K∑
k=1

(
f̃k
n − fk

n

)2)
= 0. (A.3)

The solution to (A.2) for f̃k
n is obtained from ((∂L(an, f̃n,

λn))/(∂f̃
k
n)) = 0 [34], [35], which yields ((∂uk

n(a
k
n, f̃

k
n))/

(∂f̃k
n)) = −2λn × (f̃k

n − fk
n) for all k∈K. The latter can

be rewritten as (f̃k
n − fk

n) = (1/(−2λn))× ((∂uk
n(a

k
n,

f̃k
n))/(∂f̃

k
n)). When this value is used in (A.3), the

value of λn can be obtained, which is λn = (1/(2εn))×√∑N
n=1((∂u

k
n(a

k
n, f̃

k
n))/(∂f̃

k
n))

2. As such, the uncertain pa-

rameter is f̃ ∗n = fn − εnϑn, where f̃ ∗n = [f̃ ∗
n, . . . , f̃

K∗
n ], ϑn =

[ϑ1
n, . . . , ϑ

K
n ], and ϑk

n is (13). Using ϑk
n in the utility

function un, we have Ψn(an,a−n) = un(an, fn)|̃f∗n=fn−εnϑn
.

Comparing the value Ψn(an,a−n) with vn(an, fn) indicates
that the difference between Ψn and the utility function of the
nominal game is the extra term εnϑn. From Assumption A2
in Section II, εnϑn is continuous. Therefore, Ψn(an,a−n)
is continuous with respect to an. The derivative of Ψn with
respect to an is

∇an
Ψn(an,a−n)

= ∇an
un(an, fn − εnϑn) +∇

f̃n
un(an, fn − εnϑn)

× 1K ×∇an
f̃n × 1T

K

= ∇an
un(an, fn − εnϑn)− εn∇f̃n

un(an, fn − εnϑn)

× 1K ×∇an
ϑn × 1T

K (A.4)

where 1K is a 1 ×K vector whose elements are equal to one.
The last term in (A.4) contains ((∂2uk

n)/(∂a
k
n∂f

k
n)). From

Assumption A3 in Section II, Ψn(an,a−n) is differentiable
with respect to an. Now, the optimization problem for each user
is rewritten as ũn = maxan∈An

Ψn(an,a−n), and the game is
reformulated as {N , (Ψn)n∈N ,A}.

APPENDIX B
PROOF OF LEMMA 2

For the RACG, we have GVI(A, F̃), and F̃(a)=(F̃n(a))
N
n=1,

where F̃n(a) is obtained by (A.4) for user n. Variations
in system parameters and in other users’ strategies cause
variations in f̃n for user n. When both of these two vari-
ations are zero, we have ‖ên‖ = εn = 0. The Taylor se-
ries of F̃n(a) around εn is F̃n(a) = [F̃n(a)]εn + [

∑∞
i=1(1/

(i!))(εn)
i(∇i

f̃n
F̃n)]εn . From (A.4), this Taylor series is

F̃n(a)

= − [∇an
un(an, fn − εnϑn)](εn)

− εn

[
∇2

an f̃n
un(an, fn − εnϑn)

×
(
1T
K − εn∇f̃n

ϑn × 1T
K

)]
(εn)

− ε2n
2

[
∇3

an f̃2n
un(an, fn − εnϑn)

×
(
1T
K − εn∇f̃n

ϑn × 1T
K

)
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×
(
1T
K − εn∇f̃n

ϑn × 1T
K

)
+∇2

an f̃n
un(an, fn − εnϑn)

×
(
εn∇2

f̃n f̃n
ϑn × 1T

K

)]
(εn)

+ o(·). (B.1)

From (3), and the fact that f̃n = fn for εn = 0, (B.1) can be
rewritten as

F̃n(a) = Fn(a)− εn
[
∇2

anfn
vn(an, fn)× 1T

K

]
−ε2n

2

[
∇3

anf2n
vn(an, fn)× 1T

K

]
+ o(·). (B.2)

From Assumption A1 in Section II, all derivatives of vn(an, fn)
are bounded. Therefore, the last three terms on the RHS of (B.1)
are bounded, and F̃n(a) is the bounded perturbed version of
Fn(a).

APPENDIX C
PROOF OF THEOREM 2

1) From Lemma 2, recall that in GV I(A, F̃), F̃(a) is a
set-valued mapping, and F̃(a) is a perturbed version of
F(a). The perturbed region of F̃(a) is Q = ‖F(a)−
F̃(a)‖2 ∀a ∈ A. Since the strategy space of all users
in each dimension is bounded as in (1), and the un-
certainty region is bounded and convex, this region is

also bounded, i.e., qmax Δ
= maxa∈A ‖F(a)− F̃(a)‖2 ≤

∞. From Assumption A2 in Section II, we have

F̃(a) ≥ F(a) + qmax
(
1T
K

)N
1
. (C.1)

Lemma 3: When the mapping F(a) is strongly mono-
tone and F̃(a) is a bounded perturbed version of F(a),
F̃(a) is strongly monotone.

Proof: To establish strong montoncity of F̃(a), we
need to show that there exists c > 0 such that (a1−
a2)(F̃(a1)−F̃(a2))≥c‖a1−a2‖2, ∀a1, a2∈A. To do
so, when F̃(a) is a bounded perturbed version of
F(a), (C.1) holds, and via simple mathematical manip-
ulations, we have (a1−a2)(F̃(a1)−F̃(a2))≥(a1−a2)
(F(a1)−F(a2)). Now, when F(a) is strongly mono-
tone, there exists c1 > 0 such that (a1 − a2)(F(a1)−
F(a2)) ≥ c1‖a1 − a2‖2. From the given discussion,
we write (a1 − a2)(F̃(a1)− F̃(a2) ≥ c1‖a1 − a2‖2,
which establishes strong monotonicity of F̃(a). �

When (6) is a P -matrix, vn(an,a−n) is uniformly
strong convex (see [4, Sec. 12.4.1]), and its gradient
column vector F(a) defined in (3) is strongly monotone
[3]. Hence, from Lemma 3, F̃(a) is strongly monotone.
Moreover, we showed in Lemma 1 that F̃(a) is contin-
uous. Thus, the assumptions of [13, Th. 4.3] hold, and
GV I(A, F̃) has a unique solution.

2) As was shown in Lemma 2, the RNE is a perturbed solu-
tion to V I(A,F), which can be rewritten as V I(A,F +
q), where q = (qn)

N
n=1, qn = [q1n, . . . , q

K
n ]T, and each

qkn is bounded such that ‖q‖2 ∈ Q. Recall that when (6)
is a P -matrix, F(a) is strongly monotone, and the utility
is strongly convex. Since A is convex in R

K , and F(a) :
K → R

K is a continuous mapping on A, the solution to
V I(A,F + q) is always a compact and convex set (see
[3, Corollary 2.6.4]). This solution set contains a∗ and ã∗,
and we have

(ã∗ − a∗)F(a∗) > 0 (C.2)

(a∗ − ã∗) (F(ã∗) + q) > 0. (C.3)

If we subtract (C.2) from (C.3), we have

(ã∗ − a∗) (F(a∗)− (F(ã∗) + q)) > 0. (C.4)

Since from (C.1), the term (F(a∗)− (F(ã∗) + q)) in
(C.4) is negative, we should have ã∗ < a∗. Now, when
the utility of user n at the RNE is greater than
that at the nominal NE (i.e., when Ψn(ã

∗
n, ã

∗
−n) >

vn(a
∗
n, fn(a

∗
−n, sn))), we have F̃n(ã

∗) < Fn(a
∗). There-

fore, F̃(a) is not strongly monotone, which contradicts
Lemma 3. This contradiction implies that each user’s
utility at the RNE is less than that at the nominal NE.
Consequently, the social utility at the RNE is less than
that at the nominal NE.

3) Since F̃(a) is strongly monotone, there is a unique solu-
tion [3], denoted by ã∗ = Φ∗(q), which can be considered
as the worst case robust solution to G̃ for ‖q‖2 ≤ ‖Δ‖2.
Now, both a∗n and ã∗n must satisfy

0 ≤ (Φ∗(q)− Φ∗(0)) (F (Φ∗(0))) (C.5)

0 ≤ (Φ∗(0)− Φ∗(q)) (F (Φ∗(q)) + q) (C.6)

where 0 = (0K)N1 , and 0K is the K × 1 all-zero vector.
By subtracting (C.5) from (C.6), we get

(Φ∗(0)− Φ∗(q)) (F (Φ∗(0))−F (Φ∗(q)))

≤ (Φ∗(0)− Φ∗(q))q. (C.7)

Using Schwartz inequality for the RHS, we have
‖(Φ∗(0)− Φ∗(q))q‖2 ≤ ‖Φ∗(0)− Φ∗(q)‖2‖q‖2. Since
Φ∗(q) is the cocoercive function of q (see [3, Propo-
sition 2.3.11]), the left-hand side of (C.7) is always
greater than csm‖Φ∗(0)− Φ∗(q)‖22. Therefore, (C.7)
can be rewritten as csm‖Φ∗(0)− Φ∗(q)‖22 ≤ ‖Φ∗(0)−
Φ∗(q)‖2‖q‖2, which is simplified to csm‖Φ∗(0)−
Φ∗(q)‖2 ≤ ‖q‖2. Recall that Φ∗(0) and Φ∗(q) corre-
spond to a∗n and ã∗n, respectively, and the upper bound on
q is Δ. Hence, we have csm‖a∗n − ã∗n‖2 ≤ ‖Δ‖2, which
is the same as (14).

APPENDIX D
PROOF OF (16)

Since F̃(a) is a bounded perturbed version of F(a), the
difference between the utilities of user n at the RNE and at
the nominal NE can be approximated by the first term of the
Taylor series of uk

n(an, fn) with respect to all variations in
the strategies of user n and other users, i.e., uk

n(a
k
n, f

k
n)−

vkn(a
k
n, f

k
n) ≈ εn(((∂v

k
n(a

k
n, f

k
n))/(∂a

k
n))× ((∂akn)/(∂εn)) +
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((∂vkn(a
k
n, f

k
n))/(∂f

k
n))× ((∂fk

n)/(∂εn))) ∀n ∈ N , k ∈ K,
which is

uk
n

(
akn, f

k
n

)
− vkn

(
akn, f

k
n

)
≈εn

⎛⎝∂
vkn
(
akn, f

k
n

)
∂akn

× ∂akn
∂εn

+
∂vkn

(
akn, f

k
n

)
∂fk

n

×
∑
m �=n

xk
nm

∂akm
∂εn

⎞⎠ .

(D.1)

When εn is sufficiently small, ((∂akn)/(∂εn))=limεn→0((ã
∗k
n −

a∗kn )/(εn)). By considering (D.1) for all users, we have

‖v(a∗)− u(ã∗)‖2 ≈ ‖W(a∗)‖2 × ‖a∗ − ã∗‖. (D.2)

By replacing (14) into (D.2), approximation (16) is obtained. In
the given formula, we use the first term in Taylor polynomial
for vn to approximate ‖v(a∗)− u(ã∗)‖2. The remainder of
this difference for user n is always less than or equal to
((ε2n)/(2!))((∂

2vn)/(∂
2an)) [36]. For all users, this remainder

is upper bounded to ((‖J(F)‖2‖Δ‖22)/2).

APPENDIX E
PROOF OF THEOREM 3

1) From Lemma 1, the mapping for the RACG is the per-
turbed mapping of the NACG. Since the mapping for the
NACG is linear for utility function (18), the perturbed
mapping is

M̃k
n(a) = �k

n +

N∑
m=1

x̃k
nm

xk
nn

akm ∀x̃k
nm ∈ �k

n (E.1)

where M̃k
n(a) and �k

n are the kth elements of M̃n(a)
and �n, respectively. Now, (E.1) can be rewritten as
M̃k

n(a) = �k
n +
∑N

m=1((x
k
nm/xk

nn) + ((x̃k
nm − xk

nm)/

xk
nn))a

k
m ≤ �k

n +
∑N

m=1(x
k
nm/xk

nn)a
k
m + εkn‖ak−n‖.

Therefore, the mapping at the RNE is (22).
2) Since akm is bounded in [amin

mk , a
max
mk ], and the uncer-

tainty region is bounded, the value of εkn‖ak−n‖2 is
bounded. Hence, for any bounded uncertainty region
in the RACG, its AV I is AV I = (A,M+m), where
m = (mn)

N
n=1 = (�n + M̂n)

N
n=1, ‖m‖2 < ∞, and the

RNE is the perturbed solution to AV I = (A,M). From
[3, Th. 4.3.2], when M is semicopositive (matrix M
is semicopositive if for any positive vector �, we have
�i(M�)i > 0, where �i is the ith element of �), AV I
has a unique solution for any m. Thus, the RACG has a
unique solution for any bound on the uncertainty region.

3) Part 3 can be proved the same as Part 2 of Theorem 1. Re-
call that M is strongly monotone on A when there exists
csm, such that for all a1 = (a1n)n∈N and a2 = (a2n)n∈N ,
we have (a1 − a2)(M(a1)−M(a2)) ≥ csm‖a1 − a2‖.
When dkn = (ak1n − ak2n ), we have(
a1n − a2n

) (
Mn(a

1)−Mn(a
1)
)

= (a1n − a2n)

(
N∑

m=1

(
Mnm(a1m)T −Mnm(a2m)T

))

=

K∑
k=1

(
ak1n − ak2n

)( N∑
m=1

Mkk
nm

(
ak1n − ak2n

))

≥
K∑

k=1

(
dkn
)2 − N∑

m=1,m �=n

∣∣∣∣∣
K∑

k=1

ekm
xk
nm

xk
mm

dkn

∣∣∣∣∣
≥

K∑
k=1

(
dkn
)2 − N∑

m=1,m �=n

(
K∑

k=1

dkn

)2

max
k∈K

xk
nm

xk
mm

×
(

K∑
k=1

(
dkm
)2)2

≥ ‖dn‖2
N∑

m=1

[Mmax]nm‖dm‖2 (E.2)

where dn = [d1n · · · dkn]T. Thus, (a1 − a2)(M(a1)−
M(a2)) ≥ dTMmaxd for all n ∈ N and dT =
[dT

1 , . . . ,d
T
N ]. Since dTMmaxd ≥ λmin(M

max)‖d‖2,
matrix Mmax is positive semidefinite. Hence,
csm(F) = λmin(M

max), and from (14), Part 3 of
Theorem 3 is proved.

APPENDIX F
PROOF OF THEOREM 4

When the solution to (24) is obtained by contraction map-
ping, the distributed algorithm for the proximal-point method
converges. For any vector z ∈ A in (24), we have

(z− â(b1))
[
F̃ (â(b1),b1)+(â(b1)−b1)

T
]
≥ 0 (F.1)

(z− â(b2))
[
F̃ (â(b2),b2)+(â(b2)−b2)

T
]
≥ 0. (F.2)

Considering z = â(b2) in (F.1) and ẑ = â(b1) in (F.2), from
the given two inequalities, we get

0 ≤
(
â(b2)− â(b1)

) [
F̃
(
â(b1),b1

)
+
(
â(b1)− b1

)T]
+
(
â(b1)− â(b2)

) [
F̃
(
â(b2),b2

)
+
(
â(b2)− b2

)T]
=
(
â(b2)− â(b1)

) [
F̃
(
â(b1),b1

)
− F̃

(
â(b2),b2

)]
− ‖â(b2)− â(b1)‖+

(
â(b2)− â(b1)

)
(b1 − b2)T.

(F.3)

Recall that F̃n=−∇an
un(an,fn+ εnϑn)− εn∇f̃n

un(an, fn +

εnϑn)× 1K ×∇an
ϑn × 1T

k , ∇an
F̃n = −∇2

an,an
un + εn ×

∇3
ananfn

un, and ∇am
F̃n=−∇2

anam
un+εn×∇3

∂an∂2fn
un ×

1T
K×xnm, when ((∂3vn)/(∂an∂

2fn))=((∂3vn)/(∂
2an∂fn)) =

0. We rewrite (F.3) as

(
â(b2)− â(b1)

) [∑
n∈N

−∇2
anan

un

] (
â(b2)− â(b1)

)T
+
(
â(b1)− â(b2)

)⎡⎣ ∑
m∈N ,m �=n

−∇2
anam

un

⎤⎦ (b1 − b2)T

−
∥∥â(b2)− â(b1)

∥∥+(a(b2)− a(b1)
) (

b1−b2
)T≥0.

(F.4)
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Consider α̃n(a)
Δ
= smallest eigenvalue of −∇2

an
un(an, fn),

β̃nm(a)
Δ
=‖−∇anam

un(an, fn)‖, ∀n �=m, and z
Δ
=τ(a1(b1),

b1) + (1 − τ)(a2(b2),b2).
From (F.4), we get

(1 + α̃n(z)) ‖â(b2)− â(b1)

∥∥∥∥∥≤
N∑

n=1

β̃nm(zn)

∥∥∥∥∥b1
−n − b2

−n‖.

(F.5)

On the other hand, −∇2
anan

un=−∇anan
un(an, fn−εnϑn) +

εn∇f̃n
un(an,fn−εnϑn)×1K×∇an

ϑn. Since the utility is con-
vex with respect to an, we have −∇anan

un(an, fn−εnϑn)>
0 and ‖∇2

anan
un‖ ≥ ‖∇2

anan
vn‖. Moreover, ∇2

anam
un =

∇anam
un(an, fn+εnϑn)−εn∇f̃n

un(an, fn − εnϑn)× 1K×
∇an

ϑn, which leads to ‖∇2
anam

un‖ ≤ ‖∇2
anam

vn‖. From
these two inequalities, (F.5) can be rewritten as (1 +

αn(z)) ‖ â(b2) − â(b1) ‖ ≤
∑N

n=1 βnm(zn) ‖b1
−n − b2

−n‖,
which shows that when (6) is a P -matrix, (25) is a contraction
mapping (see [4, Proposition 12.17 in Sec. 12]), and converges
to a unique RNE.

APPENDIX G
NEGATIVE DEFINITENESS OF MATRIX M IN AFFINE V I

Consider AV I(A,M+m), where A and M(a) were de-
fined in Proposition 1, a ∈ A, and m is a vector with bounded
positive values. When M(a) is strongly monotone, the solution
to AV I(A,M+m), denoted by the row vector Φ(m), is
monotone (see [3, Exercise 2.9.17]). From [3, Definition 1.1.1],
we have

(Φ(m)− Φ(0))M (Φ(0)) > 0 (G.1)

(Φ(0)− Φ(m)) (M(Φ(m)) +m) > 0. (G.2)

Subtracting (G.1) from (G.2), we get (Φ(0)− Φ(m))
(M(Φ(m))−M(Φ(0)))+(Φ(0)−Φ(m))>0. Since the so-
lution of affine V I is assumed to be a monotone and a
decreasing function (Remark 5), we have Φ(0) ≥ Φ(m).
Hence, M(Φ(m)) > M(Φ(0)), which together from Part 1 in
Proposition 1, yields MΦT(m) > MΦT(0), where M =

(Mn)
N
n=1 and Mn =

∑N
m=1 Mnm. Now, since g = Φ(m)−

Φ(0) is a negative vector, we get gMgT < 0, which means that
M is a negative definite matrix.
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