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Abstract—Demand-side management (DSM) is a key solution
for reducing the peak-time power consumption in smart grids. To
provide incentives for consumers to shift their consumption to off-
peak times, the utility company charges consumers the differential
pricing for using power at different times of the day. Consumers
take into account these differential prices when deciding when and
how much power to consume daily. Importantly, while consumers
enjoy lower billing costs when shifting their power usage to off-
peak times, they also incur discomfort costs due to the altering
of their power consumption patterns. Existing works propose
stationary strategies for the myopic consumers to minimize their
short-term billing and discomfort costs. In contrast, we model
the interaction emerging among self-interested and foresighted
consumers as a repeated energy scheduling game and prove that
the stationary strategies are suboptimal in terms of long-term total
billing and discomfort costs. Subsequently, we propose a novel
framework for determining optimal nonstationary DSM strategies,
in which consumers can choose different daily power consumption
patterns depending on their preferences, routines, and needs. As
a direct consequence of the nonstationary DSM policy, different
subsets of consumers are allowed to use power in peak times at a
low price. The subset of consumers that are selected daily to have
their joint discomfort and billing costs minimized is determined
based on the consumers power consumption preferences as well as
on the past history of which consumers have shifted their usage
previously. Importantly, we show that the proposed strategies are
incentive compatible. Simulations confirm that, given the same
peak-to-average ratio, the proposed strategy can reduce the total
cost (billing and discomfort costs) by up to 50% compared to
existing DSM strategies.

Index Terms—Smart grids, demand side management, critical
peak pricing, consumer discomfort, repeated games, incentive
design.

I. INTRODUCTION

SMART grids aim to provide a more reliable, environmen-
tally friendly and economically efficient power system

[1], [2]. The utility company sells electricity to consumers,
who are equipped with smart meters. Smart meters exchange
information between consumers and the utility company, and
schedule the household energy consumption for consumers.
The information gathered through smart meters can be used by
the utility company to adjust the electricity prices.
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Demand Side Management (DSM) is a key mechanism to
make smart grids more efficient and cost-effective [1], [2].
DSM refers to the programs adopted by utility companies to di-
rectly or indirectly influence the consumers power consumption
behavior in order to reduce the Peak-to-Average Ratio (PAR) of
the total load in the smart grid system. A higher PAR results
in much higher operation costs and possibly outages of the
system. DSM aims to incentivize consumers to shift their peak-
time power consumption to off-peak times, thereby resulting in
significant PAR reductions in the power system.

A. Related Works

Direct Load Control (DLC) and Smart Pricing (SP) are
two popular existing approaches for implementing DSM. DLC
refers to the program in which the utility company can remotely
manage a fraction of consumers appliances to shift their peak-
time power usage to off-peak times [3]. Alternatively, SP [6]–
[18] provides an economic incentive for consumers to voluntar-
ily manage their power usage. Examples are Real-Time Pricing
(RTP) [6], Time-Of-Use Pricing (TOU) [14], Critical Peak
Pricing (CPP) [16]–[18], etc. However, the above works [3],
[6]–[8], [16]–[18] do not consider the consumers discomfort
costs which is induced by altering their power consumption
patterns.

Some recent works considered consumers discomfort costs
[4], [5], [9]–[15], [20], [23] and aimed to jointly minimize
the consumers billing and discomfort costs (referred to subse-
quently as the total cost). These works can be classified into
two categories, depending on the deployed consumer model.
The first category assumed that the consumers are price-taking
(i.e., they do not consider how their consumption will affect
the prices). By assuming that consumers are price-takers, the
decision making of a single foresighted consumer is formulated
as a stochastic control problem aiming to minimize its long-
term total cost in [9]–[11]. Alternatively, in [12], [13], multiple
myopic consumers aim to minimize their current total costs and
their decisions are formulated as static optimization problems
among cooperative users for which distributed algorithms are
proposed to find the optimal prices.

The second category assumed that the consumers are myopic
and price-anticipating (i.e., they take into account how their
consumption will affect the prices). In this case, each con-
sumers power usage affects the other consumers billing costs.
These works [6]–[8], [15] modeled the interactions emerging
among myopic consumers as one-shot games and studied the
Nash equilibrium (NE) of the emerging game. In this paper,
we also model the consumers as price-anticipating. However,
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TABLE I
COMPARISON WITH EXISTING WORKS

in our model, the consumers interact with each other repeatedly
and are foresighted, thereby engaging in a repeated game.

It is well-known that in one-shot games with myopic price-
anticipating consumers, the system performance (i.e., the total
cost) at the equilibrium can be much worse than the optimal
performance achieved by myopic price-taking consumers [25].
One way to achieve the same performance for myopic price-
anticipating consumers as in the case of myopic price-taking
consumers is to model the system as a repeated game, and to
incentivize the price-anticipating consumers to choose (in equi-
librium) the optimal consumption adopted by myopic price-
taking consumers [24]. Importantly, in this paper we go one
step further, and adopt a novel repeated game framework which
can significantly outperform the optimal performance obtained
by the myopic price-taking consumers [12], [13].

All the existing works considering multiple consumers
[3]–[8], [12]–[16] assumed that the consumers are myopic
and minimize their current costs. The optimal DSM strategies
in these works are stationary, i.e., all consumers adopt fixed
daily/weekly power consumption patterns as long as the system
parameters (e.g., the consumers desired power consumption
patterns) do not change. However, as we will show later in
the paper, the stationary DSM strategies are suboptimal in
terms of the long-term total cost. To minimize the total cost,
some consumers are required to shift their peak-time power
usage to the off-peak times while the remaining consumers can
use energy when desired. By deploying this optimal strategy,
the consumers who shift their peak-time consumption incur
discomfort costs, but this leads to a reduction of the peak-time
price and of the billing cost of all the consumers. Importantly,
our proposed nonstationary DSM strategy can achieve the
optimal total cost while ensuring fairness among consumers by
recommending different subsets of consumers (referred to as
the active set) to shift their peak-time consumption each day.
The active set is determined by the consumers preferences
and the past selection of active sets.

A detailed comparison of our work and existing works is
highlighted in Table I.

B. Our Contributions

In this paper, since the consumers stay in the system for a
long time and interact with each other repeatedly, we formulate

the consumers interactions as a repeated game. The repeated na-
ture of the interaction provides incentives for price-anticipating
consumers to cooperate (as shown in [24]). Although the pro-
posed framework can improve the performance of the stationary
DSM strategies discussed for any SP scheme, we focus on
the CPP scheme, which has been widely used for residential
consumers and is shown to work well in practical scenarios
[17]–[19]. CPP defines peak days in a year or peak times in
a day, and charges higher prices during these peak hours if
CPP events, such as system load warning, extreme weather
conditions, and system emergencies, occur [18].

Based on the repeated game model, we propose an opti-
mal nonstationary1 DSM mechanism that minimizes the total
cost and outperforms the optimal stationary DSM strategy. In
addition, the proposed strategy is Incentive-Compatible (IC),
namely the self-interested consumers will find it in their self-
interest to follow the recommended strategy. Each day, the
DSM strategy selects an active set of consumers based on their
preferences of whether or when to shift and on the past history
of consumption pattern shifts. These consumers sacrifice their
current discomfort costs to minimize the total billing cost. In
return, they will enjoy in the future lower billing costs without
incurring discomfort costs when other consumers are chosen
in the active set. In this way, the proposed strategy minimizes
the long-term total cost while ensuring fairness among the
consumers.

In summary, the main contributions of our work are as
follows:

• A Repeated Game Framework: A repeated game frame-
work is proposed to model the interactions among
foresighted price-anticipating consumers over time.

• Joint Billing and Discomfort Costs Minimization: The pro-
posed DSM mechanism considers not only the consumers’
billing costs but also their discomfort costs.

• Optimal Nonstationary DSM mechanism: We analytically
prove that in the energy scheduling game with discomfort

1Recall that in a stationary DSM mechanism, the consumers adopt fixed
daily/weekly power consumption patterns as long as the system parameters do
not change. In contrast, in a nonstationary DSM mechanism, the consumers
may adopt different daily/weekly power consumption patterns (e.g., a consumer
may shift its peak-time consumption today but not shift tomorrow) even if the
system parameters remain the same.
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Fig. 1. Smart grid system model.

costs, nonstationary DSM mechanisms can outperform
stationary mechanisms, and propose an optimal nonsta-
tionary DSM mechanism that can be easily implemented.

• IC strategies: The DSM mechanism is IC, meaning that
the self-interested consumers have no incentive to deviate
from the recommended strategy.

• Consumer heterogeneity: Our framework can model dif-
ferent types of consumers with different discomfort costs.
Moreover, different consumers may have different prefer-
ences on how and when their consumption patterns are
shifted. We study the impact of different types of con-
sumers on the performance of the proposed mechanism.

The rest of this paper is organized as follows. Section II
models the repeated energy scheduling game and formulates
the DSM mechanism design problem. Section III formally
introduces the proposed algorithm for constructing the DSM
strategy and discusses how to implement the proposed algo-
rithm in the smart grid system. Section IV provides simulation
results to validate the performance of the proposed algorithm.
Section V concludes the paper.

II. SYSTEM MODEL

A. Energy Scheduling Game

A smart grid system consists of a utility company and mul-
tiple consumers, as shown in Fig. 1. The DSM is implemented
through smart meters on the consumer side and a DSM center
in the utility company [2].

We denote the set of consumers by N = {1, 2, . . . , N}. Time
is divided into periods t = 0, 1, 2, · · ·. We assume that each
period is divided into H ∈ N+ time slots with equal length and
denote the set of time slots by H = {1, 2, . . . , H}. Note that
we use “period” here to denote each stage of the interaction
among consumers and use “time slot” to denote the discrete
time to schedule power usage within a period. In this paper, we
consider a period to be one day as in [6]–[9], [12]–[16], and
each slot can be one or multiple hours (e.g., H = 24, H = 12).

For each consumer i ∈ N in period t, its action is the power
consumption pattern in that period, which is the vector of
power consumption at each time slot and denoted by ati =
(ati,1, . . . , a

t
i,H), with ati,h ∈ Ai being the power consumption

and Ai being the set of power consumption at each time slot.
The power consumption ati,h at time slot h consists of non-

shiftable load and shiftable load. The non-shiftable load, such

as lighting, cooking, watching TV, is not controllable by smart
meters, while the shiftable load, such as dish and clothes wash-
ing, heating and cooling systems, can be controlled by the smart
meters [6]–[8]. We denote the nonshiftable and shiftable loads
at time slot h ∈ H by bti,h ≥ 0 and sti,h ≥ 0, respectively. Thus,
consumer i’s power consumption satisfies ati,h = bti,h + sti,h
and ati,h ≥ bti,h. Note that here the shiftable load is not only
limited to the deferrable load, but also includes “smart ther-
mostats” aimed at controlling heating/cooling systems, which
can shift the energy usage ahead of time and have been shown
[19] to significantly reduce the peak load in practice, etc.

We denote by
∑H

h=1 a
t
i,h = Ai the daily total power con-

sumption for residential consumer i, where Ai is either a con-
stant or slowly varying as in [6]–[8], [13]–[16]. We denote by
at = (at1, a

t
2, . . . , a

t
N ) ∈ A the power consumption profile of

all consumers, where A = AH
1 ×AH

2 × · · · × AH
N . The total

load at time slot h, denoted by lth =
∑N

i=1 a
t
i,h, is the sum of

all consumers’ power consumptions.
We assume that the desired power consumption pattern in

each period for consumer i is āi = [āi,1, āi,2, · · · āi,H ] ∈ AH
i ,

which refers to its preferred daily power consumption pat-
tern [14], [21], [22]. The corresponding desired power con-
sumption profile of all consumers and total load are denoted
by ā = [ā1, ā2, · · · āN ] ∈ A and l̄h =

∑N
i=1 āi,h. Define h̄ =

argmaxh∈H l̄h as the peak time of the day, the length of which
changes according to how H is set. Empirical studies show that,
compared with industrial and commercial consumers, residen-
tial consumers have very similar peak-time shiftable loads [19],
implying that āi,h̄ − bt

i,h̄
= s̄h̄, for each consumer i.

Remark 1: First, different consumers may have different
desired power consumption patterns āi. For example, most
consumers may have their highest power consumption in the
evening, while some consumers may have highest power con-
sumption in the morning. Second, each consumer can have
its individual peak consumption in hours other than h̄; h̄ is
determined based on the aggregate power consumption of all
consumers, instead of the power consumption of individual
consumers. Third, in the model currently presented, we let the
desired daily power consumption pattern āi to be the same for
each day.

The cost of a consumer consists of billing and discomfort
costs. The billing cost is the power consumed multiplied by the
unit price and the discomfort cost is the consumer’s discomfort
caused by rescheduling its daily power consumption from its
desired power consumption pattern. We denote ci : A → R to
be the cost function of consumer i:

ci(a
t) =

H∑
h=1

ph(a
t)ati,h + di

(
ati
)
, (1)

where ph : A → P (P = R+) is the price at time slot h;∑H
h=1 ph(a

t)ati,h is the daily billing cost, di : AH
i → R is the

discomfort cost of consumer i. We denote the prices within a
day by pt = (p1, p2, · · · pH). Without loss of generality, the
total cost is the sum, instead of the weighted sum, of billing
and discomfort costs, because any weight the consumer puts on
the discomfort cost can be absorbed in the expression of the
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discomfort cost function di. We will discuss later the price ph
and discomfort cost di in detail. We first define the one-shot
energy scheduling game as follows.

Definition 1 (One-Shot Energy Scheduling Game): The
one-shot energy scheduling game is defined as a tuple
〈N , {Ai}Ni=1, {ci}

N
i=1〉, where N , {Ai}Ni=1, and {ci}Ni=1 are the

set of consumers, the sets of consumers’ actions, and the sets of
consumers’ cost functions, respectively.

Next, we formalize the repeated game model. In each pe-
riod t, consumer i determines its power consumption pattern
ati based on its history, which is a collection of all its past
power consumption patterns and the past prices made public
to the consumers. The history of consumer i up to time period
t can be written as: ηti = {a0i ,p0, a1i ,p

1, . . . , at−1
i ,pt−1} ∈

(AH
i × PH)

t
for t > 0 and η0i = ∅, The corresponding public

history is defined as ηt = {p0,p1, . . . ,pt−1} ∈ (PH)
t

for t >
0 and the initial history is defined as η0 = ∅. The public strategy
of consumer i is defined as a mapping from public history
to current action, denoted by πi : ∪∞

t=0(PH)
t → Ai, where

(PH)
0
= ∅ [24]. Due to realization equivalence principle

[24, Lemma 7.1.2], we lose nothing, in terms of the achievable
operating points, by restricting to public strategies, compared
to strategies using the entire history.

Given the strategy profile of all consumers, denoted by
π = (π1, π2, · · ·πN ), consumer i’s average long-term cost is
discounted by a factor δ:

Ci(π) = (1− δ)

∞∑
t=0

δtci
(
π(ηt)

)
, (2)

where ci(π(η
t)) is the cost of consumer i in period t. The dis-

count factor δ ∈ [0, 1) represents how consumers discount their
monetary costs in the future, e.g., due to interest rates/inflation.
A smaller δ means that the consumers discount their future
costs more. Since the interest rate/inflation is usually the same
for all the consumers, we assume δ to be equal for all consumers
as in [24], [25]. The corresponding long-term discounted dis-
comfort cost is denoted by Di(π).

Hence, we can formally define the repeated energy schedul-
ing game as follows.

Definition 2 (Repeated Energy Scheduling Game): The
repeated energy scheduling game is defined as a tuple 〈N ,

∪∞
t=0(PH)

t
, {πi}Ni=1, {Ci(π)}Ni=1〉, where N , ∪∞

t=0(PH)
t
,

{πi}Ni=1 and {Ci(π)}Ni=1 are the set of consumers, the sets of
public histories, the sets of strategies, and the sets of repeated-
game cost functions, respectively.

B. Critical Peak Pricing Scheme

Recall that in Critical Peak Pricing (CPP) scheme, the util-
ity company charges a higher price in the critical peak time
when CPP events occur (such as system load warning, extreme
weather conditions, and system emergencies), aiming at reduc-
ing the peak-time load of the system [16]–[18]. The maximum
number of critical days and of critical hours within a day is
predefined.

We model the CPP pricing scheme with a single critical peak
time and only consider the CPP events triggered by the total

load in the system. The time-varying price function ph(a
t) is

defined as:

ph(a
t) = ph(l

t
h) =

{
pLo, 0 ≤ lth ≤ lth
pHi, lth > lth,

(3)

where pHi > pLo are the peak price and off-peak price of the
pricing model and lth is the threshold of the total load. When
lth ≤ lth, the higher price will not be triggered and pLo will be
adopted. When lth > lth, the CPP event occurs and the higher
price pHi will be adopted.

The PAR reduction goal Gred can be calculated as the
percentage of the load reduced in the peak hour, namely,

Gred =

l̄h̄−lth
lavg

l̄h̄
lavg

=
l̄h̄ − lth

l̄h̄
. (4)

where l̄h̄ =
∑N

i=1 āi,h̄ is the potential maximum load in peak

time, and lavg =
∑Ai

i∈N /H is the average total power con-
sumption within a time slot (e.g., an hour of the day). Given
PAR reduction goal Gred and the potential maximum load in
peak time l̄h̄, the utility company can calculate the appropriate
load threshold used to trigger the peak price:

lth = l̄h̄(1−Gred). (5)

We further set m = (l̄h̄ − lth)/s̄h̄, where m ∈ N is the
smallest number of consumers needed to shift their peak-time
consumption such that the peak-time price is low.

C. Consumer Discomfort Cost

We use a discomfort cost function to model the consumers’
discomfort from rescheduling their power consumption pat-
terns. Many papers define the discomfort cost function based
on the imposed change in their consumption patterns, i.e.,
the “distance” between consumer’s desired demand and actual
consumption [14], [20]–[23]. As in [14], [20], we use a linear
weighted function to model the discomfort cost:

di
(
ati
)
=

{∑H
h=1 ki,h

(∣∣∣ati,h − āi,h

∣∣∣)+ ωi, a
t
i �= āi

0, ati = āi,
(6)

where ki,h, ωi ∈ R+ are parameters of the discomfort cost
function. Consumer i’s discomfort cost di(ai) is an increasing
function of the ‘distance’ between the rescheduled and the
desired power consumption patterns.

The above discomfort cost function is able to capture sev-
eral important consumer preferences in terms of consumption
pattern shifting. First, ωi captures the consumer’s willingness
to shift: a consumer with a large ωi is less willing to shift.
Second, ki,h captures the consumer’s preference on how to
shift. A larger ki,h̄ indicates that the consumer does not want
to reduce its peak-time consumption; a larger ki,h for h �= h̄
indicates that the consumer does not want to shift its peak-time
consumption to time slot h.

We are interested in two costs that consumer i can achieve:
consumer i’s minimum cost achievable by any power con-
sumption profile, denoted by c̃i, and consumer i’s minimum
cost achievable by any power consumption profile in which
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consumer i shifts all its peak-time shiftable load, denoted by
c̄i, Hence, we formally write c̄i and c̃i as follows:⎧⎨

⎩
c̃i = min

a∈A
ci(a) = pLoAi

c̄i = min
a∈A,ai,h̄=bi,h̄

ci(a) = pLoAi + di(ãi),
(7)

where ãi = argmaxai∈AH
i
,ai,h̄=bi,h̄

di(ai). Clearly, we always
have c̄i ≥ c̃i, because c̄i is the minimum cost achievable when
constrained to consumer i’s certain power consumption patterns
(which cause discomfort costs). The cost c̃i is important be-
cause it is the minimum cost that consumer i could possibly
achieve. The cost c̄i is also important because it represents the
minimum cost that consumer i could possibly achieve when it
shifts all of its peak-time consumption (i.e., when it is selected
to be in the active set).

Since data [19] shows that most consumers have medium dis-
comfort costs (with respect to billing costs), in our analysis and
in the DSM mechanism design we will focus on the consumers
with medium discomfort costs. This can be formalized as:

(pHi − pLo)l̄h̄
m

> di(ãi) and ωi > (pHi − pLo)āi,h̄, (8)

where the first inequality implies that the discomfort cost is not
too large, and the consumers are willing to shift their peak-
time consumption if by doing so their billing costs can be
(significantly) reduced; the second inequality implies that the
discomfort cost is not too small, such that each consumer does
care about its own discomfort cost and is not willing to daily
shift its peak-time consumption.

D. Problem Formulation

In this subsection, we consider the system with self-
interested consumers and formulate the optimal IC DSM mech-
anism design problem.

The designer is the benevolent utility company that aims
at minimizing the total cost (maximizing the social welfare)
in the smart grid system. However, except for the total cost,
maintaining fairness among all the consumers is essential [19].
Hence, the mechanism will ensure that the average discomfort
cost of consumer i is no greater than a maximal value Di,max.
Therefore, the DSM mechanism Design Problem (DDP) can be
formulated as

(DDP ) : min
π

∑
i∈N

Ci(π)

s.t. ati,h ≥ bti,h, ∀t and ∀h ∈ H

Ai =

H∑
h=1

ati,h, ∀t

Di(π) ≤ Di,max, ∀i ∈ N
π is IC. (9)

The utility company will solve this problem, then recom-
mend the consumers with the optimal solution π�.

The abovementioned energy scheduling game model can be
extended or revised in different ways to accommodate various
systems. First, the CPP scheme may be only applied in the sum-

mer and winter seasons, when the system load is high. In this
case, the DSM mechanism can update the system parameters
and begin to solve the DDP problem again, at the beginning
of a new season. Second, the daily power consumption Ai

for a specific consumer i can vary for different days during a
week, due to their different weekly routines, e.g., they do the
laundry on Fridays etc. In this case, we can set the period in
the model to be a week, instead of a day, and set the daily total
power consumption and desired power consumption pattern as∑H

h=1 a
t
i,h = At

i, t = 0, 1, . . . , 6 and āti = āti, t = 0, 1, . . . , 6,

where {At
i}

6
t=0 and {āti}

6
t=0 are the daily power consumption

and desired power consumption patterns of a week and are
different for different days of a week.

III. OPTIMAL STRATEGIES

In this section, we solve the DDP problem defined in the
previous section. We first discuss a benchmark case—the
performance of the one-shot energy scheduling game. Subse-
quently, we characterize the Pareto efficient operating points
of the repeated energy scheduling game and propose our non-
stationary algorithm that achieves the optimal solution of the
DDP problem. Finally, we describe the implementation of the
proposed DSM in the smart grid system.

A. Benchmark—The One-Shot Energy Scheduling Game

In the unique NE of the one-shot energy scheduling game,
the consumer chooses its desired power consumption pattern.
We state this formally in the following theorem.

Theorem 1 (Nash Equilibrium of the One-Shot Game): The
one-shot energy scheduling game has a unique NE, in which
each consumer chooses its desired power usage as

a�i = āi, ∀i ∈ N . (10)

Proof: The idea of the proof is to show that āi is the
dominant strategy for consumer i. The complete proof is given
in Appendix A. �

The result of Theorem 1 is the well-known ‘tragedy of
commons’. Each consumer aims to minimize its individual
billing and discomfort costs and thus, it will myopically find
in its self-interest to minimize its individual cost by sticking to
its desired power consumption pattern. This results in a high
price and low social welfare. According to Theorem 1, the total
cost at the unique NE is

∑N
i=1 Ci,NE , where Ci,NE = ci(ā).

In the following section we will quantify the inefficiency of the
NE and propose a novel DSM mechanism that can achieve the
optimal social welfare.

B. Pareto-Optimal Region of the Repeated Energy
Scheduling Game

We formally characterize the achievable operating points of
the repeated energy scheduling game. It is well known that
as long as δ is sufficiently close to 1, the achievable region
of the repeated energy scheduling game is the convex hull
of the one-shot energy scheduling game [24, Lemma 3.7.1].
Hence, we can write the achievable region of repeated energy
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scheduling game as C = conv{c(a)|a ∈ A,
∑H

h=1 ai,h = Ai,
ai,h ≥ bi,h}, where conv{X} is the convex hull of X and
c(a) = (c1(a), c2(a), · · · cN (a)) is the cost profile of the con-
sumers. We will prove that the Pareto-optimal region of the
repeated energy scheduling game (i.e., the Pareto boundary of
the set of achievable cost profiles), denoted by B, is a face of
C that is a polytope with dimension N − 1. This means that we
can analytically express the Pareto-optimal region. Theorem 2
formally characterizes the Pareto-optimal region B analytically.

Theorem 2: The Pareto-optimal region of the repeated en-
ergy scheduling game is

B =

{
C|

N∑
i=1

Ci − c̃i
c̄i − c̃i

= m, Ci ≥ c̃i

}
, (11)

where C = (C1, C2, . . . , CN ) is the cost vector.
In addition, the stationary DSM strategies can only achieve

the extreme points2 of B.
Proof: See Appendix B. �

Theorem 2 does not only characterize the Pareto-optimal
region (i.e., part of a hyperplane) of the repeated energy
scheduling game, but also proves that by using stationary DSM
strategies, we cannot achieve any points on the Pareto-optimal
region other than the extreme points. Note, however, that, the
extreme points can only be achieved by the action profiles in
which m consumers shift their peak consumption and incur cost
c̄i, while the other consumers do not shift and incur cost c̃i. It is
clear that the extreme points are not desirable operating points,
because an extreme point can be achieved only when a fixed
set of m consumers shift their peak-time consumption all the
time, which is unfair for these m consumers because they incur
high discomfort costs all the time. Hence, the desired operating
points lie in the interior of the Pareto-optimal region, which can
be achieved by nonstationary strategies in the repeated energy
scheduling game according to Theorem 2.

By adding IC constraints and the constraints on the maxi-
mum discomfort costs, the feasible Pareto-optimal region can
be written as:

BC̄ =

{
C|

N∑
i=1

Ci − c̃i
c̄i − c̃i

= m, Ci ≥ c̃i, Ci ≤ C̄i

}
, (12)

where C̄i = min{Ci,max, Ci,NE}, Ci,max = c̃i +Di,max.

C. Nonstationary DSM Mechanism

Given the Pareto-optimal region, we can then reformulate the
DDP problem as a linear programming problem:

min
C

∑
i∈N

Ci

s.t. C ∈ BC̄ (13)

2An extreme point of a convex set is the point that is not the convex
combination of any other points in this set. In our case, since B is part of a
hyperplane, the extreme points will be the vertices of B.

TABLE II
NONSTATIONARY DSM (N-DSM) ALGORITHM

The solution of (13) is an extreme point of BC̄ , denoted by
C� = (C�

1 , C
�
2 , · · ·C�

N ).
Theorem 3: The feasible Pareto-optimal region BC̄ is

achievable if the discount factor δ satisfies

δ ≥ 1− 1

N −m+ 1
. (14)

Proof: See Appendix C. �
Given a desired operating point in BC̄ , we can use the Non-

stationary DSM (N-DSM) algorithm, described in Table II, to
construct the DSM strategy. In period t, the N-DSM algorithm
chooses the active set I(t) ∈ I consisting of m out of N con-
sumers to reschedule their power consumption patterns, where
I is the set of all possible index combination that containing
m consumers out of N . The choice of which m consumers
are selected depends on ‘how far’ they are from their target
cost and this is measured by index gi(t) and the m consumers
who have the largest gi(t) will alter their power consumption
patterns. In particular, a consumers index can be decomposed
into two components: one component representing current cost
reduction and the other component representing ‘how far’ the
consumer is from target cost in the next period. Hence, the
indices of next period can be calculated from current period
indices and current period action profile, and the index of each
consumer is updated repeatedly in this way. We use the NE
action profile as a punishment if higher price has been triggered
before.

Theorem 4: When the discount factor δ satisfies (14), the
N-DSM algorithm is IC and can achieve the optimal operating
point C� = (C�

1 , C
�
2 , · · ·C�

N ).
Proof: See Appendix D. �

Theorems 3 and 4 state that when the discount factor satisfies
(14), the optimal nonstationary DSM mechanism can be con-
structed by the N-DSM algorithm. In practice, the daily interest
rate is low enough to make condition (14) be satisfied and the
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Fig. 2. The implementation of N-DSM.

TABLE III
INFORMATION EXCHANGE OF IMPLEMENTATION

proposed DSM mechanism can accommodate a large number
of consumers.

D. DSM Implementation

In this subsection, we describe how to implement the DSM
mechanism in the smart grid system based on the proposed
N-DSM algorithm. The public information, such as price in-
formation and total load, is known to every consumer. The
private information of consumer i, such as discomfort cost,
power consumption, is only known to its own.

There are two phases in implementing the DSM mechanism:
the initialization phase and the run time phase. As in [2], the
utility company recommends the strategy one day in advance.3

Consumers can schedule their power usage and exchange in-
formation with utility company through smart meters for the
upcoming day so as to minimize their billing and discomfort
costs based on the recommendation. The details of public
and private information, the two phases and the corresponding
information exchange of the two phases are shown in Fig. 2 and
Table III.

Initialization: ©1 The utility company broadcasts the CPP
parameters: pLo, pHi and lth. ©2 Consumer i calculates its cost
parameters c̃i and c̄i according to the definitions (7), and sends
them to the utility company. ©3 The utility company calculates
the target cost vector C� = (C�

1 , C
�
2 , · · ·C�

N ) by solving the
DDP problem, and then sends the target cost vector to all
consumers.

3The DSM can also be implemented in real-time or T-day-ahead, as long as
there is enough time for the consumers to respond to the recommendations.

TABLE IV
PARAMETERS OF THREE TYPES OF CONSUMERS

Run time: In each period: ©4 The DSM center calculates the
active set I(t) and then makes the recommendation πi(t) to
each consumer. ©5 Each consumer chooses its energy schedul-
ing strategy. Note that the consumers can deviate from the
recommended strategy. However, since the strategy is IC, it is in
their self-interest to comply with the recommendation. ©6 The
smart meter reports the power consumption patterns ati to DSM
center. ©7 The utility company calculates the price based on the
total load and then broadcasts the prices. Go to next period and
repeat ©4 –©7 .

The consumers’ discomfort cost functions may vary over
time. For example, they may have different desired power
consumption patterns in different seasons/months, or they may
prefer to shift the peak-time consumption to different off-peak
times (i.e., different ki,h) due to their change of schedules (e.g.,
due to a new job), or they simply change their willingness
(i.e., different ωi) to shift. To accommodate for such occasional
changes (e.g., once a month), the utility company can run the
initialization phase again in order to calculate the new optimal
target cost vector, and then run the N-DSM algorithm based on
the updated target cost vector.

IV. NUMERICAL RESULTS

In this section, we compare the performance of our proposed
DSM mechanism with those obtained using the one-shot energy
scheduling games with myopic price-anticipating consumers
[6]–[8], [15], joint optimization with myopic price-taking con-
sumers [12], [13], as well as stochastic control methods with
a single foresighted consumer [9]–[11]. Then we study the
impact of different consumer preferences. In addition, we study
the system performance when the percentage of shiftable load
and the length of the peak time vary.

In simulations, we use the following system parameters
according to the California pricing pilot program data in [19]
throughout this section by default, unless we change some of
them explicitly. We consider the scenario that H = 24 time
slots and set the discount factor of the consumers to be δ =
0.995, which ensures that (14) is satisfied. The pricing scheme
sets the peak price and off-peak price to be pHi = 0.8 $/kWh
and pLo = 0.1 $/kWh. The parameters of consumers (desired
daily power consumption pattern, daily total power consump-
tion, discomfort cost parameters, etc.) are shown in Table IV
and Fig. 3. We simulate both the heterogeneous consumer
scenario with Type 1, 2, and 3 consumers, and the homoge-
neous consumer scenario with Type 1 consumers only. In this
experiment, the shiftable load of each consumer is 40% of the
consumer’s total load.

According to the utility company’s PAR reduction goal, the
threshold lth will be set to an appropriate value according to (5)
to control the parameter m.
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Fig. 3. The desired power consumption patterns of type 1, 2, 3 consumers. (a) Type 1 consumer. (b) Type 2 consumer. (c) Type 3 consumer.

TABLE V
COMPARISONS OF DIFFERENT MECHANISMS

A. Comparison With Existing Mechanisms

In this subsection we compare our proposed N-DSM algo-
rithm with the existing ones [6], [7]. We divide the existing
algorithms into three categories as shown in Table V.

The One-shot Game based stationary DSM (OG-DSM) algo-
rithms with myopic price-anticipating consumers [6]–[8], [15]
calculate the NE and operate at NE of the one-shot energy
scheduling game, which is characterized in Theorem 1. The
Joint Optimization (JO-DSM) algorithms with myopic price-
taking consumers [12], [13] assume that the obedient con-
sumers jointly minimize the total cost of the system. In this
case, the optimal performance of stationary DSM mechanism
can be achieved by appropriate pricing schemes. The Single-
consumer Stochastic Control (SC-DSM) methods [9]–[11] try
to use stochastic control methods to minimize the total cost
of a single consumer. In this case, the utility company sets
the price as ph̄ = pHi and ph = pLo, h �= h̄, and the consumer
buys energy in advance according to its scheduled power
consumption pattern ai. We assume that renewable energy is
available with probability4 ε = 0.8, in which case the consumer
can reschedule its power consumption pattern to the desired
pattern without suffering the discomfort cost since the energy
supply is abundant. The renewable energy is not available
with probability 1− ε = 0.2, in which case the consumer must
comply with its scheduled power consumption pattern and will
incur discomfort cost di(ai).

Given the same PAR goal, the comparison of total costs
using these four algorithms is shown in Table VI. We can see
that when the number of consumers increases, the N-DSM
algorithm significantly outperforms other three algorithms. The
cost reductions compared to OG-DSM, JO-DSM and SC-DSM

4This probability comes from the uncertainty of renewable energy generation
(whether it is windy in wind energy generation, whether it is shiny in solar
energy generation, etc.).

are 40%, 28% and 35% in homogeneous case and 50%,
40% and 47% in heterogeneous case, respectively. Note that
our algorithm, which is IC, can significantly outperform the
JO-DSM algorithm, even though it is not IC.

B. Impact of Discomfort Cost

Some works [6]–[8], [16] consider minimizing the billing
cost only, without taking into account the discomfort cost;
while we consider the problem of jointly minimizing billing
and discomfort costs as in [9]–[15]. We compare the results
of the billing cost minimization algorithm with our proposed
algorithm in Table VII. In the simulation, we assume that the
PAR reduction goal is 10%. For the billing cost minimization
algorithm, since there are numerous optimal solutions which
achieve the minimal billing cost, we choose a fair solution
where all consumers shift the same amount of peak-time con-
sumption to off-peak times, and then calculate the billing and
discomfort costs. By comparing the results in Table VII, we
can see that the performance of our proposed algorithm sig-
nificantly outperforms the billing cost minimization algorithm,
with around 36% cost reduction for the homogeneous scenario
and 48% cost reduction for the heterogeneous scenario, re-
spectively. In fact, the billing cost minimization algorithm does
not consider the impact of consumers’ behavior on discomfort
costs, resulting in a higher discomfort cost than our proposed
N-DSM algorithm. The N-DSM algorithm induces the con-
sumers to cooperate with each other to reduce their long-term
discomfort costs and the consumers with higher discomfort
costs benefit more through cooperation in the heterogeneous
scenario. Thus, the performance gain of the N-DSM algorithm
over the billing cost minimization policy in the heterogeneous
scenario is higher than that in the homogeneous scenario.

C. Impact of Consumer Preferences

Recall from Section III that in order to achieve the social
optimum, i.e., the solution to the DDP problem, the system
runs the N-DSM algorithm which requires only a subset of the
consumers to reduce their peak-time power usage. However,
some consumers may have certain preferences of when to shift
their consumption. Hence we simulate the scenario of N = 3,
m = 1, to show the impact of consumer preferences. The
consumers’ types are Type 1, 2 and 3. We compare four cases:

• Case 1: all consumers can alter their power consumption
patterns.
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TABLE VI
COMPARISON OF TOTAL COSTS ACHIEVED BY DIFFERENT ALGORITHMS

TABLE VII
COMPARISON WITH BILLING COST MINIMIZATION ALGORITHM

Fig. 4. Comparison with different consumer preferences. (a) δ = 0.90;
(b) δ = 0.75.

• Case 2: Type 1 consumer cannot alter its power con-
sumption pattern on Mondays; Type 2 consumer cannot
alter its power consumption pattern on Tuesdays; Type 3
consumer cannot alter its power consumption pattern on
Wednesdays.

• Case 3: Type 1 and 3 consumers cannot alter their power
consumption patterns on Mondays; Type 2 consumer
cannot alter its power consumption pattern on Tuesdays.

• Case 4: Type 1, 2 and 3 consumers cannot alter their power
consumption patterns on Mondays.

Note that the four cases represent different levels of hetero-
geneity in consumer preferences, which result in different levels
of flexibility in the power consumption scheduling. In Case 1,
no consumer has specific preferences on how to shift the power
consumption pattern. Hence, the flexibility of scheduling is the
highest. In Case 2, each consumer has distinct preferences on
how to shift power consumption. Since their preferences are
different, the flexibility of scheduling is still high. In Case 3,
Type 1 and 3 consumers have similar preferences (i.e., both
cannot shift on Mondays), which makes the scheduling less
flexible (i.e. we can only alter Type 2 consumer’s consumption
on Mondays). In Case 4, all consumers have the same prefer-
ence (i.e., all consumers cannot shift on Mondays). Hence, the
scheduling is the least flexible.

We can see from Fig. 4 that the average discounted daily
cost increases from Case 1 to Case 4, as expected. This implies

that the system performance depends on the heterogeneity of
consumer preferences. Regarding the impact of the discount
factor on the convergence rate, we can see that there is no
significant performance loss between the case when δ = 0.90
and the case when δ = 0.75.

D. Impact of Percentage of Shiftable Load

In order to evaluate the system performance with different
percentages of the shiftable load, we show the total cost with
different PAR reduction goals, as shown in Table VIII. The OG-
DSM cannot meet the PAR reduction goals, so we compare
the other three algorithms. We set the number of consumers
to be N = 100. Simulation results show that given the con-
straint imposed by the PAR reduction goal, our algorithm can
achieve around 8% and 9% reduction in the total cost when the
percentage of shiftable load varies from 30% to 60%, in the
homogeneous and heterogeneous scenarios, respectively; while
these reductions are 7% and 10% with JO-DSM algorithm and
12% and 9% with SC-DSM algorithm. This implies that the
performance of our algorithm is not significantly affected by
consumers being homogeneous or heterogeneous, while the
performances of the other two algorithms significantly depend
on the consumer heterogeneity.

A trade-off between the optimal total cost and the PAR can
be observed: when a higher threshold lth (i.e., a smaller m) is
chosen, fewer consumers are required to change their power
consumption patterns, resulting in a higher PAR but a lower
discomfort cost. As a result, this trade-off should be considered
when choosing the design parameter lth (or m).

E. Impact of the Length of the Peak time

In this subsection, we evaluate the system performance in
terms of the total cost in Table IX, when the length of the peak
time varies. We set the length of the peak time to be 1 hour
(H = 24), 2 hours (H = 12) and 4 hours (H = 6). We need
to change the desired power consumption pattern according to
the length of the peak time (for example, the desired power
consumption level in time slot 1 when H = 12 is the sum of
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TABLE VIII
IMPACT OF PERCENTAGE OF SHIFTABLE LOAD

TABLE IX
IMPACT OF THE LENGTH OF THE PEAK TIME

the desired power consumption levels in time slots 1 and 2 when
H = 24). We fix the PAR reduction goal at 10%. The OG-DSM
cannot meet the PAR reduction goal. We compare the other
three algorithms. First, we can see that our algorithm achieves a
lower total cost than the other two under all lengths of the peak
time with both homogeneous and heterogeneous consumers.
Second, we can observe that the total cost rises when the length
of the peak time increases. The increase in the total cost comes
from the increased discomfort cost, because when the length
of the peak time increases, the consumers need to shift more
energy to off-peak times in order to obtain a low peak-time
price. Hence, it is important to see how the performances of
the algorithms vary with the length of the peak time. Under
our algorithm, there is a slight increase in the total cost, i.e.,
3% (homogeneous) and 2% (heterogeneous), respectively,
when the length of the peak time varies from 1 hour to 4 hours.
In contrast, the increases in the total cost are significant using
the other two algorithms, namely 40% (homogeneous) and
38% (heterogeneous) for JO-DSM, and 50% (homogeneous)
and 50% (heterogeneous) for SC-DSM. Clearly, our algorithm
is less sensitive to the length of the peak time, yielding high
performance for different lengths of the peak time as compared
to the other two algorithms, whose performances degrade a lot
when the length of the peak time increases.

F. Robustness of the Algorithm

In this subsection, we evaluate the robustness of system
performance in terms of the total cost with respect to the
discomfort cost parameters. We assume the reported cost pa-
rameter drep,i(ãi) are generated according to Gaussian distri-
bution N (di(ãi), κdi(ãi)), where di(ãi) = c̄i − c̃i is the real

TABLE X
IMPACT OF THE INACCURATE COST PARAMETER REPORTING

cost parameter, and κ is the coefficient to control the accuracy
of reporting.

In homogeneous consumer scenario (all consumers with the
same cost parameter), there is no increase of total cost when
consumers report different cost parameters, since the inaccurate
reporting only affects who will shift, and does not affect the
total amount of power consumption shift in peak time. For
heterogeneous consumer scenarios, we show the performance
loss, in terms of the increase of total cost, under inaccurate
cost parameter reporting in Table X. We can see that there
is a slightly increase of total cost (< 2%) when consumers
report inaccurate cost parameters (κ < 30%). This implies that
our N-DSM algorithm is robust to the inaccurate reporting of
discomfort cost parameters.

V. CONCLUSION

In this paper, we proposed a nonstationary DSM mechanism,
which exploits the repeated interactions of the consumers over
time. We rigorously prove that the proposed DSM mechanism
can achieve the social optimum in terms of the total cost, and
outperform existing stationary DSM strategies. Moreover, the
proposed mechanism is IC, meaning that each self-interested
consumer voluntarily follows the power consumption patterns
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recommended by the optimal DSM mechanism. Simulation
results validate our analytical results on the DSM mechanism
design and demonstrate up to 50% performance gains compared
with existing mechanisms, especially when there are a large
number of heterogeneous consumers in the systems. In addi-
tion, compared to the existing mechanisms, the performance
of the proposed mechanism is much less sensitive and thus
much more robust to system parameters such as the consumer
heterogeneity and the length of the peak time.

APPENDIX A
PROOF OF THEOREM 1

Given the other consumers’ action a−i, we calculate the best
response of consumer i. We denote l−i,h =

∑
j∈N ,j �=i aj,h.

(a) If l−i,h + āi,h ≤ lth, the best response of consumer i is
obviously āi, for pLoAi + di(āi) = pLoAi.

(b) If l−i,h + āi,h > lth, then ∀a′i ∈ AH
i , a′i �= āi, we have

pLoAi + (pHi − pLo)āi,h̄ + di(āi)

< pLoAi +

[
H∑

h=1

ki,h
(∣∣a′i,h − āi,h

∣∣)+ ωi

]

≤
H∑

h=1

pha
′
i,h + di (a

′
i) , (15)

where the first inequality is due to (8).

Therefore, the unique NE is a�i = āi. �

APPENDIX B
PROOF OF THEOREM 2

We first prove that the N-DSM can achieve the operating
points in B. Given any subset I of m consumer, let i ∈ I
chooses action ãi and i �∈ I chooses action āi. Then i’s cost is
C†

i [I] = c̃i1{i∈I} + c̄i1{i�∈I}. It is easy to see that the cost

profile (C†
1[I], C

†
2[I], . . . , C

†
N [I]) is in B. Since the other cost

profiles in B are convex combinations of (C†
1[I], C

†
2[I], . . . ,

C†
N [I])I∈I , all the cost profiles in B can be achieved

[24, Lemma 3.7.1].
Next, we prove B to be the Pareto-optimal region by showing

that ∀a,
∑N

i=1(ci(a)− c̃i)/(c̄i − c̃i) ≥ m and equality holds
only by choosing the action profiles described above, which
proves the second statement of the theorem. To show these, we
analyze the solution of the following problem:

min
(C1,C2,...,CN )∈C

N∑
i=1

(Ci − c̃i)/(c̄i − c̃i). (16)

(a) Suppose ph̄(a) = pHi, then the optimal action is ā and
the corresponding optimal cost vector is c(a)=(C1,NE ,
C2,NE , . . . , CN,NE) due to Theorem 1. However,

N∑
i=1

Ci,NE − c̃i
c̄i − c̃i

≥
(pHi − pLo)

∑N
i=1 āi,h̄

max
i∈N

{di(ãi)}
> m, (17)

where the last inequality is due to (8).

(b) Suppose ph̄(a) = pLo and the optimal action is a. Obvi-
ously,

∑N
i=1 ai,h̄ = lth, otherwise at least one consumer

can reduce its discomfort cost by shifting peak-time
power while keeping the total billing cost and other
consumers’ discomfort costs unchanged. Next, we show
that either ai,h̄ = āi,h̄ or ai,h̄ = bi,h̄.

Suppose for i and j, we have bi,h̄ < ai,h̄ < āi,h̄ and
bj,h̄ < aj,h̄ < āj,h̄. Without loss of generality, we assume
(ki,h̄ +minh �=h̄ ki,h)/di(ãi) ≤ (kj,h̄ +minh �=h̄ kj,h)/dj(ãj).
Then we compare the costs of i and j using action a′, where
a′
i,h̄

= ai,h̄ −Δ, a′i,h = argminâ∈A,âi,h̄=ai,h̄−Δ ci(â), h �= h̄,
a′
j,h̄

= aj,h̄ +Δ, a′j,h = argminâ∈A,âj,h̄=aj,h̄+Δ cj(â), h �=
h̄, with Δ = min{ai,h̄ − bi,h̄, āj,h̄ − aj,h̄}, and a′n = an, n �=
i, j. Thus, we have:

(ci(a)− c̃i)

(c̄i − c̃i)
+

(cj(a)− c̃j)

(c̄j − c̃j)

=
∑
n=i,j

ωn +

(
kn,h̄ +min

h �=h̄
kn,h

)
(ān,h̄ − an,h̄)

dn(ãn)

≥
∑
n=i,j

ωn +

(
kn,h̄ +min

h �=h̄
kn,h

)(
ān,h̄ − (an,h̄ −Δn)

)
dn(ãn)

≥ (ci(a
′)− c̃i)

(c̄i − c̃i)
+

(cj(a
′)− c̃j)

(c̄j − c̃j)
, (18)

where Δi = Δ, and Δj = −Δ. We notice that either a′i = ãi
or a′j = āj , i.e., either ci(a′) = c̄i or cj(a′) = c̃i. By repeating
this procedure, we can finally get a subset I , where i ∈ I
chooses action ãi, and i �∈ I chooses action āi.

Therefore, the solution of problem (16) is in the form of
C†

i [I] and the Pareto-optimal region can be written as (11). In
addition, any other action profile will result in

∑N
i=1(ci(a)−

c̃i)/(c̄i − c̃i) > m. In other words, the other cost profiles in the
set B cannot be achieved by stationary strategies. �

APPENDIX C
PROOF OF THEOREM 3

Based on the N-DSM algorithm, in time period t, cti = c̃i,
i∈ I(t) and cti = c̄i, i �∈ I(t). Then,

Ci = (1− δ)
∞∑
t=0

δt
[
c̃i1{i∈I(t)} + c̄i1{i�∈I(t)}

]
. (19)

Let us denote GC̄= {g|gi= (Ci − c̃i)/(c̄i − c̃i), ∃C∈BC̄},
where g= (g1, g2, . . . , gN ). Let us also denote ḡi= (C̄i−c̃i)/
(c̄i − c̃i). Then we notice that gi = (1− δ)

∑∞
t=0 δ

t1{i∈I(t)}
and that C ∈ BC̄ is equivalent to g ∈ GC̄ .

We denote by gi(t) = (1− δ)
∑∞

τ=t δ
τ1{i∈I(τ)} and gi(0) =

gi the continuation cost at time t and 0, respectively. Then we
use a backward induction method to show that continuation
cost at any given time t can be decomposed of the current
cost and the continuation cost at time t+ 1. We call the vector
g(t) ∈ GC̄ a feasible vector and through the decomposition we
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will show that when the discount factor δ satisfies (14), the
continuation cost at any time t+ 1 is also a feasible vector,
namely g(t+ 1) ∈ GC̄ . Since the original g(0) ∈ GC̄ , we use
mathematical induction to show this.

For time period t, suppose g(t) ∈ GC̄ , then

gi(t) = (1− δ)1{i∈I(t)} + δgi(t+ 1). (20)

Or equivalently,

gi(t+ 1) =

{
[gi(t)− (1− δ)] /δ, i ∈ I(t)
gi(t)/δ, i �∈ I(t).

(21)

We need to show
∑N

i=1 gi(t+ 1) = m and 0 ≤ gi(t+ 1) ≤
ḡi. The former one is obvious due to hypothesis. For the latter
one, it is obvious for i �∈ I(t), and for i ∈ I(t), we also need

0 ≤ gi(t)− (1− δ)

δ
≤ ḡi, i ∈ I(t). (22)

This can be simplified as

1− gi(t) ≤ δ ≤ 1− gi(t)

1− ḡi
, i ∈ I(t). (23)

The right side half of (23) is satisfied due to hypothesis.
According to [24], the left side half of (23) requires

δ ≥ max
g(t)∈GC̄

min
I(t)⊆I

max
i∈I(t)

{1− gi(t)} . (24)

Without loss of generality, we sort gi(t) in an decreasing
order, namely,

g1(t) ≥ g2(t) ≥ · · · ≥ gm(t) ≥ · · · ≥ gN (t). (25)

It is easy to calculate:

max
i∈I(t)

{1− gi(t)} = 1− g max
i∈I(t)

{i}(t)

min
I(t)∈I

max
i∈I(t)

{1− gi(t)} = (1− gm(t)) . (26)

Thus, the worst case g(t) in (24) is

g(t) = (ḡ1, ḡ2, . . . , ḡm−1, g
′, g′, . . . , g′), (27)

where g′ = (m−
∑m−1

i=1 ḡi)/(N −m+ 1).
Thus we require

δ ≥ 1− m−
∑m−1

i=1 ḡi
N −m+ 1

. (28)

Since (m−
∑m−1

i=1 ḡi)≥m−(m−1), BC̄ is achievable when
(14) is satisfied. �

APPENDIX D
PROOF OF THEOREM 4

To prove Theorem 4, we first prove that the proposed N-DSM
strategy can achieve the minimum total cost. Then, we prove
that the proposed strategy is IC for all consumers.

Obviously, C� = (C�
1 , C

�
2 , · · ·C�

N ) is in BC̄ . Hence, for the
first part of the theorem, we only need to prove that the cost

vector is achievable using N-DSM algorithm. According to the
proof of Theorem 3, when the discount factor satisfies (14), the
optimal operating point C� can be achieved by decomposing
into current cost plus continuation cost in each period. In
particular, at time period t, the continuation cost given history
ηt, denoted by Ci(π

�|ηt), can be decomposed of current cost
plus continuation cost:

Ci(π
�|ηt) = c̃i + (c̄i − c̃i)gi(t)

= (1− δ)
[
c̄i1{i∈I(t)} + c̃i1{i�∈I(t)}

]
+ δCi(π

�|ηt+1). (29)

We also notice that the best strategy of I(t) in (24) is to
choose I(t) = {1, 2, · · ·m}, i.e., the indices with the m largest
gi(t). Hence, when using this strategy, the system can achieve
the minimum cost vector C� by repeatedly decomposing the
current target cost into current cost plus continuation cost.
Therefore, the proposed N-DSM can achieve optimal perfor-
mance C� in the system.

To prove the second part of the theorem that the N-DSM
strategy is IC, we need to show that given the operating point
C� = (C�

1 , C
�
2 , · · ·C�

N ) ∈ BC̄ and an arbitrary time period t,
the continuation cost is the minimum cost achievable for con-
sumer i, namely, the best strategy for consumer i. (This strategy
profile is considered as public perfect equilibrium (PPE) [24].)
Obviously for consumer i �∈ I(t), it has no incentive to deviate
from strategy π� in period t. For consumer i ∈ I(t), if it
deviates from strategy π�, the minimum cost it can achieve
is ci(āi,π

�
−i(η

t)), since the best response is to choose āi
according to Theorem 1. When consumer i deviates from π�

i to
π′
i, the other consumers will play NE strategy from time period

t+ 1. We denote the new strategy by π′, and the continuation
cost from period t is

Ci(π
′|ηt) = (1− δ)ci

(
āi,π

�
−i(η

t)
)
+ δCi(πNE |ηt+1)

=Ci,NE . (30)

The equality holds because ci(āi,π
�
−i(η

t)) =
Ci(πNE |ηt+1) = Ci,NE , where πNE is the strategy profile
that all consumers play NE for ever. Since for strategy π�,
Ci(π

�|ηt)≤min{Ci,max, Ci,NE}≤Ci(π
′|ηt), the consumers

have no incentive to deviate from strategy π� in any time
period t individually.

Therefore, the proposed N-DSM strategy is IC. �
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