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Abstract—In this paper, we study the problem of dynamic
resource management for delay-sensitive users over wireless net-
works. We focus on a decentralized setting, where autonomous
users make self-interested decisions to maximize their utility func-
tions as evaluated based on information feedback. In this paper,
two types of information feedback are discussed. One is the private
information feedback between a transmitter–receiver pair. The
other is the public information feedback among users (i.e., different
transmitter–receiver pairs). Due to the informationally decentral-
ized nature of the wireless network, a user cannot have com-
plete information about the transmission actions of its interfering
neighbors. However, the user can implicitly or explicitly model the
transmission strategies of its major interference sources based on
the information feedback. In this paper, we provide an interac-
tive learning framework for distributed power control of delay-
sensitive users over multicarrier wireless networks. Specifically,
the user can adopt corresponding interactive learning schemes to
explicitly model the other users’ strategies if public information
feedback is available or to implicitly model the impact of other
users’ actions on its utility if only private information is available.
Based on these models, the user creates beliefs and is able to strate-
gically adapt its decisions to maximize its utility. We determine
the performance upper bounds for the user’s utility when learning
from private or public information feedback and investigate the
cost-performance tradeoffs resulting from the information feed-
back gathered with different frequencies and from various users.
The simulation results show that the proposed adaptive interactive
learning approach significantly improves the energy efficiency of
delay-sensitive users compared with schemes that perform myopic
best response.

Index Terms—Delay-sensitive applications, information feed-
back, interactive learning, power control.

I. INTRODUCTION

DYNAMIC resource management is an important problem
in wireless networks. Prior literature has investigated

dynamic resource management for path selection (routing) [1],
time sharing [2], frequency channel selection [3], [4], power
allocation [5], [8], [13], etc. In this paper, we focus on the
noncooperative decentralized setting, where autonomous users
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make decisions on accessing resources based on their current
knowledge about their opponents, as determined from infor-
mation feedback. Such information feedback is essential for
decentralized dynamic resource management since in infor-
mationally decentralized wireless networks, it is impossible
for a user to know the exact actions of the other users that
are sharing the network. Hence, it is important to investigate
how users can dynamically adapt their current decisions to
maximize the expected utility based on available information
feedback. We focus on the joint power-spectrum allocation for
dynamic resource management in wireless networks since the
interference at the physical layer results in a strong coupling
between the transmission actions (i.e., the power/frequency
channel selections) of the competing users. However, the pro-
posed solution can also be used in other decentralized dynamic
resource-management problems.

Joint power and spectrum resource-allocation research has
attracted a lot of attention in recent years [7]–[12]. For the
multiuser case to maximize the overall throughput, the resource
allocation problem becomes very complicated since the wire-
less mutual interference among users results in a nonconvex
optimization problem [7]. The computational complexity of the
centralized approaches becomes prohibitive as the number of
users increases. Moreover, the centralized approaches require
the propagation of global control information back and forth to
a common coordinator, thereby incurring heavy signaling over-
head [5]. Hence, decentralized solutions, such as the “iterative
water filling” [8], are more desirable in practice.

Recently, game-theoretic concepts have been applied to deal
with the decentralized resource allocation problem [9]–[13]
using various utility functions. For example, in [9], noncooper-
ative power control games were constructed, where each user
possesses an energy-efficient utility function. The existence
and the uniqueness of Nash equilibrium in such a noncoop-
erative game were studied extensively. In [9] and [10], other
than maximizing the throughput, users maximize a ratio of
throughput over the transmitted power (measured in bits/joule).
In [11] and [12], a pricing mechanism was employed to provide
Pareto-efficient solutions [20] by adopting an additional penalty
term that is associated with the power consumption in the
utility function. In [13], a reinforcement learning approach
for the noncooperative game is proposed, and the convergence
property of the reinforcement approach was studied.

In short, previous research mainly concentrates on studying
the existence and the performance of Nash equilibrium in
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Fig. 1. (a) Conventional distributed power control. (b) Payoff-based interactive learning with private information feedback. (c) Model-based interactive learning
with public information feedback.

noncooperative games or developing efficient algorithms to
approach the Pareto boundary. However, prior research does
not consider the users’ availability of information feedback
from various users and ignores the performance degradation
when the actions of the other users are not modeled accurately.
Note that without a central coordinator, multiple users that are
sharing the same wireless network need to manage their local
resources based on the available information feedback. Hence,
the best response strategy of a selfish user making decisions in
the noncooperative game based on “limited” (incomplete) in-
formation feedback [5] still needs to be determined. Intuitively,
a “foresighted” user with more information should be able to
gain more benefits in such a noncooperative game. However,
such information feedback is not costless. In practical systems,
heavy signaling overhead can degrade the users’ performance
[17]. Therefore, it is important to investigate what is the benefit
that a user can derive from gathering more information feed-
back, which allows it to better model the competing wireless
users, while explicitly considering the cost of feeding back the
information.

In this paper, we investigate two types of information feed-
back for autonomous self-interested users (transmitter–receiver
pairs) participating in the power control game. The transmitters
will select the transmitting power levels and the frequency
channels by maximizing the utility function based on two types
of information feedback.

1) Private information feedback. To evaluate the utility
function, transmitters actually require their receivers to
provide important channel state information—the signal-
to-interference-plus-noise ratio (SINR). The SINR value
contains the aggregate effect of other users’ actions, and
this value can only be measured at the receiver side.
Such information needs to be fed back to the transmitter
to make decisions. This information feedback between
the transmitter–receiver pair is referred to as the private
information feedback.

2) Public information feedback. When noncooperative users
have incentives to exchange information (depending on
the communication protocols, such as in [18]), explicit
information feedback about the other users’ actions en-
ables a user to directly efficiently model the other users
and, hence, improve the accuracy of the utility evaluation

resulting from taking different actions. Even when users
are noncooperative, they can still reveal their action infor-
mation to others to maximize their own utilities [21]. This
explicit information feedback among users is referred to
as the public information feedback.

Note that the private information feedback contains implicit
information about the actions of the other users in the network.
On the other hand, by gathering public information feedback,
users can explicitly model their opponents. Due to the infor-
mationally decentralized nature of the wireless network, when
a user makes decisions, the user does not know the exact
transmission actions that its interfering neighbors will take. If a
user is foresighted, which means that it can predict the exact
actions of its competing users by exploiting the experienced
information feedback, its performance can be improved [3],
[21]. This requires the user to learn the transmission strategies
of its major interferers through interactive learning [19] based
on the available information feedback. Fig. 1 illustrates the
differences of the conventional distributed power control and
the proposed power control using interactive learning. We dis-
cuss two classes of interactive learning schemes—payoff-based
learning and model-based learning—which require different
types of information feedback. In this paper, we assume that the
information feedback is truthful and error-free1 and investigate
how to adapt the information feedback to enable a user to
maximize its utility in different network scenarios through
interactive learning.

We focus on the problem of delay-sensitive applications
that are sharing the same wireless network. Due to the delay
sensitivity, the utility of a user is dramatically impacted by the
applications of other users. This provides the user an additional
incentive to adopt a better learning scheme since it cannot wait
a long time to transmit the packets. To cope with the delay
sensitivity, we need to consider not only the impact of the
effective throughput over the wireless network but the source
traffic characteristics as well, including the source rates and the
delay deadlines of the applications.

1In this paper, we will assume that the public information is transmitted
accurately. However, if it is believed that malicious users are presented in the
system, a mechanism design can be used to compel users to truthfully declare
their information (see [6]).
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Fig. 2. System diagram of the dynamic joint power-spectrum resource allocation.

In summary, this paper aims to make the following
contributions.

1) Feedback-driven interactive learning framework. We de-
velop a feedback-driven learning framework for distrib-
uted power control of delay-sensitive users. Depending
on the available information feedback, a user can form
beliefs using interactive learning about what should be
its expected future utility for the various actions or about
the transmission strategies of its major interferers based
on which it can compute the impact of its actions on its
expected future utility.

2) Cost-performance tradeoff of interactive learning. We
characterize the cost of information feedback by explic-
itly considering 1) from whom (i.e., from which transmit-
ters or receivers) this information is obtained and 2) how
often such information is obtained (i.e., the frequency
of getting feedback). We quantify the cost-performance
tradeoff when learning from different information feed-
back and show how to adapt the information feedback to
maximize the learning efficiency.

3) Analytical upper bounds based on interactive learning.
We also quantify the utility upper bounds that can be
achieved by a user through learning based on private or
public information feedback.

4) Outperforming the Nash equilibrium performance in the
power control game. We consider learning solutions
based on both the private and public information feed-
back, which maximize the expected user’s utility rather
than myopically optimizing the immediate (current) util-
ity. These learning solutions outperform the Nash equilib-
rium performance, which is achieved when users deploy
myopic best response, such as iterative water filling [8].

This paper is organized as follows. In Section II, we discuss
the considered network settings and formulate the studied
informationally decentralized dynamic resource management
problem among wireless users that are competing for resources
with incomplete information. In Section III, we characterize the
information feedback and discuss the cost-performance tradeoff
of the information feedback. Based on the type of information
feedback, we introduce two classes of interactive learning

solutions and discuss how to adjust the information feedback
to improve the learning efficiency. In Section IV, payoff-based
learning is discussed, which employs only private information
feedback. In Section V, we introduce model-based learning,
which requires public information feedback. Section VI presents
simulation results, and Section VII concludes this paper.

II. NETWORK SETTINGS AND PROBLEM FORMULATION

A. Network Settings

We assume that there are V users (m1, . . . ,mV ) that are si-
multaneously transmitting delay-sensitive applications over the
same wireless infrastructure. A network user mv is composed
of a source node ns

v (transmitter) and a destination node nd
v

(receiver) that can establish a direct communication connec-
tion, i.e., mv = {ns

v, nd
v}. We assume that there are multiple

frequency channels for users to transmit their applications, and
F is the set of all channels. An illustrative network example is
depicted in Fig. 2.

B. Actions and Strategies

We consider a fully distributed setting where each user
attempts to maximize its own utility function by selecting the
optimal frequency channels and transmitted power levels in the
selected channels. We assume that only frequency channels in
the set Fv ⊆ F are available to user mv . Network user mv

transmits its application through one of the available frequency
channels fv ∈ Fv with a power level 0 ≤ Pv ≤ Pmax

v . In this
paper, we assume that the transmit power level can take a
discrete set of values in the set Pv . Hence, we define the
action of a user mv as Av = [fv, Pv] ∈ Av = Fv × Pv . We
assume that Sv(Av) represents the probability that a user mv

takes Av as its action. The strategy2 of user mv is defined as
a probability distribution Sv = [Sv(Av), for Av ∈ Av] ∈ Sv ,
where Sv is a set of probability distributions over all feasible
actions Av ∈ Av .

2The strategy that is defined in this paper can be regarded as a mixed strategy,
and the action that is defined in this paper can be regarded as a pure strategy in
game theory [20].
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Fig. 3. (a) Throughput Bv versus Pv in a selected frequency channel fv with fixed interference. (b) Utility uv versus Pv in a selected frequency channel fv

with fixed interference.

Let Gvv′(fv) represent the channel gain from the transmitter
ns

v′ of the user mv′ to the receiver nd
v of the user mv , which is

related to the distance of the two nodes and channel characteris-
tics. Let Gv = {Gvv′(fv), ∀ns

v′ , ∀fv} denote a set of channel
gains from all the transmitters ns

v′ to the receiver nd
v of user

mv . The SINR γv that is experienced by user mv in frequency
channel fv depends on the user’s action Av and the actions of
all the other users, which are denoted as A−v , i.e.,

γv(Av, A−v) =
Gvv(fv)Pv

Nfv
+

∑
v′ �=v,fv′=fv

Gvv′(fv)Pv′
(1)

where Nfv
represents the additive white Gaussian noise level in

the frequency channel fv . The term
∑

v′ �=v,fv′=fv
Gvv′(fv)Pv′

represents the mutual interference coupling from the other
users. The effective throughput that is available at a trans-
mitter ns

v depends on the experienced SINR γv , and it is
denoted as Bv(Av, A−v) = Tv(fv)(1 − pv(γv)), where Tv(fv)
and pv(γv) represent the maximum transmission rate and the
packet error rate of user mv using the frequency channel fv,
respectively.

C. Delay-Sensitive Applications

We assume that users are transmitting delay-sensitive appli-
cations. The packet arrival process of a user mv is assumed
to be Poisson with mean arrival rate λv . The delay deadline
of the packets of user mv is dv . We assume that each user
maintains a buffer at its transmitter, and that the arriving packets
that cannot be transmitted immediately will be queued in the
buffer. The effective throughput Bv(Av, A−v) is independent
of the packet arrival process. Hence, there will be queuing
delay and transmission delay. We denote the total delay as
Dv , which is a random variable depending on arrival rate
λv and effective throughput Bv(Av, A−v). The packet loss
rate is defined as the probability of when this delay exceeds
the packet delay deadline, i.e., Prob{Dv(λv, Bv(Av, A−v)) >
dv}. Therefore, the rate of successfully received packets is
λvProb{Dv(λv, Bv(Av, A−v)) ≤ dv}.

D. Utility Function Definition

We assume that the users attempt to maximize their energy-
efficient utility functions (measured in bits/joule) similar to [9].

The difference is that we also consider the packet loss due to the
expiration of the delay deadline for delay-sensitive applications.
The utility function of a user mv is

uv(Av, A−v) =
λvProb {Dv (λv, Bv(Av, A−v)) ≤ dv}

Pv
. (2)

The utility function reflects the expected number of packets that
are successfully received (rather than transmitted as in [9]) per
joule of energy that is consumed for delay-sensitive users. More
details about how this utility function can be computed in a
practical communication setting can be found in Appendix A.
Fig. 3 illustrates the utility function of a user mv using different
power 0 ≤ Pv ≤ Pmax

v in a selected frequency channel fv

with fixed interference. We denote the power of user mv that
maximizes the utility function when transmitting in channel fv

as P tar
v (fv).

E. Problem Formulation

Let Amyop
−v represent the latest actions of the other users

that are observed by a user mv in the network. Conventionally,
user mv adopts myopic distributed optimization, which can be
formulated as

Amyop
v = [fmyop

v , Pmyop
v ] = arg max

Av∈Av

uv (Av,Amyop
−v ) . (3)

In [9], it was shown that the myopic best response Amyop
v

converges to the Nash equilibrium under certain conditions
on channel gains. However, if a foresighted user mv knows
the exact response actions of other users Afors

−v (Av), better
performance can be achieved [20]. Let Afors

−v (Av) represent the
actions of the other users given that action Av is taken by user
mv. The optimization that is performed by a foresighted user
can be formulated as [20]

Afors
v =

[
f fors

v , P fors
v

]
=arg max

Av∈Av

uv

(
Av,Afors

−v (Av)
)
. (4)

Let us assume that only one user is foresighted, and all the
other users in the network still adopt a myopic best response.
Given the exact response actions Afors

−v (Av), the foresighted
decision making based on the complete information of the other
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Fig. 4. Interactions among users and the foresighted decision making based
on information feedback.

users will converge to the Stackelberg equilibrium [20], and the
optimal utility is denoted as

Uv

(
Afors

−v (Av)
)

= max
Av∈Av

uv

(
Av,Afors

−v (Av)
)
. (5)

However, due to the informationally decentralized nature of the
wireless networks, it is impossible for each user to know, in
practice, the exact response actions Afors

−v (Av). Hence, accu-
rately modeling the actions Afors

−v (Av) based on the information
feedback is necessary.

Definition 1: Denote the information feedback of user mv at
time slot t as It

v regardless of whether the information feedback
is private or public. We define the observed information history
of user mv at time slot t as ot

v = {It
v, ot−1

v }.
Assume that the strategy of user mv at time slot t is denoted

as St
v . We use the notation M−v to indicate the set of all users

except user mv. The strategy of all users in the network, except
user mv , is St

−v = {St
u, for mu ∈ M−v}.

Definition 2: Since the exact response actions of other users
Afors

−v are not available to user mv in real time, user mv

estimates Afors
−v by building a belief on the other users’ strate-

gies St
−v . The belief of user mv is defined as S̃t

−v(Av) =
{S̃t

−v(A−v|Av), for all Av ∈ Av}, where S̃t
−v(A−v|Av)3 are

the estimated strategies of the other users given that user mv

decides to take action Av .
In other words, user mv estimates the other users’ strategies

S̃t
−v(Av) for each of its action Av ∈ Av .4

Definition 3: Assume that Λv represents the interactive
learning scheme that is adopted by user mv . A learning scheme
Λv is defined as a method that allows user mv to build a belief
S̃t
−v = Λv(ot

v)5 based on the observed information history ot
v

to estimate the actions of other users Afors
−v .

Specifically, by learning from the observed information his-
tory ot

v, user mv builds its belief S̃t
−v on the other users’

strategies and determines its own best response strategy St
v .

Fig. 4 illustrates how a delay-sensitive user makes decisions
based on the observed information history ot

v and the mutual

3S̃t
−v(Av) = {S̃t

−v(Au ∈ Au|Av), for mu ∈ M−v} and S̃t
−u(Au ∈

Au|Av) = [S̃t
u(Au|Av), for Au ∈ Au] represent the conditional probability

distributions when user mv takes action Av .
4Based on the different types of information feedback, user mv may implic-

itly model the other users by only estimating the aggregate effect of the other
users. See Section IV for more details.

5For representation convenience, we use the simplified notation Afors
−v to

represent Afors
−v (Av), Av ∈ Av , as the exact response actions of other users.

Also, we use S̃t
−v to represent S̃t

−v(Av) in the rest of this paper.

interference coupling in the dynamic wireless environment. The
problem in (4) can be now reformulated as

St
v

(
S̃t
−v

)
= arg max

Sv∈Sv

E(Sv,S̃t
−v)

[
uv

(
Sv, S̃t

−v

)]
. (6)

Based on the determined St
v , user mv selects an action Av at

time slot t.

F. Learning Efficiency

The performance of an interactive learning approach depends
on how accurate the belief S̃t

−v = Λv(ot
v) can predict the

actions Afors
−v . A more accurate prediction of Afors

−v can lead
to better learning efficiency. We define the learning efficiency
Jv(Λv(ot

v)) of the learning approach Λv (based on the observed
information history ot

v) by quantifying its impact on the ex-
pected utility, i.e.,

Jv

(
Λv

(
ot

v

)) Δ= E(St
v,S̃t

−v)
[
uv

(
St

v,Λv

(
ot

v

))]
(7)

where

E(St
v,S̃t

−v)
[
uv

(
St

v,Λv

(
ot

v

))]

=
∑

Av∈A

⎛
⎝St

v(Av)

⎛
⎝ ∑

A−v∈AV −1

S̃t
−v(A−v|Av)uv(Av, A−v)

⎞
⎠
⎞
⎠ .

(8)

The notation S̃t
−v(A−v|Av) is used to represent the joint prob-

ability that the users mu ∈ M−v take actions A−v , given that
user mv took the action Av .

Since the belief S̃t
−v is only a prediction for Afors

−v , we
define the price of imperfect belief (PIB) for using the learn-
ing scheme Λv based on the observed information history
ot

v as the performance difference between the Stackelberg
equilibrium [21] Uv(Afors

−v ) (where user mv knows the exact
response of the other users) and the practical learning efficiency
Jv(Λv(ot

v)), i.e.,

ΔP

(
Λv

(
ot

v

)) Δ= Uv

(
Afors

−v

)
− Jv

(
Λv

(
ot

v

))
. (9)

In the next sections, we quantify the cost of the information
feedback It

v and study two classes of interactive learning ap-
proaches Λpriv

v and Λpub
v based on different types of informa-

tion feedback.

III. INFORMATION FEEDBACK FOR

INTERACTIVE LEARNING

A. Characterization of Information Feedback

In this paper, we define the entire information history from
all users until time slot t as

ht = {γs
v ,Gs

v, As
v, for v = 1, . . . , V, s = 0, . . . , t} . (10)

Note that a user mv observes only a subset of the entire his-
tory through information feedback, i.e., ot

v ⊆ ht. The observed
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information history ot
v can be characterized in three distinct

categories.
1) Types of information feedback. As mentioned before,

there are two types of information that a user mv can
observe at a certain time slot t, i.e., the private informa-
tion feedback It,priv

v = {γt−1
v } or the public information

feedback It,pub
−v = {Gt−1

u , At−1
u , for mu ∈ M−v}. Re-

call that ot
v = {It

v, ot−1
v } in Definition 1.

2) Information zone. We define the information zone Vt
v as

a set of users that are able to feed back information to
the transmitter of user mv at time slot t. In the wireless
communication networks, the information from further
users is less significant since the effect of mutual inter-
ference coupling decreases [Gvv′ decreases in (1)] as the
distance increases [14]. Hence, user mv can selectively
collect the information only from a set of neighboring
(e.g., within an information horizon as in [17]) users
mu ∈ Vt

v , i.e., It,pub
−v = {Gt−1

u , At−1
u , for mu ∈ Vt

v}.
Since the information zone of the private information
feedback only contains user mv itself, we define |Vt

v| =
0 for It,priv

v = {γt−1
v }.

3) Information feedback frequency. In our problem formula-
tion in (6), user mv can obtain the information feedback
and make decisions during every time slot. However, in
practice, user mv can obtain the information feedback at
different time scales. Assume that user mv observes the
information feedback for every τv time slot (τv ∈ Z

+).
Define ωv = 1/τv as the frequency of the information
feedback, 0 ≤ ωv ≤ 1. Let ωv = 0 represent the case
when no information feedback is obtained. Let Tt

v rep-
resent the set of time slots before time slot t at which user
mv obtains information and makes decisions, i.e., Tt

v =
{(s0

v + kτv), k = 0, 1, . . . ,Kt
v}, where s0

v is the initial
time slot that a user mv obtains information and starts
making decisions. The number of decisions that are made
by user mv up to time t is equal to Kt

v = �(t − s0
v)/τv�,

where �•� is the floor operation. The observed informa-
tion history now becomes ot

v = {Is
v , for s ∈ Tt

v}.

B. Cost-Performance Tradeoff When Adjusting
the Information Feedback

Let us denote the information feedback overhead of user
mv as σv(ωv, |Vv|),6 which is a function of the information
feedback frequency ωv and the number of the neighboring users

6Note that for private information feedback, the information overhead σv

only depends on ωv(|Vv | = 0).

|Vv|. In general, with more frequent information feedback (i.e.,
a larger ωv) or feedback from more users (i.e., a larger |Vv|),
a user can obtain more information from the entire information
history ht, and hence, this results in a more accurate belief. On
the other hand, large information overhead σv(ωv, |Vv|) can
degrade the learning efficiency Jv(Λv(ot

v)).
In this paper, we assume that the packet transmission and

the information feedback are multiplexed in the same frequency
channel. Hence, considering the information overhead, the ef-
fective throughput can be represented as B′

v(σv, Av, A−v) =
Bv(Av, A−v) × θ(σv), where 0 < θ(σv) ≤ 1 represents the
fraction of time that is dedicated to the packet transmission,
and it is a decreasing function of σv. Given Afors

−v , the utility
function in (2) can be derived as (see Appendix A for more
details) given in (11) and (12), shown at the bottom of the
page, where Lv represents the average packet length of user
mv. Note that both B′

v(σv, Av, A−v) and Fv(σv, γv(Av, A−v))
are decreasing functions of σv . Hence, the utility function is a
nonincreasing function of σv .

Intuitively, if σv is large, the belief S̃t
−v provides an accurate

model on Afors
−v . On the other hand, if σv is small, the belief

S̃t
−v provides an inaccurate model on Afors

−v . By having more
information ot

v ⊆ ht, increasing σv can improve the learning
efficiency.

Proposition 1. Optimal Information Feedback Overhead:
For a given learning scheme Λv , there exists at least one optimal
information feedback overhead σ∗

v such that

σ∗
v(Λv) = arg min

σ
ΔP

(
Λv

(
ot

v(σ)
))

. (13)

Proof: Note that minimizing ΔP is the same as
maximizing Jv(Λv(ot

v)). Since 0 ≤ Jv(Λv(ot
v)) ≤ U(Afors

−v )
is bounded, there must exist a minimum value with a
certain σ∗

v . �
Based on Proposition 1, we propose an adaptive interactive

learning that adapts the information feedback parameters for
user mv to improve its learning efficiency Jv . Fig. 5 presents
the system block diagram of our adaptive interactive learning
framework. Due to the consideration of the source character-
istics, the interactive learning framework is operated at the
application layer. The goal of user mv in the adaptive interactive
learning framework is to build the belief S̃t

−v based on ot
v

for determining the best response strategy St
v and adjust the

information feedback It+1
v (σv) to improve the learning effi-

ciency Jv(Λv(ot
v)). In the following sections, we will discuss

the adaptive interactive learning schemes based on different
types of information feedback in more detail.

uv(σv, Av, A−v) =

{
λv

Pv

(
1 − 1

Fv(σv,γv(Av,A−v))

)
, if B′

v(σv, Av, A−v)/Lv > λv

0, otherwise

(11)

Fv (σv, γv(Av, A−v)) ≡ exp
(

B′
v (σv, γv(Av, A−v))

dv

Lv
− λvdv

)
(12)
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Fig. 5. System block diagram for the adaptive interactive learning for dynamic resource management.

IV. INTERACTIVE LEARNING WITH PRIVATE

INFORMATION FEEDBACK

In the case where user mv only observes the private in-
formation feedback It,priv

v , it can only model the aggregate
effect of other users’ actions through the experienced SINR
value γv . Hence, it cannot explicitly model the exact response
actions of the other users Afors

−v . Note that the observed infor-
mation history in this case is ot

v(ωv) = {γs−1
v , s ∈ Tt

v(ωv)}.
Based on this observed information history ot

v(ωv), user mv

is aware of its past actions As−1
v , s ∈ Tt

v, and the past re-
sulting utilities uv(As−1

v , γs−1
v ), s ∈ Tt

v. Let ũv(Av, ot
v(ωv))

represent the estimated utility of user mv if the action Av

is taken. Instead of explicitly predicting the exact response
actions Afors

−v , user mv builds a belief on the utility and de-
termines its best strategy St

v based on its past experienced
action–utility pairs [As−1

v , uv(As−1
v , γs−1

v )], s ∈ Tt
v. Hence,

user mv does not try to estimate the probability S̃t
−v(A−v|Av)

in (8). Instead, user mv directly builds its belief on what
will be the average utility impact that it will experience if
it takes action Av , i.e., ũv(Av, ot

v(ωv)) substitutes the term∑
A−v∈AV −1 S̃t

−v(A−v|Av)uv(Av, A−v) in (8).

Let St
v(ωv) = Λpriv

v (ot
v(ωv)) be the strategy of user mv at

time slot t that is learned from the observed information history
ot

v(ωv). From (7), the learning efficiency of user mv is

Jv

(
Λpriv

v

(
ot

v(ωv)
))

=
∑

Av∈A
St

v(Av)ũv

(
Av, ot

v(ωv)
)
. (14)

To minimize ΔP in (9), the best response strategy is

St
v(ωv) = arg max

Sv∈Sv

∑
Av∈A

Sv(Av)ũv

(
Av, ot

v(ωv)
)
. (15)

The payoff-based learning based on private information feed-
back can be represented by (15). After the strategy St

v is
determined, the action of user mv at time slot t is determined by

At
v = Rand

(
St

v

)
(16)

where Rand(St
v) represents a random selection based on

the probabilistic strategy St
v ∈ Sv . Payoff-based learning

[19] provides a method of learning the strategy St
v from the

past experienced action–utility pairs [As−1
v , uv(As−1

v , γs−1
v )],

s ∈ Tt
v . A simple example of a payoff-based learning method

will be provided in Section IV-A.

If the private information feedback is costless [i.e., B′
v = Bv

in (11)], the utility upper bound of the payoff-based learn-
ing can be calculated based on the resulting strategy S∗

v =
[S∗

v(Av), for all Av ∈ Av] at convergence.
Proposition 2. Performance Upper Bound With Private In-

formation Feedback: For payoff-based learning with private
information feedback, if the information feedback is costless,
the upper bound of the learning efficiency Jv(Λpriv

v ) is (1 −
εv(Λpriv

v ))Uv(Afors
−v ), with 0 ≤ εv(Λpriv

v ) < 1, and

εv

(
Λpriv

v

)
=

1
Uv

(
Afors

−v

) ∑
Av∈A

g(Av)uv

(
Av,Afors

−v

)

where g(A) =
{

1 − S∗
v(A), for A = Afors

v

−S∗
v(A), otherwise.

(17)

Proof: By substituting (14) into (9), the PIB becomes
ΔP (Λpriv

v ) = εv(Λpriv
v )Uv(Afors

−v ). Since uv(Av,Afors
−v ) has

costless information feedback, substituting ũv(Av, ot
v(ωv)) by

uv(Av,Afors
−v ) provides a lower bound on ΔP (Λpriv

v ), which is∑
Av∈A g(Av)uv(Av,Afors

−v ). �
To increase the learning efficiency Jv(Λpriv

v ), user mv needs
to increase the accuracy of the best response strategy S∗

v such
that it approaches Afors

v . Next, let us give a simple example
using a well-known reinforcement learning solution [19].

A. Reinforcement Learning Based on
Private Information Feedback

Here, let us assume that ωv = 1. By applying typical rein-
forcement learning, user mv models its best response strategy
St

v as

St
v(Av) =

rt
v(Av)∑

Av∈Av

rt
v(Av)

(18)

where rt
v(Av) represents the propensity [19] of user mv

choosing an action Av at time slot t. Let us define rt
v =

[rt
v(Av), for Av ∈ Av] as a vector of propensity of all feasible

actions. The user updates rt
v based on the experienced utility,

i.e., uv(At−1
v , γt−1

v ), when the action At−1
v is taken at time slot

t − 1. Here, we adopt the cumulative payoff matching [19], i.e.,

rt
v = αrt−1

v + (1 − α)uv

(
At−1

v , γt−1
v

)
I
(
At−1

v

)
(19)
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where α is the discount factor for the history value of the
cumulative propensity. I(At

v) = [I(A = At
v), for A ∈ Av] rep-

resents an indicator vector such that

I
(
A = At

v

)
=

{
1, if A = At

v

0, if A �= At
v .

(20)

B. Adaptive Reinforcement Learning

The reinforcement learning in the previous section fixes
ωv = 1, i.e., user mv obtains information feedback at each time
slot. From Proposition 1, we know that by adjusting information
feedback frequency ωv to ω∗

v , user mv can minimize its PIB
ΔP . Hence, we introduce the adaptive reinforcement learning7

that adjusts ωv to maximize the learning efficiency Jv(Λpriv
v ).

Specifically, for ωv < 1, user mv will not receive the private
information feedback at each time slot with probability 1 − ωv .
If there is no information feedback, user mv takes the baseline
action Abase

v , which is the past action that ever provides the
best payoff value. Smaller ωv means that the user is more
reluctant to deviate from its baseline action and leads to a lower
information feedback overhead. With probability ωv , the user
will receive the information feedback and perform the same
reinforcement learning as in the previous section. After user mv

selects an action At
v , it compares the payoff value uv and then

updates the record of the baseline action Abase
v and the baseline

payoff value ubase
v , i.e.,

Abase
v =

{
At−1

v , if uv

(
At−1

v , γt−1
v

)
> ubase

v

Abase
v , otherwise

(21)

ubase
v = max

(
ubase

v , uv

(
At−1

v , γt−1
v

))
. (22)

Finally, user mv evaluates the learning efficiency J(Λv(ot
v))

and changes the information feedback frequency ωv by Δωv

until the maximum J(Λv(ot
v)) is found. The details of the

proposed adaptive reinforcement learning can be found in
Algorithm 1 (AR).

Algorithm 1. Adaptive reinforcement learning with private
information feedback

For user mv at time slot t, assume that U(0, 1) represents a
uniform distribution from 0 to 1.

Initialization: set Jprev
v = 0, ωv = 1, Δωv = 0.05.

Step 1. If Rand(U(0, 1)) < 1 − ωv , keep using action
At

v = Abase
v , t ← t + 1, and repeat step 1;

otherwise, go to step 2.
Step 2. Calculate uv(At−1

v , γt−1
v ) from previous action

At−1
v = [f t−1

v , P t−1
v ] and the private information

feedback It,priv
v = {γt−1

v }.
Step 3. Update the propensity rt

v and the strategy St
v .

Step 4. Determine the action from At
v = Rand(St

v).
Step 5. Update the baseline action Abase

v and the baseline
payoff value ubase

v as in (21) and (22).

7In [13], the authors focused on developing a reinforcement learning algo-
rithm that guarantees convergence without considering the cost of the private
information feedback. Our Algorithm 1 (AR) scheme employs reinforcement
learning while considering the cost of the information feedback and adapts the
information feedback frequency to maximize the user’s utility.

Step 6. Evaluate Jv. If Jv > Jprev
v , then

if ωv − Δωv > 0, ωv ← ωv − Δωv ,
else if ωv − Δωv ≤ 0, keep ωv .
Otherwise, if ωv + Δωv ≤ 1, ωv ← ωv + Δωv ,
else if ωv − Δωv > 1, keep ωv .

Step 7. Set Jprev
v ← Jv, t ← t + 1, and go back to step 1.

V. INTERACTIVE LEARNING WITH PUBLIC

INFORMATION FEEDBACK

Unlike the payoff-based learning, when user mv observes
public information feedback It,pub

−v = {Gt−1
u , At−1

u , for mu ∈
M−v}, the observed information history is ot

v = {Is,pub
−v , s ∈

Tt
v}. Based on this, user mv can directly model the strategy of

other users and explicitly build belief S̃t
−v on it.

Let S̃t
−v(σv) = Λpub

v (ot
v(σv)). From (7), the learning

efficiency is

Jv

(
Λpub

v

(
ot

v(σv)
))

=
∑

Av∈A

(
St

v(Av)

×
( ∑

A−v∈AV −1

S̃t
−v(A−v|Av)uv(σv, Av, A−v)

))
. (23)

To minimize ΔP in (9), the best response strategy of user mv

is to take the action (St
v = I(At

v)), i.e.,

At
v(σv) = arg max

Av∈Av

ES̃t
−v

[
uv

(
Av, S̃t

−v(σv)
)]

. (24)

Model-based learning [19] provides a method of building the
belief on S̃t

−v(σv) of other users’ actions from the past experi-
enced public information As−1

u , s ∈ Tt
v. We present the action

learning that performs (24) as an example in Section V-A.
Similarly, if the public information feedback is costless [i.e.,

B′
v = Bv in (11)], the utility upper bound of the model-based

learning can be calculated as discussed below.
Proposition 3. Performance Upper Bound With Public In-

formation Feedback: For the model-based learning based on
the public information feedback, if the information feedback is
costless, the upper bound of the learning efficiency Jv(Λpub

v ) is
Uv(Afors

−v ).
Proof: Substitute (24) into (23), and substitute

uv(σv, Av, A−v) by uv(Av,Afors
−v ). This provides an upper

bound on Jv(Λpub
v ) since uv(Av,Afors

−v ) ≥ uv(σv, Av, A−v).
Equation (23) then becomes

max
Av∈Av

⎛
⎝uv

(
Av,Afors

−v

) ⎛
⎝ ∑

A−v∈AV −1

S̃t
−v(A−v|Av)

⎞
⎠

⎞
⎠

= uv

(
Afors

v ,Afors
−v

)
= Uv

(
Afors

−v

)
. (25)

�
The reason why the model-based learning with public in-

formation feedback has a higher upper bound compared with
the payoff-based learning with private information feedback is
because it enables the user to explicitly model the actions of
other users, and hence, the user can directly choose the action
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that maximizes its expected utility. Next, we provide a simple
model-based learning—action learning—which is similar to the
well-known fictitious play [19].

A. Action Learning Based on Public Information Feedback

Recall that to build the belief S̃t
−v from ot

v ={Is,pub
−v , s∈Tt

v},
user mv maintains a set of strategy vectors S̃t

−v(A−v|Av) =
{S̃t

u(Au ∈ Au|Av), for mu ∈ M−v} for all possible actions
Av ∈ Av, where S̃t

u(Au ∈ Au|Av) = [S̃t
u(Au|Av), for Au ∈

Au] represents the estimated strategy of user mu ∈ M−v given
that user mv takes action Av at time slot t. Hence, in the action
learning, whenever action Av is taken by user mv, we set

S̃t
u(Au|Av) =

rt
u(Au|Av)∑

A∈Au

rt
u(A|Av)

(26)

where rt
u(Au|Av) is the propensity of user mu at time t. The

propensity represents the number of times that user mu takes
action Au given that user mv took action Av . Hence, whenever
action Av is taken by user mv , vector rt

u(Au ∈ Au|Av) =
[rt

u(Au|Av), for all Au ∈ Au] is updated by

rt
u(Au ∈ Au|Av) = rt−1

u (Au ∈ Au|Av) + I
(
At−1

u

)
. (27)

Then, the probability S̃t
u(Au|Av) represents the empirical fre-

quency that user mu will take an action Au ∈ Au given that
user mv took an action Av .

Next, we show how to analytically maximize
ES̃t

−v
[uv(Av, S̃t

−v(σv))] in (24), given the belief S̃t
−v . First,

we show the necessary condition for user mv to maximize its
utility function.

Proposition 4. Target SINR Values: For a certain frequency
channel f , to maximize uv(f), user mv needs to transmit at the
target SINR value γtar

v (f), which is the unique positive solution
of γ(∂B′

v(γ)/∂γ) = (Lv/dv)(Fv(γ) − 1) [Fv(γ) is in (12)].
Proof: See Appendix B. �

Proposition 4 suggests that if user mv is using frequency
channel f , it should accordingly adapt target power level
P tar

v (f) to the interference from the other users using the
same frequency channel to support target SINR value γtar

v (f).
Since the power level in our setting is discrete, we choose
P tar

v (f) ∈ Pv as the power that provides the nearest SINR
value to γtar

v (f). If the target SINR γtar
v (f) requires power that

is higher than Pmax
v (when the interference in the channel is too

high), then set P tar
v (f) to Pmax

v .
Next, given target P tar

v (f), we further determine the optimal
frequency channel selection of user mv .

Proposition 5. Optimal Actions Given the Target SINR
Values: Let F tar

v (f)=Fv(f, γtar
v (f)) in (12). Given the corre-

sponding target P tar
v (f), the optimal action A∗

v of a user mv is

f ∗
v = arg min

f∈Fv

{
P tar

v (f)
F tar

v (f)
F tar

v (f) − 1

}

P ∗
v =P tar

v (f ∗
v) . (28)

Proof: From Proposition 4, maximizing uv =
(λv/Pv)(1 − (1/Fv)) leads to (28). �

In summary, user mv selects frequency channel f ∗
v and power

level P ∗
v to support target SINR γtar

v (f ∗
v), which maximizes the

utility function in (2). This requires user mv to estimate the
interference from other users, which can be computed by user
mv based on its belief S̃t

−v . Specifically, denote the estimated
interference of user mv as Ωv(Av) when action Av is taken.
Given S̃t

−v , Ωv(Av) can be computed as

Ωv(Av)=
∑
u�=v

Au∈Au

Guv(fv)
[
S̃t

u(Au|Av)PuI(fu =f)
]
. (29)

Then, the resulting SINR value γv(Av) is (Av = [fv, Pv])

γv(fv, Pv) =
Gvv(fv)Pv

Nfv
+ Ωv(Av)

. (30)

By applying Proposition 4, we calculate target power P tar
v (f)

in different frequency channels, i.e.,

P tar
v (f) = min

P∈Pv

∣∣γtar
v (f) − γv(f, P )

∣∣ . (31)

Then, we apply Proposition 5 to determine At
v = [f ∗

v , P ∗
v ].

B. Adaptive Action Learning

For the action learning in the previous section, the public
information feedback It,pub

−v = {Gt−1
u , At−1

u ,mu ∈ M−v} is
required from every user in the network during each time slot.
This results in heavy information overhead. Moreover, overall
action space AV −1 makes the computational complexity pro-
hibitive to model all the users in the network. To approach the
upper bound Uv(Afors

−v ) of the model-based learning efficiency,
we need to adjust the information overhead σv(ωv, |Vv|) by
changing the information feedback parameters ωv and |Vv|.

Hence, in our proposed active action learning, to reduce the
overhead, we classify the neighboring users of user mv into
H groups (1 ≤ H ≤ |M−v|) and assign different information
feedback frequency ωi

v to different groups (i.e., 1 ≥ ω1
v ≥ ω2

v ≥
· · · ≥ ωH

v ≥ 0). For the dynamic power/spectrum management
problem in this paper, the neighboring users can be classified
based on their average channel gains Guv over the frequency
channels, i.e., Guv = (1/|F|)

∑
f∈F Guv(f) (from the trans-

mitter of neighboring user mu to the receiver of foresighted
user mv) since these channel gains directly impact the user’s
utility [see (1) and (2)]. For instance, a neighboring user mu

with a larger channel gain Guv will have more impact on uv.
Let Xi

v represent the number of users in the group Hi,
i = 1, . . . , H . Assume that the neighboring users are relabeled
according to their average channel gain value, i.e., G[1]v ≥
G[2]v ≥ · · · ≥ G[V −1]v. Then

m[u] ∈ Hi, iff
i−1∑
j=1

Xj
v ≤ [u] ≤

i∑
j=1

Xj
v . (32)

In Algorithm 2 (AA), we provide our adaptive action learning
approach for the extreme case when H = 2, as an example.
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TABLE I
COMPARISONS OF THE PROPOSED LEARNING ALGORITHMS

In this case, we only need to adapt |Vv| (X1
v = |Vv| and X2

v =
V −1−|Vv|). If the neighboring users mu∈Vv , we set ωv =1;
otherwise, ωv = 0. That is, user mv only needs to model the
users in set Vv based on It,pub

−v(Vt
v) = {Gt−1

u , At−1
u ,mu ∈ Vv}.

In Table I, we compare the two proposed interactive learning
algorithms.

Algorithm 2. Adaptive action learning (H = 2) with public
information feedback

For user mv at time slot t
Initialization: set Jprev

v =0, |Vv|= |M−v|, Δ|Vv|=1.
Step 1. Observe the public information feedback It,pub

−v(Vv) =
{Gt−1

u , At−1
u ,mu ∈ Vv} fed back from the users

mu ∈ Vv .
Step 2. Update propensity rt

u for users mu ∈ Vv and calcu-
late strategy vector S̃t

−v(Av).
Step 3. Calculate target power P tar

v (f) from (31) and find
action At

v = [f ∗
v , P ∗

v ] using Proposition 5.
Step 4. Evaluate Jv . If Jv > Jprev

v , then
if |Vv| − Δ|Vv| > 0, |Vv| ← |Vv| − Δ|Vv|,
else if |Vv| − Δ|Vv| ≤ 0, keep |Vv|.
Otherwise, if |Vv| + Δ|Vv| ≤ |M−v|, |Vv| ←
|Vv| + Δ|Vv|
else if |Vv| + Δ|Vv| > |M−v|, keep |Vv|.

Step 5. Set Jprev
v ←Jv , t← t+1, and go back to step 1.

VI. SIMULATION RESULTS

We simulate an ad hoc wireless network environment, which
is shown in Fig. 6, with five users (distinct transmitter–receiver
pairs) and three frequency channels. The frequency chan-
nels are accessible for all the users, i.e., Fv = F , for ∀mv.
Each user can choose its power level Pv from a set P =
{20, 40, 60, 80, 100} (mW). Hence, there are a total of 15
actions Av for users to adapt. At the physical layer, we model
the channel gain between different network nodes using Gvv′ =
K0(disvv′/dis0)−α for all frequency channels, where disvv′

represents the distance from the transmitter of user mv to the
receiver of user mv′ , and K0 = 5 × 10−4, Nf = 1 × 10−5,
dis0 = 10, and α = 2 are constants. For the application layer
parameters, we set the average packet length Lv = 1000 bytes,
input rate Rv = 500 kb/s (λv = Rv/Lv), and delay deadline
dv = 200 ms for all the users. Effective transmission rate
B′

v(γv) = T (1 − pv(γv))θ(σv), where pv(γv) represents the
packet error rate (see Appendix A).

Fig. 6. Topology settings for the simulation.

A. Comparison Among Different Learning Approaches
Based on Information Feedback

We show the simulation results using five different schemes
when the physical transmission rates are T = 700 and
2100 kb/s in Tables II and III, respectively. The five schemes are
1) the centralized optimal (CO), 2) the theoretical upper bound
U(A−v) (UB), 3) the myopic best response without learning
(NE), 4) the user m1 adopting adaptive reinforcement learning
with private information feedback in AR, and 5) the user
m1 adopting adaptive action learning with public information
feedback in AA. The CO scheme provides the global optimal
results for the overall utilities. In the NE scheme, each user
attempts to maximize its current utility function based on the
actions that it observes in the previous time slot, as in (3). The
UB is computed from (4) for m1 given the exact response of
the other four users (u1 = U(Afors

−1 )). Since user m1 is in the
middle of the topology, we select m1 to be the foresighted user
who learns from the information feedback. Each simulation
result is averaged over 500 time slots in the dynamic network
settings with mutual interference in (1).

Table II shows that user m1 stays in channel 1 in the CO and
UB schemes, whereas the other four users stay using the rest
of the two channels. However, since users are self-interested,
the NE scheme shows that user m5 also attempts to transmit
in channel 1, and, hence, utility u1 decreases and forces user
m1 to increase its power level. If user m1 becomes foresighted,
as shown in the AR scheme, it will keep on using the highest
power level to prevent user m5 from using its channel. The
resulting utility u1 is higher than the NE scheme. Using the AA
scheme, users are able to exploit the spectrum more efficiently
due to the ability that the users can better model the strategies
of other interference sources in the network. However, this
requires a significant information overhead, which results in
worse performance at low bandwidth, i.e., when T = 700 kb/s.
Note that although only user m1 is learning, the average utility
of using interactive learning schemes outperforms the myopic
NE scheme. Even in a noncooperative setting, this foresighted
user actually benefits the overall system performance.

When T = 2100 kb/s, Table III shows that users are now
selecting lower power levels since the physical transmission
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TABLE II
SIMULATION RESULTS OF THE FIVE SCHEMES WHEN T = 700 kb/s

bandwidth is sufficient. Using the AR scheme, user m1, again,
occupies channel 1 by using a higher power level compared
to that of the UB scheme. Note that using the AA scheme,
user u1 can almost reach the theoretical upper bound since
the cost of information feedback is comparatively small when
T = 2100 kb/s. Again, the average utilities of the adaptive
interactive learning schemes outperform that of the myopic NE
scheme. The higher T gives a better learning environment for
user m1 using the AA scheme to approach the theoretical upper
bound U1(Afors

−v ) than when using the AR scheme. Since all the
users are selfish (including user m1 who is learning), learning
user m1 will benefit itself by suppressing the utility of m2, as
shown in Table III. This situation is not seen in Table II since
the AA scheme has low learning efficiency when T is small.

B. Convergence of the Learning Schemes

To show the convergence of the proposed learning schemes,
in Fig. 7, we simulate the time plot of the two proposed learning

TABLE III
SIMULATION RESULTS OF THE FIVE SCHEMES WHEN T = 2100 kb/s

Fig. 7. Average utility versus time slot of the proposed algorithms when T =
700 kb/s (a time slot is considered to be 10 ms).

algorithms (AR and AA) and the best response scheme without
learning (NE). The network settings are the same as in Table II
when T = 700 kb/s. It is shown that the two proposed learning
schemes outperform the myopic best response scheme in terms
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Fig. 8. Performance of user m1 adopting adaptive reinforcement learning
with private information feedback using different ω1.

of the average utility. The convergence speed of the AR scheme
is about three times slower than that of the myopic best response
(which converges to Nash equilibrium in about five time slots),
whereas that of the AA scheme is about six times slower.
The convergence speed of the AR scheme is faster than that
of the AA scheme since the AR scheme only needs to build
belief on its own utility. The AA scheme needs to build beliefs
on its neighboring users’ strategies, which leads to a slower
convergence speed.

C. Adaptive Reinforcement Learning
Using Different Time Scales

The reinforcement learning is very sensitive to the initial
status of users’ actions. Hence, in our simulations, we first train
user m1’s initial strategy by performing a myopic best response
in the first 20 time slots. Then, we simulate the reinforcement
learning with different values of ωv in Fig. 8 for different T .
Since the input rates of the applications are fixed to 500 kb/s, the
utility will saturate as the bandwidth increases. The UB scheme
has another saturation when T becomes larger than 1.1 Mb/s
since the larger bandwidth enables another set of actions for the
users. Note that when ω1 = 1, the reinforcement learning learns
transmission strategy St

1 at every time slot. The simulation
results show that the performance of ω1 = 0.8 is better than
that of ω1 = 1 when the physical bandwidth is lower than
1 Mb/s since learning at a slower pace can reduce the overhead
of the private information feedback. The results in Fig. 8 show
that the proposed adaptive reinforcement learning operates on
the envelope of the solutions that are obtained for different ω1,
with ω1 ∈ [0.5, 1]. Hence, the performance of user m1 using
the adaptive reinforcement learning becomes closer to the upper
bound.

D. Adaptive Action Learning From
Different Neighboring Users

In Fig. 9, we also simulate the case that the action learning
models the strategy of the nearest |Vv| = 2 users instead of

Fig. 9. Performance of user m1 adopting adaptive action learning with public
information feedback using different |Vt

1|.

|M−v| = 4 users. With smaller |Vv|, fewer neighbors need to
feed back information and, hence, results in less information
overhead. The simulation results show that modeling users from
public information feedback can improve the performance of
user m1. However, when the physical transmission rate is lower
than 1.1 Mb/s, the required information overhead significantly
degrades the performance, and hence, it is essential to adapt the
number of neighbors in the action learning to model less users
in the network. The results show that using the proposed adap-
tive action learning, the performance of user m1 with public
information feedback becomes closer to the upper bound.

E. Mobility Effect on the Interactive Learning Efficiency

In the previous sections, all the simulation results are based
on the fixed topology that is shown in Fig. 6. Here, we sim-
ulate the case that all five receivers move according to the
well-known mobility model “random walk” [22]—receivers
randomly select a direction at each time slot and move at a
fixed speed ν. Starting from the topology in Fig. 6, Fig. 10
shows the learning efficiency over time of the AR, AA, and NE
schemes for ν = 0.5, 1, 2 (m/s) with T = 2100 kb/s. It is shown
that, on average, the AA scheme has higher learning efficiency
since user m1 is able to obtain the channel gain information
(which is directly affected by the mobility) of the other users
from the public information feedback. Moreover, as expected,
as the mobility increases, the learning efficiency decreases
because the receivers are moving further apart. In particular,
for the reinforcement learning without explicit channel gain
information, the results show that the performance can be worse
than that of the myopic best response since the learning cannot
keep up with the topology changes, and the user’s belief about
the other users becomes inaccurate when the mobility is high.

VII. CONCLUSION

In this paper, we have provided an adaptive interactive learn-
ing framework for delay-sensitive users to adapt their frequency
channel selections and power levels in wireless networks in
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Fig. 10. Average utility over time using the adaptive interactive learning when
receivers have mobility (T = 2100 kb/s) (a) ν = 0.5, (b) ν = 1, and (c) ν =
2 (m/s).

a decentralized manner. We have shown that a foresighted
user can significantly improve its utility by learning from the
information feedback. We have determined the performance
upper bounds for the user’s utility when learning from private
or public information feedback, respectively. The simulation

results show that the proposed adaptive interactive learning
can significantly improve the performance of delay-sensitive
users compared to the myopic best response. It has been shown
that even when only one user learns from its information
feedback, the overall performance can be better than that of
Nash equilibrium resulting from the myopic best response. In
particular, if the available system bandwidth is not limited,
the proposed adaptive action learning with public information
feedback approaches the utility upper bound.

APPENDIX A

Recall that Tv and pv represent the maximum transmission
rate and the packet error rate, respectively, of user mv using
frequency channel fv . Tv and pv are estimated by the medium
access control/physical layer link adaptation, which can be
modeled as sigmoid functions of SINR γv(Av, A−v) for user
mv , i.e.,

pv (fv, γv(Av, A−v)) =
1

1 + exp (ζ (γv(Av, A−v) − δ))
(33)

Bv(Av, A−v) =Tv(fv) (1 − pv (fv, γv(Av, A−v))) .

(34)

B′
v(σv, Av, A−v) = Bv(Av, A−v)θ(σv), and θ(σv) =

1 − ρωv(|Vv| + 1), where ζ, δ, and ρ > 0 are empirical
constants corresponding to the modulation and coding schemes
for a given packet length.

Assume that a delay-sensitive application is sent by user mv

through the network with average input rate Rv (bits per sec-
ond). Assume that user mv maintains a queue with an infinite
buffer size in the application layer. We model the packet arrival
process using the Poisson process. The packet arrival rate is
assumed as λv = Rv/Lv (packets per second). Considering the
packet protection scheme that is similar to the automatic repeat
request protocol in IEEE 802.11 networks [14], the transmis-
sion time of a packet can be modeled as a geometric distribu-
tion [15]. For simplicity, we approximate the queuing model
as M/M/1 queue with the service rate μv(σv, Av, A−v) =
B′

v(σv, Av, A−v)/Lv (packets per second). Denote the delay of
transmitting the delay-sensitive application through the network
as Dv(σv, Av, A−v). The average delay can be obtained by

E [Dv(σv, Av, A−v)] =
1

μv(σv, Av, A−v) − λv

for μv(σv, Av, A−v) > λv. (35)

Using the M/M/1 queuing model, the probability that the packet
of user mv can be received before delay deadline dv is

Prob {Dv(σv, Av, A−v) ≤ dv} ={
1−exp

(
− dv

E[Dv(σv,Av,A−v)]

)
, for μv(σv, Av, A−v) > λv

0, otherwise.

(36)

The utility function in (2) is equal to zero, unless the
transmitted power is high enough to support a sufficient
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throughput B′
v(σv, Av, A−v))/Lv > λv to keep the probability

Prob{Dv(σv, Av, A−v) ≤ dv} > 0 (see Fig. 2). Substituting
(35) and (36) into (2), we have (11). Since B′

v(σv) is a de-
creasing function of σv, the utility function is a nonincreasing
function of σv.

APPENDIX B

Proof of Proposition 4: Given channel model Bv(f, γ) for
frequency channel f in (34), user mv , mv ∈ Ωf can apply
queuing analysis with the application characteristics Rv, Lv ,
and dv . From (35) and (36), we have Prob{Dv ≤ dv} =
1 − (1/Fv(γv)). The optimality condition of (∂uv/∂Pv) = 0
becomes −Pv × (∂/∂Pv)(1/Fv(γv)) = 1 − (1/Fv(γv)). The
left-hand side can be derived as γv(∂Bv(γv)/∂γv) × (dv/
Lv)(1/Fv(γv)) since Pv(∂γv/∂Pv) = γv . By multiplying Fv

to both sides, we have the optimality condition in Proposition
4 and the corresponding γtar

v that maximizes the utility func-
tion uv . �
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