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Abstract—In this paper, we propose a novel large-scale, context-aware recommender system that provides accurate recom-
mendations, scalability to a large number of diverse users and items, differential services, and does not suffer from “cold start”
problems. Our proposed recommendation system relies on a novel algorithm which learns online the item preferences of users
based on their click behavior, and constructs online item-cluster trees. The recommendations are then made by choosing an
item-cluster level and then selecting an item within that cluster as a recommendation for the user. This approach is able to
significantly improve the learning speed when the number of users and items is large, while still providing high recommendation
accuracy. Each time a user arrives at the website, the system makes a recommendation based on the estimations of item payoffs
by exploiting past context arrivals in a neighborhood of the current user’s context. It exploits the similarity of contexts to learn how
to make better recommendations even when the number and diversity of users and items is large. This also addresses the cold
start problem by using the information gained from similar users and items to make recommendations for new users and items.
We theoretically prove that the proposed algorithm for item recommendations converges to the optimal item recommendations
in the long-run. We also bound the probability of making a suboptimal item recommendation for each user arriving to the system
while the system is learning. Experimental results show that our approach outperforms the state-of-the-art algorithms by over

20% in terms of click through rates.

Index Terms—Recommender systems, online learning, clustering algorithms, multi-armed bandit.

1 INTRODUCTION

NLINE websites currently provide a vast number
Oof products or services to their users. Recom-
mender systems have emerged as an essential method
to assist users in finding desirable products or services
from large sets of available products or services [1] [2]:
movies at Netflix, products at Amazon, news articles
at Yahoo!, advertisements at Google, reviews in Yelp
etc. Moreover, Yahoo! Developer Network, Amazon’s
Amazon Web Services, Google’s Google Developers
and numerous other major companies also offer Web
services that operate on their data, and recommen-
dation ability is often provided to developers as an
essential service functionality.

The products or services provided by the recom-
mender systems are referred to generically as items [1]
[2]. The performance, or payoff, of a recommendation
is based on the response of the user to the recom-
mendation. For example, in news recommendations,
payoffs are measured by users’ click behaviors (e.g.,
1 for a click and 0 for no click), and the average
payoff when a webpage is recommended is known
as the Click-Through Rate (CTR) [6]. The goal of
recommendations is to maximize the payoffs over all
users that come to the website.

Although recommender systems have been de-
ployed in many application areas during the past
decade, the tremendous increase in both the number
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and diversity of users as well as items poses several
key new challenges including dealing with hetero-
geneous user characteristics and item sets, existence
of different user types such as registered and non-
registered users, large number of items and users, and
the cold start problem. We address all these challenges
by designing online learning algorithms with three
properties: contextualization, differential services and
scalability.

(a) Contextualization has the potential to better pre-
dict or anticipate the preferences of users. First-
generation recommender systems consider the ex-
pected payoff of each recommendation to only be a
function of the item [4] [6] [8] [9]. However, such
recommender systems model the preferences of users
with limited accuracy and have thus a limited perfor-
mance. Several recent works [5] [18] [23] show that
incorporating the context in which a recommendation
is made can greatly improve the accuracy of predict-
ing how users respond to various recommendations.
Moreover, contextualization allows the recommender
to learn together for groups of users having similar
contexts, which significantly speeds up the learning
process.

The context is defined generally as an aggregate
of various categories that describe the situations or
circumstances of the user when a recommendation is
made [18] [19], such as time, location, search query,
purchase history, etc. When contexts are incorporated
into the recommender systems, the expected payoff of
a recommendation can be modeled as a function of the
item and the context. If the number of contexts, X, is



finite and small, we can run X recommenders, one for
each context, to tackle this issue. However, when there
are large or infinite number of contexts, this method
fails since the number of recommenders increases
significantly. Hence, designing and building effective
contextual recommender systems with large or infinite
numbers of contexts remains a key challenge.

In this paper we propose methods for contextual-
ization which helps the recommender to learn from its
past experiences that are relevant to the current user
characteristics, to recommend an item to the current
user.

(b) Differential services are important for online
services, including recommender systems. Existing
works evaluate recommender systems based on their
average performance [22] [23] [29]. However, it may
also be desirable for service providers to build cus-
tomer loyalty by providing registered users with a
higher quality of service (in this case better recom-
mendations) than the quality provided to anonymous
users using the system. Hence, designing recom-
mender systems which have the ability to provide
differential services to various users represents a key
challenge.

(c) Scalability is a key challenge faced by a recom-
mender system with a large number of items and/or
contexts. If not designed properly, the learning speed
and the implementation complexity of such systems
can suffer significantly [3] [7] [10]. Hence, the recom-
mender system needs to easily scale to accommodate
a large number of items and contexts.

Another important challenge is cold start, which
appears in practice when the system has a very di-
verse set of items and very limited or no a priori
information about the items that the users prefer [3]
[7]. In this case, recommendation algorithms [2] [6]
[9] fail to recommend items that are most liked by
users due to the limited information about the user’s
preference for specific items. This problem is also
often referred to as the “coverage” problem [3] [7].
New items are unlikely to be recommended and new
users are unlikely to be given good recommenda-
tions due to the limited interaction histories of these
new items/users. Therefore, dealing with cold start
remains a key challenge for large-scale recommender
systems. Two important features of our proposed al-
gorithm address the issue of cold start: contextualiza-
tion and continuous exploration. By contextualization,
our algorithm clusters the users according to their
contexts and items according to their features such
that past information gained from users with similar
contexts and items with similar features can be used to
solve the cold start problem when a new user comes
or a new item is introduced. Moreover, our algorithm
explores continuously, i.e., it does not explore only
initially based on limited data, and then exploit for
the rest of the users. It explores and exploits in an
alternating fashion, and keeps learning as new users

come. This continuous exploration addresses the cold
start problem since it helps the recommender to learn
the payoffs of new items and preferences of new users
that are not similar to the previous ones over time.
In this paper, we propose a novel, large-scale con-
textual recommender system which is able to address
all of the above mentioned challenges. Our system is
based on a novel contextual Multi-Arm Bandit (MAB)
approach. When a user with a specific context arrives,
the recommender utilizes information from past ar-
rivals within a neighborhood of the current context
(i.e., “similar” to the current context). Based on the
payoff estimations through these past arrivals, the rec-
ommendation is made at an item-cluster level, instead
of an item level. Our approach controls the size of the
context neighborhood and the set of clusters to obtain
sufficiently accurate and efficient payoff estimations.
To learn about new items and contexts, our algorithms
use a differential method for exploration: the system
explores more often when the users have a lower pri-
ority, at the risk of providing lower quality recommen-
dations, and explore less in order to provide consis-
tently high quality recommendations when the users
have a higher priority. After each recommendation,
the realized payoff is received by the recommender
system. Each item-cluster corresponds to an action
(referred to as the arm in a bandit framework) for our
learning algorithm, hence learning is performed at the
cluster level, and this solves the scalability problem.
The goal of learning is to minimize the regret, which
is the difference between the optimal expected total
payoff up to time T, which can be achieved if all in-
formation (i.e., expected payoffs of each item/cluster
in a certain context) is known, and the expected total
payoff gained up to time 7T through our learning
algorithm, in which the information is incomplete.
The remainder of this paper is organized as fol-
lows. In Section 2, we discuss the related works and
highlight the differences from our work. Section 3 de-
scribes the system model of the recommender system.
Section 4 introduces the adaptive clustering based
contextual MAB recommendation algorithm. Section
5 provides simulation results. Section 6 concludes the

paper.
2 RELATED WORKS

A plethora of prior works exists on recommendation
algorithms. We compare our work with existing works
in Table I. We categorize these algorithms based on
the following characteristics: their consideration of
contexts; their refinement of the context space (if any);
their ability to address the issues of “scalability”,
“cold start”, and “differential services”; and their abil-
ity to operate without a period of training. Two main
categories are filtering-based and reinforcement learn-
ing methods [3]. Filtering-based approaches, such as
collaborative filtering [7] [8], content-based filtering
[2] [9] and hybrid approaches [10] [11], employ the



TABLE 1: Comparison with Existing Algorithms

Contexts | Refinement in the context “ Scilvg}g " Solving Requiring Differential
space scalability “cold start” training data services

[[g']] [[ﬂ][ﬂ 6[]8 I No - No No Yes No
[5] [21] Yes Partition No No Yes No
[23] [24] Yes Linear payoff assumption No Yes No No
[25] Yes Partition No Yes Yes No

[27] [28] No - Yes Yes No No
[29] Yes Partition Yes Yes Yes No
Our work Yes An adaptive neighborhood Yes Yes No Yes

historical data of users’ feedback to calculate the
future payoffs of users based on some prediction
functions. Collaborative filtering approaches predict
users’ preferences based on the preferences of their
“peer” users, who have similar interests on other
items observed through historical information [7] [8].
Content-based filtering methods help certain users to
find the items that are similar to the past selected
items [2] [9]. Hybrid approaches combine the collabo-
rative filtering and content-based filtering approaches
to gather more historical information in the user-item
space when a new user or a new item appears in the
system [10] [11]. However, filtering-based approaches
are unable to solely tackle issues of cold start and
scalability. Although the hybrid approaches can alle-
viate the cold start problem to some extent due to the
consideration of both similar items and similar users
when a new item or user appears, it cannot solve the
cold start problem when no similar items/users of a
new item/user exist in the system.

Reinforcement learning methods, such as MAB [23]
[24] [25] and Markov Decision Processes (MDPs) [26],
are widely used to derive algorithms for recommend-
ing items. MDP-based learning approaches model the
last & selections of a user as the state and the available
items as the action set, aiming at maximizing the
long-term payoff [26]. However, the state set will
grow fast as the number of items increases, thereby
resulting in very slow convergence rates. In [32],
“state aggregation” methods are used to solve this
MDP problem with large state set, but the incurred
regret grows linearly in time. MAB-based approaches
[12] [13] [15] [17], such as e-greedy [17] and UCBI1
[15], provide convergence to the optimum, and not
only asymptotic convergence, but also a bound on
the rate of convergence for any time step. They
do this by balancing exploration and exploitation,
where exploration involves learning about new items’
payoffs for a particular user by recommending new
items while exploitation means recommending the
best items based on the observations made so far.

To further improve the effectiveness of recommen-
dations, contexts are considered in recent recom-
mender systems [18] [21] [22]. For instance, it is
important to consider the search queries and the pur-
chase histories (which can be considered as the con-
texts) of users when making news article recommen-

dations. Moreover, in many applications, such as news
recommendations, the recommender system only ob-
serves the features of anonymous users, without
knowing the exact users. In this case, the users’ fea-
tures (cookies) can be also considered as contexts. The
context-aware collaborative-filtering (CACF) and the
contextual MAB methods have been studied to utilize
such information [21] [23] [25] [29]. The CACF al-
gorithm extends the collaborative filtering method to
a contextual setting by considering different weights
for different contexts [21]. In [23] [24], the payoff of
a recommendation is modeled as a linear function
of the context with an unknown weight vector, and
the LinUCB algorithm is proposed to solve news
article recommendation problems. However, the lin-
earity may not hold in practice for some recommender
systems [22] [25] [29]. In a more general setting [25],
the context space is modeled as a bounded metric
space in which the payoff function is assumed to
satisfy a Lipschitz condition, instead of being a linear
function of contexts. In this context space, partition
based algorithms are proposed to solve the contextual
recommendation problems [25]. These works [18] [22]
[25], however, do not take into account the large
item space, which can cause scalability problems in
practice.

A different strand of related works studies recom-
mender systems that have a large number of items to
recommend [3] [7] [27] [28]. In [28], the item space
is partitioned into subspaces, and online learning is
performed in each subspace. Alternatively, in [27], the
problem is solved by considering a static clustering of
items. These works [27] [28] can solve the scalability
problem by reducing the number of choices of each
recommendation. However, these works [3] [7] [27]
[28] do not incorporate contexts in the recommen-
dations. In contrast, we consider the contexts when
making recommendations.

Building large-scale contextual recommender sys-
tems is more challenging. Few related works tackle
both problems in an integrated manner. The most
relevant theoretical works related to our proposed so-
lution are [25] [29]; however, there are significant dif-
ferences between our work and these existing works.
First, the works in [25] [29] are theoretical and do
not consider the key characteristics and requirements
of recommender systems. For example, the algorithm



proposed in [29] requires the knowledge of Lipschitz
constants, which makes the algorithm data-dependent
(different datasets may have different Lipschitz con-
stants based on the characteristics of the data) and
hence difficult to implement in practice; the algorithm
in [25] requires knowing the covering constants of
context and item spaces. In contrast, our learning
algorithm does not need the Lipschitz constant or
covering constants to operate; these constants are only
used to analyze the performance of the algorithm
(i.e., to show the regret). Second, the models in [25]
[29] consider only two spaces: the context space and
the item space; while in our work, we consider the
user space, the context space, and the item space.
Hence, we can provide differential services for dif-
ferent types of users by choosing different trade-offs
between exploitation and exploration. Third, in [29],
combining the items and contexts greatly increases
the space dimension, resulting in a highly-complex
online algorithm. In our work, we greatly reduce the
dimension of the spaces by separately considering the
context and the item space. We build the item-cluster
tree offline, and only perform online calculations in
the context space, resulting in lower-complexity on-
line learning compared with that in [29].

In existing works [25] [27] [28] [29], the algorithms
operate by fixing a partition of the context space. In
contrast, our approach selects a dynamic subspace
in the context space each time to ensure a suffi-
ciently accurate estimation of the expected payoffs
with respect to current context, with a precise control
of the size of the context subspace. Moreover, our
approach can provide differential services (different
instantaneous performance) to ensure the satisfaction
of higher type users, which are not considered before
in existing works [4] [5] [6] [8] [9] [21] [23] [27] [28]
[29]. A detailed comparison with the existing works
is presented in Table 1.

3 RECOMMENDER SYSTEM MODEL

We consider the contextual recommender system
shown in Fig. 1, which operates in discrete time slots
t = 1,2,---. At each time slot, the system operates
as follows: (1) a user with a specific context arrives;
(2) the recommender system observes the context, and
recommends to the user an item from the set of items,
based on the current context as well as the historical
information about users, contexts, items, and payoffs
of former recommendations; and (3) the payoff of this
recommendation, whose expectation depends on the
item and context, is received by the recommender
system according to the user’s response.

Users: We formally model the set of users as U,
which can be either a finite set (i.e, U = {1,2,--- ,U})
or infinite set (ie., U = {1,2,---}, e.g., a news rec-
ommender system frequented by an infinite number
of users). When a user u € U arrives, the system
can observe the user’s type: important or ordinary

Context
1: A user ( th context x,)
arrives

T 2 Anitemiis i is
recommended

Recommender
system

Users 3 A payoff r, is observed

Fig. 1: Contextual Recommender System Model.

users, registered or anonymous users, etc. We divide
the users into S types, and denote the set of type
s € {1,2,---,S} users by U;. Based on the users’
types, the recommender system can provide differen-
tial services for users.

Contexts: We model the context set X' as a d¢ di-
mensional continuous space, and the context z € X is
a d¢ dimensional vector. For simplicity of exposition,
we assume that the context space is X = [0, 1]%¢, but
our results will hold for any bounded d¢ dimensional
context space. In the context space, the similarity
distance s¢ is defined as a metric s¢ : X x X — [0, 00).
A smaller s¢(z,2’) indicates that the two contexts x
and ' exhibit higher similarity. In the Euclidean space
X, the metric s¢ can be the Euclidean norm or any
other norm. Note that we will add the subscript ¢ to
user u and context  when referring to the user and
context associated with time period ¢.

Items: We denote the set of items by 7T =
{1,2,---,I}. In the item space, the similarity distance
is defined as a metric sy Z xZ — R, which
is based on the features of the items and known
to the recommender system, as in [10] [22] [29]. A
smaller s;(i,i’) indicates that the two items ¢ and
i’ exhibit higher similarity. For example, in a news
recommender system, an item is a news item, and the
similarity between two news items depends on their
features: whether they are in the same category (e.g.,
Local News), whether they have the same keywords
(e.g., Fire) etc.

Since the number of items in the system is large,
we cluster them based on the metric s; in the item
space in order to reduce the possible options for rec-
ommendation. We use an item-cluster tree to represent
the hierarchical relationship among item clusters, and
an example is shown in Fig. 2. In an item-cluster tree,
each leaf represents an item and each node represents
an item cluster. The depth of a node is defined as the
length of the path to the root node, and the depth of
the tree is defined as the maximum depth of all nodes
in the tree. We denote the depth of the tree by L. We
define the collection of nodes at depth 0 < [ < L of
the tree as layer | and a node! at layer [ is denoted by

1. Note that each node of the tree corresponds to an item cluster,
so we will use the terms “node” and “cluster” and their notations
interchangeably.
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Fig. 2: Construction of Item-cluster Tree.

Cyr, where k € {1,2,--- , K;} and K is the number of
nodes at depth [. There is only one node Cjy; at layer
0, i.e., the root node. The I nodes at layer L are the
leaves of the tree, each of which is a single-element
cluster that only contains one item. The hierarchical
structure of the cluster tree implies that for a child
node Cj41 1 of node Cj i, we have item i € Cyy, for
all i € Cl+1,k/'

The cluster size s(C) ) is defined as the maximum
distance of two items in that cluster, namely, s(C} ) =
max; irec, , {51(4,4')}. In an item-cluster-tree structure,
a general tree metric can be defined as a mapping
from the set of depths of the nodes/clusters in the tree
to maximum size of clusters, i.e., sy : N — R. Thus,
sp(l) denotes the maximum cluster size at depth I,
namely, s7(l) > max;ycc, , 1<k<k,{151(4,7")} for any
cluster at depth [. For a tree metric, the maximum
cluster size at depth [ is not smaller than that of a
cluster at depth [ + 1, ie., sp(l) > sp(l + 1). We
can see from Fig. 2 that item 6 and item 7 are in
the same cluster Cy 3; item 6 and item 9 are in the
same cluster C 2; and the metric between item 6 and
item 7 is smaller than that between item 6 and item
9, namely, s7(6,7) < s7(6,9). In Section 4, we will
provide an algorithm to construct such item-cluster
trees. Using the constructed item-cluster tree, we can
control the size and number of the clusters when the
recommendations are made.

The expected payoff of a recommendation depends
on the context and the item. For a user with con-
text z € X, the payoff of recommending item i is
denoted by a random variable r; , € [0,1], whose
distribution is fixed but unknown to the recommender
system. The expectation of r;, is denoted by ;.
Given the number of items n;j in cluster C;j, the
expected payoff of cluster Cj; for context x is de-
noted by fu ke = Yiec,, Hia/mk Only the payoffs
of the recommended items can be observed by the
recommender system and can be used for further
recommendations.

Context-aware collaborative-filtering algorithms
consider that an item has similar expected payoffs in
similar contexts [18] [19] [21] [22], while contextual
bandit algorithms use a Lipschitz condition to model
the similar expected payoffs of an item in two similar
contexts [25] [29]. As in [25] [29], we formalize this

in terms of a Lipschitz condition as follows.

Assumption 1 (Lipschitz condition for contexts): Given
two contexts z,2’ € X, we have the following as-
sumption: |z — fie| < Lesc(z,2’) for any item
i, where L¢ is the Lipschitz constant in the context
space.

Similarly to [28] [29], we model the similar payoffs
for similar items in the same context using a Lipschitz
condition, described in Assumption 2.

Assumption 2 (Lipschitz condition for items): Given
two items 7,7 € Z, we have the following assumption:
|ti, e — pir | < Lysp(i,4") for any context z € X, where
Ly is the Lipschitz constant in the item space.

Based on Assumption 2, in an item-cluster tree with
tree metric sr(-), we have |u; o — pir 5| < Lrsp(l) for
any z € X and 4,7 € Cjj. Note that the Lipschitz
constants L and L; are not required to be known
by our recommendation algorithm. They will only be
used in quantifying its performance.

4 RECOMMENDATION ALGORITHM

In this section, we first propose the item-cluster tree
construction method to cluster the items, then propose
the Adaptive Clustering Recommendation (ACR) algo-
rithm and show its performance bound in terms of
regret.

4.1

We first cluster items using an item-cluster tree, such
that the recommendations are made at a cluster level
instead of an item level which reduces the possible
recommendation options (arms) to solve the scal-
ability problem. To explicitly characterize the hier-
archy of the item-cluster tree, we denote the tree
by a tuple < L, {Ki}o<i<r, {Chd(Cix)to<i<ri<kh<i,
{Prt(cl,k)}OSZSL,lngKz >, where L is the depth of
the tree; K; = {C1 : 1 < k < K;} is the cluster
set at layer /, and K; = |K;| is the cardinality of ;;
Chd(C ) is the set of child clusters of cluster Cj
(a subset of K;y1 for 0 <1 < L, and § for | = L);
Prt(Cy 1) is the set of parent cluster of cluster C;, (a
one-element subset of K;_; for 0 < [ < L, and § for
1=0).

In this paper, we adopt an exponential tree metric:
s7(l) = b', where b € (0.5, 1) is the constant base. Our
goal is to construct an item-cluster tree that fulfils this
tree metric, based on an arbitrary given metric among
items?. The constructed item-cluster tree will be used
in the recommendation algorithm. The Construction of
Item-Cluster Tree (CON-TREE) algorithm is described
in Algorithm 1, and an example is shown in Fig. 2.

The algorithm first sets each leaf at depth L to be
a single item cluster, and then operates from leaves
to root by combining clusters that are “similar”. The

Construction of ltem-Cluster Tree

2. Item-cluster trees that fulfill a certain tree metric are not
unique; however, they will provide the same performance bound
for the recommendations as shown in our theorems.



Algorithm 1 Construction of Item-Cluster Tree

Input: item set Z = {1,2,--- I}, base b, depth L of the tree.
Initialization: Set L := min{L, Ly}, where L; is the maximum

I such that b1 > min sr(i,4).
i,/ €T,51 (1,i") £0

1: set node set at layer L as Kr := {Cr,1,Cr.2,---CL, k. },
where Cp, j :={k},V1 <k < Kp,and K1, = 1.
2: set representative point set at layer L as

RPr = {ir1ir,2, - ir K, }, where ip = k,V1 < k <
K.
3: set the child sets of nodes at layer L as empty sets:

Chd(Cp k) :=0,V1<k < Kp.

4: for [=(L-1):0 do
5: set k := 0. //counter for the number of clusters at layer [
6: while RP;;1 # 0 do
7. setk:=k+ 1.
8
9

arbitrary select an element 4,  , ; € RP41.
find the subset SKC of ;41 such that
SK :={Ciy1,r : 1 <K < Kiqa, G410 € RPiy,
sr(iyy polirre) < %}-
10:  set Cp := UCL+1’k/€$}CCl+1,k/.
11:  set Chd(Cy ) := SK.
12:  set Prt(cl+1,k/) = Clyk,vcl+1,k/ € SK.
13: set i := il+1,fc'
14:  remove representative points of selected clusters from
R'Pl+12
RPr1 = RPit1i\é14 1,8 : Cryr,ir € SK}

15: end while
16: set K; := k.
17:end for
18:set Prt(Co,1) := 0.

similarity between two clusters is evaluated through
the distance between the representative points in the
clusters. If the distance between two representative
points is below a layer-varying threshold, the two
clusters are considered similar and have the same
parent cluster.

A key property of the CON-TREE algorithm is that
it not only constructs an item-cluster tree that fulfils
the exponential tree metric, but that it also has a
bound on the maximum number of item clusters at
each layer. This is important because we can balance
the speed of learning and the accuracy by adjusting
the number of clusters and the cluster size. We for-
malize this property in the following theorem.

Theorem 1: The item-cluster tree constructed through
the CON-TREE algorithm has the following proper-
ties: (1) the constructed tree with a depth at most
Ly fulfils the exponential tree metric, where L is the
maximum [ such that b'~' > min; ;re7 s, (i,i7)20 51(i, 1),
and (2) the maximum number of clusters at layer [ of
this tree is bounded by c¢;(3£2)7 (1)1, where ¢; and

dr are the covering constant and covering dimension

for the item space®.

Proof: see Appendix B.

We can see that according to the definition of
the exponential tree metric, the proposed CON-TREE
algorithm ensures that the cluster size at layer [ is
bounded by ¥', and from Theorem 1, the number
of clusters at layer [ is bounded by O(b~!4r). If [ is
larger, then the cluster size at layer [ is smaller, but the
number of clusters at layer [ is larger, and vice versa.
This implies that choosing clusters with larger depth
I will make more specific recommendations to the
users, but it will require learning more about specific
characteristics of items since the number of clusters
is larger. We also note that the item-cluster tree can
be partitioned by a set of clusters K; at layer /, which
contain all the items and no two clusters contain the
same item. Thus any item is included in one of the
clusters at the same layer.

Note that since the CON-TREE algorithm needs
up to K} calculations at layer [, the computational
complexity of the CON-TREE algorithm is bounded
by O(31, b=21). Since it is implemented offline, the
CON-TREE algorithm does not affect the computa-
tional complexity of the online recommendation.

4.2 Adaptive Clustering Recommendation

We have previously proposed a one-layer clustering
recommendation algorithm (OLCR) in [30] to solve
the contextual recommendation problem with large
number of items. However, the OLCR algorithm is
based on fixed clustering method. A disadvantage
of OLCR is that it is difficult to decide the optimal
size of the clusters. In this work, we propose an
adaptive clustering based ACR algorithm that can
adaptively select the cluster size in order to balance
between making specific recommendations and re-
ducing the number of clusters. We choose the “op-
timal item” as the benchmark, which is defined as
i*(t) = argmax;ez fti 5, With respect to the context
x¢ arriving at time t. The regret of learning up to
time 7' of an algorithm =, which selects the mx(t)
cluster at layer 7.(t) (i.e., cluster Cr, ) rc(t)), given
the context at time ¢, is defined as the difference of
expected payoffs from choosing item i*(¢), namely,

T
RTF(T) = Zt:l [/J/i*(t),xt - /vLWL(t),Tr;c(t),xt}- (1)

Since for different types of users, the recommender
system may provide differential services in order to
maintain the higher type users’ satisfaction. We as-
sume that type s users have a certain fixed probability
ps to arrive at each time. For higher type users, the
recommender system explores less , and for lower
type users, the recommender system explores. In such
a way, the average per-period regrets of higher type
users are expected to be smaller than those of the

3. See Appendix A for the definitions of covering dimension and
covering constant.
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lower type users. Formally, we define the instanta-
neous regret of type s users as IR} (t) = Epi«(1),2, —
P (8) 7k (1), Ut € Us] for an algorithm 7, where the
expectation is taken with respect to the context arrival
given current user type.

Algorithm 2 Adaptive Clustering Recommendation Algorithm

Input: Item-cluster tree, periods 7.

Initialization: initial partition K := Ko = {C0y,1}, epoch E :=
min{L, |log, T'|}.

l:for!=0:E—1do

2: Set partition K :=K; = {C) : 1 <k < K}

3: fort=2':2"1 _1 do

4:  Observe the user’s type s and the context x;. Find a ball
B(xzt, pt) with radius py = tla=1)/dc

5: Select the cluster with maximum index k =

argmaxys ¢k 1)y (t), with ties broken arbitrarily.

6:  Randomly select a child node C; ,; ; of Cy.
7: Randomly recommend an item in cluster C, L1k
8: Receive the reward: 7¢.

9:  Record {t,z¢,Cy k, ClJrU;,rt}.

10: end for

11:end for

12:Set | := E, and set partition K := Kg = {Cgr : 1 <k <
KE}

13:for t = 2! : T do

14: Observe the context z;. Find a ball B(x¢, pt) with radius
py = tle—D/dc,

15: Select
argmaxys e I}y (t), with ties broken arbitrarily.

the cluster with maximum index k£ =
16: Randomly recommend an item in cluster Cj j.

17: Receive the reward: r;.

18: Record {t,z¢, Cl,Im ri}.

19:end for

We first present the ACR algorithm in Fig. 3, Fig.
4 and Algorithm 2. Initially, the item-cluster tree that
fulfils the exponential tree metric has been built offline
through the CON-TREE algorithm. We denote the
epochs by I = 0,1,2---, and epoch [ contains 2!
time slots. In epoch [, the ACR algorithm chooses the
cluster set Kying,zy that contains all the clusters at
layer min{l, L}, as shown in Fig. 4. Note that we will
denote by [(¢) the layer selection corresponding to
time slot t. As epoch goes on, the algorithm selects
an item cluster from a cluster set that contains larger
number of clusters, but these clusters have smaller
cluster size. Hence, the algorithm can make more
specific recommendations to users over time.

Each time, a user with context z; arrives, and
the algorithm chooses a relevant ball B(x,p;) in
the context space, whose center is z; and radius is
pr = tl@~D/de ag shown in Fig. 3. It then selects
a cluster in K;(;), by calculating and comparing the
index of each cluster at the current layer [(¢) based
on the past history and current context. Subsequently,
it randomly selects a child cluster at layer I(t) + 1 (if
available) and randomly recommends an item in the
selected child cluster. Note that in the algorithm, to
extract information of a former epoch, we record two-
cluster selections each time*: one is the cluster Cyy at
layer [/, and the other one is the cluster C,, ; at layer
[+1, which is a random selected child cluster of Cj .

The index represents a combination of exploration
and exploitation, and its calculation is the main
part of this algorithm. The set of past time peri-
ods when the contexts arrived at the relevant ball
B(zy, pr)is denoted by T(B(x,p)) = {7 : 7 < ¢,
zr € B(xy,pe)}. The number of times that clus-
ter C;r has been selected in that ball is denoted
by N 2T (Blanpy)) Lme(T) = L () =k}
Therefore, the index for cluster C;; can be written
as I/ (t) = Tike + /AsInt/Ni ., where Ag is the
exploration-exploitation trade-off factor for type s
users, and Tk = (X eT(Bay.p HTL(T) = 1
i (T) = k})/Ni i+ is the sample-average payoff in the
relevant ball. Without loss of generality, we assume
that the exploration-exploitation trade-off factor A
decreases as the users’ type increases, namely, A; >
Ay > > As.

We define the suboptimal cluster set at time ¢ as
S(t) = {((t),k) - k € Kueys Bucey kr the) kot > 4Lcpe},
where ki = arg maxy p(),x,.- We also define Wie =

364, Int .
Ny e < (U'zk(t),t_/Ll(t)7k,rtl+2LCPt)2 }- The following the-

orems prove a bound on the instantaneous and long-
term regrets of the ACR algorithm.

Theorem 2: If 1/(1 + dc) < o < 1 and the fully
exploration assumption holds: Pr{n(t) = (I(¢t), k)|u; €
Us, Wi, (Il(t),k) € S(t)} > 1 —t7" for any time ¢,
where 7 > 0 is a parameter, then for independent and
identically distributed (i.i.d.) user and context arrivals,
the instantaneous regret IR’ ~(t) of the type s user
in period ¢ is bounded by

IR} cR(t) <
(1-a) (1-a)
t dc +4Lct  dc

4 or ¢t/ 2 o

2441 Ky (yyegInt

Ki(n2t 1 + Zo

. _(-o)
Kl(,,)2t_2As+4Lct Ao oLt/ 02

s—1 s’
— t —t
+EKyey T (L= X patPBag,pp(1—t7 ] "'+ s #£1
’ 1"
s'=1 s''=1

. A,/l t_ [ —T
where ty = min{r : # < (1+ pépt )2}, for

s'=1,2,..,s =1, and pp(s, p,) = fmeB&“M f(x)dx.
4. Note that this can be generalized to arbitrary levels ahead, like

children of children, but the computational complexity and memory
requirements of each epoch grows.
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Proof: See Appendix C.

We can see that type 1 users have a higher regret
than other users, because they need to explore more
than others. For type s users, we can see from The-
orem 2 that as the percentage of lower type users
(s < s) increases, the instantaneous regret IR~ p(t)
decreases, because these lower type users will explore
more to benefit the type s user. We can also see that as
the ratio of exploration-exploitation trade-off factors
(Ag /A, 8¢ < s) increases, ty increases, hence the
regret IR% ~p(t) decreases. This implies that a bigger
ratio of Ay /A; represents a higher differential service
level.

From Theorem 2, we can observe that the instan-
taneous regret I R% 5 (t) sublinearly decreases with ¢,
namely, IR r(t) = O(t™7), where 0 < v < 1. The
instantaneous regret measures the performance loss
in terms of the average payoff due to recommending
a suboptimal item for the user. CTR is a common
performance measure in applications such as news
and advertisement recommendations [6] [23]. The re-
gret bound on the CTR is O(¢t~7). Another interest-
ing performance metric is the root-mean-square error
(RMSE), which is commonly used in rating systems to
measure the difference of the rating prediction from
the user’s actual rating [19] [20]. The regret can be
converted to a regret bound on the RMSE. To do
this, it is sufficient to consider a transformation in
which the reward is considered as the negative mean-
square of the suboptimality in CTR resulting from
suboptimal item recommendations. From Theorem 2,
it can be shown that the RMSE is O(t~/2).

Theorem 3: For 1/(1 +d¢) < a < 1 and ii.d. user
arrivals, the regret Racr(T) up to time T of the ACR
algorithm is bounded by

S o) 141nb
—2A, 2L:T In2
Racr(T) < 2Kg les tZlf + T me
o= -
(=a)(A+dg)
244, Kpec(1.386+In T)T 9 2)
Lo (20— 0+dg)/dc 1)
(—a)(A+dg) 1-1l-a
484\ KpecT 1c In2 | 4LcdeT 70
LC(2(17Q)(1+dC)/dc_1)2 do—14«

+

where E = min{L, |log, T|}, cc is the covering con-
stant of the context space X'.

Proof: See Appendix C.

From Theorem 3, we observe that as long as
the minimum exploration—exploitation trade-off fac-
tor satisfies Ag > % the the regret® Racr(T)
is sublinear in T, since from Theorem 1, Kj can
be bounded through Ky < ep(3Eb)di(g)drlosat <

cr(1)drg=diid If the system does not consider dif-
ferent user types, then all A, = 1, then the regret
can be simplified as O(7(de+di+1)/(de+di+2) 1y T, by
setting o = (d;+2)/(dr+dc+2) and b = 271/ (drtde+2),

4.3 Theoretical Comparison

In this subsection, we compare the computational
complexity (time complexity), the memory required
(space complexity), and the performance bound with
the benchmark in [29], shown in Table 2. For the
ACR algorithm, the computational complexity is O(t+
Kj(1)) at each time t. In this case, the computational
complexity up to time T is O(T? + KgT), which is
polynomial in 7. The space complexity for the ACR
algorithm is O(Z{io K, + T). The ACR algorithm
achieves the a regret O (7 (do+di+1)/(de+di+2) |y T). Ac-
tually, the regret of the ACR algorithm is potentially
better than O(T(%c+di+1)/(dc+di+2) 1nT) due to that
Kp is often much smaller than ¢;($£2)dr—dsn2/Inb,

We also note that when the d1rner151ons of the
context and item spaces are small, the algorithm in
[29] has a lower time complexity than our algorithm
(O(TY2A+1IT) < O(T?*In T+ KgT)) (when A < 0.5)°.
But when the dimensions of the context and item
spaces are big, our algorithms achieve a lower time
complexity (O(T?InT + KgT) < O(T'*t?* + IT))
(when A > 0.5).

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performances of our
algorithm through experiments, using the Yahoo! To-
day Module dataset.

5. At the beginning of the online learning periods, the algorithm
needs to explore more, hence incurring higher regret. To tackle this,
we can use a prior information of payoffs for each item in different
contexts.

6.In [29], T* is the number of balls to be selected, A € (0,1)
and ) increases as the dimension of the context and item spaces
increase.



TABLE 2: Comparison with Existing Solution

Regret Space complexity | Time complexity

doTd; 71

[29] | O(T4c+Har+2 InT)| OI +T +T™) O(T*2* 4 IT)

doF+dr+1
ACR | O(T%ctT2 InT)| O(TE, Ki+T) | O(T? + KgT)
5.1 Description of the Dataset

The Yahoo! Today Module dataset’ is based on the
webpage recommendations of Yahoo! Front Page,
which is a prominent Internet news website of Yahoo!
This dataset contains around 40 million instances
collected from Yahoo! Front Page during May 1 to
10, 2009. Each instance of the dataset includes (1)
recommended item IDs and features, (2) contexts, and
(3) click behavior of users. For each user the five-
dimensional context vector describes the user’s fea-
tures, and is obtained from a higher dimensional raw
feature vector of over 1000 categorical components
by applying dimensionality reduction techniques [23].
The raw feature vector includes: 1) demographic in-
formation: gender and age; 2) geographic features;
and 3) behavioral categories: about 1000 binary cat-
egories that summarize the user’s consumption his-
tory. The high dimensional raw feature vector then is
converted to a five dimensional context feature vector
[23]. The number of items in this dataset is 271, all of
which are used in our experiments.

The special data collection method [23] allows eval-
uating online algorithms on this dataset without intro-
ducing bias. Essentially, each instance in the dataset
contains only the click behavior of a user for 1 item
that is recommended to the user at the time of
data collection. When collecting the dataset, the item
recommendations are done completely independent
of the context of the user and the previous item
recommendations. As explained in [23], this removes
any bias in data collection that might result from the
algorithm used to make item recommendations when
collecting the data.

Similar to [23], we use this offline dataset to evalu-
ate our online learning algorithms. When simulating
our algorithms, we randomly pick users from this
dataset. Since this data set is very large (around 40
million instances), for a user that has a context z, it is
possible to find 271 instances, each of which contains
a different item recommendation, a context that is
within ¢ of z in terms of the Euclidian distance (in
our experiment, we use ¢ = 0.01), and the user’s click
behavior for that item recommendation. In this way,
the online algorithm is evaluated by using the users
and their click behaviors in this dataset. Note that
a very similar simulation method is also considered
in [23] to run the online LinUCB algorithm on this
offline dataset. In our numerical results we consider
T = 70000 user arrivals.

7. http:/ /labs.yahoo.com/Academic_Relations

5.2 Comparison with Existing Context-free Rec-
ommendation Algorithms

To show the importance of contexts on the payoffs,
we compare the performances of our proposed ACR
algorithm and our previously proposed OLCR algo-
rithm [30] with those context-free algorithms. The
performances of the algorithms are evaluated through
CTR up to time t. We compare against the following
three context-free algorithms.

o Random: The algorithm randomly selects an item
each time. This can be seen as the benchmark for
other algorithms.

o UCB1 [15]: This is a classical MAB algorithm,
which performs well in the case of learning the
best item without exploiting the context informa-
tion.

o e-greedy [15] [17]: This is another widely-used
algorithm to perform online recommendations.
In time period ¢, item cluster with the highest
payoff is selected with probability 1 — ¢;, and
other item clusters are randomly selected with
probability €;, where ¢, is in 1/t order, such that
the exploration rate is inversely proportional to
the number of users.

In simulations, depending on the number of clusters
we consider two scenarios. In the first scenario, we
choose K = 50 item clusters, and in the second
scenario, we choose K = 150 item clusters for all
the algorithms except the ACR algorithm, which can
adaptively choose the number of item clusters over
time. For the ACR algorithm, we do not distinguish
users (i.e., A; = 1) and choose the parameter b = 0.75.

The comparison results are given in Table 3. We
can see that both the OLCR algorithm and the ACR
algorithm significantly outperform the context-free
algorithms, as expected. The simulation results show
that the OLCR algorithm achieves a 10%-31% perfor-
mance gain, in terms of CIR up to time T, over the
UCB1 and e-greedy algorithms. The CTR of the ACR
algorithm is 58%-69% higher than those of the UCB1
and e-greedy algorithms. We also notice that the UCB1
and e-greedy algorithms learn faster than the OLCR
and ACR algorithms. This is because the context-free
algorithms estimate the CTR of an item by averaging
the clicks over all users, while the contextual algo-
rithms estimate the CTR of an item based on specific
user contexts. However, the contextual algorithms can
make more accurate estimations of the expected CTRs
of items by employing the contextual information
when the number of user arrivals is sufficiently large.
Hence, the context-free algorithms converge faster
(less than 20% of user arrivals) than the contextual
algorithms and the contextual algorithms can achieve
a higher CTR than the context-free algorithms in the
long run.



10

TABLE 3: Comparison with Context-free Algorithms

Percentage of user arrivals (K = 50)

Percentage of user arrivals (K = 150)

20%

40%

60%

80%

100%

20%

40%

60%

80%

100%

Random 0.026 0.028 0.027 0.026 0.026 0.026 0.028 0.027 0.026 0.026

UCB1 0.028 0.032 0.030 0.029 0.029 0.029 0.030 0.029 0.028 0.029

CTR e-greedy 0.030 0.029 0.029 0.029 0.029 0.032 0.031 0.031 0.031 0.031
OLCR 0.028 0.033 0.037 0.037 0.038 0.025 0.028 0.031 0.034 0.034

ACR 0.039 0.044 0.046 0.049 0.049 0.039 0.044 0.046 0.049 0.049

OLCR over Random

8%

18%

37%

42%

46%

-4%

0%

15%

31%

31%

OLCR over UCB1

00/0

3%

23%

28%

31%

-14%

-7%

7%

21%

17%

Cain OLCR over e-greedy

-7%

14%

28%

28%

31%

-22%

-10%

0%

10%

10%

ACR over Random

50%

57%

70%

88%

88%

50%

57%

70%

88%

88%

ACR over UCB1

39%

38%

53%

69%

69%

34%

47%

59%

75%

69%

ACR over e-greedy

30%

52%

59%

69%

69%

22%

42%

48%

58%

58%

5.3 Comparison with Existing Contextual Recom-
mendation Algorithms

In this subsection, we compare the CTRs of the OLCR
and ACR algorithms with those of the existing contex-
tual recommendation algorithms. We compare against
the following algorithms.

o CACEF [21]: The algorithm exploits the informa-
tion of historical selections of item clusters to
predict the current payoff given current context
arrival. Note that this algorithm only makes ex-
ploitations, regardless of explorations. Thus, it
has a “cold start” problem, and we use the first
5% of data instances to train the algorithm.

o Hybrid-¢ [22]: This algorithm combines the con-
texts and e-greedy algorithms together, by ex-
tracting information within a small region of
the context space and by running e-greedy algo-
rithms in that small region.

o LinUCB [23]: This algorithm assumes that the
payoffs of items are linear in contexts. It calcu-
lates the index of each arm by adding an upper
bound term to a linear combination of contexts
observed in previous periods, and then recom-
mends the arm with the maximum index.

o Contextual-zooming [29]: This algorithm com-
bines the context space and the item space to-
gether and selects a ball in this space each time
based on the past context arrivals and item selec-
tions.

In this subsection we consider two fixed item clusters
for algorithms that do not have the item clustering
property: K = 50 and K = 150 (algorithms except
contextual-zooming and ACR). For the ACR algo-
rithm, we do not distinguish users (i.e., A, = 1) and
choose the parameter b = 0.75. We can categorize
the contextual algorithms into two classes depend-
ing on whether an exploitation-exploration tradeoff
is considered. The CACF algorithm does not make
exploration, and the Hybrid-¢, LinUCB, contextual-
zooming, OLCR, and ACR algorithms consider both
the exploitation and the exploration.

The simulation results are given in Table 4. We can
see that the ACR algorithm significantly outperform
the existing contextual algorithms. The simulation re-

sults show that the CTRs up to time T" obtained by the
OLCR algorithm are 31% and 10% higher than those
obtained by the CACF algorithm, are 15% higher
and 3% lower than those obtained by the Hybrid-¢
algorithm, are 7% and 18% lower than those obtained
by the LinUCB algorithm, and are the same and 16%
lower than those obtained by the contextual-zooming
algorithm, in the scenarios of K = 50 and K = 150,
respectively. The CTRs up to time 7" obtained by the
ACR algorithm are 69% and 69% higher than those
obtained by the CACF algorithm, are 48% and 48%
higher than those obtained by the Hybrid-¢ algorithm,
are 20% and 26% higher than those obtained by the
LinUCB algorithm, and are 29% and 29% higher than
those obtained by the contextual-zooming algorithm.
In fact, our ACR algorithm aggregates information in
an adaptive ball of the context space each time, but the
Hybrid-¢ algorithm considers the fixed small region,
which causes a low efficient learning. The LinUCB
assumes the linear payoff function, which can result
in the inaccurate estimation of the CTR, while our pro-
posed algorithms do not make such an assumption.
The performance of the contextual-zooming algorithm
is affected by the Lipschitz constant included in the
algorithm, which may not fit the real data very well.
The CACF algorithm learns faster (converges in less
than 20% user arrivals) than our proposed ACR and
OLCR algorithms, but the accuracy of learning is low
due to the fact that the CACF algorithm only makes
exploitation, and our algorithms makes explorations
that cause a lower speed of learning in the short
run but a higher accuracy of recommendation in the
long run. Note that the proposed ACR algorithm
outperforms the OLCR algorithm, because the ACR
algorithm exploits the item-cluster tree to adaptively
cluster items, but the OLCR algorithm does not use
this tree structure but has fixed clusters.

5.4 Differential Services

In this subsection, we show how the recommender
system provides differential services according to
users’ types. We assume that the users in the sys-
tem are divided into two types: registered users and
anonymous users. For the registered users, we aim to
provide a higher quality recommendation. In the sim-



TABLE 4: Comparison with Contextual Algorithms
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Percentage of user arrivals (K = 50) Percentage of user arrivals (K = 150)

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

CACF 0.028 0.029 0.027 0.029 0.029 0.028 0.029 0.028 0.029 0.029

Hybrid-¢ 0.034 0.035 0.034 0.033 0.033 0.033 0.034 0.032 0.033 0.033

CTR LinUCB 0.035 0.039 0.040 0.041 0.041 0.032 0.037 0.039 0.039 0.039

Contextual-zooming 0.037 0.039 0.038 0.038 0.038 0.037 0.039 0.038 0.038 0.038

OLCR 0.028 0.033 0.037 0.037 0.038 0.025 0.028 0.031 0.032 0.032

ACR 0.039 0.044 0.046 0.049 0.049 0.039 0.044 0.046 0.049 0.049

OLCR over CACF 0% 14% 37% 28% 31% -11% -3% 11% 10% 10%

OLCR over Hybrid-e -18% -6% 9% 12% 15% -24% -18% -3% -3% -3%

OLCR over LinUCB -20% -15% -8% -10% 7% -22% -24% -21% -18% -18%

Gain OLCR over -24% -15% -3% -3% 0% -32% -28% -18% -16% -16%
contextual-zooming

ACR over CACF 39% 52% 70% 69% 69% 39% 52% 64% 69% 69%

ACR over Hybrid-¢ 15% 26% 35% 48% 48% 18% 29% 44% 48% 48%

ACR over LinUCB 11% 13% 15% 20% 20% 22% 19% 18% 26% 26%

ACR over 5% 13% 21% 29% 29% 5% 13% 21% 29% 29%
contextual-zooming

ulation, we choose the ACR algorithm with parameter
b= 0.75, and compare the average per-period CTR of
two user types.

We show the average per-period CTR (normalized
with respect to the anonymous users) of two user
types in Fig. 5. We can see that the average per-period
CTR of registered users is around 4% to 11% higher
than that of the anonymous users when the ratio of
exploration-exploitation trade-off factor A;/A; (regis-
tered user/anonymous user) varies from 0.2 to 0.8 in
the scenarios of 10% and 30% registered users. We can
also see that as the ratio of exploration-exploitation
trade-off factor increases, the CTR gain of the regis-
tered users over anonymous users decreases 5%-6%.
In fact, as the ratio of exploration-exploitation trade-
off factor increases, the recommendation strategy for
both types of users become similar to each other.

—A— Registered users —A— Registered users
—% = Anonymous users —#—_Anonymous users

=
=

[
~

11% increase 9% increase

A

P
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T,

PO
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Normalized per-period CTR
-

Normalized per-period CTR

0.8
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Ratio of exploration-exploitation
trade~off factor (AJA,)

0.8
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Ratio of exploration-exploitation
wrade~off factor (A,/A,)
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Fig. 5: Normalized per-period CTR comparison between registered users and
anonymous users, with percentage p of registered users.

5.5 Scalability of Algorithms

In practice, the number of items is large, which re-
quires that the algorithms have the ability to scale
up, i.e. learning speed and total CTR should not
degrade as the number of items increases. In order
to show this, we increase the number of items in the
system by duplicating items to form the large item
set. Since our proposed algorithms and the contextual-
zooming algorithm make recommendations on cluster
level, the increase in items in the system only affects
the number of items in a cluster, and does not affect
the performances of the algorithms. For the CACE
Hybrid-¢, and LinUCB algorithms, when they do not

cluster the items and learn the CTR separately for
each item, there is some performance losses when the
number of items grows.

The simulation results are shown in Fig. 6. We use
a scale factor o to denote the scalability of the system
(i.e., number of items is o K, where K is the number of
items without being scaled up). We calculate the learn-
ing gain of the evaluated algorithm over the random
algorithm (i.e., (CT Rz ok — CT Rrandom)/CT Rrandom.
where CT R, ,x denotes the CTR of the algorithm =
with a scale factor ¢), and normalize it with respect to
that of the ACR algorithm as a performance measure
to evaluate the scalability of the algorithm. We can
see that when the number of items becomes 100 times
of current number, the performance loss in terms of
the normalized learning gain against the random algo-
rithm is 63%, 61%, and 67% for the CACF, Hybrid-¢
and LinUCB algorithms, respectively. The long-term
CTRs of the contextual-zooming algorithm and our
proposed OLCR and ACR algorithms do not change,
as expected, implying that our algorithms are scalable.

CACF 63% decrease

OLCR(proposed)
~——ae— ACR(proposed)
—A— Hybrid-¢

LinuCB
~—#&— CACF
=03 Contextual-zooming

Normalized learning gain over the random algorithm

0 20 40 60 80 100
scale

Fig. 6: Comparison of scalable performances of algorithms

5.6 Robustness of Algorithms

In this subsection, we evaluate the robustness of algo-
rithms when input parameters vary. Note that, to con-
struct the item-cluster tree in our proposed approach,
the theoretical optimal value of b (b € (0.5,1)) given
in Section 4.3 (i.e., b = 271/(d1+dc+2) = (.94) may be
conservatively large, and so optimizing this parameter
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Fig. 7: The impact of b on the ACR algorithm. Fig. 8: The impact of a on the LinUCB algo- Fig. 9: The impact of the Lipschitz constant on

rithm.

may result in higher total payoffs. In particular, we
compare the CTR of the ACR algorithm when the
base b changes. In the existing works, the LinUCB
algorithm [23] needs an input parameter o > 0 (« is
used to control size of the confidence interval) to run
the algorithm, and the contextual-zooming algorithm
[29] needs the Lipschitz constant to run the algorithm.
So we also show the effect of parameters on the
performances of the LinUCB and contextual-zooming
algorithms.

Simulation results are shown in Fig. 7, 8, and 9.
In Fig. 7, we can see that for the ACR algorithm,
the CTR difference is less than 5% when the base b
changes from 0.50 to 0.95. This is because the base
b controls the trade-off of the number of clusters
(learning speed) and the cluster size (accuracy). When
b is large, learning is fast but less accurate; when b
is small, learning is slow but more accurate. Hence,
an optimal b exists to balance the speed of learning
and the accuracy. For the LinUCB algorithm and
the contextual-zooming algorithm, since the input
parameters have a range from 0 to infinity, we test
several possible values to evaluate the robustness
of the algorithm. We can see from Fig. 8 that the
LinUCB algorithm has more than 17% performance
loss, in terms of CTR, compared to its maximum
corresponding to the optimal value of a. We can also
see from Fig. 9 that the contextual-zooming algorithm
has more than 18% performance loss, in terms of CTR,
when the Lipschitz constant is not estimated correctly.
Moreover, since the range of input parameter o and
Lipschitz constant is from 0 to infinity, it is difficult to
find the optimal value of parameters without training
data. Hence, we can see that the LinUCB algorithm
and the contextual-zooming algorithm are less robust
to the input parameters than the ACR algorithm.

5.7 User Arrival Dependent Performance Variation

In this subsection, we evaluate the robustness of our
ACR algorithm to different types of user arrivals. We
randomly generate 10 sequences of user arrivals, and
evaluate the variation in the CTR of the ACR algo-
rithm over these sequences. To evaluate the variations
of CTR in different cases, we first calculate the average
CTR up to time T of the 10 cases and normalize it to 1.

the contextual-zooming algorithm.

We then compare the CTR variation of each case with
the average CTR. The experimental results are shown
in Table 5. For a specific sequence of user arrivals,
a negative variation means the CTR is lower than
the average CTR, while a positive variation means
the CTR is higher than the average CTR. We can see
from Table 5 that the variation of CTR up to time T'
obtained by our proposed algorithm is less than 5.5%.

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a contextual MAB based
clustering approach to design and deploy recom-
mender systems for a large number of users and
items, while taking into consideration the context in
which the recommendation is made. Our proposed
ACR algorithm makes use of an adaptive item clus-
tering method to improve the learning speed. More
importantly, our algorithm can address the cold start
problem and provide differential services to users
of different types. Theoretical results show that the
algorithm can achieve a sublinear regret, while our
simulations show that our algorithm outperforms the
state-of-the-art algorithms by 20% in terms of average
CTRs.

Understanding the utility and impact of the pro-
posed approach in the current practice of Web services
and recommendations requires further study. Never-
theless, our online learning algorithm for recommen-
dation systems is general and can potentially be used
in numerous other application domains. However,
each of these domains has its own unique set of
contextual information, user characteristics, recom-
mendation payoffs and associated challenges. For ex-
ample, users” demographics, environmental variables
(e.g., time, location), devices used (e.g. cellphones,
laptops etc.) can be potential contexts, while the rec-
ommendation payoff can be the rating(s) given by
users to the recommendation they receive. Hence, this
will require adaptation of the proposed algorithm to
the specific domain in which the recommendation
system needs to operate.

While general and applicable to many domains, our
approach has also several limitations. We mention
here a few. First, we do not consider specific chal-
lenges associated with implementing the proposed
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TABLE 5: The Variation of CTRs in Different User Arrival Processes

Cases Case 1 | Case?2 | Case 3 | Case 4

Case5 | Case6 | Case7 | Case 8 | Case 9 | Case 10

compared to average CTR

Percentage of CTR variation 4.4% -3.6% -4.0% 5.1%

-5.5% -0.5% 5.1% -5.2% 4.8% -0.5%

system in a distributed manner, as several Web ser-
vices and applications may require. However, this is
essential and future work will need to consider such
distributed solutions for implementing recommender
systems. Second, recommender systems are increas-
ingly co-evolving together with social networks: users
often recommend items they liked or purchased to
others in their social network. Hence, understanding
how such recommendation systems and social net-
works co-evolve and interact with each other forms
another interesting, yet challenging future work.
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APPENDIX A
COVERING DIMENSION

Let (X, s) be a metric space, where X is a set, and s :
X' xX — [0, 00) is the metric (distance). The p-covering
Fr of X is defined as a collection of subsets of X,
each with a diameter strictly smaller than p, that cover
X, ie, F® ={B: B C X,s(z,y) < p/2,Va,y € B}.
The minimum subsets in F, is called the p-covering
number of X’ and is denoted by N5°¥(X). The covering
dimension of X is defined as the smallest d such that
Nev(X) < cp~® for each p > 0, where ¢ is the
covering constant. For a general Euclidean space R,
the covering dimension is the geometric dimension d.

We also use another concept p-packing 77 of X' as
a subset of &, such that any two points in F7*¢ have
a distance at least p, i.e., 75 C X, and s(z,y) >
p,Vz,y € Fhe. The p-packing number N?*¢(X) of X
and is defined as the largest size of 77 It is easy
to see that NJ“(X) < N7°V(X), since each element in
F5° can at most cover one point in F7*¢ according to
the definition. We will use p-packing number of the
context/item space to prove the proposed theorems
in this paper.

APPENDIX B
PROOF OF THEOREM 1

First, we prove that the item-cluster tree fulfills the
exponential tree metric. For a cluster C;, at layer [,
the distance between any item in that cluster and
the representative point is not greater than 11’—_&1) .
To validate this, we compute s;(i,4; %) for any item
i € Cp . For | = L, this holds obviously because C; s
is a single item-cluster. We assume that for any [ + 1,

this holds. Then for [, we have

sr(iyign) < srienn tiger) + 5100 Gip1,er)

1)
1-bzl , bt b (
S 1+bb + 1+b — 1+b?

where 4,41 = i1 is the representative point of
cluster Cj41 s such that item i; ;, € Ci41 5, and i41 5
is the representative point of cluster Cj; ,~ such that

L. Song, T. Cem, and M. van der Schaar are with Department of Elec-
trical Engineering, UCLA. Email: songlingi@ucla.edu, cmtkn@ucla.edu,
mihaela@ee.ucla.edu.

item ¢ € Cj11 ~. The first inequality of (1) is due to
the triangle inequality of s;(-). The second inequality
of (1) is due to the construction of the item-cluster
tree of the CON-TREE algorithm and the hypothesis.
According to mathematical induction, we have

l

.. b .
SI(Zvll,k:) < m,Vl S Cl,k:~ (2)

Therefore, we can prove that for any 4, j € Cj x:

s1(1,7) < 1l prs fir,ee) + 5106 g1 w)

» 1—bypl bt | b gy
+51(]7Zl+1,k’”) < 1+bb + 1+b + +b b,

®)

where 4;4; 5 is the representative point of cluster
Ci41,1 such that ¢ € Cj4q 5, and 441 o is the repre-
sentative point of cluster Cj 4, such that j € Cjq .
The first inequality of (3) is due to the triangle inequal-
ity of s;(-). The second inequality of (3) is due to the
construction of the item-cluster tree of the CON-TREE
algorithm and the inequality (2).

Next, we prove the second part of the theorem.
According to the CON-TREE algorithm, the distance
between two representative points at layer [ is at least
(1; f_’zbl . Hence, according to the covering dimension of
the item space, the maximum number of representa-
tive points at layer [ is at most

1—b)b 1+b., 1
CoO a0y, @

where ¢; is the covering constant for item space.
Therefore, Theorem 1 follows.
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APPENDIX C
PROOF OF THEOREM 2 AND THEOREM 3

For notational simplicity, let us define pu; =
arg max;ez f4i+ and u;‘(t)’t = pu(t),k;,t- We also define
the suboptimal cluster set as S(t) = {k € Kyy) :
N?(t),t — W)kt > 4Lcpi}, and define the clusters
other than the optimal and suboptimal clusters as the
near optimal clusters. Then the regret Racr(T) can be
expressed as Racr(T) = Racrs(T) + Racrn(T) +
Racru(T), and the regret IR ~(t) can be expressed
as IR op(t) = IRy op () + IR op, () + TR o R W (1)-
The first terms Racr,s(T) and IRy ,(t) are caused
by suboptimal cluster selection; the second terms



Racrn(T) and IR cp ,(t) are caused by near opti-
mal cluster selection; the third terms Racr,.(I) and
IR g, (t) are caused by selecting a cluster instead
of an item.

(a) We first consider Racr,s(T) and IRacr,s(t). We
consider the instantaneous regret caused by subopti-
mal cluster C; ., selection in epoch [:

IR} ) 1(t) = E[Ay) g, I{m(t) = (1, k), D it

5, s ©)

> 4Lopitluy € Us) < TRy () + TR} (1),
where Al(t) k.t Nz(t) = i),k tr IR 1t), k( ) =
Pr{I}, 1(t),k Rt > Il(t k*() Ayiyke > 2Lope +
J\Ié(tiflkt } and IRl(t) k( ) - E[Al (), ktI{Il(t) k( ) >

Ly i (05 4Lepe < Dy e < 2Lope + 2,/ 5},

1) For the first term IRl(t) . (t), we have

s,1 Agln
IRl(t) R () < Pr{l}; 1)k = M) ke T Lepr +2,/ 7]\/[@;}
+Pr{I}, 1)k < Ml(t),t Leopt}

Aslnt }

< Pr{7i) ke > Elfice) 5] + Ny k¢

+Pr{7ue) by 0 < BlFue.h7.0] =/ 7]\1?(;1,2:,} < 2724,

(6)
where the last inequality is due to the Chernoff-
Hoeffding bound with Ny and Ny gr sam-
ples; the second inequality is due to the fact that
EFi4) k) < ),k + Lopr and E[Fyy g o] > M) —
Lcpy; and the first inequality holds because one of the
following two must holds when A;) x: > 2Lcp; +

Aglnt
2, [
Ni(ty,k,¢

Aglnt
Iy, > + Leops +2 R 7
1),k = Hue) ke + Lope Nuo o @)
Iy ke < iy — Lepr. 8)
Otherwise, we have the following:
I3 < + L + 2 Aglnt
1(t),k = Hi(t),kt P Nicey,m,t 9)

< Hiey,e — Lope < Iy -

2) For the second term IRl(t)k( ), we have

IRf(tQ) L) < IRI(E) L (t), for s # 1. We first bound the
instantaneous regret of the type 1 user. We choose the
ball B(zy, pt) and 45 < t is the last time that (I(¢), k)
is selected in epoch I. Then the aggregate regret due
to suboptimal cluster k selection in ball B(zy, pt):

EZTGT(B(CEt,pt)) IRI(E) (M IH{m(7) = (1(t), k)}
< EZTGT(B(mt,p,,))(Al(t)»kvtlast + 2chtlast,)1{ﬂ-(7_) =
(1), k), ALepr < Dy ks < 2Lepr +24 )/ 5500}

< (D) kotrawe + 2LEPt1ae ) Nit) tran:
< 36A11Int;,e 6A;1nt
= (D), b tyqep T2LoPt ) — Lopt

(10)

where the third inequality holds because

Ailnty,s
Lo =\ N ot and Ayt) g tyaee T 2LePti, <

ArIntiger hold, which implies that

Nl(f«)‘kvtlast 36xAq Int
N, < *A1 INtigst .
Ut),ktiase = (B70t), 110t “l(t) Ritisr T2LCPY 40)7

Since IRl(t) L(7) < IRl(t) (1) for time 7 < 7 in the
same epoch [ according to (10), we can use I Rll(’tz) k(21)
to bound the instantaneous regret of time slots in
epoch I. Hence, the regret I Rl(t) ,(t) can be bounded
by

1,2 1,2
TRy (1) < TRy 4 (2")

< 6A1 Int 6A1 Int
= [2[_(21—1_1)]cht — 21—1cht7

(11)

where 2!71 — 1 is the total time periods before epoch
I-1, and 2! is the first time period of epoch I. Since
for period ¢ in epoch I, we have ¢ < 2!*1 — 1, then
IRll(’tz)’k( ) can be bounded by IRl(t) L) < 2;1]:4;;”.

The maximum number of balls with radius p; that
can cover the whole context space is bounded by
cco(pi)~%, and the number of clusters in epoch [ is
K1), then the instantaneous regret IR} ,(t) can be
bounded by

24A1Kl(t)Cc In tt%
Le

—

IRy cp.s(t) < K2t 24 +

We then bound the instantaneous regret I R;(f) (1)
of type s users. We first introduce the concepts of
virtual time for type s user at time ¢. We define the

virtual time with respect to type s'(s’ < s) as ty =
Ay In(t—71) A In(t) t—

(Areey,k,t—r+2Lopt—r)2 (Aieey,k,t+2Lcpe)?’

T € T(B(x, pt))}. According to the fully exploration

assumption, the event [W; ] will happen with prob-
ability 1 for some large enough 7. The virtual time can
be interpreted as: if type s user selects the suboptimal
cluster (I(t),k) at time t (i.e., event W}, happens),
then for the context arrivals in the balllB(ost, pt), it
occurs that type 1 user does not select (I(t), k) from
time t—t; to t; type 2 user does not select (I(t), k) from
time t—t5 to ¢; ...; and type s—1 does not select (I(¢), k)
from time ¢ — t,_1 to t. If the last time event W} ]¢
happens is before ¢t —t; — 1, the probability that event
W; . happens is smaller than the probability when
the last time event [W; ] happens is just t — ¢, — 1.
Hence, we can compute the virtual time ¢,; and bound

the regret IRl(t) L ().
We approximate ty = min{r : A;;:’Iiff(;) < (14
£ T) }. Then the regret I R*?(t) can be bounded by

min{r :

IR*2(t) = Xycsm IR},(t),k(t)

< Kypl(1 = p1) + p1(1 = PB(ay,pp)) + P1PBg, ot "1 712 - [(1—

P1 = p2) + (1 +D2)(1 = PB(ay,pp)) T (P1 + P2)DB(ag, oyt~ "]72 713
(T =p1 = ps—1)+ (P14 Ps—1) (1 = PB(ay,pp))

+(p1+  Pa—1)PB(ay,ppt "L

= Kio T3, L= S50y ParPBag o (1 — 7] 7141,

where pg(,.0,) = Joepa, ) f(¥)dz is the probability
that the context arrive in ball B(zy,p:). The three



terms 1 — p1, p1(1 = PB(a,.p,)), AN P1PB(a, p,)t " TEP-
resent the probability that the type 1 user does not
arrive, the probability that the type 1 user arrives, but
the context is not in B(z, p;), and the probability that
type 1 user arrives with context in B(zy, p;), but the
cluster Cj(;,;, has not been selected.

For the long-term regret Racr,s(T), we have

_ 14+1_
Racr,s(T) <X Ke Zf=21 !

< ERKp 32, t7 24 [{u, € Us}]

IR, k(t) + KE Z?:zE IRy 1 (t)

6A1K e (pyq1 ) 40 m@!T-1)

E
+ 2o LCPal+1_4
s o 4—2A4g
S2Kp 3l 1ps 202t
6A1KpegIn2 g~|logy T %@ 1+1
+#Zl:o +1)[2 = ]

<2Kp 3T pe T2, ¢
L 24A1 Koo (1.386+1n T)T(1-)(+dg)/dc
o (I—a(Fdc) /45 1,
4841 KgeaT(I—)(+dc)/dg 1n
Lc(z(lf‘l)(1+dc)/dcfl)2

where the second inequality is due to the inequalities
of (6) and (10).

(b) Since the regret IRacr,»(t) is caused by near
optimal cluster selections, according to the definition
of near optimal clusters, IRscrn(t) < 4Lcp.. The
long-term regret Racr,»(T) can be bounded by

1-(1—a)
T ALcdcT  dc
Racra(T) < thl 4Lcpr < h> (12)

where the second inequality holds because of the di-
vergent series 3., t7¥ < T(=v) /(1—y), for0 <y < 1
[1].

() We consider the regret Racr.(T) and
IRAcRr.(t). Since the maximum regret caused
by the random selection of items in a cluster and the
best item selection in that cluster is bounded by L b,
the instantaneous regret IRscr.(f) is bounded by
2L for a period in epoch I, namely

TRacR.(t) < 2070!® < 20010828 = 210/ 122 (13)
The regret Racr,.(T") can be bounded by
2L]T1+ln b/In2

1+1Inb/In2

where the second inequality holds by the divergent
series [1].

Then Theorem 3 and 4 follow the analyses (a), (b),
and (c).

T
Racra(T) < 2L < (14)
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