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Abstract—We develop a robust formalism for power control
games in unlicensed bands between two groups of users com-
peting for the spectrum: informed-users (leaders) who have
advanced capabilities to extract side-information about other
users and their strategies, and uninformed-users (followers)
who can only observe the aggregate interference caused by
others. Such nominal leader-follower games have been previously
studied in the power control literature; however, these prior
works fail to capture an important aspect of such interactions:
the side-information and observations made by users may be
uncertain, which has an important impact on users’ strategies
and network performance. Thus, in this paper we propose a new,
robust game-theoretic formalism and solution which takes these
uncertainties into account. Specifically, each group chooses its
actions by solving its respective worst-case robust optimization
problems. We show how various types of uncertainties affect the
social utility of each group, and identify in which deployment
scenarios the social utility of the robust game is higher than
that of the nominal game. Importantly, we show that robust
solutions in such games are more energy efficient. Finally, our
theoretical formalism, analysis and solutions are complemented
by simulations.

Index Terms—Robust game theory, resource allocation, Stack-
elberg games, worst-case robust optimization.

I. INTRODUCTION

A. Motivation

VARIOUS dynamic spectrum sharing paradigms for li-
censed and unlicensed bands have been proposed in the

literature to increase efficiency [1], [2]. In this context, one
efficient and cost effective approach is to provide advanced
capabilities to a portion of users (called informed-users) in
order to extract side-information pertaining to other users,
while the rest of users (called uninformed-users) can only
observe the aggregate interference caused by others [3]. In
this way, significant cost savings can be achieved since the
cost of retrofitting the users’ equipment pertains only to the
informed-users group. The capabilities of each informed-user
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include listening to the feedback channels and pilot signals
of other users to extract side-information such as direct and
interference channel gains of all users. Also, informed-users
may have a priori side-information about transmit power
constraints of other users and their objectives.

It has been shown in [3]–[6] that Stackelberg games provide
a suitable framework to analyze equilibria for heterogeneous
users. In this setup for unlicensed bands, the informed-users’
objectives are similar to those of uninformed-users, and both
groups enjoy the same priority. Each informed-user determines
its optimal constrained transmit power to maximize its util-
ity (e.g., its throughput) by estimating other users’ transmit
power levels via utilizing its side-information. Similarly, each
uninformed-user determines its optimal constrained transmit
power to maximize its own utility (e.g., its throughput) by
utilizing its observation (interference caused by other users to
its receiver). However, in practice, channel fading and users’
mobility cause uncertainty in each user’s side-information or
observations, resulting in deviations from their expected utili-
ties and in very undesirable fluctuations in their performances.
Hence, it is essential to consider uncertainty in the utilities,
side information, and observations of users.

Robust solutions have been proposed in the past decades for
a variety of optimization problems to mitigate such uncertain-
ties. Specifically, each uncertain parameter is modeled by the
sum of its nominal (estimated) value and an additive error (the
uncertain part) [7]. The optimization problem with nominal
values (the nominal optimization problem) is mapped to its
robust counterpart, in which each uncertain parameter is a
new optimization variable [8]. Generally, two basic approaches
are applied for this mapping [7], [8]: the Bayesian approach,
where the statistics of error is considered and the utility is
statistically guaranteed; and the worst-case approach, where
the error is assumed to be bounded to the uncertainty region,
and the utility is guaranteed for any realization of error in this
region. Both approaches have been applied to respective games
in communications, economics, and mathematics [9]–[12].

Since the worst-case approach preserves each user’s utility
under any condition of error in the uncertainty region, it
prevents undesirable fluctuations in the performance of all
users [13], [14]. Hence, we choose the worst-case approach to
tackle uncertainty in parameter values. In [7], it is shown that
the shape of the uncertainty region depends on the statistics of
noise and the resulting error in wireless channels. We follow
the terminology of robust optimization theory and call the
Stackelberg game with nominal values and its corresponding
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equilibrium as the nominal Stackelberg game (NSG), and the
nominal equilibrium (NSE), respectively. When uncertainty
in parameter values are considered and robust optimization
is applied, we refer to the game and its equilibrium as the
robust Stackelberg game (RSG) and the robust Stackelberg
equilibrium (RSE), respectively.

To implement RSGs for heterogenous users, we encounter a
number of challenges: 1) How to define RSEs when informed-
users and uninformed-users have different uncertain parame-
ters? 2) How to quantify the performance gap between the
RSG and the NSG? 3) How to reduce the complexity of
solving the informed-user’s robust optimization problem? 4)
How to generalize the RSG for multi-user scenarios?

Our key contributions in meeting the above challenges are
summarized below:

1) Studying the impact of uncertainty on the RSE: We study
the impact of uncertainty on the RSE by considering the
following two cases: In Case 1, the uninformed-users’ obser-
vations are noisy while informed-users possess accurate side-
information; and in Case 2, informed-users’ side-information
and uninformed-users’ observations are both noisy.

2) Comparing the performance of the RSG with that of
the NSG: The Stackelberg game’s performance corresponds to
specific users’ strategies and their utilities at its equilibrium.
We show that for Case 1, uncertainty in the uninformed-
users’ observations decreases their utilities and increases the
informed-users’ utilities. In contrast, for Case 2, uncertainty
in the informed-users’ side-information decreases their utilities
and increases the uninformed-users’ utilities. For both cases,
we derive the conditions under which the social utility (the
sum of all user’s utilities in the Stackelberg game) at the
RSE is higher than that at its corresponding NSE. These
deployment scenarios are very interesting because they show
that introducing robustness can also improve the efficiency of
spectrum utilization.

3) Efficiently obtaining users’ strategies at the RSE: Ob-
taining users’ strategies at the RSE entail many calculations
for solving worst-case bi-level optimization problems. Our al-
ternative is to derive the relationship between users’ strategies
at the RSE and at the NSE; and obtain the latter via existing
efficient algorithms.

4) Considering the multiple informed-users multiple
uninformed-users scenario: We begin our analysis of RSEs for
the one informed-user one uninformed-user scenario, and gen-
eralize it to the multiple informed-users multiple uninformed-
users scenario.

B. Related Works

Existing research relevant to this paper is either focused on
the application of Stackelberg games for optimal power control
in dynamic spectrum sharing environments for heterogenous
users or on the theory of worst-case robust optimization in
Stackelberg games. In general, transmit power optimization
problems can be formulated either as cooperative utility (e.g.,
throughput) maximization problems as in [15]–[18], or as
strategic non-cooperative games as in [19], [20]. In the first
approach, globally optimal power allocation is guaranteed at
the expense of a high computational complexity. To reduce

the computational cost, near optimal solutions have been
proposed that utilize concepts such as relaxation algorithms
[18], successive convex approximation for low complexity
(SCALE) [21], difference-of-two-concave-functions (D.C.)
approximation [22], non-negative matrix theory [16]–[18], or
the Lagrange dual function [15]. Such schemes are usually
implemented in a centralized manner, which need considerable
message passing between synchronized users and the central
point.

The alternative approach is to employ non-cooperative
strategic games where users myopically maximize their utili-
ties subject to their constraints and/or regulatory interference
restrictions [15], [23]. In this approach, the notion of Nash
equilibrium (NE) and its existence, uniqueness, robustness,
as well as distributed algorithms for reaching the NE are
widely studied in the literature, e.g., in [13], [14], [19], [20],
[24], where each user only needs to know the interference
of other users on its receiver. Hence, message passing is
considerably reduced compared to that of the cooperative
approach. However, a major practical issue is that the NE
may be inefficient in terms of the achieved throughput as
compared to that at the global optimum. The well-known
approach to bridge this gap is to apply pricing as in [25], [26].
Moreover, the notion of variational inequalities is applied in
[27] to select an equilibrium via applying a specific criteria
(equilibrium selection approach). In Table I, we compare non-
cooperative and cooperative approaches for solving power
allocation problems.

In [3]–[6], it is shown that when advanced capabilities
are added to a portion of users (informed-users) to extract
side-information pertaining to all users, the achieved total
throughput at the equilibrium for all users can be consid-
erably higher without additional message passing. Here, the
Satckelberg game is utilized to analyze the equilibrium of
such hierarchical / bi-level interactions between two groups
of users. In this paper, we extend this strand of literature
to model interactions between non-cooperative heterogeneous
users when exact values of system parameters are not available
to respective users.

The theory of worst-case robust optimization can be applied
to introduce robustness to the Stackelberg game’s equilibrium
against uncertainty in parameter values [10], [11], [28]. The
closest works to this paper are [10], [11]. In [10], a one-
leader one-follower Stackelberg game is considered where
the leader’s side-information is uncertain. By minimizing the
second-order sensitivity function of the leader’s utility with
respect to the uncertain parameters, the worst-case utility for
the leader can be obtained. In [11], three new algorithms based
on mixed-integer linear-programming are proposed when the
leader’s side-information about the follower’s response is
uncertain due to the follower’s bounded rationality, when the
follower has noisy observations of the leader’s strategy, and
when the follower’s reward is uncertain, respectively. In this
paper, we analyze the effect of uncertainty on the achieved
utilities of both the informed-users and the uninformed-users
in different scenarios, and systematically consider various
issues involved in implementing robust Stackelberg games
in wireless networks. We also extend our study to multiple
informed-users multiple uninformed-users games in wireless
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TABLE I
COOPERATIVE VS. NON-COOPERATIVE APPROACHES TO SOLVE POWER CONTROL PROBLEMS

References Optimization Problem Approach Sum Utility / Computational Complexity

[15] Cooperative Lagrange Dual Function Near Optimal / Low
[16] Cooperative Non-Negative Matrix Theory Global optima / High

[17], [18] Cooperative Relaxation / Non-Negative Matrix Theory Local Optima / Low
[21], [22] Cooperative Convex Approximation Local Optima / Low

[13], [14], [19], [20], [24] Non-Cooperative Strategic Game Theory Inefficient / Low
[25]–[27] Non-Cooperative Strategic Game Theory Pareto Optimal / Low

networks. In the rest of this paper, in line with existing liter-
ature and for convenience, we use “leader” for an informed-
user, and “follower” for an uninformed-user. Table II summa-
rizes the key differences between this paper and the existing
literature.

Stackelberg games have also been used to model spectrum
sharing by primary and secondary users in licensed bands.
For example, in [29]–[34], the spectrum owner authorizes
secondary users (SUs) to utilize the licensed band subject to
a payoff by each SU, which is set in such a way to maximize
the spectrum owner’s profit subject to the available spectrum
and the SU’s power level. Note that the system model in this
paper is completely different from those of the aforementioned
works, as we are concerned only with spectrum sharing in
unlicensed bands. Specifically, the use of Stackelberg games
to formalize interactions among heterogeneous users does not
necessarily entail a prioritization of transceivers. Rather, the
formalism in this paper takes into account the asymmetry of
side-information in heterogeneous users as in [3]–[5].

The rest of this paper is organized as follows. In Sec-
tion II, the network model and proposed game formulations
are presented, followed by a reformulation of these games
with uncertainties in Section III. In Section IV, the robust
Stackelberg equilibria are discussed and characterized. In
Section V, we present a number of illustrative examples, and
demonstrate that introducing robustness in such multi-user
communication games can lead to important energy savings.
In Section VI, we extend our framework to the multiple-
leaders multiple-followers scenarios, followed by simulation
results for these scenarios in Section VII, and conclusions in
Section VIII.

II. PROBLEM FORMULATION

A. Network Model

Consider a set of K = {1, · · · ,K} orthogonal frequency
bands (sub-channels), which are shared between a set of
N = {0, 1, · · · , N} users. Each user consists of one trans-
mitter and one receiver. The transmit power of user n over
all sub-channels is its set of possible actions denoted by
An = {pn = (p1n, · · · , pKn )|pkn ∈ [pminn,k , p

max
n,k ], ∀k ∈ K}.

The utility of user n is vn(p), where p = [pn, p−n], and
p−n � [p0, · · · , pn−1, pn+1, · · · , pN ] is a vector of other
users’ transmit power levels except user n.

For the utility function of each user, we consider the
following four assumptions:

A1) The utility of user n is strictly concave and differen-
tiable function of pn, and its gradient is bounded.

A2) The utility function of user n is
vn(pn, fn(p−n, sn)) =

∑K
k=1 v

k
n(p

k
n, f

k
n(p−n, sn)), where

fn(p−n, sn) = [f1
n(p−n, sn), · · · , fK

n (p−n, sn)] is the 1 × K
vector of the linear aggregate impacts of other users on
user n, in which fk

n(p−n, sn) =
∑

m∈N ,m �=n p
k
mhk

nm + σk
n,

and sn � [hn1, · · · , hn(n−1), hn(n+1), · · · , hnN ,σn] denotes
system parameters for user n, hnm is the 1×K vector whose
element hk

nm represents the sub-channel gain between user m
and user n in sub-channel k, and σn = [σ1

n, · · · , σK
n ], where

σk
n denotes channel noise-power in sub-channel k of user n.

A3) The utility of user n is a decreasing and convex function
of fk

n(p−n, sn).

A4) The second order mixed partial derivatives of utility
functions, i.e., ∂2vn

k

∂pn
k∂f

n
k

and ∂2vn
k

∂fn
k ∂pn

k
, exist and are continuous.

Note that Assumption A1 is commonly assumed in wireless
networks [35]. In multiuser communication, Assumptions A2
and A3 are well known when users share the same resources
and have a negative impact on each other [36]. Assumption
A4 indicates that the second order mixed partial derivatives
of the utility of each user exist. Hence, Assumptions A1-A4
are justified in practical multiuser wireless networks. In the
illustrative examples in Section V, the utility of each user is its
throughput, defined as vn(pn, fn(p−n, sn)) =

∑K
k=1 log(1 +

hk
nnp

k
n

fk
n(p−n,sn)

), which satisfies the above assumptions.

The rate of change in the throughput of user n is
∂vk

n(p
k
n,f

k
n(p−n,sn))
∂pk

n
=

hk
nn

fk
n+hk

nnp
k
n

. When the direct channel

gain for user n is high, i.e., hk
nn � 1, or when its

measured interference is low, i.e., fk
n � 1, the value of

∂vk
n(p

k
n,f

k
n(p−n,sn))
∂pk

n
is high. This means that a small change

in the user’s action causes a significant change in its utility.
The column gradient vector of vn for user n, denoted by
Jn

pn
� ∇pn

vn(pn, fn(p−n, sn)) is called the direct rate of
user n, where the kth element of this vector is Jnk

pn
=

∂vk
n(p

k
n,f

k
n(p−n,sn))
∂pk

n
. Let Cnm � HnmJnfn , where Jn

fn �
∇fnvn(pn, fn(p−n, sn)) and Hnm � diag{(hk

nm)Kk=1}. Note
that Cnm is the rate of decrease in the utility of user n
caused by a corresponding increase in the action of user m.
Hence, Cnm is the negative impact of user m on user n for
m �= n. When the utility of user n is its throughput, we have
Ck

nm = − hk
nnh

k
nmpk

n

fk
n(fk

n+hk
nnp

k
n)

, where Ck
nm is the kth element of

Cnm. A high hk
nm leads to a high Ck

nm, i.e., a high impact of
user m on user n. We will use Cnm and Jn

pn
to compare the

social utility at the RSE with that at the NSE.
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TABLE II
COMPARISON OF EXISTING WORKS IN THE POWER CONTROL PROBLEM FOR HOMOGENOUS AND HETEROGENOUS USERS

References Users Equilibrium Type Game Type Equilibrium Coverage and Main Contributions

[15], [19], [23] Homogeneous Nash Equilibrium Nominal Existence and Uniqueness
[13], [14], [20] Homogeneous Nash Equilibrium Robust Existence and Uniqueness

[25]–[27] Homogeneous Nash Equilibrium Nominal Existence, Uniqueness, and Optimality
[3]–[6] Heterogeneous Stackelberg Equilibrium Nominal Existence and Optimality,

2) and 3) in Section I.A.
This paper Heterogeneous Stackelberg Equilibrium Robust Existence and Optimality,

1), 2), 3), and 4) in Section I.A.

B. Game Formulation

The above setup can be utilized for different game-theoretic
formulations of the power control problem in cellular and
wireless ad hoc networks [36]. In this paper, we consider
power control games for spectrum sharing in unlicensed bands
between two type of users: users with capabilities to extract
side-information (leaders) and users without such capabilities
(followers). Interactions between these two types of users
can be modeled by a Stackelberg game [3], [4], where the
sets of leaders and followers are NL = {0, 1, · · · , NL − 1}
and NF = {1, · · · , NF}, respectively, where NL is the
number of leaders and NF is the number of followers, and
N = NL ∪ NF is the set of all users. In this setup, side-
information obtained by user n is denoted by In, which
is empty for each follower (i.e., In = ∅ if n ∈ NF) or
contains side-information on other users for leaders (i.e., In =
{(Am, vm,Hmn,Hmm,Hnm)m �=n,∀m∈N} if n ∈ NL, where
Hmn � diag{(hk

mn)
K
k=1} and Hmm � diag{(hk

mm)Kk=1}).
When users are non-cooperative and play a strategic game,

the optimization problem of user n for choosing its transmit
power is maxpn∈An vn(pn, fn(p−n, sn)), whose solution is
the best response of user n, denoted by p∗

n(p−n). The Nash
equilibrium (NE) of such a game, denoted by [p∗

0, · · · , p∗
N ],

satisfies vn(p∗
n, fn(p∗

−n, sn)) ≥ vn(pn, fn(p∗
−n, sn)) for all

pn ∈ An, where p∗
−n � [p∗

0, · · · , p∗
n−1, p∗

n+1, · · · , p∗
N ] for

all n ∈ N . From Assumption A1 in Section II.A and since
An is a closed and bounded set, it can be shown that the NE
of this game always exists [37], [38]. While many sufficient
conditions for NE’s uniqueness can be obtained [19], [23],
[39], NE’s uniqueness in this paper is based on [23], [39].

The equilibrium in a Stackelberg game prescribes the opti-
mal strategy set for leaders when followers play at their NE,
and is derived via backward induction. For instance, for the
one-leader one-follower Stackelberg game, where user 0 is
the leader and user 1 is the follower, the leader knows that
when it transmits with p0, the follower’s transmit power (its
best response) is p∗

1(p0). Hence, the leader takes this into
account in choosing its strategy. The leader’s strategy at the
Stackelberg equilibrium is p*NSE

0 when for any p0 ∈ A0, we
have v0(p*NSE

0 , f0(p∗
1(p

*NSE
0 ), s0)) ≥ v0(p0, f0(p∗

1(p0), s0)).
The Stackelberg equilibrium for the leader is the solution of
the following bi-level optimization problem

max
p0∈A0

v0(p0, f0(p1, s0)), (1)

subject to: max
p1∈A1

v1(p1, f1(p0, s1)).

For the multi-follower scenario, the above backward procedure

is applicable as well. Let p∗
−0(p0) � [p∗

1, · · · , p∗
NF

] be the fol-
lowers’ strategies at their NE when the leader’s strategy is p0.
The strategy profile (p*NSE

0 , p*NSE
−0 (p*NSE

0 )) is the equilibrium
of the Stackelberg game iff v0(p*NSE

0 , f0(p*NSE
−0 (p*NSE

0 ), s0)) ≥
v0(p0, f(p∗

−0(p0), s0)), for any p0 ∈ A0, where p∗NSE
−0 (p0) =

[p∗NSE
1 , · · · , p∗NSE

NF
]. At the NSE, the utility of user n is ω*NSE

n

and the social utility of the game is ω*NSE =
∑

n∈N ω*NSE
n .

When the followers’ game has multiple NEs, it is very
complicated [40], [41]. We restrict our study to the Stackelberg
game with a unique NE in the followers’ game. The conditions
for NE’s uniqueness are presented in Section VI.

III. UNCERTAIN PARAMETERS

A. Noisy Observations

The uncertain value of f̃n(p−n, sn) is a noisy
observation by user n of the impact of other users,
modeled by the sum of its nominal value and an error
[7], i.e., f̃n(p−n, sn) = fn(p−n, sn) + f̂n(p−n, sn),
where f̃n(p−n, sn) = [f̃1

n(p−n, sn), · · · , f̃K
n (p−n, sn)],

fn(p−n, sn) = [f1
n(p−n, sn), · · · , fK

n (p−n, sn)], and
f̂n(p−n, sn) = [f̂1

n(p−n, sn), · · · , f̂K
n (p−n, sn)] are the

noisy observation, the nominal value, and the error in the
observation of user n, respectively. In the worst-case robust
optimization, noisy observations for all n ∈ NF are assumed
to be in a bounded uncertainty region [39], [42] defined by

�n(p−n) = {̃fn(p−n, sn)| ‖̂fn(p−n, sn)‖2 ≤ εn}, (2)

where εn is the bound on the error, and ‖ ·‖2 is the Euclidean
norm. Since the Euclidean norm has been commonly used
in wireless networks for modeling the uncertainty region in
which all observations fall with a given probability [7], [13],
we also use it in this paper. Note that the uncertainty region
�n(p−n) is not a fixed set and is a function of other users’
strategies [43].

The noisy observation is considered as a new optimization
variable in the utility of each follower [39]. In this case,
the new utility function of follower n is un(pn, f̃n(p−n, sn)),
which satisfies

un(pn, f̃n(p−n, sn))|εn=0 = vn(pn, fn(p−n, sn)), (3)

and the optimization problem of follower n is changed to

max
pn∈An

min
f̃n(p−n,sn)∈�n(p−n)

un(pn, f̃n(p−n, sn)). (4)

The NE of this robust game (the RNE) by assuming
In = ∅ for all followers is p̃∗

= (p̃∗
0, · · · , p̃∗

N )
[39], [42] iff miñfn(p∗

−n,sn)∈�n(p∗
−n)

un(p∗
n, f̃n(p∗

−n, sn)) ≥
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miñfn(p∗
−n,sn)∈�n(p∗

−n)
un(pn, f̃n(p∗

−n, sn)) for all pn ∈ An.
From Assumption A1 in Section II.A, the RNE exists for
all channel gains between users, all bounded and closed
strategy sets, and all uncertainty regions in (2) [39], [42].
We introduce a sufficient condition for uniqueness of the
nominal NE in Section VI, which as shown in [39], [43]
is also a sufficient condition for uniqueness of the RNE.
However, solving (4) requires more calculations than solving
the follower’s optimization problem in the nominal game. To
solve (4), each follower can utilize the numerical methods
proposed in [44], [45] or semidefinite programming (SDP)
(Proposition 1 in [44]).

B. Uncertain Side-Information

Obtaining the exact value of HnFnL by the leader for all
nF ∈ NF and nL ∈ NL is very challenging. This is because
there is no pilot signal from the follower’s receiver. Hence, we
consider uncertainty in HnFnL , and denote its uncertain value
by H̃nFnL . In the worst-case approach, H̃nFnL is the sum of its
nominal value HnFnL and the error ĤnFnL , when the error is
bounded to δnFnL . The uncertainty region is

RHnFnL
= (5)

{H̃nFnL |‖ĤnFnL = H̃nFnL − HnFnL‖2 ≤ δnFnL},
where the value of δnFnL depends on the pdf of noise, as
explained in Section 8.5.5. in [7].

IV. ROBUST STACKELBERG EQUILIBRIUM

We now discuss the following two cases for the one-leader
one-follower Stackelberg game:
Case 1) Leader’s side-information is accurate, and follower’s
observation is noisy.
Case 2) Leader’s side-information is uncertain, and follower’s
observation is noisy.

A. Analysis of RSE for Case 1

At the RSE for Case 1 (RSE1), the follower’s optimization
problem is (4). Moreover, the leader’s side-information set
is IRSE1

0 = {A1, v1,H10,H11,H01,�1(p0)}, and its bi-level
optimization problem is

maxp0∈A0 v0(p0, f0(p1, s0)), (6)

subject to: maxp1∈A1 min
f̃1(p0,s1)∈�1(p0)

u1(p1, f̃1(p0, s1)).

The best response of (4) to the leader’s action is denoted
by p̃∗

1(p0), and the leader’s transmit power at RSE1, de-
noted by p*RSE1

0 , satisfies v0(p*RSE1
0 , f0(p̃

∗
1(p

*RSE1
0 ), s0)) ≥

v0(p0, f0(p̃
∗
1(p0), s0)) for any p0 ∈ A0. In what follows, for

notational convenience, we omit the arguments of fn(p−n, sn).
Remark 1. RSE1 exists since: 1) (4) is concave with

respect to p1(p0) for any fixed action of the leader, and is a
decreasing function of f1, and 2) the two sets A1 and �1(p0)
are convex, bounded, and disjoint. Consequently, there always
exists a solution to (4) [44], and the optimization problem (6)
has a non-empty feasible set. Hence, RSE1 exists. From the
following lemma, we obtain RSE1.

Lemma 1. The leader’s bi-level optimization problem can
be rewritten as

max
p0∈A0

v0(p0, f0) (7)

subject to: max
p1∈A1

v1(p1, f̃
∗
1),

where
f̃
∗
1 = f1 − ε1ϑ1, (8)

and f̃
∗
1 = [f̃1∗

1 , · · · , f̃K∗
1 ], ϑ1 = [ϑ1

1, · · · , ϑK
1 ], and ϑk

1 is

ϑk
1 =

∂uk
1 (p1 ,̃f

∗
1)

∂fk
1√∑K

k=1

(∂uk
1(p1 ,̃f

∗
1)

∂fk
1

)2 . (9)

Proof: See Appendix A.
By utilizing (7) instead of (6), the uncertainty region is

removed from the leader’s optimization problem, and the
leader’s strategy and the follower’s strategy as well as their
respective utilities at RSE1 can be obtained and compared to
those at the NSE.

Proposition 1. For Case 1 in the RSG:
1) The leader’s action is an increasing function and the

follower’s action is a decreasing function of ε1, and are
respectively obtained by

p*RSE1
0 = p*NSE

0 + (10)

ε1 × ((J0
p0p0

)−1J0f0p0
H01(J

1
p1p1

)−1J1
f1p1

ϑT
1)

T,

p*RSE1
1 = p*NSE

1 − ε1 × ((J1
p1p1

)−1J1f1p1
ϑT
1)

T, (11)

where Jnfnpn
� diag{(∂2vn(pnfn)

∂fk
n∂pk

n
)Kk=1}, and Jnpnpn

�
diag{(∂2vn(pnfn)

∂2pk
n

)Kk=1}.
2) For any noisy observation of the follower, we have

ω*NSE
0 ≤ ω*RSE1

0 , and ω*RSE1
1 ≤ ω*NSE

1 , where ω*RSE1
n is the

utility of user n at RSE1.
3) The social utility at RES1 is ω*RSE1 =

∑
n∈N ω*RSE1

n ,
and we have ω*RSE1 > ω*NSE, when C1 : |C10| < |J0

p0
| and

C2 : |J1
p1
| < |C01|, where |q| is the vector of absolute values

of the elements of q.
Proof: See Appendix B.

From Proposition 1, the solution to (6) can be obtained
with considerably less calculations via the NSE and the bound
on the uncertainty region in (10) and (11). Moreover, the
leader’s utility at RSE1 is higher than that at the NSE, while
the follower’s utility at RSE1 is less than that at the NSE.
Interestingly, the social utility at RSE1 is higher than that at
the NSE when C1 and C2 hold.

B. Analysis of RSE for Case 2

At the RSE for Case 2 (RSE2), ĨRSE2
0 =

{A1, v1, H̃10,H11,H01,�1(p0)} is the leader’s uncertain
side-information set, in which H̃10 is the uncertain parameter
in the uncertainty region (5). Using worst-case optimization,
the leader’s bi-level optimization problem is changed to

max
p0∈A0

min
H̃10∈RH10

v0(p0, f0), (12)

subject to: max
p1∈A1

min
f̃1∈R1(p0)

u1(p1, f̃1).
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In (12), the leader cannot accurately evaluate its impact on the
follower. Since f1 is a linear function of H10, and the leader
considers the worst-case in the uncertainty region to obtain
the solution of the follower, we have the following statement.

Statement 1. For Case 2, the negative impact of the leader
on the follower is a decreasing function of δ10, where δ10 was
defined in (5).

Remark 2. RSE2 always exists, because: 1) RH10
, R1(p0),

A0, and A1 are compact and closed sets, and 2) for any
realization of H̃10 ∈ RH10

, the uncertainty region R1(p0) is
closed and convex. Hence, the follower has a feasible strategy;
and similar to Remark 1, RSE2 always exists.

While the condition for existence of RSE2 can be derived
easily, solving (12) is significantly more complex than (6).
This is because (12) has two uncertain parameters H̃10 and
f̃1, and RSE2 is a function of both ε1 and δ10, while RSE1
is a function of ε1. To compare RSE1 and RSE2, ε1 should
have the same fixed value for both of these two cases. Next,
we study the relationship between RSE1 and RSE2.

Proposition 2. For Case 2 in the RSG when ε1 is fixed:
1) The leader’s strategy is a decreasing function of δ10 and

the follower’s strategy is an increasing function of δ10.
2) The leader’s utility at RSE2 is always less than its utility

at RSE1, i.e., ω*RSE2
0 ≤ ω*RSE1

0 , where ω*RSE2
n is the utility of

user n at RSE2 when the value of ε1 is the same for RSE1
and RSE2.

Proof: See Appendix C.
To solve (12), for any value of p0, the leader calculates the

follower’s transmit power from (4) via numerical methods in
[44], [45] or via SDP reformulation in [44]. The leader also
calculates its minimum utility corresponding to p0, subject to
H̃10 ∈ RH10 . Now, the leader chooses the value of p0 that
corresponds to the maximum utility (its throughput) amongst
all minimum utility values obtained for all p0 ∈ A0. Next, we
compare the leader’s and the follower’s utilities at RSE2 with
those at the NSE.

Proposition 3. For Case 2 in the RSG, when ε1 = 0:
1) For all values of uncertain side-information in RH10 , we

have ω*RSE2
0 ≤ ω*NSE

0 , and ω*NSE
1 ≤ ω*RSE2

1 .
2) The social utility at RSE2 is ω*RSE2 =

∑
n∈N ω*RSE2

n ,
and we have ω*RSE2 ≥ ω*NSE, C3 : |J0p0

| < |C10| and C4 :

|J1
p1
| > |C01|.
Proof: See Appendix D.

From Proposition 3, the leader’s utility at RSE2 is less than
that at the NSE, while the follower’s utility at RSE2 is higher
than that at the NSE. In this case, when the follower’s direct
rate is greater than its negative impact on the leader (i.e., C3),
and the leader’s direct rate is less than its negative impact
on the follower (i.e., C4), the social utility at RSE2 is higher
than that at the NSE. An interesting interpretation arises when
comparing C1 with C3 and C2 with C4. These comparisons
indicate that C1-C2 are the dual of C3-C4. In Case 1, a higher
social utility can be achieved when the increase in the leader’s
utility is more than the decrease in the follower’s utility. In
contrast, in Case 2, a higher social utility can be achieved
when the increment in the follower’s utility is more than the
decrement in the leader’s utility.

V. ILLUSTRATIVE EXAMPLES

We now validate the above for the case in which the utility
of each user is its throughput and C1-C4 are simplified for
the estimated channel gains. In this case, (8) is f̃∗k

1 = fk
1 +

ε1 ×
pk1hk

11

f∗k
1 (f∗k

1 +pk1hk
11)√∑

K
k=1(

pk1hk
11

f∗k
1 (f∗k

1 +pk1hk
11)

)2

for all k ∈ K. For the power

control game, C1 is hk
00

fk
0 +hk

00p
k
0

>
hk
10h

k
11p

k
1

fk
1 ×(fk

1 +hk
11p

k
1)

, and C2 is
hk
01h

k
00p

k
0

fk
0 ×(fk

0 +hk
00p

k
0)

>
hk
11

fk
1 +hk

11p
k
1

for all k. Next, we consider the
following three scenarios based on signal-to-interference-plus-
noise ratios (SINRs) of the leader and the follower.

Scenario 1. High SINR, i.e., hk
00p

k
0 � hk

01p
k
1 + σk

0 and
hk
11p

k
1 � hk

10p
k
0 + σk

1 , where both C1 and C2 are simplified
to

hk
01 > hk

10. (13)

Scenario 2. Low SINR, i.e., hk
00p

k
0 � hk

01p
k
1 + σk

0 and
hk
11p

k
1 � hk

10p
k
0 + σk

1 , where C1 and C2 are

hk
00 > hk

10 and hk
01 > hk

11. (14)

Scenario 3. Moderate SINR, i.e., hk
00p

k
0 ≈ fk

0 and hk
11p

k
1 ≈

fk
1 , when interferences of the leader and the follower on each

other are close, i.e., fk
1 ≈ fk

0 , and both C1 and C2 become

hk
00h

k
01 > hk

11h
k
10, ∀k ∈ K. (15)

Considering the simplifications in (13)-(15), one can also
obtain the probability of each scenario from the distribution
of channel gains. As an example, for (13), when channels are
Rayleigh fading and channel gains are i.i.d. random variables,
the pdf of channel gains is exponential, i.e., φ(hk

01) =

λ1 exp
λ1h

k
01 and φ(hk

10) = λ2 exp
λ2h

k
10 . The probability

hk
01 > hk

10 is∫ ∞

0

∫ hk
01

0

φ(hk
01)φ(h

k
10)dh

k
01dh

k
10 =∫ ∞

0

φ(hk
01)dh

k
01(1 − expλ2h

k
01) =

1− λ1

λ1 + λ2
=

λ2

λ1 + λ2
.

We use (13)-(15) to predict how the social utility changes
for any given channel condition for Case 1. In doing so, we
simulate a power control game in which a four-ray Rayleigh
channel in [3] is assumed, K = 20, pmax

n,k = 10 mW, pmin
n,k = 0

and σn = −80 dBm. At the NSE, both the leader and the
follower transmit at their maximum power pmax

n,k . At RSE1, the
leader’s and the follower’s transmit power levels are obtained
from (10) and (11), respectively. For RSE2, the leader for any
p0 ∈ A0 and H̃10 ∈ RH10 , calculates the follower’s transmit
power from (4); and chooses its transmit power corresponding
to the minimum throughput for H̃10 ∈ RH10

and the maximum
throughput for p0 ∈ A0. Subsequently, the follower measures
f1 and calculates its optimal transmit power from (4). To
compare the leader’s and the follower’s utilities when (13)-(15)
hold, we use dRSE1

n =
ω*RSE1

n −ω*NSE
n

ω*NSE
n

and dRSE1 = ω*RSE1−ω*NSE

ω*NSE .
A higher dRSE1

n indicates a higher increment in the utility of

user n for Case 1. For Case 2, we have dRSE2
n =

ω*RSE2
n −ω*NSE

n

ω*NSE
n

and dRSE2 = ω*RSE2−ω*NSE

ω*NSE for the utility of user n and for
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the social utility, respectively. In the following simulations,

the bounds on the uncertainty regions are ε1 = ‖̃f1−f1‖2

‖f1‖2

and δ10 = ‖H̃10−H10‖2

‖H10‖2
. In simulations of this section, for

one realization of CSIs, the uncertainty region is expanded
to demonstrate the impact of uncertainty on the systems’s
performance.

Table III shows the leader’s utility is incremented and the
follower’s utility is decremented when ε1 is incremented, as
expected from Proposition 1. When (13)-(15) hold, the social
utility is incremented, and when (13)-(15) do not hold, it
is decremented. In Scenario 1, the increment in the social
utility is not considerable when (13) holds. In Scenarios 2
and 3, when (14) and (15) hold, the leader’s utility and the
social utility are incremented considerably. Note that when
(14) does not hold, dRSE1

0 is reduced to 38.6% from 224.8%,
and dRSE1 is reduced to -2.13% from 100.71% for ε = 100%.
Hence, playing the robust game when (14) and (15) hold,
significantly increments the leader’s utility and the social
utility. This is achieved without increasing transmit power,
i.e., a substantially better efficiency in utilizing spectrum and
energy.

For Case 2, the constraints C3 and C4 in Proposition 3
become

Scenario 1: =⇒ hk
10 > hk

01, (16)

Scenario 2: =⇒ hk
10 > hk

00, and hk
11 > hk

01, (17)

Scenario 3: =⇒ hk
11h

k
10 > hk

00h
k
01, ∀k. (18)

The effects of incrementing δ10 on dRSE2
0 , dRSE2

1 , and dRSE2

are shown in Table IV. Here, the value of ε1 is set to 0 so
that RSE2 can be clearly compared with NSE for different
value of δ10 without considering the impact of ε1. As expected
from Proposition 2, the leader’s utility in all cases is less than
that at the NSE, while the follower’s utility is incremented by
incrementing δ10. In Table IV, when (16)-(18) do not hold,
the social utility is decremented, and when (16)-(18) hold, it is
incremented by incrementing δ10, and dRSE2

1 is decremented as
compared to when (16)-(18) do not hold. The ratio of channel
gains for the above simulations are summarized in Table V.

In Tables III and IV, we note that in all scenarios for
RSG2 when (16)-(18) hold, the increments in the follower’s
utility and the social utility are insignificant as compared to
the increments in the leader’s utility and the social utility
at RSE1 when (13)-(15) hold. For example, in Scenario 2
for ε = 100%, the leader’s utility and the social utility at
RSE1 are up to 200% and 100% higher than those at the
NSE, respectively, whereas the follower’s utility and the social
utility at RSE2 are up to 10% and 2% higher than those at the
NSE, respectively, meaning that a robust scheme significantly
improves efficiency.

A. Power Control with Bounded Transmit Power

When the sum of transmit power levels of any user in all
sub-channels is upper bounded to Pmax

n , i.e.,

K∑
k=1

pkn ≤ Pmax
n , (19)
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Power allocated to the follower at RSE in Scenario 1
Power allocated to the leader at RSE in Scenario 1

Power allocated to the follower at NSE in Scenario 1

Power allocated to the leader at NSE in Scenario 1

Fig. 1. Power allocation to the follower and to the leader in Scenario 1
subject to (19) - (a): at NSE, and (b): at RSE1.
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Power allocated to the follower at RSE1 in Scenario 2
Power allocated to the leader at RSE1 in Scenario 2

Power allocated to the follower at NSE in Scenario 2
Power allocated to the leader at NSE in Scenario 2

Fig. 2. Power allocation to the follower and to the leader in Scenario 2
subject to (19) - (a): at NSE, and (b): at RSE1.

the users’ strategies are nonlinear functions of their observa-
tions [46]. Hence, we cannot use Propositions 1-3 to analyze
the RSG. Transmit power levels in different sub-channels at
RSE1 for (19) are shown in Figs. 1–3, and the corresponding
changes in utility values are summarized in Table VI. Sim-
ulation parameters are the same as in Table III except for
Pmax
n = pmax

n,k = 200 mW, and ε = 30%. For simulating the
NSG by considering (19), we apply the algorithm in [3] to
obtain transmit power levels. The follower’s robust bi-level
optimization problem at RSE1 is numerically solved for any
transmit power of the leader.

To discuss the results of this case, let KNSE
n ⊆ K and

KRSE1
n ⊆ K be the sets of sub-channels utilized by user n at the

NSE and at RSE1, respectively. Also, let LNSE
nm = KNSE

n ∩KNSE
m

and LRSE1
nm = KRSE1

n ∩KRSE1
m be the sets of sub-channels shared

between user m and user n at the NSE and RSE1, respectively.
Figs. 1–3 show that |LRSE1

01 | ≤ |LNSE
01 |, where |LRSE1

01 | and
|LNSE

01 | are the sizes of LRSE1
01 and LNSE

01 , respectively. For ex-
ample, in Scenario 1, we have |LRSE1

01 | = 10 and |LNSE
01 | = 17,

and in Scenario 2, we have |LRSE1
01 | = 0 and |LNSE

01 | = 1.
Table VI also shows that the leader’s utility is incremented in
Case 1 under all conditions.

Interestingly, in Scenario 2, the follower’s utility at RSE1
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TABLE III
VALIDATING PROPOSITION 1 VIA A NUMERICAL EXAMPLE FOR THE POWER CONTROL GAME

Scenario 1 ε = 0 ε = 20% ε = 40% ε = 60% ε = 80% ε = 100%
(13) holds dRSE1

0 0 1.57 3.21 4.92 6.7 8.56
dRSE1
1 0 -1.7 -3.5 -5.33 -7.3 -9.2

dRSE1 0 0.02 0.03 0.037 0.045 0.045
(13) does not hold dRSE1

0 0 2.3 4.8 7.4 10.2 13.2
dRSE1
1 0 -2.14 -4.38 -6.75 -9.24 -11.9

dRSE1 0 -0.11 -0.21 -0.31 -0.4 -0.47

Scenario 2 ε = 0 ε = 20% ε = 40% ε = 60% ε = 80% ε = 100%
(14) holds dRSE1

0 0 33.5 138.7 224.81 224.81 224.81
dRSE1
1 0 -35.6 -87.8 -100 -100 -100

dRSE1 0 7.1 52.15 100.71 100.71 100.71
(14) does not hold dRSE1

0 0 5.7 12.2 19.7 28.38 38.6
dRSE1
1 0 -4.27 -8.85 -13.82 -19.22 -25.13

dRSE1 0 -0.66 -1.24 -1.72 -2.04 -2.13

Scenario 3 ε = 0 ε = 20% ε = 40% ε = 60% ε = 80% ε = 100%
(15) holds dRSE1

0 0 101.1 101.26 101.26 101.26 101.26
dRSE1
1 0 -100 -100 -100 -100 -100

dRSE1 0 53.7 53.8 53.8 53.8 53.8
(15) does not hold dRSE1

0 0 0.07 0.14 0.20 0.25 0.28
dRSE1
1 0 -0.06 -0.12 -0.17 -0.22 -0.26

dRSE1 0 -0.04 -0.07 -0.1 -0.13 -0.16

TABLE IV
VALIDATING PROPOSITION 2 VIA A NUMERICAL EXAMPLE FOR THE POWER CONTROL GAME

Scenario 1 δ10 = 0 δ10 = 20% δ10 = 40% δ10 = 60% δ10 = 80% δ10 = 100%
(16) holds dRSE2

0 0 -0.23 -0.45 -0.67 -0.89 -1.12
dRSE2
1 0 0.18 0.37 0.55 0.74 0.92

dRSE2 0 0.002 0.004 0.005 0.007 0.008
(16) does not hold dRSE2

0 0 -0.31 -0.62 -0.92 -1.23 -1.53
dRSE2
1 0 0.31 0.62 0.93 1.23 1.53

dRSE2 0 -0.01 -0.02 -0.03 -0.04 -0.05
Scenario 2 δ10 = 0 δ10 = 20% δ10 = 40% δ10 = 60% δ10 = 80% δ10 = 100%

(17) holds dRSE2
0 0 -3.86 -7.43 -10.72 -13.78 -16.63

dRSE2
1 0 2.94 5.74 8.4 10.99 13.46

dRSE2 0 0.49 0.99 1.51 2.05 2.59
(17) does not hold dRSE2

0 0 -6.65 -12.37 -17.4 -21.76 -25.7
dRSE2
1 0 8.7 16.7 24.24 31.24 37.8

dRSE2 0 -0.08 -1.25 -1.42 -1.47 -1.51
Scenario 3 δ10 = 0 δ10 = 20% δ10 = 40% δ10 = 60% δ10 = 80% δ10 = 100%

(18) holds dRSE2
0 0 -1.47 -2.91 -4.3 -5.65 -6.96

dRSE2
1 0 0.65 1.29 1.91 2.53 3.13

dRSE2 0 0.24 0.47 0.69 0.93 1.157
(18) does not hold dRSE2

0 0 -5.86 -10.86 -15.2 -19.06 -22.49
dRSE2
1 0 11.99 23.01 33.2 42.7 51.5

dRSE2 0 -1.65 -2.88 -3.81 -4.51 -5.05

TABLE V
RATIO OF CHANNEL GAINS FOR TABLES III AND IV

hk
10/h

k
00 hk

01/h
k
11

Scenario 1: (13) holds and (16) does not hold < 0.1 > 0.2
Scenario 1: (13) does not hold and (16) holds > 0.2 < 0.1

Scenario 2: (14) holds and (17) does not hold < 1 > 1
Scenario 2: (14) does not hold and (17) holds > 1 < 1

Scenario 3: (15) holds and (18) does not hold < 0.1 > 0.9
Scenario 3: (15) does not hold and (18) holds > 0.9 < 0.1

is higher than that at the NSE. This is because when the
number of shared sub-channels between the leader and the
follower is reduced, there is less interference from the leader
to the follower and vice versa at RSE1 as compared to the
NSE. This means that as shown in Table VI, it is possible
that both the leader’s utility and the follower’s utility are

TABLE VI
CHANGES IN UTILITY VALUES SUBJECT TO (19)

Scenario 1 Scenario 2 Scenario 3
Leader 28.1% 4.2% 30.1%

Follower −24.5% 1.8% −48%

increased simultaneously, resulting in improved spectrum and
energy efficiency in the network. To study this increment in
the follower’s utility at RSE1, in Fig. 4, we depict the cumu-
lative distribution function (CDF) of dRSE1

1 for the following
examples.

Example 1: The leader’s interference on the follower is
high, e.g., hk

10

hk
11

> 0.8, and the follower’s interference on the

leader is low, e.g., hk
01

hk
00

< 0.1.
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Power allocated to the follower at NSE in Scenario 3
Power allocated to the leader at NSE in Scenario 3

Power allocated to the follower at RSE in  Scenario 3
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Fig. 3. Power allocation to the follower and to the leader in Scenario 3
subject to (19) - (a): at NSE, and (b): at RSE1.
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Fig. 4. CDF of dRSE1
1 when (19.) holds

Example 2: The leader’s and the follower’s interference on
each other are high, e.g., hk

10

hk
11

> 0.9 and hk
01

hk
00

> 0.9.

Example 3: The follower’s interference on the leader is
high, e.g., hk

10

hk
11

> 0.9, and the leader’s interference on the

follower is low, e.g., hk
01

hk
00

< 0.1.

Fig. 4 shows that in Example 2, the follower’s utility at
RSE1 is always below that at the NSE, whereas in Examples 1
and 3, with a probability of 10%, the follower’s utility at RSE1
may be higher than that at the NSE. In such instances, the
leader and the follower may achieve higher utilities when ro-
bustness is introduced to deal with uncertainty in the follower’s
observations, and transmit power is constrained as in (19),
which results in a more efficient use of power and spectrum
in wireless networks. Finally, in Table VII, for 10,000 channel
realizations, we show the averaged impact of noise floor σn

on the the number of shared sub-channels for both the RSG
and the NSG. When noise floor is increased, the value of
Lagrange multiplier associated with (19) is increased, which
reduces the number of shared sub-channels between the leader
and the follower for both the RSG and the NSG. Note that the
number of shared sub-channels for the RSG is always below
that for the NSG.

B. Energy Efficiency of RSG

Next, we compare power consumption in the NSG for
increasing the leader’s throughput as compared to that in the
RSG for Case 1. In the NSG, when uncertainty is negligible
and the leader wants to increase its throughput up to 100%
in each sub-channel k for pk0 ∈ [pmin0,k , p

max
0,k ] for all k ∈ K,

the leader should increase pmax0,k to hk
00(p

max
0,k )

2/fk
0 to achieve

its objective. However, as shown in Table III, the leader’s
throughput at RSE1 is incremented by 138.7% for Scenario 2
and ε = 40% without any increase in the leader’s transmit
power, meaning that the RSG for Case 1 is more energy
efficient than the NSG.

Now consider a case in which (19) holds for both the
leader and the follower, and the leader wants to increase
its throughput. Simulation parameters are the same as in
Section V.A. Let d̃NSE

0 be the percentage of increase in the
leader’s throughput for different values of Pmax

0 as compared
to that for Pmax

0 = 200 mW. In Table VIII, the values of d̃NSE
0

are shown for Pmax
0 = 250 mW and Pmax

0 = 300 mW. In this
table, d̃NSE

0 = 22.3% for Scenario 1 at Pmax
0 = 300 mW, while

in Table VI, the value of dRSE1
0 at Pmax

0 = 200 mW is 28.1%. In
other words, the increment in the leader’s throughput is higher
at RSE1 without increasing its transmit power as compared
to that in the NSG with a significant increase in its transmit
power.

In Scenario 2, increasing the leader’s transmit power in the
NSG increases its throughput more than that of considering
uncertainties in the RSG. This is because in the NSG, when
the follower’s interference on the leader is high, increasing
the leader’s transmit power causes a proportional increase
in its throughput; whereas at RSE1, when the follower’s
observation is uncertain, its interference on the leader is not
decreased much. However, in Scenario 3, the increase in the
leader’s throughput for Pmax

0 =300 mW in the NSG is much
less than that at RSE1; meaning that the same increase in
the leader’s throughput in the RSG can be achieved without
increasing its transmit power, whereas in the NSG, it requires a
significant increase in the leader’s transmit power. The leader’s
throughput for Pmax

0 =250 mW at NSE for Scenarios 1 and
3 are much less than that at RSE1. In Scenarios 1 and 3,
without increasing the leader’s transmit power, its throughput
is significantly higher at RSE1 as compared to that at NSE;
meaning that in these scenarios, the RSG is energy efficient.
In Table IV, the increments in the social utility and the utility
of the follower at RSE2 are not considerable as compared to
that at NSE, meaning that RSE2 is not as energy efficient
as RSE1. For brevity, we do not discuss energy efficiency of
RSE2 in this paper.

VI. EXTENSION TO MULTI-USER GAMES

A. One-Leader Multi-Follower (NL = 1 and NF > 1)

For this scenario, consider the NF × NF matrix Υ whose
elements are

[Υ]nm =

{
αmin
n if m = n, m, n ∈ NF

−βmax
nm if m �= n, m, n ∈ NF,

where αn(p) � smallest eigenvalue of −
∇2

pn
vn(pn, fn), αmin

n � infp∈A, αn(p), ∀n ∈ NF, βnm(p) �
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TABLE VII
THE IMPACT OF NOISE FLOOR σn ON THE NUMBER OF SHARED SUB-CHANNELS FOR BOTH NSG AND RSG

σn = −80 dBm σn = −60 dBm σn = −40 dBm
LNSE
nm 17.3 15.1 12.5

LRSE1
nm 15.9 12.7 11.1

TABLE VIII
d̃NSE
0 SUBJECT TO (19) FOR DIFFERENT VALUES OF Pmax

0 IN NSG AS COMPARED TO THAT FOR Pmax
0 = 200mW IN NSG

Scenario 1 Scenario 2 Scenario 3
Pmax
0 (mW) 250 300 250 300 250 300
d̃NSE
0 12.6% 22.3% 13.3% 25% 13.9% 18.6%

‖−∇pnpm
vn(pn, fn)‖2, ∀n �= m,βmax

nm � supp∈A βn(p), ∀n ∈
NF.

When Υ is a P -matrix (Matrix Υ is a P -matrix if for any
non-zero vector x, we have xi(Υx)i > 0, where xi is the ith

element of x [38]), the followers’ nominal NE and the RNE
are unique (Theorem 12.5 in [47] and [39], [43]).

When the followers’ game has multiple NEs, their dis-
tributed algorithm for reaching the equilibrium oscillates, and
their equilibrium point depends on each follower’s initial
transmit power [27]. This leads to significant complications
for the Stackelberg game [40], [41], and we do not consider
it in this paper.

1) RSE for Case 1 (RSE1): In this case, the followers’
observations are uncertain, modeled by (2), but the leader has
accurate side-information. The optimization problem of each
follower is similar to (4), and reformulations to (8) and (9)
can be applied [39] via

f̃
∗
n = fn − εnϑn, ∀n ∈ NF, (20)

where f̃
∗
n = [f̃1∗

n , · · · , f̃K∗
n ], ϑn = [ϑ1

n, · · · , ϑK
n ], and ϑk

n =
∂uk

n(pn,̃f∗n)

∂fk
n√∑

K
k=1(

∂uk
n(pn,̃f∗n)

∂fk
n

)2
. Now, the algorithms proposed in [39] can

be readily used to reach the RNE in a distributed manner for
the above ϑk

n.
Remark 3. Since the RNE of the followers’ game exists

irrespective of parameters’ values, and from Assumptions
A1-A4 and A0 in Section II.A, the solution to the leader’s
optimization problem exists irrespective of interference caused
by followers.

Proposition 4. For the above Case 1 of the RSG, when Υ
is a P -matrix, we have:

1) The followers’ strategies are decreasing functions of ε =
[ε1, · · · , εN ], and the social utility of the followers’ game is
less than that at the NSE.

2) The leader’s utility at RSE1 is higher than that at the
NSE.

3) The social utility at the RSE is higher than that at the
NSE if C5 : J0

p0
>

∑
n∈NF

Cn0 and C6 : Jnpn
< C0n +∑

m �=n,m∈NF
Cmn, for all n ∈ NF.

Proof: See Appendix E.
Similar to Proposition 1, noise in the followers’ observa-

tions increments the leader’s utility, but reduces the followers’
utilities. When the leader’s direct rate is higher than the sum
of its negative impacts on all followers, i.e., C5, and when the
sum of each follower’s negative impacts on other followers

and on the leader is greater than its direct rate, i.e., C6, the
social utility at RSE1 is higher than that at the NSE.

2) RSE for Case 2 (RSE2): In this case, each follower’s
uncertainty is bounded to δn0, i.e.,

RHn0
= {H̃n0 | ‖Ĥn0‖2 = ‖H̃n0 − Hn0‖2 ≤ δn0}. (21)

Remark 4. Similar to RSE1, RSE2 always exists. Again,
this is because the RNE for the followers’ game always
exists irrespective of the leader’s side-information, and from
Assumptions A1-A4 in Section II.A, Statement 1, and (21),
the solution to the leader’s optimization problem exists irre-
spective of the interference caused by followers.

Proposition 5. For Case 2, when εn = 0 and Υ is a P -
matrix, we have:

1) The leader’s utility at RSE2 is always less than that at
the NSE.

2) The followers’ actions are increasing functions of δ0 =
[δ10, · · · , δNF0], and the social utility of the followers’ game
at RSE2 is higher than that at the NSE.

3) The social utility is increased if C7 : J0p0
<

∑
n∈NF

Cn0,
and C8 : Jn

pn
> C0n +

∑
m �=n,m∈NF

Cmn, for all n ∈ NF.
Proof: See Appendix F.

Again, uncertainty in the leader’s side-information reduces
its utility and increases the social utility of the followers. Also
from C7-C8, when the leader’s direct rate is less than the sum
of its negative impacts on followers, and the sum of negative
impacts of each follower on other followers and on the leader
is less than its direct rate, the social utility at RSE2 is highr
than that at the NSE. Besides, C5-C6 and C7-C8 are dual.
For the one-leader multi-follower scenario, the leader derives
its optimal solution using exhaustive search. In doing so, the
step size is Θk

0 = (pmax0,k − pmin0,k )/θ
k
0 , where θk0 � 1. For

any value of p0 = (p10, · · · pK0 ) derived for this step size, i.e.,
pk0 = pmin0,k +Θk

0×l where 0 ≤ l ≤ θk0 , the leader calculates the
robust equilibrium for the followers’ game via the algorithm
in [39]. Subsequently, the leader calculates its utility based
on the followers’ transmit power levels at their equilibrium.
The optimal value of p0 corresponds to the highest value of
the leader’s utility. The leader transmits at its optimal power
level, and subsequently the followers play their strategic non-
cooperative robust game. The followers can use the proposed
algorithm in [39] to derive their optimal robust strategies.

B. Multi-Leader Multi-Follower (NL > 1 and NF > 1)

Since cooperation between leaders has been shown to
improve spectrum efficiency [3], we consider such cooperation



PARSAEEFARD et al.: ROBUST POWER CONTROL FOR HETEROGENEOUS USERS IN SHARED UNLICENSED BANDS 3177

for maximizing their social utility. Consider the leaders’
optimization problem in the nominal game stated by

maxpn∈An

∑
n∈NL

vn(pn, fn), (22)

subject to: max
pm∈Am

vm(pm, fm), ∀m ∈ NF.

Note that (22) is a bi-level and non-convex optimization prob-
lem whose constraint involves the followers game [15]–[18].
Hence, it belongs to the class of mathematical programs with
equilibrium constrains (MPEC), and in general, it is impossi-
ble to analytically solve (22). Instead, in [3], [6], numerical
algorithms for solving (22) are proposed. Our approach for
solving (22) and its robust counterpart is to randomly choose
a leader who is tasked with obtaining the optimal transmit
power vectors of all the leaders via exhaustive search. Since
this leader is chosen randomly, there is no need for additional
message passing among all the leaders for choosing a leader.
We assume that all the leaders cooperate and provide their
side-information only to the chosen leader, who would use
such side-information in its exhaustive search for optimal
transmit power vectors of all the leaders. Next, all the leaders
transmit at their optimal power levels, and subsequently, the
followers play their strategic non-cooperative game to obtain
their own transmit power vectors.

For the multi-leader multi-follower game RSG1, the opti-
mization problem of each follower is similar to (4). In this
case, when Υ is a P -matrix, introducing robustness reduces
the followers’ interference on the leaders, and increases the
leaders’ utilities due to the fact that the followers’ strategies
at RSE1 are decreasing functions of εn (see Lemma 2 in
Appendix E). In other words, the leaders’ social utility at
RSE1 is higher than that at the NSE.

For the multi-leader multi-follower game RSG2, the leaders’
optimization problem is

maxpn∈An minH̃nm∈RHnm

∑
n∈NL

vn(pn, fn), (23)

subject to: max
pm∈Am

min
f̃m∈�m(p−m)

um(pm, f̃m), ∀m ∈ NF,

which is non-convex and MPEC. Hence, analyzing RSE2 is
non-trivial. In Section VII, we propose a heuristic algorithm
that converts the multi-leader multi-follower game into a one-
leader multi-follower game. In the one-leader multi-follower
game, the leader obtains its own transmit power vector via
exhaustive search, and starts transmitting. Subsequently the
followers play their own non-cooperative strategic game to
obtain their respective transmit power vectors. In this way,
the social utility at RSE2 is increased to the extent possible.

The above formulation maximizes each user’s data rate
subject to its transmit power constraints, and is also applicable
for minimizing each user’s transmit power subject to its
minimum required data rate.

VII. SIMULATION RESULTS

We now simulate two cases of multi-leader multi-follower
RSG in the power allocation problem for different bounds on
the uncertainty region. In these simulations, εn is normalized
to the estimated value of fn, i.e., εn = ‖̃fn−fn‖2

‖fn‖2
, and uncer-

tainty for all users is assumed to be the same, denoted by ε. We

also have δ = δnFnL =
‖H̃nFnL−HnFnL‖2

‖HnFnL‖2
, K = 20, σk

n = 0.01

and the step size for exhaustive search Θk
n = (pmaxn,k −pminn,k )/θ

k
n

is set for θkn = 100 for all leaders and sub-channels.

A. One-Leader Multi-Follower (NL = 1 and NF > 1)

Let NF = 3. All other parameters’ values are the same as
those of the illustrative examples in Section V and are equal
for all users. To obtain the followers’ actions, we utilize the
numerical algorithm in [39]. To satisfy the NE’s uniqueness
condition, channel gains satisfy hk

nm < 0.01hk
nn for all m,n ∈

NF and m �= n. To hold C5 and C6, we assume that channel
gains satisfy

hk
n0

hk
nn

> 1 and
hk
0n

hk
00

< 1 ∀k. (24)

In this case, the followers’ interference on each other is low,
Ck

n0 ≈ hk
nnp

k
n

pk
0(h

k
nnp

k
n+hk

n0p
k
0 )

, and Ck
n0 � 1 because hn0 is high.

Also, since the followers’ interference on the leader is very
low, we have J0k

p0
=

hk
00p

k
0

hk
00p

k
0+fk

0
≈ 1. Hence, C5 holds. The

same argument can be made for C6. Consequently, when C5
and C6 do not hold, channel gains are such that (24) would
not hold for all k.

Simulation results for this case are shown in Table IX,
where dRSE1

−0 =
ω*RSE1

−0 −ω*NSE
−0

ω*NSE
−0

, ω*RSE1
−0 is the social utility of the

followers’ game at RSE1, and ω*NSE
−0 is the social utility of the

followers’ game at NSE. When ε is incremented, the leader’s
utility is increased, and dRSE1

−0 is reduced as expected from
Proposition 4. Also, when C5 and C6 hold, the social utility
of the robust Stackelberg game is increased, and is reduced
when C5 and C6 do not hold. Note that when ε is incremented
and C5 and C6 hold, the leader’s utility is incremented more
as compared to when ε is increased and C5 and C6 do not
hold.

To simulate RSE2, we assume εn = 0, which means that
the followers play the nominal game and δ = δn0 for all
followers. For any value of H̃n0 ∈ RHn0

, the leader’s RSE2
and the followers’ NE are calculated; and for the minimum
H̃n0, the leader’s transmit power that maximizes its throughput
is selected. The results are shown in Table X. To hold C7 and
C8, channel gains should satisfy

hk
n0

hk
nn

< 1 and
hk
0n

hk
00

> 1, ∀k. (25)

In Table X, we have dRSE2
−0 =

ω*RSE2
−0 −ω*NSE

−0

ω*NSE
−0

, where ω*RSE2
−0 is

the social utility of the followers’ game at RSE2, and ω*NSE
−0

is the social utility of the followers’ game at NSE. Note that
when C7 and C8 hold, the followers’ social utility at RSE2
and the leader’s utility are much higher than those at the NSE.
This is because when the leader’s interference channel gains
are high, its interference is significantly decreased by reducing
its strategy. Hence, the social utility is much higher at RSE2
than at NSE.

B. Multi-Leader Multi-Follower (NL > 1 and NF > 1)

Let NL = 2, and NF = 8. When interference between the
two groups of users is low, the effect of changing transmit
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TABLE IX
VALIDATING PROPOSITION 4 VIA A NUMERICAL EXAMPLE FOR THE POWER CONTROL GAME

ε = 20% ε = 40% ε = 60% ε = 20% ε = 40% ε = 60%
C5 and C6 dRSE1

0 1.45 1.99 2.46 C5 and C6 dRSE1
0 0.2 1.15 1.3

hold dRSE1
−0 -0.04 -0.3 -1.2 do not hold dRSE1

−0 -0.05 -0.78 -2.33
dRSE1 1.2 1.3 1.41 dRSE1 -0.13 -0.37 -1.33

TABLE X
VALIDATING PROPOSITION 5 VIA A NUMERICAL EXAMPLE FOR THE POWER CONTROL GAME

δ = 20% δ = 40% δ = 60% δ = 20% δ = 40% δ = 60%
C7 and C8 dRSE2

0 -0.61 -1.45 -2.67 C7 and C8 dRSE2
0 -0.14 -0.26 -0.45

hold dRSE2
−0 2.05 4.2 6.58 do not hold dRSE2

−0 0.38 1.2 2
dRSE2 1.54 3.81 6.62 dRSE2 -0.003 -0.006 -0.016

power via varying the uncertainty region is not visible in
simulations. Hence, we assume that interference between
the two groups is high. Simulation results for this case are
summarized in Table XI, where a leader is randomly chosen to
solve (22) via numerical search, and all other leaders pass their
side-information to the selected leader. We have ε = εn for
all the followers, and dRSE1

Leaders =
ωRSE1

Leaders−ωNSE
Leaders

ωNSE
Leaders

, where ωRSE1
Leaders

is the social utility of leaders from (22) at RSE1, and ωNSE
Leaders

is their social utility from (22) at the NSE. Other parameter
values are the same as in Section VII.A.

In Table XI, dRSE1
Leaders, dRSE1

−0 and dRSE1 are shown for 3
different cases: Case 1) interference between leaders are low,
i.e.,

hnLnL
hmLnL

> 1; Case 2) interference between leaders are

moderate, i.e., hnLnL
hmLnL

≈ 1; and Case 3) interference between

leaders are high, i.e.,
hnLnL
hmLnL

< 1, where in all cases, mL

and nL belong to NL and mL �= nL. Note that the leader’s
social utility is increasing with respect to ε, and the followers’
social utility is decreasing with respect to ε, as expected from
Section VI.B. The leaders’ social utility in Cases 1 and 3 do
not improve much as compared to those at the NSE, whereas
in Case 2, the leaders’ social utility is noticeably higher than
that at the NSE. Note that variations in the leaders’ social
utility at RSE1 is not monotone, e.g., for Case 3, dRSE1 is
decreasing with respect to ε for ε < 60%, and is increasing
at RSE1 for 60% < ε < 80%. The reason being that in this
case, the social utility is not convex, and its variations with
respect to ε completely depend on channel gains.

As stated in Section VI.B, for the multi-leader multi-
follower game RSG2, analysis of RSE2 is complicated. Nev-
ertheless, as can be seen in Table X, when C7-C8 hold, at
RSE2 of the one-leader multi-follower game, the social utility
is significantly increased. In Table XII a heuristic algorithm
for converting the multi-leader multi-follower RSG2 into a
one-leader multi-follower RSG2 is presented. The number of
leaders, denoted by NL in Table XII, is a priori known, and
leaders are arbitrarily indexed from 0 to NL−1. The algorithm
scans the leaders until a candidate leader is found for whom
C7-C8 hold. If no such leader is found, the candidate leader
is the leader whose impact on all other players is the highest
as compared to those of other leaders. The remaining lead-
ers send their side-information to the candidate leader, who
utilizes the same and obtains its own optimal transmit power
vector via exhaustive search. Next, the candidate leader starts
transmitting, and subsequently, the remaining leaders and the

followers are grouped together as the new set of followers,
who would play their non-cooperative strategic game to obtain
their respective transmit power vectors. Table XIII shows
utility values obtained for NF = 1 and NL = 2. Parameter
values are the same as in Table XI except for ε = 0 and
δ = 30%.

To benchmark this algorithm, we consider 3 other options:
1) the NSG, 2) Leader 2 is chosen to lead RSG2 while Leader
1 acts as a follower (i.e., the game has two followers), and
3) at the global optima with no uncertainty. In Option 1, at
NSE, the two leaders maximize the sum of their utilities via
(22). When the leaders’ side-information is uncertain, as per
the heuristic algorithm in Table XII, the leader with highest
interference on other leaders and followers (called Leader 1)
acts as the leader and Leader 2 acts as the follower. This
increases the social utility of the follower and Leader 2 at
RSE2 and decreases the utility of Leader 1. In Option 2,
Leader 2 acts as the leader, which causes its utility to be
reduced, while the transmit power and utility of Leader 1 are
increased. Since Leader 1’s interference on other users is high,
the utility of the follower and the social utility of game are
considerably decreased. Table XIII shows that the utility at
RSE2 for the heuristic algorithm has the closest social utility
to that of the global optima among all options.

VIII. CONCLUSIONS

We modeled interactions among heterogeneous users com-
peting for wireless spectrum as Stackelberg games, where
leaders posses side-information about other users, while fol-
lowers are reacting myopically solely based on their perceived
interference levels. Different from past works, we explicitly
considered uncertainty in the side-information and observa-
tions of users and its impact on their performances. To mitigate
these uncertainties, we used the worst case robust approach,
and analyzed two deployment scenarios: in the first one,
leaders possess accurate side-information, while followers’
observations are noisy; and in the second one, leaders possess
inaccurate side-information and the followers’ observations
are noisy. We showed that the followers’ noisy observations
reduce their utilities and increase the leaders’ utilities; while
the leaders’ inaccurate side-information reduces their utilities
and increases the followers’ utilities. We also derived the
conditions under which an increase in social utilities can
be achieved as a function of channel gains and experienced
SINRs. Moreover, we provided insights on how to increase
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TABLE XI
THE EFFECT OF UNCERTAINTY ON THE SOCIAL UTILITY OF THE MULTI-LEADER MULTI-FOLLOWER GAME

Case ε = 0 ε = 20% ε = 40% ε = 60% ε = 80% ε = 100%
Interference levels between leaders dRSE1

Leaders 0 0.14 0.26 0.45 1.9 2.1
are high dRSE1

−0 0 -6.22 -16.7 -25.8 -32.6 -38.4
dRSE1 0 -5.3 -9.4 -13.57 -20.22 -20.26

Interference levels between leaders dRSE1
Leaders 0 9.8 11.4 13.3 13.3 13.3

are moderate dRSE1
−0 0 -15.82 -18.71 -19.24 -19.24 -19.24

dRSE1 0 -5.97 -7.3 -5.97 -5.97 -5.97

Interference levels between leaders dRSE1
Leaders 0 0.1 0.15 0.2 0.64 1.3

are low dRSE1
−0 0 -5.2 -7.1 -9.4 -12.8 -13.64

dRSE1 0 -4.9 -6.3 -12.3 -9.6 -9.3

TABLE XII
HEURISTIC ALGORITHM FOR INCREASING SOCIAL UTILITY AT RSE2 FOR MULTI-LEADER MULTI-FOLLOWER GAME

Start nL = 0,
Consider N new

F = {0, · · · , nL − 1, nL + 1, · · · , NL − 1}⋃NF

Consider the leader indexed by nL as the candidate leader and N new
F as the new set of followers.

Calculate C7-C8.
If C7-C8 hold for the candidate leader indexed by nL :
The candidate leader indexed by nL obtains its optimal transmit power vector via exhaustive search.
The candidate leader indexed by nL starts transmitting.
All the players in the set N new

F are considered as followers, and play their non-cooperative strategic game.
Break.

Otherwise calculate Cn
L
=

∑
m∈N new

F
Cmn

L
.

If nL = NL − 1:
Find the candidate leader indexed by nL such that Cn

L
> Cm

L
, ∀mL ∈ NL, mL �= nL.

The candidate leader indexed by nL obtains its optimal transmit power vector via exhaustive search.
The candidate leader indexed by nL starts transmitting.
All the players in the set N new

F are considered as followers, and play their non-cooperative strategic game.
Break.

Otherwise set nL = nL + 1.
Continue.

TABLE XIII
UTILITY VALUES OBTAINED VIA THE HEURISTIC ALGORITHM FOR THE MULTI-LEADER MULTI-FOLLOWER GAME

Leader 1 Leader 2 Follower All Followers ω∗RSE2

At NSE 5.06 4.33 2.08 6.41 11.47
At RSE2 for Heuristic Algorithm 4.97 4.19 2.49 6.68 11.65

At RSE2 when Leader 2 Leads RSG 5.01 4.09 1.97 6.06 11.07
At the Global Optima with No Uncertainty 4.23 5.12 3.35 8.47 12.7

the social utility in multi-leader multi-follower scenarios. An
important direction for future research is to develop algorithms
with less computations for multi-leader multi-follower scenar-
ios in both nominal and robust games.

APPENDIX A
PROOF OF LEMMA 1

From Assumption A3 in Section II.A, the inner optimization
problem of the constraint in (6) is solved via the following
Lagrange dual function [12]

L(a1, f̃1, λ1) = (A.1)
K∑

k=1

uk
1(a

k
1 , f̃

k
1 )− λ1(ε

2
1 −

K∑
k=1

(f̃k
1 − fk

1 )
2),

where λ1 is the nonnegative Lagrange multiplier that satisfies

λ∗
1 × (ε21 −

K∑
k=1

(f̃∗k
1 − fk

1 )
2) = 0, (A.2)

where λ∗
1 and f̃∗k

1 are the optimal solutions to L(a1, f̃1, λ1).

The solution to (A.1) for f̃k
1 is obtained from ∂L(a1,f̃1,λ1)

∂f̃k
1

= 0

[48], which is equivalent to ∂uk
1 (a

k
1 ,f̃

∗k
1 ,λ1)

∂f̃k
1

= −2λ1 × (f̃∗k
1 −

fk
1 ) for all k ∈ K. Thus, the uncertain parameter is f̃

∗
1 =

f1 − ε1ϑ1, where f̃
∗
1 = [f̃∗

1 , · · · , f̃K∗
1 ], ϑ1 = [ϑ1

1, · · · , ϑK
1 ],

and ϑk
1 is (9).

APPENDIX B
PROOF OF PROPOSITION 1

1) At RSE1, we have ∇p*RSE1
1

u1(p*RSE1
1 , f̃

*RSE1

1 ) ≥ 0, where
0 is the all zero K × 1 vector, and

[J1p1p1
∇ε1p*RSE1

1 + J1f1p1
∇ε1 f̃

*RSE1
1 ]ε1=0 = 0. (B.1)

From (8), the last term on the left hand side of (B.1) is equal
to −ϑT

1. By rearranging (B.1), we have

∇ε1p*RSE1
1 = (J1

p1p1
)−1J1f1p1

ϑT
1 . (B.2)
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From Assumptions A1-A3 in Section II.A, the right hand side
of (B.2) is negative. Hence, ∇ε1p*RSE1

1 < 0, meaning that the
follower’s action is a decreasing function of ε1, and p*RSE1

1 is
obtained from (11).

At RSE1, we have ∇p*RSE1
0

v0(p*RSE1
0 , f*RSE1

0 ) ≥ 0, and

[J0
p0p0

∇ε1p*RSE1
0 + J0f0p0

H01∇ε1p*RSE1
1 ]ε1=0 = 0, (B.3)

which is equivalent to

∇ε1p*RSE1
0 = −(J0p0p0

)−1J0
f0p0

H01∇ε1p*RSE1
1 . (B.4)

From Assumptions A1-A3 in Section II.A, the right hand side
of (B.4) is positive. Hence, ∇ε1p*RSE1

0 > 0, meaning that the
leaders’ action is an increasing function of ε1, and p*RSE1

0 is
obtained from (10).

2) The Taylor series expansion of the leader’s utility around
the uncertain parameter is

v0(p*RSE1
0 , f*RSE1

0 ) = v0(p*NSE
0 , f*NSE

0 )+ (B.5)

ε1[(H01J0f0)
T∇ε1p*RSE1

1 + (J0p0
)T∇ε1p*RSE1

0 ]ε1=0 + o.

In the sequel, we only consider the first term of the Taylor
series1 and ignore higher terms for small values of ε1. Based
on Assumption A2 in Section II.A and ∇ε1p*RSE1

1 < 0, the
second term on the right hand side of (B.5) is always positive.
Also, the third term on the right hand side of (B.5) has positive
elements only. Hence, the leader’s utility at RSE1 is always
greater than that at the NSE, and we have

ω*RSE1
0 − ω*NSE

0 ≈ (B.6)

ε1[(J
0
p0
)T∇ε1p*RSE1

0 + (H01J0
f0)

T∇ε1p*RSE1
1 ].

The Taylor series expansion of the follower’s utility around
ε1 is

u1(p*RSE1
1 , f*RSE1

1 ) = v1(p*NSE
1 , f*NSE

1 )+ (B.7)

ε1[(H10J1f1)
T∇ε1p*RSE1

0 + (J1p1
)T∇ε1p*RSE1

1 ]ε1=0 + o.

Since J1f1 < 0 and ∇ε1p*RSE1
0 > 0, the second term on the right

hand side of (B.7) is always negative. Also, ∇p1
v1(p1, f1) >

0 and ∇ε1p*RSE1
1 < 0. Consequently, the third term on the

right hand side of (B.7) is negative. Hence, the follower’s
utility at RSE1 is always less than that at the NSE. After
some rearrangements, we have

ω*RSE1
1 − ω*NSE

1 ≈ (B.8)

ε1 × [(H10J1
f1)

T∇ε1p*RSE1
0 + (J1

p1
)T∇ε1p*RSE1

1 ].

3) The social utility at RSE1 is increased when ω*RSE1
0 −

ω*NSE
0 + ω*RSE1

1 − ω*NSE
1 > 0, which is equivalent to the sum

of (B.6) and (B.8). To satisfy the above condition, note that
since ∇ε1p*RSE1

1 < 0 and ∇ε1p*RSE1
0 > 0, the sum of the terms

multiplied by ∇ε1p*RSE1
1 should be negative and the sum of

the terms multiplied by ∇ε1p*RSE1
0 should be positive. Hence,

we have |J0
p0
| − |H10||J1

f1 | > 0, and |J1p1
| − |H01||J0

f0 | < 0,
which are the same as C1 and C2.

1In general, when higher order terms in the Taylor series are ignored, the
comparison results hold in the neighborhood of the equilibrium at which
Taylor series is applied. However, our approximation is for small values of
ε1, meaning that the robust equilibrium which is a bounded perturbed version
of the nominal equilibrium is in fact in its neighborhood, and higher order
terms in the Taylor series can be ignored as they are multiplied by a higher
power of ε1.

APPENDIX C
PROOF OF PROPOSITION 2

The proof of the first part of Proposition 2 is similar to the
proof of the first part of Proposition 1, except that (B.2) is
changed to

∇δ10p*RSE2
1 = M1∇δ10 f*RSE2

1 . (C.1)

From Statement 1 in Section IV.B, ∇δ10p*RSE2
1 is always

positive, meaning that the follower’s action is an increasing
function of δ10.

2) In this case, the leader cannot calculate the exact value
of p1 from its incomplete side-information, meaning that the
value of f0 is uncertain. Consequently, RSE2 can be consid-
ered as ε Stackelberg strategy space for Case 1 (Definition 4.7
in [49]) and hence, the leader’s utility at RSE2 is less than
that at RSE1.

APPENDIX D
PROOF OF PROPOSITION 3

1) The proof of this part is similar to the proof of the
second part of Proposition 1 in Appendix B, except that (B.8)
is changed to

ω*RSE2
1 − ω*NSE

1 ≈ δ10× (D.1)

[(J1p1
)T(J1

p1p1
)−1J1

f1p1
∇δ10 f*RSE2

1 − (J1
f1)

T∇δ10 f*RSE2
1 ].

From Assumptions A1-A4 in Section II.A and Statement 1 in
Section IV.B, the right hand side of (D.1) is positive. Hence,
the follower’s utility at RSE2 is higher than that at the NSE.

For the leader, we have similar steps as in Proposition 1,
except that (B.6) is changed to

ω*RSE2
0 − ω*NSE

0 ≈ δ10× (D.2)

[−(J0
p0
)T(J0

p0p0
)−1H01J0

f0p0
+ (J0

f0)
TH01]∇δ10p1,

which, from Assumptions A1-A4 and Statement 1, is always
negative. Hence, the leader’s utility at RSE2 is less than that
at the NSE.

2) Now we derive the conditions for increasing
the social utility. Since ∇δ10p*RSE2

0 < 0, the sum
of the second term on the right hand side of (D.1),
i.e., (J1

f1)
T∇δ10 f*RSE2

1 = (J1
f1)

TH10∇δ10p*RSE2
1 , and

the first term on the right hand side of (D.2), i.e.,
−(J0

p0
)T(J0

p0p0
)−1H01J0

f0p0
= −(J0p0

)T∇δ10p*RSE2
0 , should

be negative, i.e.,|J0p0
| − |J1

f1 ||H10| < 0. Also, since
∇δ10p*RSE2

1 > 0, the sum of the first term on the right
hand side of (D.1) and the second term on the right hand
side of (D.2) should be positive, i.e., |J1p1

| − |J0f0 ||H01| > 0.
Clearly, these two conditions are equivalent to C3 and C4.

APPENDIX E
PROOF OF PROPOSITION 4

Lemma 2. When Υ is a P -matrix, the followers’ strategies
are decreasing functions of ε = [ε1, · · · , εNF ].

Proof: Consider pNF
� [p1, · · · , pNF

] and assume that
pNF

is an increasing function of ε, i.e., p*RSE1
NF

≥ p*NSE
NF

.
When Υ is a P -matrix, J (pNF

) � (Jn
pn
(p))NF

n=1 is strongly
monotone (Theorem 12.5 in [47]), and

J (p*RSE1
NF

) ≥ J (p*NSE
NF

). (E.1)
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On the other hand, from (24), we have ∂uk
n(p

k
n,f

k
n)

∂pk
n

=

∂vk
n(p

k
n,f̃

k∗
n )

∂pk
n

+
∂vk

n(p
k
n,f̃

k∗
n )

∂f̃k∗
n

× ∂f̃k∗
n

∂pk
n

, and

∂f̃k∗
n

∂pkn
=

∂f̃k∗
n

∂ϑk
n

× ∂ϑk
n

∂pkn
= (E.2)

−εn × ∂2vkn(pn, f̃
∗
n)

∂pkn∂f̃
k
n

× (

K∑
k=1

(
∂uk

n(pn, f̃
∗
n)

∂fk
n

)2)−
1
2 .

Consider p̃kn = −εn × ∂vk
n(pn ,̃f

∗
n)

∂f̃k∗
n

× ∂2vk
n(pn ,̃f

∗
n)

∂pk
n∂f̃

k∗
n

×
(
∑K

k=1(
∂uk

n(pn ,̃f
∗
n)

∂fk∗
n

)2)−
1
2 |pn=pNSE

n
, which is negative according

to Assumptions A1-A3 in Section II.A. We rewrite (E.2) as
J (p*RSE1

NF
) − J (p*NSE

NF
) = p̃ < 0, where p̃ = (p̃n)

NF
n=1,

p̃T
n = [p̃1n, · · · , p̃Kn ], and 0 is the zero vector whose size is

the same as p̃. Obviously, this contradicts (E.1), and implies
that our assumption was wrong. Consequently, the followers’
actions at RSE1 are decreasing functions of ε.

1) Since the followers’ strategies are decreasing functions
of ε, f0 is reduced by increasing ε, which implies ω*RSE1

0 ≥
ω*NSE
0 from Assumption A2 in Section II.A and the Taylor

series expansion of vRSE1
0 around ε, which is

ω*RSE1
0 = ω*NSE

0 + (E.3)

εn × [(∇εp0)
TJnp0

+

NF∑
n=1

H0nJ0f0(∇εnpn)
T] + o.

2) The RNE of the followers in the multi-follower RSG in
Section VI.A belongs to the robust additively coupled games
introduced in [39]. From Theorem 2 in [39], when Υ is a P -
matrix, the followers’ social utility at RSE1 is less than that
at the NSE. Also, the Taylor series expansion of the utility of
follower n around ε is

ω*RSE1
n = ω*NSE

n + εn × [(Jnfn)
THn0∇εp0+ (E.4)

(Jn
fn)

T(

NF∑
m=1,m �=n

Hnm∇εmpm) + (Jn
pn
)T∇εnpn] + o,

where ∇εp0 is the K × 1 vector whose kth element is∑
n∈NF

∂pk
0

∂εn
.

3) When the sum of (E.3) and (E.4) is positive, the social
utility at RSE1 is higher than that at the NSE. To satisfy this
condition, the terms multiplied by ∇εp0 should be positive
because ∇εp0 > 0. Since ∇εnpn < 0, the terms multiplied
by ∇εnpn should be negative. By some rearrangements,
positiveness of the terms multiplied by ∇εp0 and negativeness
of the terms multiplied by ∇εnpn lead to C5 and C6.

APPENDIX F
PROOF OF PROPOSITION 5

The proof is similar to the proof of Proposition 4, except
that instead of Lemma 2, here we have the following lemma.

Lemma 3. When Υ is a P -matrix, the followers’ strategies
are increasing functions of δ0 � [δ10, · · · , δNF0].

Proof: The proof is similar to that of Lemma 2 in
Appendix E, except that here, we assume that the followers’
strategies are decreasing functions of δ0, and demonstrate
that this assumption contradicts Assumptions A1-A4 in Sec-
tion II.A and Statement 1 in Section IV.B.

1) Now, (E.3) is changed to

ω*RSE2
0 = ω*NSE

0 + (F.1)

δn0 × [
∑
n∈NF

(J0f0)
TH0n∇δn0pn + (J0

p0
)T∇δn0p0] + o.

2) Also, (E.4) is changed to

ω*RSE2
n = ω*NSE

n + δn0 × [(Jn
fn)

THn0∇δ0np0+ (F.2)

(Jn
fn)

T(
∑

m �=n,m∈NF

Hnm∇δm0pm) + (Jn
pn
)T∇δ0npn] + o.

3) When the sum of the second terms in (F.1) and (F.2)
for all followers are positive, the social utility at RSE2 is
higher than that at the NSE. To satisfy this condition, since
∇δn0p0 < 0 and ∇δn0pn > 0, the terms multiplied by ∇δ0

p0

should be negative, and the terms multiplied by ∇δn0pn should
be positive. By some rearrangements, C7 and C8 are obtained.
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