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Abstract—In this paper, we study how multiple users can bal-
ance their traffic loads to share common resources in an efficient
and distributed manner, without message exchanges. Specifically,
we study a deployment scenario where users deploy delay-sensitive
applications over a wireless multipath network and aim to min-
imize their own expected delays. Since the performance of a
user’s load balancing strategy depends on the strategies that are
deployed by other users, it becomes important that a user consid-
ers the multiuser coupling when making its own load balancing
decisions. We model this multiuser interaction as a load balancing
game (LBG) and show that users can converge to a ε-consistent
conjectural equilibrium by building near-accurate beliefs about
the remaining capacities on each path. Based on these beliefs, users
can make load balancing decisions without explicitly knowing
the actions of the other users. In such a conjecture-based LBG,
we analytically show that, if a leader is elected to build beliefs
about how the users’ aggregate transmission strategies affect the
remaining resources, then this leader can use this knowledge to
shape its traffic such that the multiuser interaction can achieve
an efficient allocation across paths. Even if no leader is present in
the game, as long as the users follow a set of prescribed rules for
building beliefs, they can reach efficient outcomes in a distributed
manner. Importantly, the proposed distributed load balancing
solution can be also applied to other multiuser communication and
networking problems where message exchanges are prohibited
(or prohibitively expensive in terms of delay or bandwidth), rang-
ing from multichannel selection in wireless networks to relay
assignment in multivehicle networks.

Index Terms—Conjectural equilibrium (CE), efficient resource
management without message exchanges, load balancing.

I. INTRODUCTION

LOAD BALANCING is a technique for distributing traffic
across multiple resources of a communication system. In

this paper, we study how multiple self-interested users can
optimally distribute their traffic loads in an autonomous manner
to minimize their individual delays of transmitting their packets
through a multipath wireless network. Load balancing has been
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investigated in various multiuser transmission scenarios where
users (nodes/transceivers) are obedient. Considered deployment
scenarios included multipath routing in wired or wireless net-
works [1]–[6], nonoverlapping spectrum sharing in cognitive
radio networks [7]–[10], or load sharing in multiprocessor
systems [12].

In wireless networks, load balancing was studied to per-
form channel selection in cellular networks. Various channel
assignment schemes have been proposed (see, e.g., [11] for an
excellent survey). However, most of these channel assignment
schemes are based on centralized solutions, which do not easily
scale as the network size increases and/or are not suitable
for wireless networks without a fixed infrastructure, such as
ad hoc wireless networks. Moreover, centralized approaches
are particularly not desirable for delay-sensitive applications
such as the ones considered in this paper because they require
exchanging control messages back and forth to a network
coordinator, thereby incurring unacceptable delays for delay-
sensitive applications [10]. To cope with these challenges,
distributed schemes without a network manager have also been
proposed in various types of wireless networks, such as ad hoc
networks [2]–[6] or cognitive radio networks [7]–[10].

A. Related Works

In wireless ad hoc networks, Pham and Perreau [2] proposed
a multipath routing protocol with load balancing by explicitly
taking into account the congestion conditions over each net-
work path. Zhang et al. [4] proposed a load balancing solution
over multipath routing using weighted round-robin strategy
based on measured roundtrip time. Jain et al. [6] proposed a
multichannel carrier-sense multiple-access protocol that iden-
tifies the set of idle channels and selects the best channel for
transmission based on the channel condition that is observed
at the transmitter side. However, a common limitation of these
solutions is that they are myopic, because the autonomous
users only adapt to their latest network measurement (e.g.,
idle channel set, channel condition, or path congestion) and
they do not predict the impact of their transmission actions
on their long-term performance (utility). Since the individual
users only react to the latest contention measurements that are
experienced in the different wireless channels, the resulting
multiuser interaction is often inefficient.

In emerging cognitive radio networks, Zheng and Cao [8]
provided five rule-based spectrum management schemes where
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users measure local interference patterns in wireless chan-
nels and independently act according to the prescribed rules.
Huang et al. [9] proposed a resource sharing scheme where
users can select multiple channels to transmit packets and
exchange interference prices for each channel. Our previous
work [10] proposed a distributed resource management solution
where users learn the interference/congestion online, by using
multiagent learning techniques based on fictitious play, and
based on this knowledge, they balance their traffic loads across
several shared channels and relays in a multihop cognitive
radio network. All these distributed schemes assume that users
cooperate to efficiently coordinate their load balancing strate-
gies. However, as discussed in, for example, [16], individual
users can decide to deviate from the rules that are prescribed
by the protocols, as long as they derive a higher utility when
deviating. Thus, self-interested users in the network may not
have incentives to cooperate and maximize a network/system
performance, because this does not necessarily maximize their
own utilities.

To capture the behavior of these self-interested users, non-
cooperative games were proposed to characterize and analyze
the performance of self-interested users interacting in different
communication systems. For example, Lee et al. [32] showed
that the current backoff-based medium-access-control protocols
can be modeled as a noncooperative channel-access game.
The noncooperative channel selection game was studied by
Felegyhazi et al. [33], who showed that users autonomously
selecting channels in multichannel wireless networks converge
to a Nash equilibrium (NE). Similarly, multiuser transmission
over multipath selection has been formalized and analyzed as a
noncooperative game in [18]. However, it is well known that the
NE can often be Pareto inefficient. For instance, it is possible
that some of the selfish users will improve their performance at
the cost of degrading the system-wide performance.

At the other spectrum of the existing multiuser networking
research, a network utility maximization framework has been
introduced in [31] to optimize the social welfare of a multiuser
communication system. It has been shown that, by allowing
users to exchange messages, they can determine a wireless
channel-access strategy that reaches a Pareto-efficient solution
in a distributed manner. Similar concepts have been proposed
in [34] for distributed channel selection, where pricing has been
deployed to get users to maximize the system throughput in a
distributed manner. To determine the resource price, message
exchanges among users are necessary. However, such message
exchanges among users can be undesirable due to their in-
creased computational and communication overhead or simply
due to security issues, protocol limitations, etc. Moreover,
the incentives for the users to add a penalty term in their
utility functions that enables collaboration are not addressed.
Alternatively, a distributed channel-access scheme using sim-
ple random-access algorithms without message exchanges was
discussed in [24]. However, this solution can only achieve a
near-optimal system-wise throughput if there are no message
exchanges among the participating users.

In summary, existing centralized load balancing approaches
[11], [13] provide efficient allocations, but they require exten-
sive control information to be gathered by a central coordinator.

Hence, such centralized approaches cannot be successfully
deployed in distributed networks, where the participating users
cannot exchange voluminous messages to a central network
coordinator due to the resulting message overheads and the
delay incurred from propagating messages back and forth to
a central coordinator. On the other hand, distributed load bal-
ancing approaches [2]–[10], [15], [16] do not require message
exchanges, but they often lead to inefficient allocations. Since
users often respond in a self-interested and myopic manner to
the measured local congestion in the network, these distributed
approaches often result in a suboptimal solution from the users’
or the communication system’s perspective.

In this paper, we study an autonomous load balancing ap-
proach, which does not require any message exchanges but
leads to a Pareto-efficient solution by enabling autonomous
users to predict the implications of their load distribution on
their expected future costs (delays in this paper) and thereby
influence the multiuser interaction. We model the multiuser in-
teraction as a load balancing game (LBG) that is played by users
that are making conjectures about how their load distribution
actions will impact other users and their responses and thus
eventually impact their future performance. We endow the users
with the ability to build beliefs about the aggregate response
of the other users to their actions (in this paper, the aggregate
response is the remaining capacity measured for each path
using, for example, the bandwidth estimation method in [29])
and efficiently minimize their expected transmission delays.
Specifically, we investigate the performance of the resulting
ε-consistent conjectural equilibrium (ε-CE) in the LBG, which
is a relaxed version of the conventional conjectural equilibrium
(CE) [21] that allows us to characterize the equilibrium that is
obtained when network users are able to build near-accurate
conjectures. At equilibrium, the autonomous users will dynam-
ically select the paths over which they should distribute their
traffic in a distributed manner by estimating their expected util-
ities obtained from taking various transmission actions based
on their near-accurate conjectures about the communication
system.

B. Contributions and Organization of the Paper

Compared with the conventional distributed approach, we
discuss two new concepts that enable the network users to min-
imize delays in distributed communication networks, without
the need of message exchanges with other users.

1) Active load balancing strategies. As previously men-
tioned, the users’ strategies are coupled in multiuser
multipath networking environments because the load bal-
ancing decision of each user impacts and is impacted by
the other users. Thus, users need to distribute their traffic
loads by considering not only the impact of their actions
on their immediate experienced utilities but also on their
long-term utilities. For instance, a user’s aggressive strat-
egy may be rewarded in the short term, but this may
trigger the other users to adapt their own strategies, which
brings a negative impact to its long-term reward. Hence,
active learners can build accurate models (conjectures)
about how their actions are coupled with that of the other
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users and, based on these models, make conjecture-based
decisions on how to adapt their transmission strategies in
real time. These learners are referred to as conjecturing
learners in this paper.

2) Learning accurate coupling models based on local infor-
mation. To build these coupling models, the conjecturing
learners can adopt interactive learning approaches to up-
date their beliefs about the expected response of the other
users to their actions. Specifically, we propose learning
approaches based on which the conjecturing learners can
build their beliefs in a distributed manner, given only their
local information (i.e., their own measurement history).

The goal of this paper is to develop belief formation tech-
niques that allow the users to coordinate to reach efficient
solutions, without message exchanges. We provide specific
belief formation methods and conjecture-based load balancing
strategies for the following two extreme communication sce-
narios: 1) when the system has only one conjecturing learner
(e.g., an elected leader) and 2) when all users in the system
are conjecturing learners. We are able to analytically show
that, when the system has only one conjecturing learner, this
user can deploy a linear belief function to model the aggregate
response of the other users. We show that, when the leader is
altruistic (e.g., it minimizes a system-wide utility), it can drive
the system to a system-wide efficient solution by modeling the
reactions of the other users. Alternatively, when the leader is
self-interested (e.g., it minimizes its own delay), we show that
this user will benefit itself at the expense of (some of) the other
users’ increased delays. If the system has multiple conjecturing
learners that are simultaneously building beliefs, the simple
linear belief formation becomes insufficient to capture the
other users’ behaviors. Therefore, to enable these conjecturing
learners to build consistent beliefs at a low cost, the protocol
designer prescribes for them a set of interaction rules. We then
show how, if all the autonomous users in the network comply
with the rules, the system reaches a Pareto-efficient resource
allocation without exchanging messages among users.

This paper is organized as follows: Section II models
the considered multiuser multipath network and formulates
the conjecture-based load balancing problem for autonomous
delay-sensitive users. We also define the conjecture-based load
balancing game and the ε-CE of the game. In Section III,
we investigate the case when there is only one conjecturing
learner in the network. We provide a learning procedure for
the conjecturing learner to update its belief. In Section IV, we
present solutions for the case when all the users comply with the
prescribed rules. The simulation results are shown in Section V.
Section VI concludes this paper.

II. LOAD BALANCING PROBLEM FORMULATION

A. Network Model

We assume V = {vi, i = 1, . . . ,M} as the set of M au-
tonomous users sharing the same wireless multipath network.
User vi is composed of a source–destination pair, i.e., vi =
(vsi , v

d
i ), and each user has a delay-sensitive application with

traffic rate λi (packet/second). We assume a wireless network

Fig. 1. Considered network model for multiuser multipath networks.

with N distinct relays from the sources to the destinations.
Each relay can represent a mobile vehicle in the multivehi-
cle relay network. We denote r = {rj , j = 1, . . . , N} as the
set of these relays. Each relay rj is associated with capac-
ity Cj (packet/second)1 representing how fast the relay can
process/transmit the passing data. The multiuser multipath net-
work model is shown in Fig. 1. Note that the relays in the multi-
path network abstract the limited network resources, which can
represent not only bottlenecks in a multipath network but, for
example, nonoverlapping frequency channels in a wireless net-
work or parallel processors in a multiprocessor system as well.

The autonomous users aim to balance their traffic loads
over the N shared relays such that the end-to-end delay for
transmitting their applications are minimized. The traffic rate
from user vi through relay rj is denoted as λij (packet/second).
Let λi represent the total traffic rate from user vi. We denote
σi = [λij , j = 1, . . . , N ] ∈ Xi as the traffic distribution of user
vi, and σ−i as the traffic distribution for the other users except
vi (σ = [σi,σ−i]). Xi denotes all possible traffic distribution
of user vi, where

∑N
j=1 λij = λi. We assume unsaturated net-

work conditions, in which the total system capacity is more
than the total traffic rate of the users, i.e.,

∑N
j=1 Cj >

∑M
i=1 λi.

Such unsaturated conditions can ensure that a user can always
find an unsaturated relay to transmit its traffic, and hence,
the delays of the applications are bounded. We assume that
the expected delay through relay rj can be modeled using an
M/M/1 queuing model E[Dj ] = (Cj −

∑M
i=1 λij)

−1, in which
each path is modeled as a queue with the exponential service
time and the Poisson arrival process [28]. Let Uij represent
the average delay when user vi sends packets through rj . The
average end-to-end delay of user vi is defined as

Ui(σi, σ−i) =

N∑
j=1

λij

λi
Uij =

1
λi

N∑
j=1

λij

Cj − λj
(1)

where Uij = E[Dj ], and λj
Δ
=

∑M
i=1 λij represents the total

traffic loads that pass through relay rj . Let Ut
i = {U t

ij , j =
1, . . . , N} denote the average delays that user vi experiences
over the paths at time t.

1For simplicity, we assume that the capacity of the relay is not changing over
time nor changing for different users. However, the analysis provided in this
paper can be generalized to the case when each relay has different capacities
for different users by adopting a more sophisticated queuing model.
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B. Centralized Coordination With Global Information

In general, centralized methods aim at implementing Pareto-
efficient solutions, which optimize the “system welfare,” e.g.,
they minimize the weighted summation of users’ utilities, i.e.,
U(σ) =

∑M
i=1 wiUi(σ), where wi represents the weighting

parameters.
Definition 1—Pareto Boundary: Given different users’

weights w = [wi, i = 1, . . . ,M |wi > 0,
∑M

i=1 wi = 1], points
on the Pareto boundary are formed by the solutions of the
following multiuser multipath selection problem:

σP (w) = arg min
σi∈i,∀vi

M∑
i=1

wiUi(σ). (2)

To perform the aforementioned centralized optimiza-
tion, the network coordinator needs to determine weights
{wi, ∀vi} and collect the global network information Ig =
[{Cj , ∀rj}, {λi, ∀vi}]. Specifically, in this paper, we de-
fine the system-wide utility as U sys(σ) =

∑M
i=1 λiUi(σ) =∑N

j=1(
∑M

i=1 λij/Cj −
∑M

i=1 λij) (equivalent to the case using

weights {wi = (λi/
∑M

i=1 λi), ∀vi}). Based on Little’s formula
[28], this utility represents the total queue size of these N
M/M/1 queues for the N paths.

Definition 2—System-Wide Optimal Solution: The system-
wide Pareto optimal (PO) solution is then defined as

σP = arg min
σi∈Xi,∀vi

U sys(σ). (3)

The system-wide optimal solution is PO where the users’
weights are proportional to the traffic rates of the users. How-
ever, such a centralized approach may be undesirable in many
delay-sensitive settings due to the message overhead required
for exchanging the global network information. This motivates
the adoption of distributed approaches.

C. Distributed Best Response

Without a centralized coordinator, the users can minimize
their own delays, i.e., user vi performs the following best
response:

σi = arg min
σi∈Xi

Ui(σi,σ−i). (4)

As indicated by (4), when a user performs the best response,
the user requires knowledge about the other users’ actions, i.e.,
the required information is still Ig = [{Cj , ∀rj}, {λi, ∀vi}].
Such knowledge is usually acquired via message exchanges
among the users. Applying the best response in the multiuser
interaction, the NE σNE = {σNE

i , ∀vi} is defined by the
well-known inequality Ui(σ

NE
i ,σNE

−i )≤Ui(σi,σ
NE
−i ), ∀σi ∈

Xi, ∀vi.

D. Distributed Decision Making Without Message Exchange

Without explicit message exchanges among users, user vi
does not know σt

−i when making decision on σt
i at time t.

In other words, the user cannot know the exact average delay

U t
i (σ

t
i,σ

t
−i) when making the decision at time t. However,

the user is aware of the action-delay history in the past, i.e.,
{(σ1

i ,U
1
i ), . . . , (σ

t−1
i ,Ut−1

i )} is known. For each time slot in
the past, user vi can infer the congestion that it experienced
based on the action-delay history. The congestion is defined by∑

i′ �=i λ
k
i′j at time slot k = 0, . . . , t− 1, which is the aggregate

load of the users other than vi at a particular relay rj . We

refer to Ck
ij

Δ
= Cj −

∑
i′ �=i λ

k
i′j as the remaining capacity for

time slot k = 1, . . . , t− 1. From (1), the remaining capacities
in the past can be inferred by user vi as Ck

ij = (Uk
ij)

−1 + λk
ij ,

with k = 1, . . . , t− 1. Based on these, we define the congestion
information history of user vi at time t as

ht
i =

{(
λt−S
ij , Ct−S

ij

)
. . .

(
λt−1
ij , Ct−1

ij

)
, j = 1, . . . N

}
(5)

where S < t represents the length of an observation window.
Although user vi does not know σt

−i when making the
decision, it can build a model (before making a decision) to
conjecture the remaining capacity over each relay at time t
based on the congestion information history ht

i. We denote
Bt

i = {C̃ij(h
t
i), j = 1, . . . , N} ∈ (Bi)

N as the set of conjec-
tured remaining capacities, where Bi represents a set of all
possible conjectures C̃ij of user vi over relay rj . Based on Bt

i,
user vi conjectures its expected delay when making a decision
at time t without knowing the exact σt

−i value, which can be
calculated by

Ũ t
i

(
σt

i,B
t
i

)
=

N∑
j=1

λt
ij

λi

1

C̃ij (ht
i)− λt

ij

. (6)

User vi then determines its load balancing decision based on
the following conjecture-based best response.

Definition 3—Conjecture-Based Best Response: We define
the conjecture-based best response of user vi as

πi

(
Bt

i

)
= arg min

σi∈Xi

Ũ t
i

(
σi,B

t
i

)
. (7)

To perform the aforementioned best response, the user only
needs to collect the local information Ii = [{Cj , ∀rj}, ht

i, λi].
Fig. 2 shows the distributed load balancing of user vi. In a
time slot t, all users vi ∈ V first observe their congestion
information history ht

i and then evaluate their conjectures
C̃ij(h

t
i) on the remaining capacities of the paths. Using the

corresponding conjecture functions, they determine their load
balancing actions σt

i ∈ Xi based on the conjecture-based best
response in (7).

Although the users adopt the defined best response, they
may adopt different learning methods to form their conjectures
Bt

i = {C̃ij(h
t
i), j = 1, . . . , N}. In this paper, we discuss the

following two types of users:
1) Naive learners: A naive learner forms the conjectures in-

dependently of its action. For example, the naive learners
can form the conjectures based on the average remaining
capacities that they observed in history ht

i. In this paper,
we assume that the naive learners conjecture the remain-
ing capacities simply based on the latest congestion infor-
mation in ht

i, i.e., C̃ij(h
t
i) = Ct−1

ij , with j = 1, . . . , N [a
special case when S = 1 in (5)].
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Fig. 2. Distributed load balancing in the conjectured-based LBG.

2) Conjecturing learners: A conjecturing learner forms
the conjecture functions, depending on its action. In this
paper, we encapsulate the forward-looking (foresighted)
behavior of the active learning using a simple linear
conjecture function, and we will show in Section V that it
works well in practice.

Definition 4—Linear Conjecture Function: We design the
conjecture function of a conjecturing learner vi to be a linear
function, i.e.,

C̃ij

(
ht
i

)
= β

(0)
ij

(
ht
i

)
+ β

(1)
ij

(
ht
i

)
λij ∀rj (8)

where β
(k)
ij (ht

i), k = 0, 1, are the coefficients of the conjecture
functions.

E. Conjecture-Based LBG and the CE

We define the multiuser interaction in the distributed decision
making in the previous subsection with the following game
definition:

Definition 5—Conjecture-Based LBG: We consider the
conjecture-based LBG as a stage game that is represented by
the following tuple 〈V,X ,B,U〉:

1) V = {VN ,VC}: the set of players (users), which can be
either naive learners in a set, i.e., VN ⊂ V, or conjectur-
ing learners in a set, i.e., VC ⊂ V;

2) X = X1 × · · · × XM : the action space of the users;
3) B = B1 × · · · × BM : the conjecture space of the users;
4) U = {Ũi, ∀vi}: a set of conjectured delays of the users.
In this paper, we assume that users minimize the conjectured

delay by performing the conjecture-based best response in (7).
Next, we discuss the equilibrium concepts that can emerge in
the conjecture-based LBG.

Proposition 1—Unique NE: When V = VN , a unique pure
strategy NE that is described by σ∗ exists. Given the remaining
capacity C∗

ij at the equilibrium, the load balancing action of
user vi is given by

λ∗
ij = max{0, C∗

ij − α∗
ijR} (9)

where R
Δ
=

∑N
j=1 Cj −

∑M
i=1 λi is a constant that represents

the overall remaining capacity. α∗
ij = (

√
C∗

ij/
∑N

j=1

√
C∗

ij)
represents the optimal fraction of the overall remaining capacity
that user vi should allocate over relay rj to minimize its end-to-
end delay.

Proof: If all the users are naive learners, at the equi-
librium, they will passively form a correct belief Ct−1

ij =

Ct
ij = C∗

ij . Hence, the best response of user vi becomes σ∗
i =

argminσi∈Xi

∑N
j=1(λij/C

∗
ij − λij). The optimal actions in

(9) can be obtained by solving this optimization, as shown
in [17]. �

Proposition 1 provides the equilibrium concept when all
users are naive learners in the conjecture-based LBG. However,
when there are conjecturing learners in the LBG, the equilib-
rium concept is captured by the CE. The CE was first discussed
by Hahn in the context of a market model [21] and used in [20]
for coordination among wireless users. We next discuss the CE
in the conjecture-based LBG context.

Definition 6—CE of the LBG: Action σ∗ ∈ X is the CE of
the LBG if, for each user vi ∈ V, the following two conditions
are satisfied:

i) C̃∗
ij = Cj −

∑
i′ �=i λ

∗
i′j ∀rj .

ii) σ∗
i = argminσi∈Xi

Ũi(σi,B
∗
i (σi)) ∀vi, where B∗

i de-
notes the conjecture function at the equilibrium.

Since the conjecture functions of the naive learners are
independent of their actions, it can be easily seen that the
aforementioned two conditions are satisfied at the NE when all
the users are naive learners. Hence, the NE is a special case of
CE. The first condition states that the conjectured remaining
capacities at the equilibrium are consistent with the actual
remaining capacities. The second condition states that action
σ∗ ∈ X minimizes the expected end-to-end delay. However, as
long as an action consistently optimizes the expected utility, a
user can still keep selecting the same action given its imperfect
conjectures. In this case, the first condition can be relaxed. For
this, we define an extension of the conventional CE, where
users’ actions converge to the equilibrium based on imperfect
conjectures.

Definition 7—ε-CE of LBG: The ε-CE is defined as σ∗ ∈
X if, for each user vi ∈ V, the following two conditions are
satisfied:

i) |C̃∗
ij − Cj +

∑
i′ �=i

λ∗
i′j | ≤ ε ∀rj ∀vi.

ii) σ∗
i = arg min

σi∈Xi

Ũi(σi,B
∗
i (σi)) ∀vi. (10)

The goal of this paper is to develop simple belief formation
techniques in the conjecture-based LBG that allow the users to
interact without message exchanges and reach efficient ε-CE.
In Table I, we first summarize the solutions proposed in this
paper. Unlike the centralized coordination solution and the
distributed best response solution, which require explicit mes-
sage exchange, we propose conjecture-based load balancing
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TABLE I
SUMMARY OF THE INTRODUCED SOLUTIONS

methods, which are able to reach efficient outcomes (through
appropriate belief formation) without message exchanges. We
will investigate two cases that drive the load balancing so-
lution σ∗ to the ε-CE that corresponds to the system-wide
optimal solution σP without the need to exchange messages.
In Section III, we will focus on the case when the system has
only one conjecturing learner, and then, in Section IV, we will
study the case when every user in the LBG is a conjecturing
learner.

III. CONJECTURE-BASED LOAD BALANCING WHEN

THERE IS ONLY ONE CONJECTURING LEARNER

Without loss of generality, we assume in this section that
user v1 is the conjecturing learner and the other users are
naive learners in the conjecture-based LBG. The conjecturing
learner serves as a leader in the network and is elected based
on the proportion of traffic that it generates.2 We show that,
in this scenario, a simple regression learning can be adopted
by the conjecturing learner to drive the ε-CE to the Pareto
boundary.

A. Linear Regression Learning to Model the Belief Function

The conjecturing learner v1 repeatedly3 updates its conjec-
ture functions C̃ij(h

t
i) in (8) for all the paths based on its

observation of the remaining capacities in its congestion history
information ht

1. Since there are S samples in the history (assum-
ing t > S), the conjecturing learner can update the coefficient
vector βt

1j = [β
(0)t
1j , β

(1)t
1j ] using the following update rule:

βt
1j = (1 − ρt)βt−1

1j + ρtβ̃1j

(
ht
1

)
(11)

2In the multipath setting, to enforce equilibrium, the leader is required to
control a proportion of traffic above a certain predetermined threshold [17]. If
no single users has traffic load above the threshold, users with larger traffic
loads can be combined and elected as the leader with aggregate traffic load
above the threshold.

3Different time scales can be applied for the conjecturing learners to make
sure that the measured remaining capacities Ct

ij are the stable results of the
other naive learners played in the game.

where β̃
T

ij = (XTX)−1XTY , and

X =

⎡
⎢⎣

1 λt−1
ij

...
...

1 λt−S
ij

⎤
⎥⎦

Y =

⎡
⎢⎣
Ct−1

ij

...
Ct−S

ij

⎤
⎥⎦ . (12)

Equation (12) is the standard regression for the degree-1
polynomial conjecture function [22]. ρt in (11) repre-
sents the adaptation rate (0 ≤ ρt ≤ 1), which determines
how rapidly a user is willing to change its conjecture
on the remaining capacities. In this paper, the adapta-
tion rate is determined by ρt = 1 − e−δt , where δt =

(1/L)
∑L

k=1

√
(Ct−k

1j − Ct−k−1
1j )2 + (λt−k

1j − λt−k−1
1j )2 repre-

sents the average distance among the latest L samples in
ht
1 (L < S), which quantifies the diversity of the samples.

The adaptation rate ρt = 1 − e−δt ensures that the adaptation
rate decreases when the latest L samples converge over time.
We assume that the conjecturing learner adopts the simplest
linear regression learning C̃1j(h

t
1) = β

(0)
1j (ht

1) + β
(1)
1j (ht

1)λ1j

and that it starts with an initial load balancing decision σInit
1 .

If the responses of the rest of the naive learners are stable,
the remaining capacity Ct

1j over path rj concentrates to C∗
1j

given the conjecturing learner’s initial decision λInit
1j . Hence,

the adaptation rate goes to 0 (since δt goes to 0), which leads
to a fixed coefficient vector β1j . A new load balancing decision
of the conjecturing learner can be subsequently made based on
β1j . To estimate the error of the linear regression model with
β1j , we also define the maximum residual error as follows:

Definition 8—Maximum Residual Error: The maximum
residual error is defined as error ē(β1j , h

t
1) = maxk=1,...,S |

Ct−k
1j −(β

(0)
1j (ht

1) + β
(1)
1j (ht

1)λ
t−k
1j )|.

The maximum residual error represents the maximum dif-
ference between the remaining capacities of the history sam-
ples and the linear belief function C̃1j(h

t
1) = β

(0)
1j (ht

1) +

β
(1)
1j (ht

1)λ1j through path rj . It quantifies how accurately the



SHIANG AND VAN DER SCHAAR: CONJECTURE-BASED LOAD BALANCING FOR DELAY-SENSITIVE USERS 3989

linear belief function can describe the remaining capacities after
the other naive learners react to the leader’s load balancing
decision.

Proposition 2—Reaching the ε-CE Using the Linear Re-
gression Learning: When |VC | = 1, if the linear regression
learning converges, it converges to the ε-CE of the conjecture-
based LBG with ε = maxrj{ē(β1j , h

t
1)}.

Proof: It is straightforward that, if ε is selected as
the maximum mean residual error, we have |C̃∗

1j − Cj +∑
i′ �=1 λ

∗
i′j | ≤ ε, ∀rj . Hence, the first condition in Definition 7

can be satisfied. Regardless of whether a user is a naive learner
or a conjecturing learner, all users are minimizing their delays
with respect to their beliefs about the other users, and hence,
such an equilibrium is a ε-CE. �

Here, samples {(λt−k
1j , Ct−k

1j ), k = 1, . . . , S} in the conges-
tion information history of the conjecturing learner v1 provide
aggregate information about how the other naive learners react
to the actions of the conjecturing learner in the past. The linear
conjecture function is formed by using the linear regression
based on these samples. In our simulation in Section V, we
verify that the mean residual error of the linear regression is
very small when there is only one conjecturing learner in the
network. Next, we discuss in greater detail the ε-CE in two
different cases, i.e., when the conjecturing learner is altruistic
and when the conjecturing learner is self-interested.

B. Altrustic Conjecturing Learner

An altruistic conjecturing learner is usually the resource
manager in a clustered network [7], e.g., the access point in
the IEEE 802.11 network, or the routing leader in a hierarchical
ad hoc network [14]. An altruistic conjecturing learner has an
objective function that is aligned with system cost, e.g., the
system-wide utility function in (3).

As the conjecturing learner v1 applies the conjecture function
C̃1j(λ1j), the system-wide utility function can become

Ũ sys (σ1,B1(σ1))=
N∑
j=1

Cj−β
(0)
1j −β

(1)
1j λ1j+λ1j

β
(0)
1j +β1j(1)

λ1j−λ1j .

(13)

Then, the altruistic conjecturing learner v1 directly mini-
mizes the system cost4 based on (13), whereas the rest of the
naive learners perform myopic best responses. However, the
conjecturing learner adopts a linear conjecture function, which
may provide only an imperfect estimation of the remaining ca-
pacities. There will be a performance penalty (gap) experienced
by the conjecturing learner between the resulting ε-CE σ∗

alt and
the system-wide optimal solution σP , which is defined as

GAP
(
σ∗

alt,σ
P
)
= U sys (σ∗

alt)− U sys(σP ). (14)

Proposition 3—Reaching System-Wide Optimal Solution
When Only One User Is Conjecturing Learner: When there

4Note that only the system-wide optimal solution is on the Pareto boundary
with weights wi = (λi/

∑
i
λi). For the other solutions on the Pareto bound-

ary, the conjecturing learner needs to know the corresponding weights.

is only one altruistic conjecturing learner vi in the conjecture-
based LBG, the gap between the resulting ε-CE σ∗

alt and σP

will be bounded by

GAP
(
σ∗

alt,σ
P
)
≤ ε

∑
∀rj

Cj(
C∗

ij,alt − λ∗
ij,alt

)2 . (15)

Proof: From the definition of an ε-CE σ∗
alt, the worst case

C̃∗
ij≥C∗

ij(σ
∗
alt)−ε can be considered to bound GAP(σ∗

alt,

σP ). The worst case gap is bounded by GAP(σ∗
alt,

σP )≤
∑

rj
(Cj+λ∗

ij−C∗
ij+ε/C∗

ij−λ∗
ij−ε)−

∑
rj
(Cj+λ∗

ij−
C∗

ij/C
∗
ij − λ∗

ij). Let Kij = Cj + λ∗
ij − C∗

ij and Jij = C∗
ij −

λ∗
ij . For small ε, the first term of the right-hand side

can be simplified as
∑

rj
(Kij + ε/Jij − ε) ∼=

∑
rj
(Kij/

Jij) +
∑

rj
(Kij + Jij/(Jij)

2)ε, and the gap will be bounded

by GAP(σ∗
alt,σ

P ) ≤ ε
∑

rj
(Kij + Jij/(Jij)

2) = ε
∑

rj
(Cj/

(C∗
ij − λ∗

ij)
2). �

Proposition 3 implies that the conjecturing learner is able to
drive σ∗

alt to the system-wide optimal solution when it is the
only conjecturing learner in the conjecture-based LBG and ε is
small.

C. Self-Interested Conjecturing Learner

If the conjecturing learner is self-interested, a conjecturing
learner may have no incentive to sacrifice its own delay
to minimize the system-wide cost. The objective function
of the self-interested conjecturing learner is to minimize
Ui(σi,Bi(σi)) = (1/λi)

∑N
j=1(λij/β

(0)
ij + β

(1)
ij λij − λij).

The following proposition provides the optimal action for the
self-interested conjecturing learner.

Proposition 4—Solution of the Self-Interested Conjectur-
ing Learner: Given the linear conjecture function C̃1j(h

t
1) =

β
(0)
1j (ht

1) + β
(1)
1j (ht

1)λ1j , the optimal action is

λ∗
ij = max

⎧⎨
⎩0, D̃ij − α

(f)
ij

⎛
⎝∑

rj

D̃ij − λi

⎞
⎠
⎫⎬
⎭ . (16)

Portion α
(f)
ij now becomes κij/

∑
rj
κij , where κij =√

β
(0)
ij /(1 − β

(1)
ij ), and D̃ij = β

(0)
ij /(1 − β

(1)
ij ).

Proof: See Appendix A.
Note that, if the conjecturing learner is able to build a perfect

belief on the remaining capacities (i.e., ε = 0), the resulting
CE σ∗

self coincides with the Stackelberg equilibrium (SE) σS

[25] of the game, since the conjecturing learner has perfect
knowledge of the naive learners’ reactions. Hence, we use the
SE σS instead of the system-wide optimal solution σP to
benchmark the self-interested conjecturing learner. The cor-
responding performance gap is defined as GAP(σ∗

self ,σ
S) =

Ui(σ
∗
self)− Ui(σ

S).
Proposition 5—Reaching SE When Only One User Is Con-

jecturing Learner: When there is only one self-interested
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TABLE II
SELF-INTERESTED CONJECTURE-BASED LOAD BALANCING ALGORITHM

conjecturing learner vi in the conjecture-based LBG, the gap
between the resulting ε-CE and the SE will be bounded by

GAP
(
σ∗

self ,σ
S
)
≤ ε

∑
rj

1(
C∗

ij,self − λ∗
ij,self

)2 . (17)

Proof: The gap can be shown to be bounded using a
similar proof as in Proposition 3. The only difference is that the
conjecturing learner is now minimizing its own delay instead of
U sys in Proposition 3.

Proposition 5 implies that the conjecturing learner is able
to drive the ε-CE σ∗

self to the SE σS when it is the only
conjecturing learner in the conjecture-based LBG and the ε
is small. We provide the load balancing algorithm in Table II
that will be followed by the self-interested conjecturing learner.
An illustrative example is given in Fig. 3 for the solutions
introduced in Sections IV-C and D in the two-user case (vi is
the conjecturing learner and v−i is the naive learner). Note that
the SE σS provides a smaller delay compared with σP for the
conjecturing learner vi at the cost of increasing the delay of
the naive learner. This is because it selfishly minimizes its own
delay given that it knows the reaction of the other user, which
is the best payoff that a self-interested conjecturing learner can
achieve.

IV. CONJECTURE-BASED LOAD BALANCING WITH

MULTIPLE CONJECTURING LEARNERS

As mentioned in Section II-E, when there is more than one
conjecturing learner in the network, the multiuser interaction
cannot always reach equilibrium. Moreover, even if the LBG
converges, the CE may differ from the optimal solution desired
by a protocol (see Fig. 3). Here, we discuss the case where
multiple conjecturing learners interact.

Fig. 3. Illustrative example of the solutions in the utility domain for a two-user
case (vi is the conjecturing learner).

A. Impact of Multiple Self-Interested Learners

When the number of self-interested conjecturing learners
increases, larger errors in the belief function (ε in Proposition 5)
tend to occur, which lead to a larger set of ε-CE, as shown
in Fig. 3. Next, we determine the maximum number of self-
interested learners that is allowed in the system to ensure that
the resulting worst-case system performance is bounded.

Proposition 6—Maximum Tolerable Number of Self-
Interested Users: The maximum number of self-interested
learners that can be active in the system while keeping the
worst-case system performance bounded is N = max(1,
argmaxn Λ(n)), s.t.Λ(n) ≤ minj Cj , where Λ(n) represents
the sum of n largest users’ loads.

Proof: Let us consider the worst case scenario where all
the self-interested users select the relay that has minimum
capacity due to a bad belief function. If Λ(n) > minj Cj , then
(C∗

ij,self − λ∗
ij,self) in Proposition 5 becomes 0 in the worst-case

scenario. Hence, the average delay of the self-interested users
that select rj becomes unbounded, as well as the worst-case
system performance. �

To improve the performance of the system when multi-
ple self-interested learners are active in the system, these
self-interested learners need to adhere to the collaborative
rules determined by the protocol designer. Hence, we discuss
next a rule-based linear conjecture mechanism that leads to
the system-wide optimal solution without explicit message
exchange among the users when all conjecturing learners
comply to it.

B. Rule-Based Linear Conjecture Method

We propose an alternative rule-based belief function for the
conjecturing learners in this section. Unlike the linear regres-
sion learning method proposed in Section IV-B computed by
the leader, the rule-based belief function is set by the protocol
designer. We prove that, as long as the users comply with
the rule-based belief function, they can reach the system-wide
optimal solution in a distributed manner, based on their local
information. The following proposition gives the rule-based
belief function parameters.

Proposition 7—Rule-Based Selection of Belief Function
Parameters: A family of belief function parameters B∗

i =
{β∗

ij} ⊆ Bi leads to the rule-based solution σ∗
rule = {λ∗

ij ,
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i=1, . . . ,M, j=1, . . . , N}, where λ∗
ij=max{0, Cij−(

√
Cj/∑N

j=1

√
Cj)R}. This solution σ∗

rule minimizes U sys(σ) and
results in GAP(σ∗

rule,σ
P ) = 0.

Proof: See Appendix B.
A straightforward example for the belief functions in

Proposition 7 can be β
∗(0)
ij = ((Cij)

2/Cj), β
∗(1)
ij = 1 − (Cij/

Cj), ∀vi ∈ V [then (16) in Proposition 4 becomes λ∗
ij =

max{0, Cij − (
√

Cj/
∑N

j=1

√
Cj)R}]. By forcing the users

to use this belief function with [β
∗(0)
ij , β

∗(1)
ij ], the rule-based

solution σ∗
rule can be obtained by the users based on the

remaining capacities Cij . Note that such a rule-based solution is
not the equilibrium of the LBG. It is derived as an optimal rate
allocation based on the utility function U sys(σ) that is defined
in Section II-B (see Appendix B). Specifically, the rule-based
solution λ∗

ij is determined when user vi first joins the network,
and Cij can be regarded as the remaining capacities over path
rj , which user vi determined by probing the network5 before
joining it. Intuitively, it can be seen from Proposition 7 that,
as long as the overall remaining capacity R is distributed to
path rj with the exact fraction (

√
Cj/

∑N
j=1

√
Cj), solution

λ∗
ij is a system-wide optimal solution. Hence, every user needs

to ensure such fractions when it joins the network. Unless the
network setting changes (e.g., variation of Cj), a user’s rule-
based belief formation and the resulting action remain the same
afterward.

If a new user joins a network and the other users present
in the network are already complying with the rules (choosing
β∗
ij), the following condition ensures that the users will have no

incentives to deviate from the rule-based solution.
Proposition 8—Sufficient Condition for Users to Comply

With the Rule-Based Solution: When all the users in the net-
work are conjecturing learners, i.e., VC = V, no users will
deviate from the rule-based solution σ∗

rule (i.e., the rule is self-
enforcing), if λij > 0, ∀vi, ∀rj , and Cj = C, ∀Cj .

Proof: Let us assume that a new user joins the network
and that the users already present in the network comply
with the rule-based solution. Hence, the overall remaining
capacity R is already allocated to different relays according
to fraction (

√
Cj/

∑N
j=1

√
Cj). The new user’s remaining ca-

pacity can be calculated as Cij = (
√

Cj/
∑

j

√
Cj)(

∑
j Cj −∑

i′ �=i λi′). When all the relays have the same capacity and
they are shared by all the users (i.e., λij > 0, ∀vi, ∀rj), frac-
tion (

√
Cj/

∑N
j=1

√
Cj) = (1/N), and hence, Cij = Cij′ =

(1/N)(
∑

j Cj −
∑

i′ �=i λi′). Thus, fraction αij = (
√

Cij/∑N
j=1

√
Cij) in the user’s best response [see (9)] becomes

(
√
Cj/

∑N
j=1

√
Cj). Hence, the rule-based solution σ∗

rule is
the best response for user vi to minimize its own delay, ∀vi ∈
V, when the other users select the rule-based solution. �

In general, when the condition in Proposition 8 is not sat-
isfied, the rule-based solution is not the best response for the
users. Hence, the system-wide optimal solution is not self-
enforcing in this usage scenario.

5Probing can be done by using the similar method as calculating the
remaining capacities in Section II-D. Here, we assume that the probability of
two users simultaneously joining the network is very small.

TABLE III
CONSIDERED NETWORK SETTINGS

So far, two linear conjecture formations are introduced for
a conjecturing learner to build their conjecture functions, i.e.,
using βt

ij = [β
(0)t
ij , β

(1)t
ij ] that applies the linear regression

learning in (11) and using β∗
ij = [β

∗(0)
ij , β

∗(1)
ij ] that applies

the rule-based solution. Importantly, there are two differences
between these two approaches.

a) The first approach allows the conjecturing learners to
build their conjectures about the aggregate response of
the other users (Cij in this paper) based on only local
information. However, the second approach builds the
conjectures for users to follow the optimal rate allocation
that minimizes the system’s cost.

b) The first approach is not suitable for the scenario when
multiple conjecturing learners simultaneously build their
conjectures, because the resulting remaining capacities
become a highly nonlinear function of the loading. The
linear conjecture functions are no longer able to capture
the sample variation in the history, and the resulting
solution becomes inefficient. On the contrary, applying
the second approach is efficient but only when all the
users are willing to comply with the rule-based solution.
However, it is shown that the rule-based solution can
only be self-enforcing in the case that each relay has
the same capacity. Hence, an important topic for future
research is determining how to build for the general-
case self-enforcing rule-based solution without explicit
message exchange among the users. A possible direction
is deploying intervention functions [30].

V. SIMULATION RESULTS

Here, we simulate the conjecture-based LBG in a network
with concentrated paths (two paths) and a network with diverse
paths (ten paths), which are shown in Table III. The concen-
trated setup is representative of numerous network services
that use a backup path for robustness to avoid single point of
failure, see, for example, the similar setup discussed in [2] and
[35]. The diverse setup can represent a larger ad hoc multipath
network scenario, where multiple nodes in the same path are
aggregated into one relay, similar to the setup that is simulated
in [17] and [18], or in cognitive radio networks, where each
relay represents a wireless channel, as in [7]–[10]. We assume
an asymmetric network where the capacities of the relays are
W1 = 8000 pkt/s and Wj = 2000 pkt/s, with j = 2, . . . , N .
The users are assumed to experience traffic that is characterized
by Poisson arrival rates λ1 = 3800 pkt/s and λi = 600 pkt/s,
with i = 2, . . . ,M .
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Fig. 4. Action of the conjecturing learner over time, while participating in the load balancing game [in network settings (a) 1 and (d) 2]. Actual remaining
capacity C1j and the estimated linear belief function C̃1j , with j = 1, 2 [in network settings (b) and (c) 1 and (e) and (f) 2].

A. Single Conjecturing Learner Scenario

We first simulate the case when there is only one conjecturing
learner. User v1 is assumed to be the conjecturing learner, and
the rest of the users are naive learners. Fig. 4(a) shows the
evolution of the action of user v1, i.e., σ1 (which is its load
balancing ratio aij ≡ (λij/λi)) until the system reaches the NE
in network setting 1 (the diverse network). Since relay r1 has
a larger capacity, more traffic will be distributed to relay r1
than to the other relays. Using the learning method proposed
in Section IV-B, the conjecturing learner v1 can determine its
belief functions on the remaining capacities. The circles in
Fig. 4(b) represent the measured remaining capacities C11 at
different load balancing ratios a11 (the samples in ht

1). The solid
line represents the resulting linear regression. The resulting pa-
rameters of the linear belief function are β11 = [0. 375, 4962]
when the linear regression learning converges. The resulting
residual mean square error is ē(β̃ij , h

t
i) = 0. 051. Fig. 4(c)

shows similar results in relay r2. Similarly in network setting 2
(the concentrated network), Fig. 4(d) shows again the evolution
of a1 in a network. The linear regression converges faster in
this setting, since the number of users is smaller. The resulting
parameters of the linear belief function are β11 = [0. 52, 4718]
when the linear regression learning converges. The resulting
residual mean square error is ē(β̃ij , h

t
i) = 0. 012. Based on the

linear belief functions, user v1 then performs the conjecture-
based load balancing in the proposed algorithm in Table II.

Fig. 5 shows the utility domain (i.e., the experienced delays)
when the users interact in the concentrated network setting. The
x-axis is the delay of the conjecturing learner, and the y-axis is
the average delay of the naive learners. By using the belief func-
tion, the simulation results show that the altruistic conjecturing
learner is able to drive the system from the (system) inefficient

Fig. 5. Reaching the system-wide PO solution and the SE.

NE to the system-wide optimal solution on the Pareto boundary
(in which the system queue size U sys is minimized) by using the
belief function. If the conjecturing learner is selfish, it will drive
the system from the NE to the SE. Table IV shows the results at
different equilibriums. When the conjecturing learner is selfish,
it puts more traffic into the efficient relay r1 and forces the
other naive learners to select the other relay, thereby benefiting
its own utility. On the contrary, if the conjecturing learner is
altruistic, it puts less traffic into relay r1 and allows the other
users to myopically select the efficient relay r1, which will
result in an optimal system performance. We also compared
the performance against the well-known weighted round-robin
solution provided in [4], in which the load balancing weight
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TABLE IV
RESULTS AT DIFFERENT EQUILIBRIUMS (CONCENTRATED

NETWORK CASE)

Fig. 6. Delay of the conjecturing learner at different equilibriums for various
numbers of naive learners in the network.

over a path is proportional to the reciprocal of the delay, and
based on the weights, users distribute more load to the path
that provides lower delays. By following this load balancing
solution, eventually, the delays and the remaining capacities
become the same through the paths. However, our system-wide
optimal solution outperforms these results and minimizes the
system performance as proven in Proposition 7. Our system
performance results outperform the existing solutions in all the
various scenarios.

Next, we highlight the impact in terms of delay for the con-
jecturing learner (the foresighted user) and the naive learners
(the myopic users), when there are different numbers of naive
learners in the network. Fig. 6 shows the delay of the conjec-
turing learner at equilibrium, when there are various numbers
of naive learners in the network. The results show that, as the
number of naive learners in the network increases, the altruistic
conjecturing learner will need to tolerate an increase in its ex-
perienced delay to reach the system-wide optimal solution. Be-
yond ten naive learners, the system-wide optimal solution is not
reachable. This situation is also observed in network setting 1
(a diverse network setting). This is because the traffic ratio of
the conjecturing learner to the total traffic in the network is
not large enough to drive the equilibrium to the system-wide

TABLE V
SIMULATION RESULTS IN DIFFERENT SCENARIOS

optimal solution (as discussed in [18]). On the contrary, the
results also show that the conjecturing learner can benefit more
in terms of delay when the number of the naive learners in the
network increases.

B. Multiple Conjecturing Learner Scenario

Here, we simulate the result when there are multiple conjec-
turing learners in the network. We simulate the resulting delays
of the conjecture-based LBG using the concentrated network
setting in the previous subsection. The only difference is that
we now assume that all the eight users have traffic with the
Poisson arrival rate xi = 1 Mb/s. Hence, the total traffic rate is
still 8 Mb/s (assuming 1000 bits/packet). These users can select
three different load balancing solutions, i.e., the rule-based
solution (RB) in Section IV-A, the self-interested conjecture-
based solution (SF) in Section III-C, and the myopic solution
(MY) in Section II-C. We discuss eight different scenarios in
Table V. As a first benchmark (scenario 1), we deployed the
weighted round-robin strategy proposed in [4]. In scenario 2,
we simulate the case when all users are myopic (similar to the
all-follower case in [18]). Then, we add a self-interested conjec-
turing learner, similar to the simulation results in the previous
subsection. The self-interested conjecturing learner can have a
smaller delay when the rest of the users are myopic (similar to
the leader case in [18]). Next, we develop a worst case analysis.
Based on Proposition 6, we can determine that the maximum
tolerable number of self-interested learners is 2. When the num-
ber of these self-interested conjecturing learners is larger than
3, the average delay of these selfish conjecturing learners can
be even worse than the average delay, which they experience
when they adopt a myopic load balancing strategy. Hence,
this gives incentives for these conjecturing learners to collab-
orate with each other. The rule-based solution (scenario 6)
provides the minimum average delay for all the conjecturing
learners and the minimum queue size of the system (minimum
U sys). However, we can see that, once a selfish user deviates
from the rule, both the delay of the selfish user and the system
queue size U sys increase (scenario 7). Thus, if a conjecturing
learner joins a network where the other users already comply
with the rule-based solution, the users should collaborate with
each other for their own benefit. Hence, their collaboration is
self-enforcing rather than mandated by a protocol designer.
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Moreover, comparing scenarios 8 and 4, we see that, even when
the rest of the users are myopic, the three conjecturing learners
will still have incentives to perform the collaborated rule-based
solution. However, the delay performance seriously degrades
when some conjecturing learners deliberately deviate from the
prescribed rules, as we set two users to select SF in scenario 9
(these users can be categorized as malicious users). In this case,
the rest of the conjecturing learners will have no incentive to
comply with the rule-based solution. They will all become self-
interested as in scenario 5.

VI. CONCLUSION

In this paper, we have studied the distributed load balancing
problem in multiuser multipath networks. Although we have
used a multipath network setting, it is important to note that
the proposed method can be applied to other load balancing
resource sharing systems. We have modeled the multiuser in-
teraction using a conjecture-based LBG where naive learners
and conjecturing learners coexist in the network. We have
investigated two different operation scenarios. In the single
conjecturing learner scenario, we have found that achieving
the system-wide efficient solution is possible with no message
exchanges among users, as long as the conjecturing learner
is not selfish. In the scenario where multiple users are the
conjecturing learners, we have shown that the resulting per-
formance degrades when users are learning in an autonomous
manner. Hence, we have discussed a rule-based solution for the
conjecturing learners to collaboratively build the conjectures
that minimize the system queue size in this paper. We have
shown that, in such a multipath network, delay-sensitive users
can efficiently minimize their delays when there is only one
conjecturing learner managing the network or when all of the
users comply with the rule-based solution. We have shown
that, when each relay has the same capacity, the prescribed
rule-based solution can be self-enforcing. Otherwise, the con-
jecturing learners can still minimize their own delays by au-
tonomously building conjectures.

APPENDIX A
PROOF OF PROPOSITION 5

First, we see that the objective function is a convex function,
given that 0 ≤ β

(1)
ij ≤ 1, β(0)

ij ≥ 0. Assume μ as the Lagrange
multiplier. For ∀rj ∈ Fi, the optimality conditions are

β
(0)
ij(

β
(0)
ij + β

(1)
ij λij − λij

)2 = μ ⇒ λij = D̃ij −
√

1
μ
κij .

(18)

From constraint
∑N

j=1 λij = xi, we have

√
1/μ =

⎛
⎝∑

rj

D̃ij − λi

⎞
⎠ /

∑
rj

κij . (19)

By substituting (19) into (18), we have λij = D̃ij −
α
(f)
ij (

∑
rj
D̃ij − λi) for the λij > 0 case. �

APPENDIX B
PROOF OF PROPOSITION 8

Denote the total traffic through rj as λj =
∑M

i=1 λij . As-
sume μ = [μi, i = 1, . . . ,M ] as the Lagrange multipliers. The
Lagrange function of minimizing U sys(σ) can be written as

L(σ,μ) =
N∑
j=1

∑M
i=1 λij

Cj −
∑M

i=1 λij

+

M∑
i=1

μi(λi −
N∑
j=1

λij).

(20)

For those λij > 0, the optimality conditions are

Cj

(Cj − λj)
2 = μi ⇒ λj = Cj −

√
Cj

μi
∀vi ∈ V. (21)

Since we assume the nonsaturated condition, condition∑N
j=1 λj =

∑M
i=1 λi holds. Based on this, we can calculate the

Lagrange multipliers, i.e.,√
1
μi

=

(∑
rj
Cj −

∑
rj
λj

)
∑

rj

√
Cj

∀vi. (22)

Hence, the optimum solution will be

λ∗
j = Cj −

√
Cj∑

rj

√
Cj

⎛
⎝∑

rj

Cj −
∑
rj

λj

⎞
⎠ . (23)

From the given β
∗(0)
ij =((Cij)

2/Cj) and β
∗(1)
ij =1−(Cij/Cj),

we have D̃ij = Cij and κij =
√
Cj (see the definitions in

Proposition 5). We see that λ∗
ij=max{0, Cij−(

√
Cj/

∑
rj√

Cj)R} is realized for all users. Then

M∑
i=1

λ∗
ij =

∑
vi∈Ψ

(
Cij −

√
Cj∑

rj

√
Cj

Ri

)

=
∑
vi∈Ψ

Cij −
√
Cj∑

rj

√
Cj

⎛
⎝∑

vi∈Ψ

⎛
⎝∑

rj

Cij − λi

⎞
⎠
⎞
⎠
(24)

where Ψ represents a set of users whose λ∗
ij > 0. Denote P =

|Ψ| as the size of this set. Then, (24) can be viewed as

λj =

M∑
i=1

λ∗
ij

=PCj − Pλj + λj −
√
Cj∑

rj

√
Cj

×
(∑

rj
PCj−

∑
rj
Pλj+

∑
rj
λj−

∑
vi∈Ψ xi

L

)

⇒ λj=Cj−
√

Cj∑
rj

√
Cj

⎛
⎝∑

rj

Cj−
∑
rj

λj

⎞
⎠=λ∗

j . (25)

Hence, the solution is the optimal solution. �
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