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Abstract—In this paper, we study how to optimize the trans-
mission decisions of nodes aimed at supporting mission-critical
applications, such as surveillance, security monitoring, and mil-
itary operations, etc. We focus on a network scenario where
multiple source nodes transmit simultaneously mission-critical
data through relay nodes to one or multiple destinations in
multi-hop wireless Mission-Critical Networks (MCN). In such
a network, the wireless nodes can be modeled as agents that
can acquire local information from their neighbors and, based
on this available information, can make timely transmission
decisions to minimize the end-to-end delays of the mission-critical
applications. Importantly, the MCN needs to cope in practice
with the time-varying network dynamics. Hence, the agents need
to make transmission decisions by considering not only the
current network status, but also how the network status evolves
over time, and how this is influenced by the actions taken by
the nodes. We formulate the agents’ autonomic decision making
problem as a Markov decision process (MDP) and construct
a distributed MDP framework, which takes into considera-
tion the informationally-decentralized nature of the multi-hop
MCN. We further propose an online model-based reinforcement
learning approach for agents to solve the distributed MDP
at runtime, by modeling the network dynamics using priority
queuing. We compare the proposed model-based reinforcement
learning approach with other model-free reinforcement learning
approaches in the MCN. The results show that the proposed
model-based reinforcement learning approach for mission-critical
applications not only outperforms myopic approaches without
learning capability, but also outperforms conventional model-free
reinforcement learning approaches.

Index Terms—multi-user mission-critical transmission, auto-
nomic multi-hop wireless networks, distributed Markov decision
process, online reinforcement learning.

I. INTRODUCTION

A PLETHORA of mission-critical applications such as
battlefield videoconferencing, surveillance and security

monitoring are emerging, e.g. in SOSANETs [1], where
real-time response and actions to the acquired critical data
becomes vital. This critical data needs to be reliably and
timely relayed to one or multiple decision makers, possi-
bly located at different destinations. To connect the various
sources to the destinations, a rapidly deployable solution can
be provided using multi-hop autonomic wireless networks.
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A key advantage of such flexible infrastructures is that the
same network can be re-used and reconfigured to relay critical
data to multiple destinations. The mission-critical applications
require the network to support various transmission priorities,
security, robustness requirements, and stringent transmission
delay deadlines [6][8]. In this paper, we focus on minimizing
the network delays of the mission-critical applications, and
rely on related work (such as [8][9]) for the security and
reliability requirements of the mission-critical applications.

Autonomic wireless networks are composed of autonomic
wireless nodes (also interchangeably referred to as agents
in this paper) endowed with the capability of individually
sensing the network environment, learning the dynamic net-
work changes based on their local information, and promptly
adapting their transmission actions in an autonomous manner
to optimize the utility of the applications which they are
serving [10]. The dynamic network changes include variations
in network topology, wireless channel conditions, application
requirements, etc. When these network dynamics occur, the
autonomic nodes can self-configure themselves and immedi-
ately react to these changes, without the need of propagating
messages back and forth to a centralized coordinator. Auto-
nomic wireless networks are especially suitable for mission-
critical applications, since the autonomic behavior allows the
wireless nodes to promptly discover local network changes
and instantaneously react to these changes, such that the
important data packets they are relaying will arrive at their
destinations within their delay deadlines. Moreover, autonomic
wireless nodes endowed with online learning capabilities can
successfully model the network dynamics and foresightedly
adapt their packet transmission to maximize the utility of the
mission-critical applications.

In the MCN, the autonomic nodes need to coordinate
their transmission decisions [7]. For example, in [25], it
is shown that the performance degradation is unavoidable
if the agents do not optimize their routing decisions in a
cooperative manner. In [26][27], the Network Utility Max-
imization (NUM) framework is introduced and it is shown
that by allowing agents to cooperatively exchange information,
they can optimize their transmission actions in a distributed
manner, such that a Pareto-efficient solution can be reached.
However, such solutions assume a static network setting and
they cannot address the dynamic nature of the MCN. Dynamic
transmission policies based on local information feedback
are proposed (for example, based on QoS state information
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[2] and queuing backpressure [4][5]), which ensure that the
delays of the mission-critical applications are bounded as long
as the rate allocations are inside the capacity region of the
network. However, computing the capacity region requires a
high computational complexity [32] and, moreover, does not
guarantee that the required delay constraints of the mission-
critical applications are met. In [3], a QoS-aware protocol
with priority-based queuing model was proposed to support
real-time traffic in wireless sensor networks. The protocol
allocates energy-efficient paths to the applications that meet
their end-to-end delay requirements. Also, other alternative
QoS-aware solutions can be found in [11] for supporting
various applications in wireless sensor networks. However,
most of these solutions are mainly concerned with minimizing
the energy consumption.

Importantly, in the distributed setting, an agent’s decision
impacts and is impacted by the decisions of the neighbor-
ing agents. We refer to this coupling effect as the spatial
dependency among the agents. Although the abovementioned
solutions consider the spatial dependency, they only react to
the network changes in a ”myopic” way. They merely optimize
the transmission decisions based only on the information about
the current network status and application requirements. In
the dynamic MCN, however, the agents need to adopt ”fore-
sighted” adaptation by considering not only the immediate
network status, but also how the network status evolves over
time (referred to as the network dynamics in this paper),
in order to make optimal transmission decisions. Hence, in
addition to the spatial dependency, agents need also to consider
the temporal dependency among their sequential decisions
(performed over time).

Moreover, in practice, the network dynamics may not be
known. Reinforcement learning solutions have been proposed
for the nodes to learn the network dynamics and optimize
the performance in routing [30] and admission control [31]
solutions at runtime. However, these solutions do not minimize
the delays of the mission-critical applications. Moreover, the
majority of these solutions focus on model-free reinforcement
learning approaches, which are not suitable for the mission-
critical applications due to their slow convergence rates [15].

In summary, there is no integrated framework that considers
the spatio-temporal dependencies among the agents in the
MCN to minimize the end-to-end delays of the mission-
critical applications, based on application priorities, packet-
based delay deadlines, and the network dynamics. In this
paper, we provide a systematic framework based on which
agents (the nodes in the MCN) can optimize their cross-
layer transmission actions and minimize the delays of the
mission-critical applications, while considering the spatio-
temporal dependencies among their actions. We assume that
all the source and relay nodes are able to make their own
cross-layer transmission decisions, which are the packet-based
scheduling decisions in the application layer and the routing
decisions in the network layer. In [28], it has been shown that
Markovian models (e.g. finite-state markov model [29]) can
be applied for both traffic state transition and channel state
transition. Also in [30], it was shown that routing protocols in
mobile ad hoc networks can be further improved by allowing
the agents to make their decisions using Markov Decision

Process (MDP) [18]. Based on the MDP, the agents are able
to forecast the future network status and optimize their cross-
layer transmission actions that consider the MCN dynamics.
However, unlike in [30], which focuses on optimizing the
overall throughput of the network, in this paper, the agents
minimize the expected end-to-end delays of the mission-
critical applications. The expected end-to-end delay is referred
to in this paper as the MDP delay value.

Overall, the paper makes the following contributions:
1) Distributed MDP framework that considers the spatio-
temporal dependencies in MCN. To account for the dynamic
nature of the MCN, we construct an MDP framework which
minimizes the MDP delay values of the mission-critical ap-
plications. To address the informationally-decentralized nature
of the multi-hop MCN, the MDP needs to be formulated
in a distributed manner, such that each agent in the MCN
can deploy its own cross-layer transmission policy based
on only local information exchanges with its neighboring
agents. The proposed distributed MDP minimizes the delays
of the mission-critical applications while capturing the spatio-
temporal dependency in the MCN.
2) Model-based online learning approach to solve the
distributed MDP in MCN. We propose an online model-
based learning approach for the agents in MCN to solve
the distributed MDP at runtime, when the network dynam-
ics are unknown. Unlike the conventional model-free re-
inforcement learning approaches for solving MDPs (as in
[16][17]), the proposed model-based learning algorithm adopts
a preemptive-repeat priority M/G/1 queuing model [21], which
enables a faster convergence rate and shorter delays for the
mission-critical applications. The upper and lower bounds of
the resulting MDP delay value are provided to verify the
accuracy of the proposed model-based online learning ap-
proach at different network locations. Moreover, we compare
the proposed model-based reinforcement learning approach
with the model-free reinforcement learning approaches in
terms of delay performance, computational complexity, and
the required information exchange overheads.

This paper is organized as follows. In Section II, we
discuss the network settings and the cross-layer transmission
actions of the autonomic wireless nodes, and formulate the
autonomic decision making problem in the MCN. In Section
III, we discuss the distributed MDP framework that addresses
both the dynamic and information-decentralized nature of
the MCN. In Section IV, we propose a model-based online
learning approach for the autonomic wireless nodes to solve
the distributed MDP at runtime, which is suitable for the
mission-critical applications. Section V provides simulation
results and Section VI concludes the paper.

II. AUTONOMIC DECISION MAKING PROBLEM

FORMULATION IN MCN

A. Mission-critical application characteristics

Unlike most cross-layer design papers that consider only a
single application, we assume that there are multiple sources
transmitting simultaneously delay-critical information over the
MCN. Let V = {Vi} represent the set of the mission-critical
applications. We assume that the packets of an application
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Vi are prioritized into Ki priority classes. The total number
of the priority classes in the network is K =

∑|V|
i=1 Ki.

Let {Ck, k = 1, ..., K} represent all the priority classes in
the network. In the subsequent part of the paper, we label
the K classes (across all applications) in descending order
of their priorities, i.e. C1 is the highest priority class. A
priority class Ck is characterized by the following parame-
ters {Dk, Rk, Lk}1. Dk represents the delay deadline of the
packets in class Ck. A packet of a mission-critical application
is useful only if it is received at the destination before its
delay deadline. Rk is the average source rate of the packets in
class Ck. Based on the source rate, the source node generates
a certain number of packets per unit time, which impacts the
traffic load of the MCN. Lk is the average packet length of the
packets in class Ck, which directly impacts the packet error
rate and the transmission rate of sending a class Ck packet. Let
Delayk represent the end-to-end delay that is required for the
transmission of the traffic in class Ck. These required delays
are mandated by the mission and the deployed applications,
and the MCN agents need to prioritize the traffic and minimize
their end-to-end delays according to the assigned priorities
[8]. For example, in a battlefield mission-critical network,
instructions from a command center are mission-critical and
should have higher priority than any other traffic, e.g. response
notification, surveillance results, etc.

B. Multi-hop MCN settings

The MCN is represented by a network graph G(V,M,E),
where M = {m1, ..., m|M|} represents the set of agents and
E = {e1, ..., e|E|} represents a set of edges (transmission
links) that connect the various agents. There are two types
of agents defined in this paper:
1) Autonomic Source Agents (ASs). Each AS generates a
mission-critical application and would like to transmit the
application to a predetermined destination node.
2) Autonomic Relay Agents (ARs). ARs relay the packets
from the AS to the corresponding destination node. Unlike
the ASs, the ARs do not generate their own traffic. They
make their cross-layer transmission decisions and forward the
packets for the ASs.

To enable us to better discuss the various networking
solutions, we label the agents using a directed acyclic graph
[13] as shown in Figure 1, which consists of H hops from
the ASs to the destination nodes2. We assume that Mh is the
number of agents at the h-th hop (0 ≤ h ≤ H − 1), and
M0 = MH = |V|. Each agent at the h-th hop will be tagged
with a distinct number mh(1 ≤ mh ≤ Mh). Let Mh ⊆ M
represent the set of agents at the h-th hop. The agent mh

processes a priority queue and it can only transmit the packets
in the queue to a subset of ARs in Mh+1. Through periodic
information exchange (e.g. hello message exchange in [24]),
we assume that each agent mh knows the existence of its
neighboring nodes (i.e. the other agents m′

h ∈ Mh in the same

1We refer the interested readers to our previous work [21] for more details
on these parameters.

2Note that such a directed acyclic network can be deployed over any
physical network topologies as an overlay network (see [13] for more details
about how to deploy the directed acyclic graph over a multi-hop wireless
network).
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Fig. 1. Considered multi-hop wireless network [10]

hop and the agents mh+1 ∈ Mh+1 in the next hop), as well
as the interference matrix [21] of the current hop that defines
whether or not two different links of neighboring nodes can
transmit simultaneously.

C. Effective transmission rate over the multi-hop MCN

We denote the maximum transmission rate over the link
(mh, mh+1) as Tk,mh,mh+1 for traffic class Ck. Assuming a
memory-less packet erasure channel as in [20][21], and given
the Signal-to-Interference-Noise-Ratio (SINR) xmh,mh+1 , we
can compute the packet error rate pk,mh,mh+1(xmh,mh+1) over
the link. If the agent mh selects mh+1 as its next relay,
the effective transmission rate (goodput) can be approximated
using the sigmoid function [20]:

T goodput
k,mh,mh+1

(xmh,mh+1)
= Tk,mh,mh+1(1 − pk,mh,mh+1(xmh,mh+1)),
pk,mh,mh+1(xmh,mh+1) = 1

1+e
ζ(xmh,mh+1−δ) ,

(1)

where ζ and δ are constants corresponding to the modulation
and coding schemes for a given packet length Lk. This
goodput is determined by the actions of the agent mh, which
influences the delay of the applications (see Section III.A for
more details).

D. Actions of the autonomic wireless nodes

An agent’s cross-layer transmission action varies when
transmitting different priority class traffic. Denote Amh

=
{Ak,mh

, ∀Ck} as the cross-layer transmission action of agent
mh, where Ak,mh

= {πk,mh
, βk,mh,mh+1 , mh+1 ∈ Mh+1} ∈

Amh
represents the action of agent mh when sending packets

in class Ck. Amh
represents the set of feasible actions for the

agent mh. In this paper, we assume that the cross-layer trans-
mission action includes the application layer packet scheduling
πk,mh

of transmitting packets in class Ck , and the network
layer relay selecting parameter βk,mh,mh+1 , which determines
the probability of selecting a node mh+1 ∈ Mh+1 in the next
hop as the next relay. Denote A = {Amh

, ∀mh ∈ M} as
the actions of all the agents in the MCN. Note that the delay
Delayk(A) of packets in class Ck is a function of all agents’
actions.
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E. Problem formulation

In this subsection, we discuss several ways to determine
the cross-layer transmission decisions for transmitting the
mission-critical applications over the MCN.
- Centralized decision making
The majority of the cross-layer design papers assume a
centralized optimization, in which a central controller collects
global network information G and make transmission decisions
for all the agents in the MCN. Since minimizing end-to-
end delay is the key objective in the MCN, the centralized
optimization needs to minimize the end-to-end delays for the
various applications [12][13]. An advantage of such delay-
driven approach is that the optimization only needs to be done
for the higher priority classes, and the packets of the lower
priority classes can be simply dropped if their delay constraints
cannot be met3. Let ak = [Ak,mh

, ∀mh ∈ M] represent
the actions of all the agents sending traffic class Ck. The
actions for transmitting the priority class Ck can be computed
after the actions for the higher priority classes {a1, ..., ak−1}
are determined and the action ak will not affect any of the
actions for {a1, ..., ak−1}. Specifically, the following delay
constrained optimization is considered for the priority class
Ck:

aopt
k = arg min

ak

Delayk(ak, {a1, ..., ak−1},G)

s.t.Delayk(ak, {a1, ..., ak−1},G) ≤ Dk

(2)

However, in mission-critical applications, which have
stringent delay deadlines, it is impractical to assume that
the global information G can be gathered in time at a
central controller. Hence, it is important to decompose the
optimization in equation (2) in such a way that each agent
mh can make timely decision based on local information Lmh

.

- Distributed decision making for the agent mh

Let E[Delayk,mh
(Ak,mh

,Lmh
)] represent the expected delay

from mh to the destination node of the traffic class Ck, which
is a function of the transmission action Ak,mh

and its local
information Lmh

. Let DelayPASS
k,mh

represent the delay that
has already passed when the class Ck packet arrives at the
agent mh. This can be computed based on the information that
is encapsulated in the packet header. Since agent mh cannot
influence DelayPASS

k,mh
, it can only minimize the delay for

the highest priority class Ck in its queue using the following
optimization [21]:

Aopt
k,mh

(Lmh
) = arg min

Ak,mh

E[Delayk,mh
(Ak,mh

,Lmh
)]

s.t.Delayk,mh
(Ak,mh

,Lmh
) ≤ Dk − DelayPASS

k,mh

(3)
Figure 2(a) illustrates this conventional distributed decision

making. First, the agent evaluates the utility (i.e. the expected
delay E[Delayk,mh

(Ak,mh
,Lmh

)]), which it can obtain from
taking various actions based on the local information Lmh

.
Then, the agent determines its transmission action by solving

3The action Ak,mh
= {βk,mh,mh+1 , mh+1 ∈ Mh+1} hereafter does

not include the application layer scheduling, since the highest priority packet is
selected to be transmitted. To simplify the notation, we use the same notation
for the cross-layer transmission actions and assume that the class Ck is the
highest priority class existing in the queue of the agent mh when taking the
action Ak,mh

.

 (a)

(b)

input rate, SINR

Utility 
evaluation

Determine 
transmission

action

Gather local 
information

Future
utility 

evaluation

Gather local 
Information

State 

Determine 
transmission

action

Agent

input rate, SINR

Wireless
networks

(other agents)

Wireless
networks

(other agents)

(a)

(b)

input rate, SINR

Utility 
evaluation

Determine 
transmission

action

Gather local 
information

Future
utility 

evaluation

Gather local 
Information

State 

Determine 
transmission

action

Agent

input rate, SINR

Wireless
networks

(other agents)

Wireless
networks

(other agents)

 

Fig. 2. (a) Conventional distributed decision making of an agent.(b) Proposed
foresighted decision making of an agent.

the optimization in equation (3). The required local informa-
tion Lmh

for computing E[Delayk,mh
(Ak,mh

,Lmh
)] will be

discussed later in Section III.B.
However, due to the dynamic nature of the MCN, the

gathered local information is changing over time. Hence, it
is important for the agents to consider not only the current
expected delay, but also the future expected delay as the
network dynamics evolve. Figure 2(b) illustrates how an
agent anticipates the evolution of the network dynamics by
considering the impact of its current transmission action on the
future network state (which will be defined in Section III.A),
and based on it, makes foresighted transmission decisions to
transmit mission-critical applications. Next, we formulate this
foresighted decision making of an agent in the MCN.

- Proposed foresighted decision making for the agent
mh

Assume E[Delayt0
k,mh

] as the expected delay of agent mh at
current service interval t0. Given the current local information
Lt0

mh
, agent mh makes foresighted decisions by taking into

account the impact of its actions not only on the current
expected delay, but also on the discounted expected delays
in the future service intervals, i.e.

μk,mh
(Lt0

mh
) =

arg min
A

k,mh

{ ∞∑
t=t0

γt−t0E[Delayt
k,mh

(Ak,mh
,Lt

mh
)]
}

(4)

where 0 < γ < 14 represents the discount factor to decrease
the utility impact of the later transmitted packets. If the
discount factor γ = 0, the optimization in equation (4)
becomes a myopic decision making, similar to the one in
[21]. We refer to the function μk,mh

(Lmh
) as the cross-layer

transmission policy given the local information Lmh
. In the

41 − γ can be regarded as the probability that the priority class ends
in a certain service interval. Note that different discount factors γk can be
considered for different priority classes. However, to simplify the exposition,
we consider here the same γ for all priority classes.
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next section, we will discuss how to compute this cross-layer
transmission policy.

III. DISTRIBUTED MARKOV DECISION PROCESS

FRAMEWORK

In this section, we discuss how to systematically compute
the cross-layer transmission policy μk,mh

(Lmh
) for the agents

in the MCN. First, we define the state of the agents in Section
III.A. Then, in Section III.B, we propose the distributed MDP
which allows all the agents to make their own decisions.

A. States of the autonomic wireless nodes

We define the network state at agent mh as smh
=

{[ηk,mh
, ∀Ck], [xmh,mh+1 , ∀(mh, mh+1)]} ∈ Xmh

, where
xmh,mh+1 represents the channel condition (see Section II.C)
and ηk,mh

represents the arrival rate of the class Ck packets
at agent mh. To evaluate the expected delay E[Delayk,mh

],
agent mh needs to first compute the expected queuing delay
E[Wk,mh

] for which the packets in class will be queued at
mh. The state includes sufficient statistics for computing the
expected queuing delay E[Wk,mh

], when an action Ak,mh
is

taken. Note that the first two moments of the service rate can
be obtained as: and

E[Xk,mh
] = Lk

Tk,mh,mh+1 (1−pk,mh,mh+1(xmh,mh+1 ))

E[X2
k,mh

] =
L2

k(1+pk,mh,mh+1(xmh,mh+1 ))

T 2
k,mh,mh+1

(1−pk,mh,mh+1(xmh,mh+1 ))2

(5)

Together with the arrival rate ηk,mh
, the expected queuing

delay E[Wk,mh
] can be computed using an priority M/G/1

queuing model [21]. We assume that each agent will feed
back its expected delays to all the agents in the previous hop
(similar to DSDV protocols [24]). Hence, the agent mh is
able to select the next relay that minimizes the sum of current
queuing delay and the expected delay from the next hop to
the destination node of class Ck, i.e.

E[Delayk,mh
(Ak,mh

, smh
)]

=
H−1∑
h′=h

E[Wk,mh′ (Ak,mh′ , smh′ )]

= E[Wk,mh
(Ak,mh

, smh
)] + E[Delayk,mh+1(Ak,mh+1

)]
(6)

Importantly, the agent mh’s transmission action will im-
pact the information feedback E[Delayk,mh+1], since it will
select the next relay mh+1 ∈ Mh+1 that feeds back dif-
ferent expected delay values. Moreover, the expected delay
E[Delayk,mh

] will be fed back to the agents in the previous
hop and hence impact their transmission actions. Hence, the
agent mh’s action Ak,mh

will affect its own future state
smh

and also will influence the future expected delay as
the network dynamics evolve. As in [30], we denote the
probability that the agent mh has a state st+1

mh
in service

interval t + 1 as p(st+1
mh

), which is modeled as a function of
agent mh’s current state st

mh
and current action At

k,mh
, i.e.

p(st+1
mh

) ∼= F̂
st+1

mh

(st
mh

, At
k,mh

) (7)

Note that the real p(st+1
mh

) can be very complicated in a
real network, since it is impacted by the decisions of all the
agents in the previous hop as well as the interference among

the agents in the current hop. Note that in our solution, the
agents do not need to know the exact form of p(st+1

mh
). Online

learning approaches will be discussed in Section IV for the
agents to learn the state transition function in equation (7).
Next, we formulate the cross-layer optimization of the agent
as an MDP for each class.

B. Distributed MDP for class Ck

For class Ck, the MDP at the agent mh is defined by a
tuple 〈Xmh

,Amh
, Imh

, Tmh
,Umh

, γ〉:
- States: Recall that the state is defined in Section III.A as
smh

= {[ηk,mh
, ∀Ck], [xmh,mh+1 , ∀(mh, mh+1)]} ∈ Xmh

.
- Actions: Recall that the action is defined as Ak,mh

=
{βk,mh,mh+1 , mh+1 ∈ Mh+1} ∈ Amh

in Section II.C. To
simplify the notation, we will afterward use Amh

instead of
Ak,mh

.
- Information exchange: Let Imh

= {F b
h, F f

h }5 represent
the information exchange of the agents in the h-th hop to
the previous hop and to the next hop. Denote F b,t

h (mh) =
E[Delayt

k,mh
] as the feedback information from agent mh

to the agents in the previous hop (see equation (6)) and
let F b,t

h = [F b,t
h (mh), mh ∈ Mh] represents the feedback

information in the h-th hop in the service interval t. Denote
F f,t

h (mh) = {DelayPASS
k,mh

, ηk,mh
} as the feedforward infor-

mation from node to the selected relay in the next hop and let
F f,t

h = [F f,t
h (mh), mh ∈ Mh] represent the feedforward in-

formation in the h-th hop. Given the feedforward information
F f,t

h−1, the agent mh computes the average delay DelayPASS
k,h−1

of passing through the previous hops as:

DelayPASS
k,h−1 =

∑Mh−1

mh−1=1

ηk,mh−1

Rk
DelayPASS

k,mh−1
(8)

If DelayPASS
k,h−1 exceeds the delay deadline Dk, the packet in

class Ck should be dropped and no MDP is needed for traffic
class Ck at the agent mh.
- State transition probabilities: Let Tsmh

s′
mh

(Amh
) ∈ Tmh

:
Xmh

× Xmh
× Amh

→ [0, 1] represent the stationary state
transition probabilities from state smh

to state s′mh
when

action Amh
is taken. Based on the state transition models in

equation (7), we compute the state transition probabilities as
Tsmh

s′
mh

(Amh
) ∼= F̂s′

mh
(smh

, Amh
) .

- Cost: The expected delay E[Delayk,mh
(smh

, Amh
)] ∈ Umh

represents the cost function. As mentioned in Section III.A,
we rely on a priority-based queuing model to compute the
cost function (see equation (6)). Note that the expected delay
of a higher priority class will not be influenced by the other
lower priority classes. However, if the class is one of the lower
priority classes, the influence of the higher priority classes is
taken into account based on the priority-based queuing model
[21] (given the actions and states associated with the higher
priority classes).
- Discount factor: Recall that γ is the same discount factor
as in equation (4).
Based on the information feedback F b

h+1, we modify the

5The superscript b and the superscript f represent backwards and forwards
information, respectively.



SHIANG and VAN DER SCHAAR: ONLINE LEARNING IN AUTONOMIC MULTI-HOP WIRELESS NETWORKS 733

 

Future
utility 

evaluation

Distributed
MDP             

Local 
Information

State        

Determine 
transmission

action h hm ∈ M

Decision
process
of agents 

Future
utility 

evaluation

Distributed
MDP

Local 
Information

State       

Determine 
transmission

action 1 1h hm − −∈ M

Decision
process
of agents 

1
f
hF −

b
hF1

b
hF −

f
hF2

f
hF −

1hms − hms

( )
hkh msμ

11( )
hkh msμ
−−

Markovian state
transition

Markovian state
transition

Future
utility 

evaluation

Distributed
MDP             

Local 
Information

State        

Determine 
transmission

action h hm ∈ M

Decision
process
of agents 

Future
utility 

evaluation

Distributed
MDP

Local 
Information

State       

Determine 
transmission

action 1 1h hm − −∈ M

Decision
process
of agents 

1
f
hF −

b
hF1

b
hF −

f
hF2

f
hF −

1hms − hms

( )
hkh msμ

11( )
hkh msμ
−−

Future
utility 

evaluation

Distributed
MDP             

Local 
Information

State        

Determine 
transmission

action h hm ∈ M

Decision
process
of agents 

Future
utility 

evaluation

Distributed
MDP             

Local 
Information

State        

Local 
Information

State        

Determine 
transmission

action h hm ∈ M

Decision
process
of agents h hm ∈ M

Decision
process
of agents 

Future
utility 

evaluation

Distributed
MDP

Local 
Information

State       

Local 
Information

State       

Determine 
transmission

action 1 1h hm − −∈ M

Decision
process
of agents 

1
f
hF −

b
hF1

b
hF −

f
hF2

f
hF −

1hms − hms

( )
hkh msμ

11( )
hkh msμ
−−

Markovian state
transition

Markovian state
transition

 
Fig. 3. Proposed decentralized MDP framework and the necessary information exchange among the agents

Bellman equation [19] of the MDP as:

V ∗
k,mh

(smh
, F b

h+1)

= min
Amh

∈Amh

{ ∞∑
t=1

γt−1E[Delayt
k,mh

(smh
, Amh

)]
}

= min
Amh

∈Amh

⎧⎨
⎩

E[Wk,mh
(smh

, Amh
)] + F b

h+1(Amh
)+

γ
∑

smh
′
Tsmh

sm′
h

(Amh
)V ∗

k,mh
(s′mh

, F b
h+1)

⎫⎬
⎭

(9)
where V ∗

k,mh
is referred to as the MDP delay value, which

is a discounted version of the long-term expected delay. To
solve this feedback-modified Bellman equation, the agent mh

adopts value iteration [19] by updating the MDP delay value:

V t+1
k,mh

(smh
, F b,t

h+1) = min
Amh

∈Ah

Qt
k,mh

(smh
, Amh

, F b
h+1),

(10)
where Qt

k,mh
(smh

, Amh
, F b

h+1) = E[W t
k,mh

(smh
, Amh

)] +
F b,t

h+1(Amh
) + γ

∑
smh

′
Tsmh

smh
′(Amh

)V t
k,mh

(s′mh
, F b,t−1

h+1 )

is the Q-value at the agent mh when a cross-
layer transmission action Amh

is taken in state
smh

. The stationary policy can be written as:
μt

k,mh
(Lt

mh
) = arg min

Amh
∈Amh

Qt
mh

(smh
, Amh

, F b,t
h+1).

The feedback-modified Bellman equation in equation (9)
can be solved using value iteration, if the agent mh

has complete knowledge about E[Wk,mh
(smh

, Amh
)] and

Tsmh
sm′

h

(Amh
). Table I presents the detailed implementation

of the distributed MDP and Figure 3 shows the considered
system diagram of the distributed MDP that allows the agents
to exchange information with the nodes in the neighboring
hops.

IV. ONLINE MODEL-BASED LEARNING FOR SOLVING THE

DISTRIBUTED MDP

In order to solve the Bellman equations, the agents need
to know the state transition probabilities Tsmh

sm′
h

(Amh
) in

the updating equation (10). However, the state transition
probabilities may not be known to the agents a priori. In this
section, we discuss online learning approaches for solving the

distributed MDP introduced in the previous section at run-
time. We propose a novel model-based reinforcement learning
approach that is suitable for the agents to transmit mission-
critical applications over the MCN. The proposed model-
based reinforcement learning approach adopts the priority
queuing model E[Wk,mh

(smh
, Amh

)] for the cost and directly
estimates the state transition probabilities Tsmh

sm′
h

(Amh
) to

solve the distributed MDP. In Section IV.B, we show that the
proposed model-based learning methods converge faster than
the model-free learning approaches, since it takes less time for
the autonomic node to explore different states and correctly
evaluate the Q values.

A. Conventional model-free reinforcement learning

The model-free learning methods, e.g. Q-learning [16][17],
can be applied at an agent mh to learn the next Q val-
ues [Qt+1

k,mh
(smh

, Amh
), ∀smh

∈ Xmh
] without characterizing

the state transition probabilities Tsmh
sm′

h

(Amh
). Taking Q-

learning as an example, given the feedback value F b,t
h+1, the

autonomic node mh updates the Q-value using the following
updating equation:

Qt+1
k,mh

(smh
, Amh

) = (1 − ρt)Qt
k,mh

(smh
, At

mh
)+

ρt

{
Costtk,mh

+ F b,t
h+1(A

t
mh

) + γ min
Amh

Qt
k,mh

(st+1
mh

, Amh
)

}
(11)

where 0 < ρt < 1 represents the learning rate, and
∑

t ρt = ∞
and

∑
t(ρ)2 < ∞ are ensured for the convergence of the Q-

value [16]. The Costtk,mh
represents the delay measurement

(e.g. by measuring the queue size) of sending packets in class
Ck and st+1

mh
represents the next state after the agent mh

takes the cross-layer transmission action At
mh

. For exploration
purposes, instead of following the optimal stationary policy
μt

k,mh
(smh

) = arg min
Amh

∈Amh

Qt
k,mh

(smh
, Amh

), the next

action is selected according to a soft-min policy. Assume
πt

k,mh
(smh

, Amh
) denotes the probability for agent mh to

take the action Amh
given the state smh

. The soft-min policy
μt

k,mh
(smh

) = [πt
k,mh

(smh
, Amh

), ∀Amh
∈ Amh

] is defined
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TABLE I
IMPLEMENTATION OF THE DISTRIBUTED MDP

 
 
 
 
 
 
 
 
 

Step 1. Gather local information. From the information feedforward ,
1
f t
hF −  from the previous hop, the agent hm  computes 

, 1
PASS
k hDelay −  and determine whether the distributed MDP should be performed for traffic class kC . Then, gathers the local 

information 
h

t
mL { }, 1,

h

b tt
m hs F += . 

Step 2. Evaluate queuing delay and state transition probabilities. Based on state 
hms  and action 

hmA  the agent hm  

evaluates ,[ ]
h

t
k mEW . The state transition probabilities are modeled using 1

ˆ( ) ( , )tm m h h hh h mh

t t
s s m m ms
T A s A+=' F  in equation (7). 

Step 3. Update the transmission policy. The agent hm  updates the MDP delay value ,1
1( , )

h h

b tt
m m hV s F+

+  using equation (10). 

The stationary policy of the agent hm  is ,
, 1( ) arg min ( , , )
h h h h h

m mh h

b tt t t
k m m m m m hA

Q s A Fμ +∈
=

A
L . 

Step 4. Update the information exchange. After the policy , ( )
h h

t t
k m mμ L  is determined, the next relay 1hm +  is selected and 

hm  can then update the feedback information 

11 1

, 1 ,
, , 1 , ,1( ) ( ) [ ( , ( ))]
h h h h h hh h

b t b t t t t t
h k m m h k m m k m mh hm

F m F m EW sβ μ
++ +

+
++∈

= +∑ M
L . The wireless node hm  also needs to 

update its feedforward information , 1
, 1 , ,( ) [ ( , ( ))]

h h h h

f t PASS t t t t
h k h k m m k m mhF m Delay EW s μ+

−= + L . 

 

using the Boltzmann distribution [14][15][16]:

πt
k,mh

(smh
, Amh

) =
exp(

−Qt
k,mh

(smh
,Amh

)

τ )∑
∀Amh

∈Amh
exp(

−Qt
k,mh

(smh
,Amh

)

τ )
(12)

where τ is the temperature parameter. A small τ provides
a greater probability difference in selecting different actions.
If τ → 0, the approach reduces back to μt

k,mh
(smh

) =
arg min

Amh
∈Amh

Qt
k,mh

(smh
, Amh

) . On the other hand, a larger

τ allows the agents to explore various actions with higher
probabilities6. We provide detailed steps of the model-free
reinforcement learning in Algorithm 1 in Table VI. Table
II summarizes the required local information, memory com-
plexity, and computational complexity of the model-free re-
inforcement learning approaches. In each service interval, the
model-free reinforcement learning approaches need to update
the Q-values of ∀smh

∈ Xmh
, ∀Ck, and for each state,

Qt
k,mh

(st+1
mh

, Amh
) over ∀Amh

∈ Amh
is calculated. Hence,

the computational complexity is O (|Xmh
| |Amh

|K). Note
that the dynamics in the MCN may change before the updated
policy converges when using a model-free learning approach.
Hence, we consider alternative model-based reinforcement
learning in the next subsection, which is more suitable for
the agents in the MCN due to a faster convergence rate.

B. Proposed model-based reinforcement learning

In this section, we propose our model-based learning ap-
proach that enables the agent mh to directly model the
expected queuing delay E[Wk,mh

(smh
, Amh

)] and estimate
the state transition probabilities T̂smh

smh
′(Amh

) to solve
the Bellman equation through value iteration [19]. Figure
4 provides a system block diagram of the proposed online
learning approach at the agent mh. Our approach is similar to

6τ provides an exploration and exploitation tradeoff between exploring
different actions and exploiting the Q-values of taking an action. Such tradeoff
is important in the MCN, since it significantly impacts the convergence rate
and the performance of the learning approach.

the Adaptive-RTDP in [14], where the state transition proba-
bilities are determined using maximum-likelihood estimation.
Specifically, let T̂smh

smh
′(Amh

) denote the estimated state
transition probability at , which is updated at each service
interval. The Q-value is also updated as:

Qt+1
k,mh

(smh
, Amh

) = (1 − ρt)Qt
k,mh

(smh
, Amh

)+

ρt

⎧⎨
⎩

E[W t
k,mh

(smh
, Amh

)] + F b,t
h+1(Amh

)+
γ min

Amh
∈Ah

∑
sm′

h

T̂ t
smh

sm′
h

(Amh
)Qt

k,mh
(sm′

h
, Amh

)

⎫⎬
⎭
(13)

sm′
h

represents the next state to which agent mh transits, after
it takes the cross-layer transmission action Amh

. We provide
the detailed steps of the proposed model-based reinforcement
learning in Algorithm 2 in Table VII. The main differences
between the model-based online learning approach and
model-free learning approaches are the following:
1) We model the expected queuing delay
E[Wk,mh

(smh
, Amh

)] with an action realized from the
policy μt

k,mh
using the preemptive-repeat priority M/G/1

queuing model as in [21]:

E[Wk,mh
(smh

, Amh
)] =⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

kP
i=1

ηi,mh
E[X2

i,mh
]

2

 
1−

k−1P
i=1

ηi,mh
E[Xi,mh

]

! 
1−

kP
i=1

ηi,mh
E[Xi,mh

]

!

, ifE[Wk,mh
] ≤ Drem

k,mh

∞, otherwise
(14)

From equation (14), we know that if the queuing time exceeds
the remaining delay deadline Drem

k,mh
= Dk − DelayPASS

k,h−1 ,
the expected queuing time E[Wk,mh

] becomes infinite, since
the packets will be useless (no utility gain) and they will be
dropped at the agent mh. Unlike Q-learning that can only
update one Q-value of a state-action pair at each service
interval, with the priority queuing model, our model-based
learning approach provides accurate estimation for any state-
action pairs. Hence, the priority queuing model enables a faster
learning capability, which is very important in order to satisfy
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Fig. 4. System diagram of the proposed model-based online learning approach at the agent mh

TABLE II
COMPLEXITY SUMMARY OF THE MODEL-FREE REINFORCEMENT LEARNING

Required local 
information 

, ,
, 1 1{ ,{ , }, , }

h h h

f t b tt t t
m m k m k h hs Cost C F F− += ∀L  

Transmission policy State 
transition Q-value Memory 

complexity 
h hm m KX A  Not required 

h hm m KX A  
Computational 

complexity ( )
h hm mO KX A  

 
 
 
 
 
 
 
 
 

Bmh
= {smh

: xmh,mh+1 ≥ δ − ln
(

Tk,mh,mh+1D
rem
k,mh

Lk
− 1
) 1

ξ

} (15)

the stringent delay constraints of mission-critical applications.
2) We apply the maximum-likelihood state-transition prob-
abilities [14] in Algorithm 2 to update the state transition
probabilities T̂ t

smh
sm′

h

(Amh
), instead of using the Q-value

of the next state st+1
mh

at each service interval. In Algorithm
2, nt

smh
sm′

h

(Amh
) represents the observed number of times

before service interval t that the action Amh
is taken when

the state was in smh
and made a transition to sm′

h
and

nt
smh

(Amh
) =

∑
sm′

h
∈Xmh

nt
smh

sm′
h

(Amh
) represents the

observed number of times before service interval t that the
action Amh

is taken when the state was smh
.

3) Unlike regular value iteration and Q-learning, instead of
updating the value Qt+1

k,mh
(smh

, Amh
) for ∀smh

∈ Xmh
, we

only update the value for states in a particular set Bmh
. The

rest of the states smh
/∈ Bmh

have insufficient SINR values to
keep the transmission time within the remaining delay dead-
line Drem

k,mh
. In other words, the condition Lk

/
T goodput

k,mh,mh+1
≤

Drem
k,mh

must hold to support the transmission of traffic clas
Ck at agent mh. Hence, the set is defined as in (15), which
depends on the physical layer parameters δ and ξ of the agent
mh (see equation (1)). We only update the Q-values of the
states smh

∈ Bmh
in Algorithm 2. Table III summarizes the

required local information, memory complexity, and computa-
tional complexity of the proposed model-based reinforcement
learning approach.

The proposed model-based reinforcement learning approach
has higher computational complexity than model-free re-
inforcement learning approaches. However, the computa-

tional complexity is a minor concern in the MCN com-
pared with satisfying the delay constraints of the mission-
critical applications. For the proposed model-based rein-
forcement learning approach, the Q-values of ∀smh

∈
Bmh

, ∀Ck need to be updated in each service interval,
and for each state over ∀Amh

∈ Amh
, the last term

min
Amh

∈Amh

∑
sm′

h

T̂ t
smh

sm′
h

(Amh
)Qt

k,mh
(sm′

h
, Amh

) in equation

(13) is calculated. Although the computational complexity is
larger, the convergence rate of the proposed model-based re-
inforcement learning approach is much faster than the model-
free reinforcement learning approaches. In Section V.B, we
compare the convergence speeds of different learning methods
through extensive simulation results. Hence, the MCN nodes
can choose to implement this higher complexity learning to
improve their performance. In Section V.C, we investigate the
case where nodes deploy heterogeneous learning methods and
determine the resulting performance.

C. Upper and lower bounds of the model-based learning
approach

Since the maximum-likelihood state-transition probabilities
T̂ t

smh
sm′

h

(Amh
) are used in the proposed model-based

learning approach, there is no guarantee that the resulting
MDP delay value can converge to the optimal value
V ∗

k,mh
(smh

, F b
h+1) in equation (9). In this subsection,

we investigate the accuracy of the proposed model-based
learning in terms of the resulting MDP delay value. Let
V

t

k,mh
(smh

, F b,t−1
h+1 ) and V t

k,mh
(smh

, F b,t−1
h+1 ) denote the
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TABLE III
COMPLEXITY SUMMARY OF THE MODEL-BASED REINFORCEMENT LEARNING

Required local 
information 

, ,
1 1{ , , }

h h

f t b tt t
m m h hs F F− +=L  

Transmission 
policy State transition Q-value Memory 

complexity  
h hm m KB A  2

h hm m KB A  h hm m KB A  

Computational
complexity ( )2

h hm mO K B A  

 
 
 
 
 
 
 
 
 

upper and the lower bounds of the value, respectively,
using T̂ t

smh
sm′

h

(Amh
) in the proposed model-based learning

approach in service interval t. We define ε as the (1 − δ)-
confidence interval of the real MDP delay value (using the
unknown T̂ t

smh
sm′

h

(Amh
) in Section III) in service interval t,

i.e. Prob(V
t

k,mh
(smh

, F b,t−1
h+1 ) − V t

k,mh
(smh

, F b,t−1
h+1 ) ≥ ε) ≤

1 − δ(0 < δ < 1).

Proposition: There exists a (1 − δ)-confidence interval ε,
such that an agent mh can update the upper bound of value
V

t

k,mh
(smh

, F b,t
h+1) using

V
t+1

k,mh
(smh

, F b,t
h+1) =

min
Amh

⎧⎪⎨
⎪⎩

E[W t
k,mh

(smh
, Amh

)] + F b,t
h+1(Amh

)+

γ
∑
sm′

h

T̂ t
smh

sm′
h

(Amh
)V

t

k,mh
(s′mh

, F b,t−1
h+1 ) + ε

⎫⎪⎬
⎪⎭
(16)

and update the lower bound V t
k,mh

(smh
, F b,t

h+1) using

V t+1
k,mh

(smh
, F b,t

h+1) =

min
Amh

⎧⎨
⎩

E[W t
k,mh

(smh
, Amh

)] + F b,t
h+1(Amh

)+
γ
∑
sm′

h

T̂ t
smh

sm′
h

(Amh
)V t

k,mh
(s′mh

, F b,t−1
h+1 ) − ε

⎫⎬
⎭
(17)

and the following two conditions are satisfied:

1)nt
smh

(Amh
) =

⌈
1
2 ln
(
|Amh ||Bmh |

δ

)(
Vmax

ε

)2⌉
, ∀Amh

∈

Amh
, where Vmax =

max
k

Drem
k,mh

1−γ represents the largest MDP
delay value.
2)V ∗

k,mh
(smh

, F b
h+1) ≤ V ∗

k,mh
(smh

, F b
h+1) ≤

V
∗
k,mh

(smh
, F b

h+1) with probability at least 1 − 2δ.
Proof: See Appendix.

This proposition shows that the estimated values
V t+1

k,mh
(smh

, F b,t
h+1) become more accurate as nt

smh
(Amh

)

becomes larger than

⌈
1
2 ln
(
|Amh ||Bmh |

δ

)(
Vmax

ε

)2⌉
.

Moreover, the closer the agent mh is to the destination
node, the remaining path becomes shorter and provides
a smaller and leads to a smaller Vmax requirement on
nt

smh
(Amh

). Hence, using the same proposed model-based
learning approach to accumulate nt

smh
(Amh

), the learning
approach provides a more accurate MDP delay value for an
agent that is closer to its destination node, which is also
verified in the simulation results in Section V.D.

V. SIMULATION RESULTS

In this section, we simulate the performance of the proposed
model-based reinforcement learning for solving the distributed
MDP for the mission-critical applications.

A. Simulation results for different network topologies

We simulate first a 6-hop MCN with a topology shown
in Figure 5(a) with two ASs and 18 ARs. Such MCN is
commonly adopted in various areas, such as battlefield sens-
ing, security monitoring, and healthcare applications, where
prioritized data packets need to be relayed to the remote
destinations in a timely manner. Two groups of mission-critical
applications are sent in different priority classes (K = 8). The
characteristic parameters of these mission-critical applications
are given in Table IV. Various mission-critical applications can
be supported, e.g. video streams from surveillance cameras
[21], delay-sensitive monitoring report such as forest fire
detection, or patient monitoring [1]. Group 1 mission-critical
applications are sent through the AS m1 to the destination
node D1 and group 2 mission-critical applications are sent
from the other AS m2 to its destination node D2. The agents
are assumed to be able to select a set of modulation and coding
schemes that support a transmission rate T = 1 Mbps for all
the transmission links in the network [20]. Each receiver of
the transmission links receives a random SINR x that results
in a packet error rate ranging from 5% to 30%.

We assume that the nodes are exchanging hello messages
(as in DSDV [24]) with the required information exchange
every 10 ms (each service interval is 10 ms). Figure 5(b)
shows the MDP delay values from the ASs to the destination
nodes for the first 120 service intervals. Only the results of
the first five priority classes are shown. The higher priority
traffic has a smaller MDP delay value V t

k,m. The results of
centralized optimization are analytically computed by assum-
ing that the global network information is known by a central
controller, which is unrealistic in practice. On the other hand,
the proposed model-based reinforcement learning determines
the cross-layer transmission policy at each agent based on
local information. We set γ = 0.75, which is appropriate
for highly time-varying MCN (after 10 service intervals, the
future is only about 5% of the cost). Note that our model-based
learning provides the MDP delay values close to the central-
ized optimization results, especially for the priority classes
C1, C2, C3 that satisfy the condition E[Wk,mh

] ≤ Drem
k,mh

.
These three priority classes converge to a steady state after
t = 40, since their end-to-end delays are within the delay
deadline of the applications (the required performance level
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TABLE IV
THE CHARACTERISTIC PARAMETERS OF THE MISSION-CRITICAL APPLICATIONS

 
Group 1 mission-critical 

applications 1V  
Group 2 mission-critical 

applications 2V  

kC  1C  4C  6C  8C  2C  3C  5C  7C  

kR  (Kbps) 556 333 334 445 500 300 300 400 

kD  1 sec 

kL  1000 bytes 
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Fig. 5. (a) 6-hop network topology (b) MDP delay values of the first five priority classes

is set as
∞∑

t=1
γt−1Dk = Dk

1−γ = 4 when the delay deadline of

each future service interval is considered) and no packets are
dropped. The results also show that the higher priority traffic
converges faster than the lower priority traffic. This is because
the queuing delay of the lower priority class traffic is impacted
by the higher priority class traffic. Next, we simulate a skewed
network topology that has two clusters of nodes shown in
Figure 6(a). Such network topology with clusters of nodes can
be common in the MCN due to landscape requirements. The
network connections between the two clusters usually form a
bottleneck to transmit the mission-critical applications. Figure
6(b) shows that the MDP delay values V t

k,m of all the priority
classes increase. We observe that only the convergence rates
of the higher priority classes decrease in the skewed network
due to the impact of the bottleneck.

B. Comparison among the reinforcement learning approaches

In this subsection, we compare the proposed model-based
reinforcement learning approach with Q-learning in [16] (a
model-free reinforcement learning approach) and the my-
opic self-learning approach in [21] (γ = 0). We adopt the
same network conditions as the previous simulations and
the network topology shown in Figure 5(a). In Figure 7,
the simulation results show that the proposed model-based
reinforcement learning approach outperforms the other two
learning approaches in terms of the MDP delay values for
all the priority classes. Although Q-learning has the lowest

computational complexity, it has the worst performance in
terms of both the MDP delay value V t

k,m and the convergence
rate. The delay of the C1 traffic converges after t = 20 for the
proposed model-based learning approach and converges only
after t = 40 for Q-learning approach. The convergence is not
guaranteed for the lower priority class traffic, especially for the
myopic self-learning solution. Moreover, although the myopic
approach has the fastest convergence rate, it results in a worse
performance than the proposed model-based reinforcement
learning approach.

In addition to the MDP delay values V t
k,m, we directly com-

pare expected end-to-end delays E[Delayt
k] of the mission-

critical applications from the ASs to the destination nodes.
The acceptance level for E[Delayt

k] is Dk = 1. In Figure
8, the simulation results show that by using the proposed
model-based learning approach, the MCN is able to support
up to three mission-critical classes, since the end-to-end
delay must be within the delay deadline of the applications
(E[Delayt

k] ≤ Dk), while by using the other two learning
approaches, the network can only support two mission-critical
classes.

Next, we simulate the expected delay of different classes in
a source variation scenario, where the AS m1 disappears right
after service interval t = 60. Figure 9 shows the changes of
expected delays over time for different classes using various
learning approaches. Since the AS m1 is the source node
of packets in classes {C1, C4, C6, C8}, the expected delays
E[Delay1] and E[Delay4] in Figure 8 vanish after t = 60. We
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Fig. 6. (a) 2-cluster skewed network topology (b) MDP delay values of the first five priority classes
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Fig. 7. Comparisons of the discounted end-to-end delay using different
learning approaches that solves the distributed MDP

can observe that if Q-learning is applied, before t = 60, only
class C1 from m1 can be delivered in time (E[Delay1] ≤ D1).
However, after t = 60, the class C2 from m2 can be supported
by the MCN due to the alleviation of the traffic loading. By
applying the proposed model-based learning approach, before
t = 60, both classes C1, C2 can be delivered in time, and after
t = 60, not only the class C2 but also the class C3 from m2

can be supported by the MCN. This shows that the proposed
model-based learning approach enables the MCN to support
more mission-critical applications.

C. Heterogeneous learning

In the previous simulations, we assume that all the net-
work nodes adopt the same learning approach to solve the
distributed MDP. However in reality, the agents can adopt dif-
ferent learning approaches. We simulated different scenarios
in which the agents have heterogeneous learning capabilities
using the same network conditions as the previous simulation
and the same network topology shown in Figure 5(a).

In Table V, we assume that the agents in the same hop are
using the same learning method. The model-based learning
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Fig. 8. Comparisons of the expected end-to-end delay using different learning
approaches that solves the distributed MDP.

TABLE V
THE RESULTS OF HETEROGENEOUS LEARNING SCENARIOS

 

Learning 
method  

(within 2 hops 
from ASs) 

Learning 
method  

(outside 2 hops 
from ASs) 

Expected delay 
of the first 
class traffic 

(sec) 

Expected delay 
of the second 
class traffic 

(sec) 
1 Model-based Model-based 0.34 0.4535 
2 Model-based Both (random) 0.3411 1.5841 
3 Model-based Model-free 0.3461 1.9785 
4 Model-free Model-based 1.5507 2.9401 
5 Model-free Both (random) 1.6886 7.4319 
6 Model-free Model-free 1.8401 7.7301 

 
 
 
 
 
 
 
 
 

refers to the proposed model-based reinforcement learning
approach and the model-free learning refers to the Q-learning
in [16]. The simulation results show that adopting a model-
based learning approach near the ASs is very important.
The delays are smaller independent of the type of learning
approaches the rest of the nodes. This is because the model-
based learning approach provides a more accurate estimate
of the expected delay feedback than the model-free learning
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Fig. 9. Source node of packets in class C1, C4 disappears after t = 60.

approach. Also, the model-based learning approach converges
faster than the model-free learning approach. Hence, the more
remaining nodes adopt the model-based learning approach, the
higher the improvement in the delay performance. Moreover,
the delays of the second priority class traffic vary more than
the first priority class. This shows that the learning methods
adopted by the agents can significantly impact the performance
of mission-critical applications, especially the ones with lower
priorities. In other words, the deployed learning approaches
impact the number of mission-critical applications supported
by the MCN.

D. Determining the upper and the lower bound

In this subsection, we provide simulation results to show
the upper bound and the lower bound of the model-based
reinforcement learning. We adopt the same network conditions
and the 2-cluster network topology shown in Figure 6(a).
Figure 10 shows the MDP delay values of the first priority
class traffic at different hops. Since the real delay is proven to
be bounded between the upper and the lower bounds, the result
shows that the model-based reinforcement learning provides
end-to-end delays that are more and more accurate over time
as well as when the agents are getting closer to the destination
nodes.

VI. CONCLUSION

In this paper, we investigated how the agents in the MCN
should optimally select their cross-layer transmission actions
in the MCN in order to minimize the end-to-end delays
of mission-critical applications. To consider both the spatial
and temporal dependency in the MCN, we formulate the
network delay minimization problem using distributed MDP.
To solve the distributed MDP in practice, we propose an on-
line model-based reinforcement learning approach. Unlike the
conventional model-free reinforcement learning approaches,
the proposed model-based reinforcement learning approach
has a faster convergence rate, since it takes advantage of
the priority queuing model and requires less time for the
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Fig. 10. The upper and the lower bounds of the discounted end-to-end delays
for the first priority class traffic at different hops.

autonomic node to explore different states to evaluate the Q-
values. Our simulation results verify that the suitability of the
proposed model-based learning approach supporting mission-
critical applications by the agents in the MCN.

APPENDIX

PROOF OF THE PROPOSITION

We apply Heoffding inequality [22] to obtain the confidence
interval ε, which basically states that given random variables
{X1, ..., Xm} in range [0, Xmax], the inequality holds:

Prob(
1
m

m∑
i=1

Xi −
1
m

m∑
i=1

E[Xi] ≥ ε) ≤ e−2m( ε
Xmax )2

(18)

From the first condition, we have ε =

Vmax

√√√√− ln

 
δ

|Amh ||Bmh |

!

2nt
smh

(Amh
) . Denote E[V (smh

, Amh
)] =∑

sm′
h

T̂ t
smh

sm′
h

(Amh
)V

t

k,mh
(sm′

h
, F b,t−1

h+1 ) as the average

MDP delay upper bound based on the estimated
T̂ t

smh
sm′

h

(Amh
) whenever state smh

is visited and

action Amh
is taken, and denote E[V (smh

, Amh
)] =∑

sm′
h

Tsmh
sm′

h

(Amh
)V t

k,mh
(sm′

h
, F b,t−1

h+1 ) as the average

expected MDP delay value based on real T t
smh

sm′
h

(Amh
).

Similar to the proof of lemma 3.2 in [23], equation (18) can
be rewritten as:

Prob(E[V (smh
, Amh

)] − E[V (smh
, Amh

)] ≥ ε) ≤

exp

⎧⎪⎪⎨
⎪⎪⎩−2nt

smh
Amh

(
1

Vmax

)2

⎛
⎜⎜⎝Vmax

√√√√− ln

 
δ

|Amh ||Bmh |

!

2nt
smh

Amh

⎞
⎟⎟⎠

2⎫⎪⎪⎬
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=
(

δ

|Amh ||Bmh |

)
(19)

Hence,Prob(V̄ t+1
k,mh

(smh
, F b,t

h+1) − V t+1
k,mh

(smh
, F b,t

h+1) ≥ ε) ≤
δ for each state-action pair (the total number of the state-action
pairs is |Amh

| |Bmh
|). Similar proof can be applied to the

lower bound. Since nt
smh

(Amh
) in the last term of equations
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TABLE VI
ALGORITHM 1: MODEL-FREE REINFORCEMENT LEARNING AT NODE mh

TABLE VII
ALGORITHM 2: MODEL-BASED REINFORCEMENT LEARNING AT NODE mh

(16) and (17) goes to infinity as t → ∞, we can show that both
the upper bound and the lower bound converge under the same
conditions, i.e. V

∗
k,mh

(smh
, F b

h+1) = lim
t→∞V

t

k,mh
(smh

, F b,t
h+1)

, and V ∗
k,mh

(smh
, F b

h+1) = lim
t→∞ V t

k,mh
(smh

, F b,t
h+1).

Due to the symmetric structure of V
∗
k,mh

(smh
, F b

h+1)

and V ∗
k,mh

(smh
, F b

h+1), we apply the union
bound as in [23] to show that the probability
Prob(

∣∣∣V ∗
k,mh

(smh
, F b

h+1) − V ∗
k,mh

(smh
, F b

h+1)
∣∣∣ ≥ ε) ≤ 2δ

and complete the proof.
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