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Abstract
In this paper, we investigate new design methods for data-driven digital signal processing

(DSP) systems that are targeted to resource- and energy-constrained embedded environments,
such as UAVs, mobile communication platforms and wireless sensor networks. Signal process-
ing applications, such as keyword matching, speaker identification, and face recognition, are
of great importance in such environments. Due to critical application constraints on energy
consumption, real-time performance, computational resources, and core application accuracy,
the design spaces for such applications are highly complex. Thus, conventional static methods
for configuring and executing such embedded DSP systems are severely limited in the degree
to which processing tasks can adapt to current operating conditions and mission requirements.
We address this limitation by developing a novel design framework for multi-mode, data driven
signal processing systems, where different application modes with complementary trade-offs are
selected, configured, executed, and switched dynamically, in a data-driven manner. We demon-
strate the utility of our proposed new design methods on an energy-constrained, multi-mode
face detection application.

Keywords: Dataflow, Embedded Systems, DDDAS, Multi-mode, scheduling, energy-constrained

1 Introduction

Embedded systems are often deployed and configured to handle multiple application tasks
concurrently across different subsets of processing resources. In the domain of embedded signal
processing, modern platforms consist of multiple processing cores that can concurrently support
DSP- (digital signal processing) intensive functions such as multimedia (e.g., face recognition,
speaker identification, pattern recognition) and wireless communication (e.g., GSM, digital
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Figure 1: Data-driven, multi-mode embedded system design flow.

radio, NFC, Bluetooth), as well as control-oriented functions, such as those associated with user
interfaces and file management (e.g., see [3]). With the increasing need for efficient and robust
development of embedded systems, it is important to utilize and effectively manage the limited
resources available in these computing devices dynamically in the context of data characteristics
and operating conditions. Static modeling and management of execution constraints, including
those involving energy consumption, real-time performance, computational resources, and core
application accuracy, is not effective in designing efficient embedded systems that must adapt
to time-varying requirements. Thus, in this paper, we develop new techniques for dynamic,
data-driven modeling, scheduling, monitoring, and execution of DSP applications running on
resource limited embedded platforms.

Dataflow modeling techniques are widely used to model, schedule and implement DSP sys-
tems [3]. Adaptive Stream Mining (ASM) is an important subclass of DSP applications where
real-time knowledge extraction and classification are of high importance [8]. Unlike traditional
data mining systems, where data is stored statically and mined through queries on the static
(or slowly changing) data, ASM data arrives continuously and must be processed in real-time.
Statically configured approaches to ASM processing do not scale well, with scalability problems
getting worse as ASM nodes become distributed and mobile. Furthermore, integrating diverse
application subsystems or diverse configurations of the same subsystem (multi-mode operation)
for trade-off optimization or information integration requires adhering to global constraints on
resource utilization and performance, while managing different quality-of-service characteristics
of the subsystems. Therefore, novel design and implementation techniques that deviate from
traditional, statically-oriented stream mining system design are needed to address the growing
need for performance- and energy-optimized implementation of ASM in the context of dynamic,
data-driven, and multi-mode processing scenarios. A conceptual design flow for this class of
targeted multi-mode scenarios is illustrated in Figure 1.

This work represents a novel integration of dataflow based design methods for signal pro-
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cessing with the paradigm of Dynamic Data-Driven Application Systems (DDDAS). High-level,
signal-processing-oriented dataflow models of computation allow designers to systematically for-
mulate the design flow for a DSP system, and to integrate hardware, software, and application
constraints into such design flows [3]. DDDAS is a paradigm that rigorously integrates appli-
cation system modeling, instrumentation, and dynamic, feedback-driven adaptation of model
and instrumentation parameters based on measured data characteristics [6]. In this work, we
combine the methodology of dataflow-based DSP system design with the DDDAS paradigm
to address the novel constraints and challenges of real-time, multi-mode ASM processing on
embedded platforms. Our proposed new design framework provides a structured approach for
design, implementation and optimization of ASM systems under stringent platform constraints
and dynamically-changing application requirements and data characteristics.

To address the design and implementation of multi-mode ASM systems, we apply in this
paper our recently developed dataflow modeling technique called Hierarchical Core Functional
Dataflow (HCFDF) [16]. In particular, we present a novel application of HCFDF to efficiently
model and manage multi-mode application scenarios. In this modeling approach, dynamic
adaptation is represented through hierarchical inclusion of a special kind of actor (dataflow-
based software component) called a decision actor. Such hierarchical use of decision actors
is employed to switch among application subsystems based on data-driven demands involving
performance-energy tradeoffs.

We also apply the HCFDF model to develop new methods for performance-energy-aware,
dynamic scheduling of application subsystems. These scheduling techniques are geared towards
efficient, context-aware adaptation of embedded DSP systems in multi-mode design scenar-
ios. We integrate our new scheduling techniques with DDDAS concepts to introduce a unique
model-based design environment for data-driven resource, constrained DSP applications. This
design environment is prototyped and demonstrated by building on the Lightweight Dataflow
for Dynamic Data-Driven Application Systems Environment (LiD4E), which is a tool for ex-
perimentation with and optimization of dataflow-based design methods for ASM systems [16].

2 Related Work

As mentioned in Section 1, the work presented in this paper is rooted in core concepts of the
DDDAS paradigm [6], and of dataflow-based design for DSP systems (e.g., see [11, 3]). In DSP-
oriented dataflow modeling, applications are represented in terms of dataflow graphs, where
graph vertices (actors) represent signal processing tasks of arbitrary complexity, and edges
represent logical FIFO communication channels between pairs of actors. In this work, we apply
dataflow as a programming model with semantics that are carefully matched to the targeted
DSP application domain — i.e., dynamic, data-driven signal processing systems [3, 16], and
more specifically, adaptive stream mining systems. This modeling approach differs from uses of
dataflow as a compiler intermediate representation (e.g., see [12]), and as a form of computer
architecture [7].

The work presented in this paper builds upon our previous work on adaptive stream mining
systems for multimedia applications [16]. This new paper goes beyond our previous work by in-
vestigating design and implementation problems for multi-mode applications, and by developing
new scheduling techniques for mapping applications onto embedded platforms while monitoring
and managing dynamically-changing data characteristics and operational constraints.

Various studies on embedded stream mining have focused on performance optimizations for
specific applications (e.g., see [15, 14, 9]). Similarly, the works of [9, 14] provide generalized
scheduling and design strategies respectively, but focus on statically configured systems, without
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emphasis on handling time-varying data characteristics. Our work in this paper is distinguished
from these prior efforts in our focus on multi-mode application systems, and the integrated
application of dataflow and DDDAS principles to such a multi-mode context.

Another relevant direction of prior work has involved the incorporation of data-driven adapt-
ability to individual signal processing functional components (dataflow actors and their under-
lying algorithm parameters). For example, the works presented in [5, 2, 13] have studied such
capabilities for speech processing applications. Here, adaptability is achieved by dynamically
updating the key signal flow graph components, such as Hidden Markov Models (HMMs), lin-
ear predictive coding (LPC) blocks, and Mel-Frequency cepstral coefficients (MFCC) within a
given speech recognition application [2, 5]. These methods are relevant to diverse applications,
including speaker verification, audiovisual forgery, and low bit rate speech coding. The meth-
ods can provide useful building blocks (parameterized actor and subsystem designs) for the
directions that we pursue in this paper. However, the approach that we pursue in this paper
is more flexible in terms of data-driven operation since we consider adaptation of application
models globally (at the dataflow graph and scheduling level) as well as locally (at the level of
individual actors or subsystems).

3 Application Modeling

In this section, we discuss the modeling methods applied in our new design environment for
data-driven DSP systems, and we demonstrate how they can be applied to the design of multi-
mode application systems. These modeling methods are supported by the the LiD4E design
tool, which is introduced in Section 1, and provides a foundation for our prototyping of and
experimentation with the methods developed in this paper. While the underlying modeling
foundation (HCFDF semantics) reviewed in this section has been developed in our previous
work [16], our application of HCFDF semantics to multi-mode applications is a novel aspect of
this paper.

A key feature of LiD4E is the provision for signal processing pipelines (i.e., chains of signal
processing modules, such as classifiers, digital filters and transform operators) that can be data
dependent and dynamically changing. LiD4E employs hierarchical core functional dataflow
(HCFDF) semantics as the specific form of dynamic dataflow [16]. Through its emphasis on
supporting structured, application-level dynamic dataflow modeling, HCFDF provides a formal,
model-based framework through which applications in DSP and related domains can be designed
and analyzed precisely in terms of integrated principles of DDDAS and dataflow.

In HCFDF graphs, actors are specified in terms of sets of processing modes, where each mode
has static (dataflow rates) — i.e., each mode produces and consumes a fixed number of data
values (tokens) on each actor port. However, different modes of the same actor can have different
dataflow rates, and the actor mode can change from one actor execution (firing) to the next,
there by allowing for dynamic dataflow behavior (dynamic rates). Additionally, HCFDF allows
dataflow graphs to be hierarchically embedded (nested) within actors of higher level HCFDF
graphs, thereby allowing complex systems to be constructed and analyzed in a scalable manner.
The design rules prescribed for hierarchical composition in HCFDF graphs ensure that actors
at each level in a design hierarchy conform to the semantics of HCFDF or some restricted
subset of HCFDF semantics, such as cyclo-static dataflow (CSDF) or synchronous dataflow
(SDF) [4, 10]. For further details on HCFDF semantics, we refer the reader to [16].

As demonstrated in [16], HCFDF modeling enables run-time adaptation of signal processing
topologies, including dataflow graphs that are constructed using arbitrary combinations of
classifiers, filters, and transform units. Through the inclusion of a special HCFDF design
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Figure 2: Modeling multi-mode DDDAS designs using HCFDF graphs.

component called an adaptive classification module (ACM), the designer can invoke multiple
operating modes at run-time, and selection of such operating modes can be driven based on
system feedback — e.g., based on instrumentation that monitors data characteristics, and guides
selection based on desired trade-offs among performance, accuracy, and energy consumption.

To apply such a hierarchical, DDDAS-based dataflow design methodology to the multi-
mode application scenarios targeted in this paper, we represent a system design as a set of
mutually exclusive application modes SM = {μ1, μ2, . . . , μN}, where each μi represents a set
of application subsystems that are active during the corresponding mode together with the
configurations (actor-, application- and schedule-level parameters) that are to be applied to the
subsystems whenever μi executes. This is illustrated in Figure 2. Although execution across
the μis is carried out sequentially, based on an ordering that can be determined dynamically,
execution within each μi can consist of concurrent executions of an arbitrary number of HCFDF-
based subsystems (dataflow subgraphs), and parallelism can be exploited within and across
these concurrently executing subsystems.

Additionally, in our proposed design environment, the μis can share HCFDF subgraphs
among them to promote code reuse, and reduce program memory requirements. For example,
if a common speech processing subsystem is invoked in multiple application modes, it can
be referenced from each of those modes, while having separate parameter settings, if desired,
across the different modes that employ it. This leads, for example, to a design representation
of information fusion alternatives as parameterized subsets of dataflow subgraphs, where each
subgraph can be specialized to a particular type of information source (e.g., image, video,
network event streams, speech, or high fidelity audio).

4 Dynamic, Multi-Mode Scheduling

To integrate system-level, dynamic, data-driven operation into the targeted class of signal pro-
cessing applications, we develop in this section an adaptive scheduling strategy for dynamic con-
figuration and scheduling of multi-mode HCFDF graphs. The scheduling approach developed
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here is capable of dynamically adapting the selected application mode (e.g., high performance,
high accuracy processing versus low energy, approximate processing) based on the overall health
status of the target platform (e.g., available battery capacity), as well as on the data processing
scenario (e.g., high-performance, alarm-driven scenarios versus low energy, standby scenarios).

The general scheduling approach, which we call the DHMM (DDDAS-HCFDF Multi-Mode)
scheduler, involves a set of measurementsm1,m2, . . . ,mk — from the target platform, operating
environment or system output — that are to be taken at discrete times during execution. Here,
each measurement mi corresponds to a distinct metric (e.g., instantaneous power consumption,
remaining battery capacity, selected frequency content values for some kind of sensor data, or
processing resource utilization as a percentage of available platform resources, to name a few
possibilities). A natural way to schedule these measurements is just after each iteration of the
executing application mode, since dataflow graph iteration is a commonly used concept of time
window in the analysis of signal processing oriented dataflow programs (e.g., see [3]). Here, an
application iteration can be defined to mean the processing period for a set of data frames (e.g.,
with one frame associated with each monitored sensor) for the current application mode, or can
be parameterized to cover some number F of frame sets, where F can be adjusted dynamically
to control to trade-offs among measurement overhead, adaptation frequency, and reactivity (the
speed with which system reconfiguration can track changes in the measured data).

The sequence of measurement vectors, {(m1(i),m2(i), . . . ,mk(i)) | i = 1, 2, . . .}, obtained by
this application-iteration-level instrumentation process drives a state machine SDHMM , where
the states are in one-to-one correspondence with the application modes, and each state σ has
an associated function (i.e, a computational function, not just a mathematical function) fσ.
The purpose of each function fσ is to compute parameter values for the mode associated with
the state σ based on the newly observed instrumentation data (measurement vector), and any
state variables that are maintained for σ. The state machine SDHMM thus plays a central role
in relating the instrumentation subsystem, which generates the measurement vectors, to the
available application modes and their underlying dataflow subgraphs.

The design of the instrumentation subsystem — including selection of the metrics {mi}
— along with the design of the state machine SDHMM are important aspects of our overall
adaptive scheduling methodology. The instrumentation subsystem and SDHMM together with
the HCFDF-based application- and mode-level dataflow subgraphs that they control lead to a
precise, formally rooted, and platform-independent design framework for integrating DDDAS,
dataflow, and multi-mode signal processing principles. In Section 5 we concretely demonstrate
the DHMM scheduling methodology on a multi-modal, DDDAS-driven, design and implemen-
tation case study involving image processing.

We would like to emphasize that the objective of the DHMM scheduling methodology is not
to introduce a new specialized scheduling algorithm for mapping dataflow graphs but rather
to provide a systematic framework with which different schedules or scheduling algorithms
can be integrated to provide DDDAS-driven, multi-mode integration for collections of signal
processing subsystems (dataflow subgraphs). In particular, the “mode-level schedules” that are
are used to execute specific application modes under specific mode parameter settings are not
part of the DHMM framework specification. Such schedules can be derived by hand, statically
by a software synthesis tool, at run-time or using a combination of synthesis-time and run-
time techniques. Such separation of concerns between scheduling and system specification is a
fundamental objective for dataflow-based signal processing environments (e.g., see [3]), and for
model-based design tools in general.
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5 Case Study: Face Detection

In this section, we demonstrate our proposed multi-mode, DDDAS-driven design approach,
and our associated DHMM scheduling framework with a multi-mode application case study
involving face detection. The metric vector that we consider in the instrumentation subsystem
consists of a single componentm1, which corresponds to battery capacity, and the state machine
SDHMM is designed to gradually trade-off processing accuracy for energy efficiency as battery
capacity drops from full to empty. Thus, we demonstrate how the targeted embedded system
adapts in response to periodically measured data on system health, along with an underlying
model of the design space across alternative classifier configurations.

Our experiments were performed through simulation on an Intel Core i7-2600K CPU
(3.40GHz, 15GB RAM) running the Ubuntu 12.04 LTS operating system. The simulation —
including HCFDF-based functionality for the DHMM scheduler, multi-mode application subsys-
tems, and instrumentation subsystem — was implemented using the LiD4E environment [16].
In particular, the C-based application programming interfaces (APIs) of LiD4E were employed;
thus, our experimental system implementation can be viewed as a C language realization that
employs LiD4E APIs to achieve the desired forms of high level dataflow semantics.

The experiments reported on in this section can be viewed as providing initial demonstra-
tion and validation of the multi-mode, DDDAS design methodology presented in this paper.
More complex experiments — e.g., involving multi-dimensional instrumentation spaces (metric
vectors with multiple components) and implementations on embedded platforms — are a useful
direction for future work.

The face detection application that we experiment with in this paper is based on an appli-
cation introduced in [16], with modifications incorporated to integrate the DHMM scheduling
framework with the metricm1 described above for battery capacity, and a state machine SDHMM

that is designed to provide decreasing levels of processing accuracy and energy consumption as
the battery level decreases. These alternative accuracy/energy trade-offs are captured discretely
through three separate states (application modes) in SDHMM . The three modes correspond to
three distinct classifier configurations, which can be viewed, respectively, as configurations that
provide maximum energy efficiency; a trade-off among accuracy, energy efficiency, and false
positive rates; and a minimum false positive rate. We refer to these modes as M1, M2, and M3.
Here, energy efficiency is measured in terms of the amount of energy consumed per classifica-
tion operation (mode invocation). Thus, M1 has the lowest energy consumption, M3 has the
highest, and M2 has an intermediate level of energy consumption.

The accuracy and false positive rates for a set of executed classification operations are
defined, following standard convention, as follows. Suppose that C classification tasks are
performed, and among these, c1, c2, c3, c4 tasks represent the true positives, true negatives,
false positives, and false negatives (c1 + c2 + c3 + c4 = C), respectively. Then we define the
associated classification accuracy as (c1 + c2)/C, and the false positive rate (FP rate) as c3/C.
In many kinds of operational scenarios — e.g., where FPs are much more costly compared to
false negatives — the FP rate is viewed as being more important than maximizing accuracy (at
least up to some allowable degradation in accuracy).

The scheduler state machine SDHMM is parameterized with a two-element vector, ν ∈ V ,
called the threshold vector. Here, V , the set of permissible values for ν, is defined by V =
{(x, y) | 0 ≤ y ≤ x ≤ 1}. Given an initial battery capacity J , transitions between modes
are carried out in SDHMM by starting initially in M3, transitioning to M2 once the battery
capacity falls below x× J , and then transitioning to M1 (the most energy efficient mode) once
the battery capacity falls to y × J . Certain boundary conditions in V lead naturally to special
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cases in the trajectory of modes. For example, if x = 1, then we transition immediately to M2,
and if x = y, then M2 is effectively skipped.

In our experiments, we use F = 1 as the iteration length (see Section 4), meaning that
the DHMM scheduler makes its next assessment about whether to switch modes after each
new image is processed. The SVM classifier parameters for all three application modes were
developed using MATLAB, trained using the MIT CBCL face database [1], and then ported to
C in the LiD4E environment.

In our simulation setup, we estimate the energy consumption of a classification task as
being proportional to the latency, and we assume that the target platform consumes negligible
energy consumption during idle periods through use of power-saving sleep capabilities. More
specifically, we assume a constant average power consumption ρ across all modes so that the
battery energy drained for a given mode invocation is estimated as ρ× τ(μ), where τ(μ) is the
average latency (processing time), as measured for mode μ. This model is used to simulate
draining of the battery from full capacity to empty capacity. This simulated draining process
in turn creates a stream of battery capacity data, which is used to drive the DHMM adaptation
process implemented by SDHMM . This is a relatively simple model of energy consumption;
application of more sophisticated energy models is an interesting direction for further work.

Table 1 shows experimental results for several different threshold vectors. The number of
processed images (third column) gives a measure of the overall energy efficiency across the
lifetime of the system (i.e., until the battery is fully drained). The three threshold vectors at
the bottom (labeled SDF1, SDF2, and SDF3) each correspond to execution of a single mode
for the entire input stream (no state transitions). Such implementations represent statically-
structured implementations that do not employ multi-mode/DDDAS capabilities, and can be
implemented as synchronous dataflow (SDF) graphs, without use of more dynamic features,
including HCFDF modeling or the proposed DHMM scheduler.

System Threshold Number of Accuracy False Positive
Vector Processed Rate

Images
ν1(0.9,0.2) 1338 99.23% 17.68%
ν2(0.7,0.4) 1545 98.53% 21.93%

DHMM ν3(0.7,0.05) 901 97.83% 12.92%
ν4(0.6,0.1) 915 97.26% 14.89%

ν5(0.5,0.25) 1111 97.13% 19.73%
ν6(0.1,0.05) 424 87.95% 10.18%

SDF1 (0,0) 2890 99.56% 26.19%
SDF2 (1.0,0) 1052 99.71% 11.64%
SDF3 (1.0,1.0) 256 78.31% 0%

Table 1: Experimental results

Intuitively, the DHMM-based system provides a way to achieve configurable, graceful degra-
dation of classification quality (accuracy and FP rate) as the battery expires. This can be
important, for example, if a mission lasts significantly longer than expected. The results in
Table 1 help to quantify this kind of graceful degradation, and also demonstrate another im-
portant advantage of the DHMM-based approach: the approach allows for finer-grained control
over the overall design evaluation space (i.e., in this case, the space involving energy efficiency,
accuracy, and FP rate). By varying the threshold vector, the designer or a run-time system
can steer the overall system performance (across the entire mission) towards a specific Pareto-
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optimal point in the space that represents the best trade-off for the application. Thus, rather
than being confined by just the trade-offs provided by the individual classifiers (i.e., the last
three rows in Table 1 for this case study), the designer or run-time system has a large amount
of control in steering the overall performance into other regions of the underlying design eval-
uation space. These capabilities — configurable and graceful degradation and the production
of new, Pareto-optimal operating alternatives — represent significant advantages derived by
applying the multi-mode, DDDAS techniques proposed in this paper.

6 Conclusion

In this paper, we have developed an approach to design and implementation of multi-mode,
data driven signal processing systems. We have developed methods for modeling and designing
such systems using integrated principles of dynamic data driven application systems (DDDAS)
and high-level, dynamic dataflow models of computation. We have introduced a scheduling
framework, called the DHMM (DDDAS-HCFDF Multi-Mode) scheduler, for instrumentation-
driven, adaptive scheduling in multi-mode signal processing systems. Through a case study of
an energy-constrained, multi-mode face detection system, we have demonstrated and quantified
significant advantages of our proposed new methods. Useful directions for future work include
(1) extensions to multiple sensing modalities, such as integrated image and speech process-
ing, and (2) experimentation with instrumentation subsystems that produce multidimensional
outputs (e.g., channel quality in addition to power consumption).
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