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Abstract

Background

Machine Learning models have been shown to provide better predictions than clinical

risk scores used in medical practice. However, machine learning models are difficult to

interpret and hence have not been widely accepted. This paper proposes a new method

that improves the interpretability of machine learning methods, identifies risk predictors

that are not used in existing risk models, and provides insights into the differing

importance of individual patient features at different levels of risk.
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Methods and Findings

Our new methodology (SLIM, stratified linear models) uses a given machine learning

model to divide the population into risk strata and fits linear models (linear regressions

and/or Cox proportional hazards models) within these risk strata. These linear models

provide interpretations of the underlying machine learning model; in particular, the

coefficients reflect the absolute and relative importance of different features for

determination of risk in different strata .

Using the MAGGIC heart failure dataset and the UK Cystic Fibrosis Registry, we

demonstrate that our method provides useful interpretations of a variety of black-box

machine learning models. In particular, we identify patient features that are more/less

predictive within each risk stratum; these are significantly different across risk strata. In

some cases, this confirms existing clinical knowledge; in other cases it provides novel

insights in risk prediction. We also demonstrate that the interpretations produced by

our method are significantly more accurate than those produced by previous methods.

Conclusion

We show that existing machine learning models can significantly outperform simple

regressions and existing clinical risk scores and still be interpreted in ways that are

understandable to clinicians, confirm existing clinical knowledge and add new clinical

variables to the prediction model.
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Introduction 1

A substantial literature [1, 2] argues that Machine Learning (ML) models are capable of 2

providing better predictions - e.g., better prognostic risk scores - than clinical models 3

that are commonly used in many medical domains. Despite this, ML models have not 4

gained wide acceptance. Perhaps the most important reason for this is that common 5

clinical models are readily interpretable but that ML models are ”black-boxes” that are 6

not readily interpretable and hence are not trusted by clinicians, patients or medical 7

researchers. This lack of acceptance of ML models has prompted a recent body of work 8

on methods for interpreting Machine Learning models - but that work does not seem to 9

have convinced medical researchers or clinicians [3–11]. The main objective of this study 10

is to propose a new method of interpretation that is simpler and more readily 11

understandable than existing methods, and to demonstrate - on the basis of large 12

medical datasets - that this method is superior to previous methods of interpretation 13

and can produce clinically useful insights and discoveries. 14

Our method begins with a space of patient features/covariates, a dataset of 15

observations and a black-box ML model that predicts the probability that a patient 16

with a particular set of features will experience a given event (e.g. death or onset of a 17

disease within a given time horizon). We use the predictions of the given ML model to 18

partition the space of features into a collection of risk strata (disjoint regions). The 19

particular risk strata can be specified by the user (clinician, policy-maker, health 20

economist, etc.) according to criteria deemed appropriate for the intended purpose. We 21

then use the given dataset to fit a linear model (either a linear regression or a Cox 22

proportional hazards model) to the ML on each stratum and patch these linear models 23

together to create a stratified linear model (SLIM). 24

Many black-box models have the virtue that they are capable of incorporating 25

hundreds of features - but human beings have a hard time understanding the impact of 26

so many features (indeed most clinical models rely on a relatively small number of 27

features even when many more are actually available). Moreover, some features are 28

actionable and some are not: a clinician can treat the patient with statins or help the 29

patient to lose weight, but age cannot be changed. It is therefore important to identify 30

those features that are most/least important - and our approach does this. We show 31
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that these features are often different across risk strata. In some cases, these findings 32

reflect current clinical knowledge; in other cases our findings appear to represent new 33

clinical discoveries. 34

To validate our approach we use two large medical datasets: the Meta-analysis 35

Global Group in Chronic Heart Failure (MAGGIC) dataset, which consists of patients 36

who have already experienced heart failure, and the UK Cystic Fibrosis Registry, which 37

provides data for patients who have been diagnosed with Cystic Fibrosis (CF); in the 38

first case the event of interest is death within 1 year, in the second case the event of 39

interest is death or lung transplantation. In the main text, we focus on the MAGGIC 40

dataset, relegating the description of and results for the CF dataset to the 41

Supplementary Materials. We apply four different ML models (Random Forest, 42

XGBoost, Gradient Boosting Machine (GBM) and a multi-layer Neural Network (NN)) 43

that have been shown to predict well on these and other medical datasets [1, 2]. We 44

demonstrate the predictive performance of these ML models on each of the datasets; the 45

best ML models predict better than either conventional predictive models (linear 46

regressions and Cox proportional hazards regression) or the best existing clinical model. 47

For each of the ML models, we construct the corresponding SLIM and show how to use 48

this SLIM to interpret the underlying ML model. We show that our method provides 49

better fits - both in terms of error and in terms of consistent ranking - than previous 50

methods of interpretation (regression trees, associative classifiers and a natural 51

adaptation of LIME [11] to our setting). 52
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Materials 53

Study Design 54

We conducted our study using two datasets. In the main text we focus on the MAGGIC 55

dataset, which we describe below; in the Supplementary Materials we focus on the UK 56

Cystic Fibrosis Registry, which is described and analyzed in the Supplementary 57

Materials. 58

The MAGGIC dataset [12] is a collection of 30 different datasets from 30 different 59

medical studies containing patients who experienced heart failure. Because the event of 60

interest to us is death within 1 year, we excluded patients who were censored - 61

disappeared from follow-up - before one year. The dataset provides 30,389 uncensored 62

patients, of whom 5,723 (18.8%) patients died within the 1-year period. Among the 31 63

features/covariates provided in the MAGGIC dataset, we exclude the “Caucasian” 64

feature because information on this feature is missing for too many patients (more than 65

10%). Because ACE-Inhibitors and ARB have the same effects, we do not distinguish 66

between them but instead combine them into a single feature. Thus we are left with 29 67

features of which 20 are binary and 9 are continuous. Categorical binary features (e.g., 68

Male/Female) are represented as 0, 1; other features are represented as real numbers. 69

When information is missing, we use standard imputation methods to fill in the missing 70

information. More specifically, we conduct 10 multiple imputations using Multiple 71

Imputation by Chained Equations (MICE) as in [13]. 72
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Methods 73

We are given a space X of patient covariates/features and a set of possible 74

labels/outcomes. In general, some of the features will be continuous and others will be 75

categorical; without (much) loss of generality we assume all the categorical features are 76

binary (e.g., gender) and represented by 0, 1 and that the continuous features (e.g. 77

creatinine) are represented by real numbers, so X ⊂ RD. For simplicity, we assume that 78

the only possible outcomes are 0, 1: the label/outcome is 1 if the patient experienced 79

the adverse event under consideration and 0 otherwise. We are also given a dataset. 80

D = {(x1, y1), (x2, y2), ..., (xN , yN )} = {(xi, yi)}Ni=1 (1)

where xi ∈ X describes the features of patient i and yi ∈ {0, 1} is the outcome 81

experienced by patient i. Finally, we are given a black-box ML model f : X → [0, 1]; we 82

interpret f(x) as the predicted probability that a patient with features x experienced 83

the adverse event. Tacitly, we assume that the dataset D was drawn i.i.d. from the true 84

distribution on X ×{0, 1} and that the black-box ML model f was produced by training 85

some algorithm on this dataset, but we make no explicit use of these assumptions. 86

The user (clinician, policy-maker, health economist, etc.) who wishes to use the 87

interpretive model specifies a partition of [0, 1] = Y into subintervals: 88

Y = Y1 ∪ . . . ∪ YK

where, by definition, Yj ∩ Yk = ∅ if i 6= j. For convenience we agree to number 89

subintervals from left to right - so that if j < k then every point in Yj precedes every 90

point in Yk - and that each subinterval is open on the left and closed on the right. For 91

each subinterval Yk, write 92

Dk = {(xi, yi) ∈ D : f(xi) ∈ Yk}

Xk = {x ∈ X : f(x) ∈ Yk}

Thus Yk is an interval of risk, Dk consists of those data points for which predicted risk 93
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according to f lies in the interval Yk and Xk consists of those covariates for which 94

predicted risk according to f lies in the interval Yk; we call the regions Dk,Xk the risk 95

strata. It will be clear from context whether we are referring to the dataset or the 96

feature space. It is important to keep in mind that the risk strata are defined by - and 97

so depend on - the predictive model f . 98

For each k, we define q∗k : Xk → Y to be the linear model (i.e. either a linear 99

regression or a Cox proportional hazards regression) that best fits f on Dk, in the sense 100

of minimizing the mean squared error between the linear model and f on the dataset 101

Dk. If we write L for the set of all linear models, then q∗k is formally defined by 102

q∗k = arg min
q∈L

E(x,y)∈Dk

[
(f(x)− q(x))2

]
(2)

where the expectation is taken over the empirical distribution of Dk. Note that we are 103

minimizing the expectation of (f(x)− q(x))2 and not of (y − q(x))2 because we are 104

fitting to the given model f and not to the data. We define the stratified linear model 105

(SLIM) q∗ : X → Y by 106

q∗(x) =

K∑
k=1

[
I(x ∈ Xk)× q∗k(x)

]
(3)

That is: we set q∗(x) = q∗k(x) if x ∈ Xk. Although we have suppressed it to avoid 107

clutter, it is important to keep in mind that q∗ depends on the underlying model f and 108

on the dataset D. In fact, the risk strata Dk themselves depend on the underlying 109

model and the dataset D, as can be seen from Figure 2 in the Supplementary Materials. 110

According to the needs of the user, many criteria for defining these subintervals are 111

possible. For example: 112

• The user prescribes sub-intervals so that the risk strata Dk partition the patients 113

in the dataset into K equal-sized populations according to increasing risk (as 114

predicted by f). In the Results section, we take K = 5 so that we are partitioning 115

the dataset into population quintiles according to increasing risk. Such a partition 116

would seem especially natural in situations where resources are constrained so that 117

only a fraction of patients can be treated. 118

• The user prescribes sub-intervals corresponding to specific levels of risk. For 119
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instance, the user might prescribe Y1 = [0, 0.1),Y2 = [0.1, 0.2),Y3 = [0.2, 1.0] so 120

that the Low Risk stratum X1 consists of patients whose predicted risk (according 121

to f) is less than 10%, the Middle Risk stratum X2 consists of patients whose 122

predicted risk is in the range 10% - 20%, and the High Risk groupX3 consists of 123

patients whose predicted risk is above 20%. Such a partition would seem 124

especially natural in situations where it is understood that intervention might be 125

appropriate only for patients with a particular level of risk. 126

Note that in each case, although we partition the entire space of features into risk 127

strata, the user may be particularly interested in only one or two strata; e.g., perhaps 128

only the patients at highest risk. 129

Metrics 130

Performance Metrics for ML Models 131

The clinical utility of a prognostic model should be evaluated in terms of the model’s 132

ability to distinguish patients who are truly at risk (perhaps in anticipation of 133

intervention or treatment) from patients who are truly not at risk. Following standard 134

usage, we consider three metrics of performance: the concordance index (C-index), the 135

area under the receiver operating curve (AUROC), and the area under the precision 136

recall curve (AUPRC). For the (standard) definitions, see the Supplementary Materials. 137

We note that, if the true distribution is known and ties are irrelevant, the C-index and 138

the AUROC are equal. In our actual datasets the C-index and the AUROC differ by 139

less than 0.00001; since we report only 4 decimal places, we identify the C-index and the 140

AUROC. In evaluating the performance of all the predictive models (the clinical models, 141

the simple regressions and the ML models), we report both the C-index/AUROC and 142

the AUPRC. 143

Performance Metrics for Interpretations 144

We report two metrics that quantify the fidelity of an interpretation Q to the original 145

black-box model f . The first metric is the probability that they rank a randomly chosen 146

pair of patients in the same way: P (Q(x) > Q(x’)|f(x) > f(x’)). Empirically: among 147

all pairs (x,x’) ∈ D ×D of patient features for which f(x) > f(x’) we compute the 148
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fraction for which Q(x) > Q(x’). This metric might be thought of as analogous to 149

computing the C-index of Q when we treat the ML model f as if it were the true data 150

(rather than a prediction) - keeping in mind that f(x) is a probability not an outcome - 151

so we call it the Ĉ-index. 152

The second metric is a direct measure of the error between an interpretive model Q 153

and the ML model f . For an individual observation (x, y) ∈ D this error is f(x)−Q(x). 154

Note that, because we are trying to quantify the fidelity of the interpretation to the 155

model, we are measuring the error between the interpretation and the model - not the 156

error between the interpretation and the true outcome. As is usual, we regard large 157

errors as more important that small errors so we use the squared error [f(x)−Q(x)]2; 158

in evaluating over the entire data set or a single stratum we average, to produce the 159

mean squared error E[f(x)−Q(x)]2. As is usual, we report the square root of the mean 160

squared error - i.e. the root mean squared error (RMSE) - rather than the mean 161

squared error itself. Of course the mean squared error is just the square of the RMSE. 162

Because the linear models we use (linear regression and Cox proportional hazards 163

regression) are unbiased estimators of the underlying ML model, our interpretive model 164

q∗ (the constructed SLIM) has the property that the mean squared error is the variance 165

of f − q∗ and the RMSE is the standard deviation of f − q∗. For each ML model and 166

the constructed SLIM, we report the RMSE of f − q∗ both on the entire dataset and on 167

each of the risk strata. 168
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Results 169

We focus here on prognostic risk prediction for the MAGGIC dataset described in the 170

Materials Section; the results for the CF dataset are described in the Supplementary 171

Materials. We first provide the performance of the four predictive ML models (Random 172

Forest (RF), Gradient Boosting Machine (GBM), XGBoost, and a multi-layer Neural 173

Network (NN)), a simple linear regression, a Cox (proportional hazards) regression and 174

the best-performing clinical model; the results are shown in Table 1 in terms of both the 175

C-index/AUROC and the AUPRC. As can be seen in Table 1, the best ML models 176

provide better performance than the best clinical models - but, because they are 177

black-boxes, the ML models are harder to understand. As a sanity check, we computed 178

calibration plots for the ML models to verify that they are all reasonably well 179

calibrated; see the Supplementary Materials. 180

Model C-index/AUROC AUPRC

RF 0.7048 ± 0.0063 0.3625 ± 0.0113
GBM 0.7101 ± 0.0031 0.3729 ± 0.0116

XGBoost 0.7106 ± 0.0041 0.3706 ± 0.0111
NN 0.7034 ± 0.0021 0.3629 ± 0.0071

Linear Regression 0.6601 ± 0.0120 0.3077 ± 0.0114
Cox Regression 0.6955 ± 0.0037 0.3538 ± 0.0113

MAGGIC Score 0.6933 ± 0.0071 0.3423 ± 0.0121

Table 1. Predictive performance of machine learning models and clinical models

For purposes of illustration, we choose to partition according to population quintiles. 181

Following the procedure described in the Methods Section, we then fit a SLIM to each 182

of the ML models. Table 2 shows how well the SLIM fits each ML model, using both 183

the Ĉ-index and RMSE. 184

Model RMSE Ĉ-index

RF 0.0705 0.9198
GBM 0.0388 0.9406

XGBoost 0.0298 0.9378
NN 0.0310 0.9469

Table 2. RMSE and Ĉ-index of SLIM for ML models - MAGGIC dataset

Because the fit varies substantially across risk strata, we also show in Table 3 the 185

RMSE fits in each population quintile. 186
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Model
Risk Strata

0 - 20% 20% - 40% 40 - 60% 60 - 80% 80 -100%

RF 0.0084 0.0075 0.0097 0.0194 0.1553
GBM 0.0106 0.0134 0.0177 0.0270 0.0759

XGBoost 0.0168 0.0143 0.0158 0.0215 0.0552
NN 0.0095 0.0120 0.0146 0.0234 0.0571

Table 3. RMSE of SLIM for ML models for each risk group - MAGGIC Dataset

For the best-performing ML models (GBM and XGBoost) we show the coefficients 187

of the linear model within each risk stratum in terms of heat maps: Figures 1 and 2. 188

Fig 1. Coefficient of each feature for each population quintile in MAGGIC dataset -
GBM

How to Read the Heat Maps 189

The heat maps show the importance of different features (as measured by the value of 190

the coefficients of the linear model) within each risk stratum. Lighter colors represent 191

features that have a higher positive predictive value; darker colors represent features 192

that have a higher negative predictive value; colors in the middle have the least 193

predictive value. 194
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Fig 2. Coefficient of each feature for each population quintile in MAGGIC dataset -
XGBoost

From these heat maps we can draw a number of inferences. (1) The heat maps for 195

GBM and for XGBoost are similar; this means that GBM and XGBoost have similar 196

views of the importance of most features within each population quintile. For instance, 197

both GBM and XGBoost view age as a very important factor within the lowest and 198

highest quintiles but as a much less important factor within the middle quantiles. (2) In 199

some cases, the heat maps confirm prior medical knowledge. For example, the heat 200

maps confirm the known predictive importance of the New York Heart Association 201

(NYHA) score within the lowest risk quintile. (3) However, some care must be taken 202

when interpreting the importance of a given feature within a particular risk quintile. For 203

example, the NYHA score is not very predictive within the higher risk quintiles for the 204

simple reason that there is very little variation of the NYHA score within these quintiles; 205

e.g., as Table 4 shows, within the highest risk quintile (as predicted by either GBM or 206

XGBoost), more than 99% of patients have NYHA score of 3 or 4 (treated as high). By 207

contrast, within the lowest risk quintile (as predicted by either GBM or XGBoost), 208

there is substantial variation of the NYHA score: more than 30% of patients have 209
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NYHA score of 1 or 2 (treated as low), while the remaining patients have NYHA score 210

of 3 or 4. (4) In some cases, the heat maps provide new medical information (discovery). 211

For example, we see that for the middle quintiles (the patients whose risk places them 212

within the 20th-80th percentile), most of the features are equally (but only weakly) 213

predictive. In particular, the 13 features used in the MAGGIC Score are no more (or 214

less) predictive than the other 16 features. (5) On the other hand, the heat maps 215

highlight that a relatively small number of features are most predictive for the highest 216

risk group (patients above the 80th percentile) even though these features are not highly 217

predictive for other risk groups. For example, Rales and Shortness of Breath - features 218

that are not included in the MAGGIC score - are in fact the most predictive features for 219

patients in the highest risk quintile but are much less predictive in other risk quintiles. 220

Dataset Model 0% - 20% 20% - 40% 40% - 60% 60% - 80% 80% - 100%

MAGGIC

RF 72.3% 89.6% 94.0% 97.6% 96.7%
GBM 64.5% 91.6% 96.2% 98.6% 99.5%

XGBoost 68.8% 90.3% 94.6% 97.6% 99.1%
NN 76.0% 88.6% 92.7% 95.3% 97.9%

Table 4. NYHA Distribution for each risk group

Alternative Methods of Interpretation 221

Our method provides interpretations of the various ML models; to provide some context 222

we compare the quality of our interpretations with other methods of interpreting ML 223

models: Associative Classifiers, regression trees and an adaptation of LIME to our 224

setting. 225

Associative Classifiers are described in detail in [14, 15]. To apply the method in our 226

context, we first divide the dataset into quintiles according to population - exactly as we 227

have done in producing risk strata. We then divide each population quintile into deciles 228

(called classes) according to risk; e.g. if the lowest risk group consists of patients whose 229

risk is in the range [0.0, 0.1], the deciles are [0.0, 0.01], (0.01, 0.02], . . . , (0.09, 0.1]. Each 230

of these deciles is a class. We then use the data to learn the correlations between the 231

classes and the given features (or conjunctions and disjunctions of features); [14] 232

provides an algorithm for transforming these correlations into a predictive model, which 233

is viewed as an interpretation of the given ML model. 234
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Alternatively, we can use regression trees in place of linear models to produce 235

interpretations of the underlying ML model within each risk stratum. We first divide 236

the dataset into quintiles according to population. Within each quintile (each risk 237

stratum), we grow a regression tree [16]. That is, we use a feature to split the risk 238

stratum into two nodes for which the outcomes are most homogeneous, and repeat the 239

process within each node. In order to retain a manageable interpretation we restrict the 240

depth of the tree to be at most 3, so there are at most 8 leaves (terminal nodes). 241

Within each leaf, we predict the probability of the adverse event as the ratio of the 242

number of patients in that leaf who experienced the event to the total number of 243

patients in that leaf. This yields a single predictive model within each risk stratum. 244

Interpretation by means of associative classifiers and by means of regression trees are 245

similar. Both produce interpretations that are piecewise constant within each risk 246

stratum, and neither yield information about the relative importance of features within 247

each risk stratum. 248

LIME [11] (in the natural adaptation we use) is closer to our approach. The version 249

of LIME described in [11] is intended to interpret classification models rather than 250

regression models; since we follow the spirit of the method rather than the letter, we 251

call the interpretation we use LIME-R. LIME-R again begins by dividing the dataset 252

into quintiles by population. For each risk stratum and patient (in the dataset) in that 253

risk stratum, LIME-R creates a linear regression that approximates the original ML 254

model in a neighborhood of that patient. We aggregate these linear regressions across 255

the entire risk stratum to provide a single linear regression whose predictions can be 256

compared to those of the original ML model across the entire risk stratum. Moreover, 257

as is the case with our method, the coefficients of this linear regression can be 258

interpreted as representing the importance of various features. 259

LIME-R differs from our method in two important ways. The first is that LIME-R 260

necessarily produces a linear regression within each stratum whereas our approach 261

sometimes (in fact, often) produces a Cox proportional hazards regression - according to 262

whichever is more accurate. It is evident that for some datasets (and especially for the 263

highest risk stratum) the truth - and the predictive ML model - might most closely 264

resemble a Cox regression so that forcing the interpretation to be a linear regression will 265

create a poorer fit. The second is that LIME-R produces its linear regression by 266
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averaging local linear regressions, rather than by any optimizing procedure; this also 267

leads to poorer fit. 268

Comparing Interpretations 269

We compare our interpretative method with each of the others described above in 270

several ways. In Table 5 we report the Ĉ index and the RMSE (computed over the 271

entire dataset D) for our interpretation and for the other methods. A higher Ĉ index 272

and a lower RMSE represent better fits, so we see that, for each of the ML models, our 273

interpretive method performs better (produces interpretations that fit the underlying 274

model better) - and, for all of the ML models except Random Forest, much better - 275

than any of the other interpretive methods. 276

Note that all four interpretive methods do much more poorly on (the interpretation 277

of) Random Forest than on the other ML models, so a clinician who chooses among ML 278

models on the basis of both predictive accuracy and interpretability would therefore 279

downgrade Random Forest on this basis. 280

Metrics Model SLIM
Regression Associative

LIME-R
Tree Classifier

RMSE

RF 0.0705 0.0742 0.0745 0.0736
GBM 0.0388 0.0533 0.0551 0.0512

XGBoost 0.0298 0.0409 0.0423 0.0391
NN 0.0310 0.0496 0.0515 0.0480

Ĉ-index

RF 0.9198 0.8663 0.8395 0.8868
GBM 0.9406 0.8842 0.8478 0.9137

XGBoost 0.9378 0.8815 0.8445 0.9103
NN 0.9469 0.8818 0.8504 0.9216

Table 5. RMSE and Ĉ-index of SLIM for ML models in comparison to the benchmarks

To explore further, we show in Table 6 the RMSE error comparison of our method 281

with LIME-R (which is the best of the other interpretive methods) within each risk 282

stratum. As can be seen, our method performs better than LIME-R across all ML 283

models and risk strata, and, again with the exception of Random Forest (where both 284

our method and LIME-R do less well), significantly better in all strata and much better 285

in most strata. 286

We do not compare the Ĉ-index within each risk stratum because the variance of 287

risk within each stratum is small - especially in the lower strata. This means that two 288
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randomly chosen patients are very likely to have similar risk scores, so that preserving 289

the risk ranking within a stratum is a much harder task than preserving the ranking 290

across the entire population, and it is therefore harder to interpret Ĉ-index within each 291

risk stratum. Moreover, because the variance of risk within the lower risk strata is small, 292

mis-ranking within a risk stratum is likely to be much less important than mis-ranking 293

across the entire population. 294

Interpreter ML Model
Risk Strata

0% - 20% 20% - 40% 40% - 60% 60% - 80% 80% -100%

SLIM

RF 0.0084 0.0075 0.0097 0.0194 0.1553
GBM 0.0106 0.0134 0.0177 0.0270 0.0759

XGBoost 0.0168 0.0143 0.0158 0.0215 0.0552
NN 0.0095 0.0120 0.0146 0.0234 0.0571

LIME-R

RF 0.0088 0.0076 0.0095 0.0212 0.1556
GBM 0.0143 0.0148 0.0189 0.0292 0.0991

XGBoost 0.0218 0.0154 0.0165 0.0227 0.0706
NN 0.0158 0.0146 0.0180 0.0286 0.1051

Table 6. RMSE of SLIM and LIME-R for ML models for each risk stratum - MAGGIC
Dataset

We stress that, while a good fit to the underlying ML model would seem a necessary 295

characteristic of any interpretation, it is not the only desirable characteristic; we also 296

want the interpretation to provide information about the importance of features. Both 297

SLIM and LIME-R provide reasonably fine information, but associative classifiers and 298

regression trees - by their nature - provide only coarse information. 299
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Discussion 300

In this study, we develop a methodology for interpreting the predictions of ML models 301

of prognostic risk prediction. Our method and associated findings are important 302

because the lack of interpretability of ML models represents an important obstacle to 303

their acceptance and use by the medical community - even in settings where these ML 304

models have demonstrated predictive performance that is superior to that of clinical 305

models. Our method and associated findings are also important because they provide 306

confirmation of existing clinical knowledge of the relationships between covariates and 307

risk and also discover new information about these relationships. Our method is more 308

flexible and easier to understand than previous methods. 309

In the original paper describing the MAGGIC risk score the authors used 13 310

independent predictors (features). Our interpretive models confirmed the predictive 311

value of these 13 features but also demonstrated that an additional 16 features are 312

equally or more relevant for best predictions. All of these 29 features are factors that 313

have been known to relate to the progression of heart failure, although their relative 314

importance has perhaps not been understood. One advantage of the machine learning 315

approach is that in can easily adapt to the needs of the clinician by highlighting the 316

features that are actionable such as co-morbidities and medication use. As shown in the 317

stratified analyses based on risk, differences in importance of particular features exist 318

across the different strata. In the era of precision medicine, models that provide 319

individualized risk prediction are needed, not just one-size-fits-all models that do not 320

seem to apply for common diseases. 321

Another advantage of machine learning models is that they are capable of handling 322

many features - as opposed to existing rigid clinical models that make use of a relatively 323

small set of features. This is becoming even more important as electronic health records 324

- which provide enormous amounts of information - become more and more widely 325

available, because electronic health records provide administrative data, patient 326

reported data, clinical examination data, measurement data, imaging data, laboratory 327

(biomarker) data, and medication data far beyond what is commonly used by existing 328

clinical models. 329
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Key findings 330

We emphasize several key findings of our study: 331

• Our method is competitive with, and usually outperforms, existing methods of 332

interpreting machine learning methods for prognostic risk prediction. 333

• Our method demonstrates that the relative importance of patient features is 334

different for different risk strata in the patient population. This is especially 335

important in guiding treatment choices/decisions. 336

• Our method confirms medical knowledge of the importance of some features but 337

also identifies other features whose importance was not known (or at least not 338

incorporated into the leading clinical risk scoring methods). 339

Limitations 340

Our work has several important limitations. The first is that the interpretation can only 341

be as good as the ML model it is interpreting. The second is that there is no guarantee 342

that our method will produce a good interpretation of every ML model (and indeed it 343

does not). But this limitation is, in a way, also a virtue, because it provides a way of 344

choosing among ML models on the basis of interpretability and not just on the basis of 345

performance. The third is that we have not performed a validation study using an 346

external dataset as is done in classical epidemiological studies. The fourth is that, 347

although our work demonstrates the added value of machine learning methods for risk 348

prediction, the value of machine learning methods depends, just as classical regression 349

analyses and clinical models do, on the availability of data. In routine clinical practice it 350

is often the case that information is missing: measurements were not taken or not 351

recorded. In such settings it is necessary either to impute the missing information 352

before applying the risk algorithm, or to include missingness in the algorithm, which 353

requires making assumptions about why certain information is missing. For instance, 354

certain measurements may not have been taken because the clinician believed, on the 355

basis of other measurements, that they would not be relevant. 356
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Conclusion 357

We offer a new method for interpreting the risk predictions of black-box machine 358

learning models. Our method is explicitly designed to address the heterogeneity of 359

patient populations and the needs of users (clinicians, policy-makers, health economists, 360

etc.) by identifying various sub-populations according to risk. Our method captures the 361

different effects of covariates and interactions between covariates for these various 362

sub-populations. Our method out-performs previous methods of interpretation while 363

being more flexible and more easily understandable to clinicians. 364
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