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Abstract—Clinicians need to routinely make management de-
cisions about patients who are at risk for a disease such as breast
cancer. This paper presents a novel clinical decision support tool
that is capable of helping physicians make diagnostic decisions.
We apply this support system to improve the specificity of
breast cancer screening and diagnosis. The system utilizes clinical
context (e.g., demographics, medical history) to minimize the false
positive rates while avoiding false negatives. An online contextual
learning algorithm is used to update the diagnostic strategy
presented to the physicians over time. We analytically evaluate
the diagnostic performance loss of the proposed algorithm, in
which the true patient distribution is not known and needs to
be learned, as compared with the optimal strategy where all
information is assumed known, and prove that the false positive
rate of the proposed learning algorithm asymptotically converges
to the optimum. In addition, our algorithm also has the important
merit that it can provide individualized confidence estimates
about the accuracy of the diagnosis recommendation. Moreover,
the relevancy of contextual features is assessed, enabling the
approach to identify specific contextual features that provide the
most value of information in reducing diagnostic errors. Exper-
iments were conducted using patient data collected at a large
academic medical center. Our proposed approach outperforms
the current clinical practice by 36% in terms of false positive
rate given a 2% false negative rate.

Index Terms—Computer-aided diagnosis system, online learn-
ing, contextual learning, multi-armed bandit, breast cancer.

I. INTRODUCTION

Clinical decision support (CDS) tools help clinicians make
detection and diagnostic decisions for complex diseases such
as lung cancer [1], breast cancer [2][3], and diabetes [4]. There
are a number of advantages to integrate CDS tools as part
of the clinical workflow instead of solely relying on human
intuition. First, the diagnostic accuracy of clinicians varies
widely. A previous study has shown that false positive rates
for breast cancer detection range from 2.6% to 15.9% among
different radiologists, and younger and more recently trained
radiologists have higher false-positive rates than experienced
radiologists [5]; the deployment of CDS tools may reduce
this variability. Second, although clinicians provide the correct
diagnostic result in most cases, room for improvement exists
in cases where discerning the difference between a benign
or malignant mass is difficult [5]-[7]. CDS tools may provide
better diagnostic recommendations in these cases by exploiting
past knowledge of prior cases and their outcomes. Third, CDS
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tools help reduce fluctuations in diagnostic performance due
to human factors (e.g., fatigue, distraction), offering consistent
recommendations. Nevertheless, while these tools have been
widely advocated to improve the diagnostic performance of
clinicians, their adoption has remained limited given the fol-
lowing reasons: (1) the need to train current CDS tools using
a fixed, predefined set of training cases; (2) the challenge of
learning relevant features from high dimensional datasets; and
(3) the inability to convey uncertainty that may be associated
with a recommendation.

To address these challenges, we present an online algorithm
for generating diagnostic recommendations to physicians by
leveraging retrospective cases in the electronic health record
(EHR) to reduce the false positive rate of diagnosis given a
prescribed false negative rate. We demonstrate our approach
in the domain of breast cancer screening and diagnosis, since
breast cancer is a common cancer among women with an
estimated 232,670 new cases among women in the United
States in 2014 [8][9]. The proposed CDS tool is designed to
aid physicians with making management decisions particularly
in borderline cases. Radiological assessment of breast images
are categorized using the BI-RADS (Breast Imaging Report
and Data System) score. BI-RADS scores of 3 or 4 represent
borderline cases associated with short interval followup or
biopsy, respectively. Presently, many benign cases are being
classified as BI-RADS 4A, which has raised the concern of
overdiagnosis.

To improve the determination of whether a patient should
be assigned as BI-RADS 3 or 4A, we explicitly consider the
contextual information of the patient (also known as situational
information) that affects diagnostic errors for breast cancer.
The contextual information is captured as the current state of a
patient, including demographics (age, disease history, etc.), the
breast density (based on the BI-RADS breast density scale),
the assessment history, whether the opposite breast has been
diagnosed with a mass, and the imaging modality that was
used to provide the imaging data. We hypothesize that the
incorporation of contextual information will help provide more
specific personalized diagnostic recommendations to patients.

The rest of the paper is organized as follows. Section II
discusses related works. In Section III, we describe the system
model and formulate the design problem. Section IV presents
a systematic methodology for determining the optimal diag-
nostic recommendation strategy. Section V discusses practical
issues related to the system: relevant context selection, prior
information, and clinical regret. In Section VI, we present the
experimental results and our findings. Section VII concludes
the paper.
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Fig. 1. The breast cancer diagnostic process overview.

TABLE I
A COMPARISON WITH PREVIOUSLY PUBLISHED WORKS.

Employs | Adaptive | Performance | Trade-off between
BI-RADS | strategy guarantee FPR and FNR
[12]-[29] No No No No
[30] Yes No No No
Our work Yes Yes Yes Yes

II. RELATED WORKS

A. Computer-Aided Detection and Diagnosis System for
Breast Cancer

Various signal processing and machine learning techniques
have been introduced to perform computer-aided detection and
diagnosis. Early works have focused on image processing and
classification techniques to extract features of the image and
predict the outcome (i.e., whether benign or malignant) in the
image [12]-[20]. A neural network-based algorithm [14] and
a linear discriminant approach [2] are proposed to solve the
diagnosis problem.

In breast screening, two types of CDS tools can be inte-
grated in the diagnostic workflow, as depicted in Fig.1: (1) the
computer-aided detection system, which helps the radiologist
identify important features in the image that are abnormal
[21]-[23]; and (2) the computer-aided diagnosis system, which
helps physicians determine the diagnostic strategy for the
patient (e.g., whether a patient should receive a biopsy or
continue follow-up imaging) [24]-[30]. Our focus in this work
is on the latter: we demonstrate how context derived from
clinical (e.g., demographics, history) and imaging (e.g., breast
density) sources can be used to provide diagnostic recommen-
dations that reduce the number of biopsies performed while
maintaining a low number of false negatives.

Clinically, management decisions that involve further in-
terventions are indicated by a BI-RADS score of 0 (the
imaging study cannot be interpreted and must be retaken),
4 (or 4A, 4B, and 4C, which represent different levels of
suspicion), or 5 (high suspicion) [10][11]. A BI-RADS score
of 3 means that the mass is likely benign with a short
interval follow-up recommended. On the other hand, a BI-
RADS 4 or 5 indicates that a biopsy is recommended. These
decisions are made in the context of other clinical variables
(e.g., if the mass is palpable). The difficulty lies in borderline
cases (e.g., BI-RADS 3 or 4A) where indications are unclear
whether a biopsy is truly necessary. For example, despite the
cost and risk associated with biopsies, the positive predictive
value for BI-RADS 4A is only 9% [34]. More efficient and

accurate approaches are needed to reduce unnecessary biopsies
[35]. In [30], a neural-fuzzy approach has been proposed,
but these rule-based algorithms cannot be easily updated.
Such approaches incur some performance loss because the
underlying distribution of patient (outcome and context) is not
known, and limited training data gives a limited estimation
of the actual distribution, resulting in suboptimal diagnostic
strategies. A partially observable Markov decision process
(POMDP) has been used in [36] to solve a screening related
question. However, the algorithm does not learn unknown
distributions nor does it provide performance guarantees. The
main components of our approach are illustrated in Fig.
1. Compared with existing works [2][3][30], our proposed
framework employs an online learning approach, which con-
tinuously learns and adaptively updates the diagnostic strategy
over time, eventually achieving the optimal strategy. Moreover,
the proposed learning algorithm quickly (and provably) learns
this optimal strategy. Learning in our framework is enabled
by modeling each patient as characterized by his/her context
and using the context to determine the similarity to the
information gathered from other patients. Knowledge from
diagnosis of former patients can only be transferred to the
present/future patient by recognizing and exploiting similari-
ties. Using contexts and their similarities, our approach is able
to make diagnostic recommendations that are personalized to
the patient. A comparison of our framework against existing
frameworks is shown in Table I.

B. Contextual Multi-Armed Bandit

Our diagnostic recommendation algorithm is based on the
contextual multi-armed bandit (MAB) framework [38][39][40]
and incorporates the following innovations. First, prior infor-
mation is considered, allowing the system to learn directly
from prior information or other learners. Second, in existing
works [38][39][40], the estimated error of an action can be
updated only after the action is selected, and the algorithm
needs to explore patients (by recommending different diagnos-
tic actions to different patients under the same context) in order
to get information about every action. However, due to ethical
reasons, we cannot perform this type of exploration. In our
algorithm, the diagnostic error of any action can be updated
each time, and our algorithm does not need to explore patients
in order to learn. Third, our algorithm considers minimizing
the false positive rate, given a false negative rate constraint.
Existing works do not consider such a constraint. This is the



TABLE II
A COMPARISON WITH EXISTING MAB ALGORITHMS
Explores | Considers prior Considers Optimizes under
patients information relevant context constraint
PB%T’E/:SI](S Yes No No No
Our approach No Yes Yes Yes

first work using MABs for CDS and required several key
innovations as compared to the conventional MAB works. A
summary that compares the proposed learning approach with
existing MAB works is shown in Table II.

III. SYSTEM MODEL
A. Computer-Aided Breast Cancer Diagnosis System

We consider a computer-aided breast cancer diagnosis sys-
tem (CABCDS) as shown in Fig. 2. The system contains
two modules: context extraction and computer-aided diagnosis.
We consider a sequence of patients numbered ¢ = 1,2, ...
arrive with a borderline test result. Context extraction module
aggregates information z; from the EHR about a patient
t, having a distribution of f(x;). Then, the computer-aided
diagnosis module generates a diagnostic recommendation 7; €
{0,1} to the physician, where 0 represents a 6-month imaging
follow-up and 1 represents a biopsy. Here, we consider a
binary decision, but the approach can easily be extended to
incorporate additional choices.
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Fig. 2. Computer-aided breast cancer diagnosis system model.
B. Context Extraction Module

To better assist physicians, the CABCDS system considers
a diverse set of contextual information to make sufficiently
accurate recommendations. As shown in Table III, the fol-
lowing types of contextual features are considered: patient
demographics (e.g., age, race), breast density, assessment
history, whether the opposite breast has a high BI-RADS score
previously (e.g., achieve BI-RADS 3), and imaging modality
(e.g., mammogram, ultrasound). Regardless of whether the
context variable is discrete or continuous, each context is
modeled as discrete values that have numerical values between
0 and 1'. In this way, each context is a vector of features, or
a point in the context space X = [0,1]%, where dx is the
number of features. For example, a context can be represented
as z = (0.7,0.2,0,1,0), where 1 = 0.7 represents a 70-
year old patient with a scattered fibroglandular breast density
(xo = 0.2), an assessment of only BI-RADS 1 or 2 (z3 = 0)
in the preceding screening study, an assessment of BI-RADS

Note that the modeling of discrete contexts in different categories can also
be considered as several learners, each corresponding to one category.

TABLE III
TYPES OF CONTEXTS AND DESCRIPTIONS

Context Description

The characteristics of a patient, age, race, disease

Demographics history, family medical history, etc.

Group 1: The breast is almost entirely fat (fibrous
and glandular tissue <25%).

Group 2: There are scattered fibroglandular
densities (fibrous and glandular tissue 25% to
50%).

Group 3: The breast tissue is heterogeneously
dense (fibrous and glandular tissue 50% to 75%).
Group 4: The breast tissue is extremely dense
(fibrous and glandular tissue > 75%).

The information contained in previous imaging
exam assessments (e.g., whether findings in BI-
RADS 3 or higher appear in the past, or whether
there is a significant change in the past year).

The information of the opposite breast (e.g.,
whether findings in BI-RADS 3 or higher appear
for the opposite breast).

The modality used for imaging: mammography
(MG), ultrasound (US), magnetic resonance
imaging (MRI) or computer radiography (CR).

Breast Density

Historical
assessments

Characteristic
of the opposite
breast

Modality

3 for the opposite breast (x4 = 1), and mammography as the
imaging modality used (z5 = 0).

C. Computer-aided Diagnosis Module

This module consists of recommendation generation and
diagnostic evaluation steps. The recommendation generation
step suggests a diagnostic strategy based on the contextual
information and previous diagnostic evaluations. A diagnostic
strategy is the approach for selecting an action, either to
undergo a biopsy or to follow up, based on the observed
contextual information. Given the context z; of a patient ¢,
m¢(2¢) represents the action selected by the diagnostic strategy
7. The strategy set is denoted by II.

The diagnostic evaluation module collects outcomes of
patients. The outcome of the patient ¢ is s;(z;), which is
either O (representing benign) or 1 (representing malignant). If
a patient undergoes a biopsy or returns for a short-term follow-
up, the patient’s outcome is revealed, where if the patient
has been followed up for a certain time and the condition is
stable, then the outcome is considered benign. We use o(z) to
represent the probability of being malignant for a patient with
context z. The evaluation of the diagnostic recommendation
is through diagnostic errors. Two types of diagnostic errors
are considered: false positive (e.g., if the outcome s;(xz) is
benign, and the recommended action is to undergo a biopsy)
and false negative (e.g., if the outcome s;(z;) is malignant,
and the recommended action is a short-term follow-up).

D. Diagnostic Recommendation Problem

Based on the given CABCDS system, our design goal is
to propose a recommendation algorithm that minimizes the
false positive rate (FPR) given a tolerable false negative rate
(FNR) 71 (e.g., < 2%). The trade-off between false positive
and false negative rates can be specified by a physician or
by an institution. Therefore, the diagnostic recommendation



problem is formally written as:

minimize FPR

1
subject to FNR < 17n M

IV. DIAGNOSTIC RECOMMENDATION ALGORITHM

The main idea of our diagnostic recommendation approach
is to adaptively cluster patients based on related contexts and
then learn the best action for each patient cluster.

A. Structure of the Optimal Strategy

In order to solve the diagnostic recommendation problem,
we first analyze the structure of the optimal solution where all
information (i.e., the distribution of context f(z) and the prob-
ability of being malignant o(x)) is known. We observe that
the underlying probability o (x) varies for different contexts x,
and hence, the solution is to recommend a biopsy for patients
with a sufficiently high probability of having a malignancy,
and to recommend a short interval follow-up for patients with
a sufficiently low probability.

Proposition 1: The optimal strategy 7*(x) for the diagnos-
tic recommendation problem in eq. (1) is a threshold strategy:
there exists a threshold o, such that the optimal strategy
satisfies 7*(z) = 1, if o(z) > oy, and 7*(z) = 0, otherwise.

The intuition of this proposition is as follows: performing a
biopsy when the probability of being malignant is low induces
a high false positive rate. Conversely, performing a short-
interval follow up when the probability of being malignant
is high induces a high false negative rate.

Proof: See Appendix A. B

Note that the context distribution f(x) and outcome distri-
bution o(x) are not known in practice. As such, the algorithm
needs to learn the distribution of contexts and outcomes.

B. Description of the Proposed Learning Algorithm

Section III emphasized the need to uniquely characterize
patients using contexts. However, no two patients are exactly
the same. Knowledge from diagnosis and treatment of former
patients can only be transferred to the present/future patient
by recognizing and exploiting similarities among patients.
Our proposed algorithm uses patients with similar contexts
to accumulate information about a new patient and make
recommendations based on the accumulated knowledge. As
knowledge about more patients within a cluster becomes
available, our algorithm adaptively shrinks the cluster size,
thereby allowing more specific recommendations to be made.

The proposed algorithm maintains a set of disjoint clusters
(referred to as “active clusters”) that cover the whole context
space. For each active cluster C, the algorithm maintains an
estimate of the probability of a patient in this cluster of having
a malignant tumor o<. Based on these estimates of all active
clusters, the algorithm finds the optimal threshold o; deter-
mined in Proposition 1 and the corresponding recommendation
strategy for each cluster such that the false positive rate is
minimized provided that the false negative rate is below the
given tolerance 7). After the patient outcome is revealed, the
algorithm updates the estimate of the probability of a patient
in cluster C' of being malignant 6¢. If the number of patient

cases M belonging to a certain cluster C' exceeds a certain
threshold, the algorithm splits the cluster into smaller clusters
in order to make more specific recommendations without
sacrificing accuracy. We denote by A the set of active clusters,
by 7.4 the set of G¢ in all clusters C' € A, and by M4 the
set of M¢ in all clusters C € A.

The diagnostic recommendation algorithm is formally pre-
sented in Table IV and depicted in Fig. 3. When a patient
arrives, the system extracts the context of the patient. For
example, the patient is 60 years old and has a dense breast (for
illustration, we only consider the two features of the context).
The algorithm then finds an active cluster C, which the patient
belongs to. Based on former patient cases, the algorithm
determines the optimal threshold o;, and recommends the
strategy: to undergo a biopsy if the estimated probability of
malignancy for cluster C' exceeds this threshold o, and to
follow-up otherwise. To determine the optimal threshold oy,
the algorithm finds the highest value of oy such that the false
negative rate is below the tolerant level 7. If sufficient number
of patient cases exists, the context space refinement process is
performed that splits the current cluster into smaller clusters.
The context space is uniformly partitioned > by the algorithm
on each dimension (feature) by 2!, each cluster (not necessarily
the active cluster) with size 27!. The refinement process is to
split an active cluster with size 27! into 29X smaller clusters
with size 2~ (13 Ag shown in Fig. 3, when dx = 2, a cluster
with size 1/2 is split into 4 clusters with size 1/4. For example,
consider a patient cluster in which patients are aged from 60
to 79 with breast density of Group 1 or 2. As new patients
are added that fit this cluster, a more accurate estimation of
the probability of malignancy can be characterized for patients
in this cluster. When the patient cases are sufficiently many,
the cluster is split into finer clusters in order to make more
specific diagnostic recommendations: patients aged 60 to 69
with breast density Group 1, patients aged 60 to 69 with breast
density Group 2, patients aged 70 to 79 with breast density
Group 1, and patients aged 70 to 79 with breast density Group
2. After the diagnostic decision of the patient is made and the
outcome of the patient is revealed, the patient case counter
M and the estimated probability of being malignant ¢ are
updated accordingly.

C. Evaluation of Algorithm Performance

In this subsection, the performance of the proposed DRA al-
gorithm is analyzed in terms of the learning regret, which is the
expected false positive rate of our learning algorithm compared
with the optimal strategy 7* (z), assuming all information (i.e.,
the distribution of context f(z) and the probability of patient
outcome o(z)) is known. In practice, the information is not
known and needs to be learned. We consider two types of
regrets: individual patient regret (IPR) and aggregate system
regret (ASR). The IPR is defined as the performance difference
in terms of the false positive rate of strategy m; and that of

2Q0ther types of partitioning methods can also be applied.

3The splitting is determined by a size-dependent function p(2~!) = 27!,
where an empirical parameter p depends on how fast the clusters are to be
partitioned. A smaller p results in a faster partition process of the context
space, and a larger p results in a slower partition process of the context
space.
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TABLE IV
DIAGNOSTIC RECOMMENDATION ALGORITHM (DRA)

diagnostic recommendation algorithm
Initialization: Set active cluster set A = {X}, patient case counter
Mg = 0 for each active cluster C, estimation of probability of
malignancy 6 = 1 for each active cluster C.

I: fort =1,2,... do

2: Context x+ arrives. Find the active cluster C, such that z+ € C.
3: Determine the threshold o:

oy = threshold_determination(A, M, .4,t,1).
4: Output the recommendation strategy:

7w (C) =0, if 6c < oy, and 7t (C) = 1, otherwise.
The outcome s; of the patient is revealed.
Update patient case counter for active cluster C: Mc = Mc+1.
Update the estimation: ¢ = po‘g’f"“?’;j{:f’";"'? in O
if Mo > p(2~!) then > Context space refinement

Update the set of active clusters:

(A, M 4,5 .4) = context_space_refinement(A, M a,5.4,C)
10: end if
11: end for

VR

threshold_determination(A, M, 5 .4,t,1n)
Input: active cluster set A, patient case counter M 4, estimation of
probability of malignancy & 4, the false negative rate tolerance 7).
Output: the optimal threshold o

1: Initialize the estimation of probability of malignancy o = 1 and the

false negative rate estimation fi; = 1.

2: while ;i1 > 7 do

3: o=o0—t"L

4: Calculate the false negative rate for threshold o:

ciog<o Mc

max{1,t—1}] *

=
5: end while
6: return o.

context_space_refinement(A, M a,54,C)
Input: active cluster set A, patient case counter M 4, estimation of
probability of malignancy & 4, the cluster C' to be split.
Output: the updated A, M 4,5 4
1: Split the cluster C' with size 2~ into 29X subclusters with size
9—(+1),
2: Remove cluster C' from the active cluster set A, and add the 2dx
subclusters into the active cluster set A.
3: Initialize the patient case counter and estimation of probability of
malignancy for each subcluster C’:
M = # patient cases in C'.

5y — # pOsitive cases in c’.
cr =

Mer >
4: return A, M 4,0 4.

7*(x) for patient ¢, and the ASR is defined as the aggregated
performance difference in terms of the false positive rate of
strategy 7; and that of 7*(«) for patients 1,2,...T.

The performance of the proposed algorithm can be guaran-
teed in terms of the regret, as shown in Theorem 1.

Theorem 1: The ASR of the DRA algorithm up to time
T can be bounded by R(T) = O(T9(4x)), and the IPR of
the DRA algorithm for patient ¢ can be bounded by r(¢) =
O(t9(4x)=1) where 0 < g(dx) < 1 is a parameter depending
on the number of features dx.

Proof: See Appendix B. &

Note that, the IPR O(tg(dX)_l) goes to 0, as t goes
to infinity, implying that the proposed DRA algorithm will
converge to the optimal diagnostic performance. Accordingly,
the following corollary is introduced.

Corollary 1: The performance of the proposed DRA algo-

Generate the
recommendation strategy 7'

(age 60, dense breast)
; Age Update
ke Keep the same active
. o e

Estimated prob. malignancyd,

4 Database

Context space
refinement

context clusters

.
Breast
density
.

Update active context clusters

Context space

rithm converges to the optimal performance, in terms of the
false positive rate.

In addition, from Theorem 1, the convergence speed is fast,
at least in a sublinear* rate, as shown in Fig.5 and Fig.6 of
the experimental results.

D. Algorithm Performance with Known Threshold

In previous sections, the algorithm is shown to adaptively
learn the optimal threshold o, (probability of being malignant)
over time, given a false negative rate constraint. However, in
some clinical contexts, a fixed false negative rate may already
exist (e.g., based on physician preference or clinical practice
guidelines) [10] [11]. In this situation, the DRA algorithm
degrades to a fixed threshold-based algorithm that does not
need to learn the threshold value over time. Hence, step 5 of
the DRA algorithm can be omitted, and the algorithm only
needs to learn the distribution of patient outcomes o(x). We
consider a weighted false positive and false negative error
¢(m(x), s(x)) in this setting:

c(m(x), s(x)) = oy * false positive errors+

(1 — o,) = false negative errors. (2)

The strategy for minimizing the expectation of the weighted

error ¢(m(x), s(x)) is obtained by
min Ec(n(x),s(x)). 3)

The optimal strategy is denoted by 7' (z), which assumes
all information is known, leading to the following proposition:

Proposition 2: The optimal strategy 7' (z) is equivalent to
the optimal strategy 7*(x) for the same o,,.

Proof: Appendix C. B

Intuitively, Proposition 2 shows that the optimal weighted
error minimization strategy is equivalent to the optimal
threshold-based strategy. Hence, we define regret as the dif-
ference in the weighted error, comparing our fixed threshold-
based DRA algorithm to the optimal strategy 7*(z). Formally,
the ASR is defined as

T
Re(T) =3 [Be(r' (), s(z1)) — Be(m™ (1), s(z0))-
“4)

We have the following theorem to bound this regret:

Theorem 2: The ASR of the fixed threshold-based DRA
algorithm is bounded by R(T') = O(T9(4x)), and the IPR for
patient ¢ is bounded by r(t) = O(t9(@x)=1),

Proof: See Appendix D. B

4A sublinear rate indicates that the expected performance loss is O(1/t7)
for patient ¢, where 0 < v < 1.



The regret in terms of weighted error of the fixed threshold-
based DRA algorithm has the same sublinear order as the re-
gret in terms of false positive rate of the DRA algorithm. This
finding implies that the fixed threshold-based DRA algorithm
will converge to the optimal diagnostic strategy, summarized
by the following corollary.

Corollary 2: The performance of the fixed threshold-based
DRA algorithm converges to the optimal performance, in terms
of the expected weighted error in eq. (4).

In addition, based on Theorem 2, we can see that the
convergence speed is fast (sublinear in the number of received
patient cases).

V. PRACTICAL CONSIDERATIONS

In this section, we discuss some practical issues related to
the system implementation and give appropriate approaches to
address these issues.

A. Relevant Context Analysis

While large amounts of patient data are routinely captured in
the EHR as part of clinical care, some information is inherently
more relevant to assessing the probability of breast cancer
than others. In an online learning setting, identifying which
contextual information is more relevant to making a clinical
recommendation based on retrospective data is important. For
the dx-dimensional context space &X', the probability of mak-
ing diagnostic errors may be correlated with missing or noisy
data. For example, the chance of making a diagnostic error
may be low when results of a molecular assay is available,
but the chance of making a diagnostic error may be high
when only information about a patient’s previous BI-RADS
assessment is known.

For a dx-dimensional context space, 29X DRA learning
instances can be executed at the same time. At time ¢, the
average false positive rates of all the learning instances are
evaluated. We denote by instance 1 the learning instance using
all dx-dimensional contextual information. If for another
learning instance i, the difference of false positive rate com-
pared with instance 1 is below some level given by physicians,
then the contextual information used by learning instance ¢
is relevant. Hence, the system can select the more relevant
context to make diagnostic recommendations, as shown in Fig.
4. From Theorem 1, when less contextual information is used,
the convergence rate improves. This property is demonstrated
in practice using actual data in Section VI-C.

Diagnostic strategy

Diagnosis
evalution
L Relevant
N — 1 contextual
@ Context |Context T, [Relevant context] | features Diagnostic
extraction | selection recommendation | Recommended

Patient

strategy Physician

Fig. 4. The CABCDS system with relevant context.

B. Learning with Prior Information

Although the relevant context analysis can help identify
significant predictors from the entire information space, the

selection process can be challenging when little information
is known about the underlying patient distribution, a problem
known as “cold-start”. One approach to solve this is to
introduce prior contextual information, such as probabilistic
statements that have been previously reported in other research
studies, showing the relationship between contexts and the
probability of cancer [37]. This prior information can be
represented as an input parameter into the relevant context
analysis module to derive an initial distribution.

Another source of prior information can be drawn from pre-
viously seen patient cases with known outcomes or reported in
published literature. The prior statistical information includes
the distribution of patients with cancer or the false negative
rate and false positive rate obtained from other studies. The ef-
fect of using prior information is equivalent to a number of [NV
training patient cases before running the system. In this case,
the ASR can be bounded by R(T) = O((T — N)9@x)). This
shows that the performance of the system is greatly improved
at the beginning of its operation since it can successfully
capitalize on the prior knowledge.

C. Clinical Regret Analysis

In previous sections, we describe the algorithm for the
CABCDS system and evaluated its performance in terms of
learning regret (IPR or ASR). However, in practice, physicians
may not always follow the system’s recommendations due to
differences in opinion between the experience of the physician
and the recommended diagnostic strategy. In this section, we
further evaluate the system performance by taking into account
the actions of physicians and whether their actions are in
agreement with the diagnostic recommendation. We call this
analysis clinical regret.

We make the assumption that physicians have a certain but
fixed probability of not following the recommended strategy
when the system is first deployed. In this scenario, we denote
the probability of not following the recommended strategy by
€. That is, when the diagnostic strategy recommended by the
CABCDS system is a;, the physician has a probability € of
selecting a strategy a; # ay.

Theorem 3: Given the fixed probability € of not following
the recommended strategy, the clinical ASR up to time 7" can
be bounded by

R(T) = O(T9"9x)) 4 O(eT). (5)

Proof: See Appendix E. B

In this case, since the system performance converges to
the optimal strategy, a constant probability of deviation will
result in a linear clinical ASR in 7. We now consider the
scenario where the physicians have a decreasing probability of
not following the recommended strategy given that confidence
estimates for diagnostic recommendations increase as the sys-
tem learns from additional cases. In this scenario, we denote
the probability of not following the recommended strategy by
gy = t%; (0 < B < 1). That is, when the diagnostic strategy
recommended by the CABCDS system is m;, the physician
has a probability ¢, of selecting a strategy 7; # ;.



Theorem 4: Given the decreasing probability ¢, = t% of
not following the recommended strategy, the clinical ASR up
to time 7' can be bounded by

R(T) = O(T9'4)) 4 O(T*~7). (6)

Proof: See Appendix E. &

In this case, the clinical ASR has another sublinear term
O(T'~7). In fact, both the learning ASR of the DRA algo-
rithm and the clinical ASR are sublinear in 71", and hence
converge to the optimal strategy, as shown in the following
corollary.

Corollary 3: Given the decreasing probability ; = t% of
not following the recommended strategy, the clinical perfor-
mance in terms of false positive rate converges to the optimal
performance.

VI. EXPERIMENTAL RESULTS

In this section, the performance of the designed system is
shown using our proposed algorithm. First, the breast cancer
dataset used to evaluate the system performance is described.
Then, our proposed online learning algorithm is evaluated and
compared with other exiting algorithms. Finally, the impact
of relevant contexts on the system performance in terms of
diagnostic error rate and convergence rate is discussed.

A. Data Description

A de-identified dataset of 4,640 individuals who underwent
screening and diagnostic mammograms at a large academic
medical center is used. Patient outcome is derived from biopsy
result, which is typically obtained for individuals with a BI-
RADS score of 4 or 5. Our focus is on analyzing cases that
are BI-RADS 4A; this category represents patients whose test
results are less suspicious for cancer, raising the concern about
unnecessary biopsies. We consider five contextual features,
including:(1) patient age, (2) breast density, (3) assessment
history (whether or not the immediately preceding exam shows
a finding of BI-RADS 3 or above), (4) assessment results for
the opposite breast (whether or not the immediately preceding
exam shows a finding of BI-RADS 3 or above), and (5) the
imaging modality used.

Characteristics of different BI-RADS categories are shown
in Table V. The probability of being malignant increases from
9.91% to 78.61% as the BI-RADS category varies from 4A,
4B, to 4C. Prior to the introduction of BI-RADS 4A, 4B,
4C, all suspicious nodules were categorized as BI-RADS 4.
The probability of being malignant of BI-RADS 4 is 26.12%,
which is between those of BI-RADS 4A and 4B and near the
total average probability of being malignant.

TABLE V
DESCRIPTION OF DIFFERENT CATEGORIES
BI-RADS | No. instances | Prob. of malignant

4 2282 26.12%
4A 1171 9.91%
4B 827 37.24%
4C 360 78.61%
Total 4640 28.08%

B. Performance Evaluation of the DRA algorithm

To perform the online adaptive learning, the data instances
described previously are sequentially fed into the algorithm.
Results are compared with the clinical approach and two other
classical classifiers: the neural-fuzzy approach, and the linear
discriminant analysis approach, which are defined as follows:

o Clinical approach [31]: Current clinical practice may
be thought of as a threshold-based approach, which
recommends a biopsy for all patients that fall in BI-RADS
4, 4A, 4B, 4C and above.

o Neural-fuzzy approach [14][30]: The neural-fuzzy ap-
proach models the diagnosis system as a three-layered
neural network. The first layer represents input variables
with various patient features; the hidden layer represents
the fuzzy rules for diagnostic decision based on the
input variables; and the third layer represents the output
diagnostic recommendations.

o Linear discriminant analysis (LDA) [2][32]: The LDA
approach trains a classifier using features extracted from
imaging tests and assessment report, and the trained clas-
sifier can be used to make diagnostic recommendations.

System performance using different algorithms is shown in
Fig. 5, Fig. 6, and Table VI. The false negative rate is
empirically given as 5% and 2%, respectively. We assume
that the same prior information or training data is available
for each algorithm. Results show the relationship between
average false positive rate and the percentage of patient arrivals
(patient cases). The false positive rate of the proposed DRA
algorithm decreases over time. In order to achieve a lower
false negative rate, the false positive rate and the accuracy
need to be sacrificed. Table VI shows that the false positive
rate of the clinical approach is 1 for BI-RADS 4A patients,
since it simply recommends all BI-RADS 4A patients to
undergo a biopsy. The LDA algorithm cannot satisfy the false
negative rate constraint, since it tries to linearly cluster patients
based on the contextual information. However, the structure
of the contextual information may not be linear, and as a
result, a big performance loss is incurred. The neural fuzzy
approach results in a performance loss and does not converge
to optimum, likely because the trained rule may not be optimal
and cannot be adaptively updated in time. Our DRA approach
can be updated over time, maintaining a balance between
false negative and false positive rates. The DRA algorithm
outperforms the clinical approach in terms of the false positive
rate by 39% and 36% for nn = 5% and n = 2%, respectively,
the LDA approach in terms of the false positive rate by 34%
and 30% for n = 5% and n = 2%, respectively, and the neural-
fuzzy approach in terms of the false positive rate by 14% and
12% for n = 5% and n = 2%, respectively.

C. Contextual Feature Selection

The impact of contextual feature selection is twofold: (1)
different contextual feature selections affect the performance
of the algorithm, and (2) analysis of the selected features
provides us with interesting insights of the underlying domain
problem.
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Fig. 5. Comparison of FPR for different algorithms, given tolerable FNR=5%.
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Fig. 6. Comparison of FPR for different algorithms, given tolerable FNR=2%.

Existing feature selection methods can be used as a prepro-
cessing to the algorithm. We use a classical wrapper method,
the branch and bound method, to select a subset of features
[41] [42]. By comparing the scores (accuracy of classification)
of different feature selections, this method selects the feature
subset in a “backward elimination” manner: one starts with
the set of all variables and progressively eliminates the least
promising ones. We consider the scenario that 3 features are
selected among all the 5 features. Results of using the branch
and bound feature selection method and prediction accuracy
of all possible subsets are shown in Table VII.

From the above simple example, we can see that dif-
ferent features influence the accuracy of recommendation.
To illustrate the effect of context selection, we conduct the
experiments using the proposed DRA algorithm for BI-RADS

TABLE VI
FPR AND FNR COMPARISON

A n = 5% n=2%
Algorithms
FPR FNR | Accuracy | FPR | FNR | Accuracy
DRA (proposed) | 61.0% | 4.4% 0.45 64.2% | 2.0% 0.42
Neural fuzzy 71.0% | 4.9% 0.36 72.8% | 1.9% 0.34
Clinical 100% 0 0.10 100% 0 0.10
LDA 92.1% | 7.8% 0.16 92.1% | 7.8% 0.16

4A patients by selecting different features and analyzing their
relevance to answer the following three questions:

« Does using patient age information in addition to the BI-
RADS results (breast density, assessment history of both
breasts, modality, etc.) as contextual features improve the
diagnostic accuracy?

« How do the breast density and the choice of imaging
modality affect the diagnostic accuracy?

o Does the assessment history of patients provide valuable
information to the diagnostic decisions?

The relevance of different contextual features to predict patient
outcome is quantitatively described as the false positive rate
and false negative rate.

(a) In Table VIII, we compare the results of using both
age information and BI-RADS result information versus us-
ing only BI-RADS result information. Results show that no
significant change in false positive rate is seen when the age
information is considered. Although women with different
ages have significantly different chances of having breast
cancer [37], our results imply that the information about
patient age plays a less important role in determining the
diagnostic strategy than the BI-RADS test result information,
such as breast density, assessment history, characteristic of
opposite breast, and modality.

(b) In Table IX, we show the importance of considering
breast density and modality in order to achieve a diagnostic
recommendation by comparing the results of using both the
breast density and modality, not using modality, and not using
breast density or modality. Case 1 and Case 4 show that
without the information about breast density and modality, the
false positive rate increases by over 14% for both scenarios of
2% and 5% tolerable false negative rate. In addition, taking
into account the information about breast density without
knowing the modality can result in a significant increase in
false positive rate, as shown by Case 1 and Case 3. In fact, no
research has shown that breast density significantly implies the
risk of cancer [10], but the breast density may cause lesions to
be obscured in mammography [10][33]. Hence, using different
modalities, such as mammography, ultrasound, and magnetic
resonance imaging, can help reduce the diagnostic error when
the patient has dense breasts.

(c) In Table X, we study the impact of assessment history
of both breasts on determining the diagnostic strategy by
comparing the results of using the assessment history of both
breasts, using the same side breast without information about
the opposite side breast, and not using the assessment history
of any side breast. Results show that there is a 16% decrease in
false positive rate when the tolerable false negative rate is low
(i.e., 2%), and there is less than 7% variation in false positive
rate when the tolerable false negative rate is high (i.e., 5%).
Hence, the information about the assessment history of both
breasts needs to be considered when a low false negative rate
is suggested.

While these examples are illustrated using clinical features,
the same approach can be extended to consider imaging
features as well. The integration of imaging-derived features
(e.g., texture, shape) is part of ongoing work.



TABLE VII
ACCURACIES OF DIFFERENT FEATURE SELECTIONS
Subset of features
{1,2,3} | {1,2,4} | {1,2,5} | {1,3,4} | {1,3,5} | {1,4,5} | {2,3,4} | {2,3,5} | {2,4,5} [{3,4,5}*
Accuracy (1 =5%)| 0.34 0.33 0.38 | 0.32 0.37 0.39 0.33 0.38 0.37 0.41
Accuracy (1 =2%)| 0.28 0.20 028 | 0.29 | 0.33 0.32 0.24 0.24 0.32 0.37

{3,4,5}*: This is the subset of features obtained by the branch and bound algorithm.

As discussed in Section V, the different feature selections
also affect the convergence rate of our online learning al-
gorithm. In Fig. 7 and 8, we show results of convergence
rate for the above discussed Case 7, where the assessment
history of both breasts is not considered, Case 2, where the age
information is not considered, and Case 1 with all contextual
information. We can see from Fig. 7 that for a high tolerable
false negative rate (5%), the convergence rate of Case 2 with a
low context dimension is higher than that of the Case 7 with a
medium context dimension, as well as than that of Case 1 with
a high context dimension. However, for the low tolerable false
negative rate (2%), the convergence rate of Case 7 is very low.
In fact, as we previously showed, Case 7 does not consider
the relevant contextual information regarding the assessment
history of both breasts. This results in poor performance in
terms of both the learning speed as well as the false positive
rate in the scenario of a low tolerable false negative rate (2%).

I Case 1
Case 7

Case 2

High dimension,
% low convergence rate

Medium dimension,

0.8 .
o / medium convergence rate

Low dimension,
0.6} high convergence rate

0 20 40
Percentage of patient arrivals (%)

Fig. 7. Comparison of convergence rate for different context selection,
tolerable FNR=5%.

Less relevant context selection;
very low convergence rate

High dimension,
gO.S low convergence rate \
L
Low dimension, —O— Case 1 (g
high convergence rate e Case 7
0.6 Case 2
0 20 40

Percentage of patient arrivals (%)

Fig. 8. Comparison of convergence rate for different context selection,
tolerable FNR=2%.

D. Receiver Operating Characteristic of the System

To evaluate the system performance using different false
negative rate tolerance, we simulate the receiver operating
characteristic (ROC) of the system, as shown in Fig. 9. The
goal of the ROC analysis is to show an overview of the system
performance and the trade-off between the false positive rate
and the false negative rate, according to which the physicians
can determine the appropriate false negative rate tolerance
level. As can be seen from Fig. 9, the false positive rate
increases when the false negative rate decreases. In clinical
practice, a balance between false positive and false negative
rates need to be achieved: while we care more when a patient
does not receive a timely treatment, the number of overdiag-
nosed cases must be minimized in order for CABCDS to be
clinically accepted. We address this trade-off by minimizing
the false positive rate given a user-defined false negative rate.
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Fig. 9. Receiver operating characteristic of the proposed computer-aided
diagnosis system.

VII. DISCUSSION AND FUTURE WORKS

This paper presents a novel design framework for a
computer-aided breast cancer diagnosis system. The system
incorporates contextual information and makes diagnostic rec-
ommendations to physicians, aiming to minimize the false
positive rate of diagnosis, given a predefined false negative
rate. The proposed algorithm is an online algorithm that
allows the system to update the diagnosis strategy over time.
We analytically show that the performance of our proposed
algorithm converges to the optimal performance and quantify
the rate of convergence.

The key contributions of this paper are:



TABLE VIII
IMPACT OF AGE INFORMATION
Contextual feature selctions n=5% n = 2%
Case Breast |Assessment| Opposite .
Age density | history breast Modality| FPR FNR |Accuracy] FPR | FNR |Accuracy
1 X X X X X 61.0% | 44% | 045 |642%|2.0% | 042
2 X X X X 63.1% | 4.7% | 043 |672% | 1.7% | 0.40
TABLE IX
IMPACT OF BREAST DENSITY AND MODALITY
Contextual feature selections n=>5% n =2%
Case Breast |Assessment| Opposite .
Age density | history breast Modality| FPR FNR |Accuracy| FPR | FNR |Accuracy
1 X X X X X 61.0% | 4.4% 045 |642%|2.0% | 042
3 X X X X 721% | 4.7% 035 | 81.0% | 2.0% | 0.27
4 X X X 74.8% | 4.3% 032 |79.6% | 2.0% | 0.29
TABLE X
IMPACT OF ASSESSMENT HISTORY OF BOTH BREASTS
Contextual feature selections n=>5% n =2%
Case Breast |Assessment| Opposite .
Age density | history breast Modality] FPR | FNR |Accuracy| FPR | FNR [Accuracy
1 X X X X X 61.0% | 4.4% 045 | 642% |2.0% | 042
5 X X X X 65.6% | 4.7% 040 | 77.7% | 1.8% | 0.30
6 X X X X 64.0% | 4.8% 042 [732%|2.0% | 034
7 X X X 67.9% | 4.4% 038 |799%|19% | 0.28

« The process of breast cancer diagnosis is represented as a
sequential decision making and online learning problem.
The Diagnostic Recommendation Algorithm (DRA) is
formulated to make diagnostic recommendations over
time while quickly converging on the optimal strategy.
The algorithm exploits the dynamic nature of patient data
(e.g., the context space grows as more patients are seen)
to learn from and minimize the false positive rate of
diagnosis given a false negative rate (e.g., < 2%).

Two types of “regret” (learning regret and clinical re-
gret) are employed to evaluate the performance of the
CDS tool. The regret associated with the proposed DRA
algorithm is analytically quantified, showing that the
false positive rate asymptotically converges to the opti-
mal strategy and that the convergence rate is fast (i.e.,
sublinear).

Selection of relevant contexts is performed in relation to
minimizing diagnostic errors by identifying what knowl-
edge or information is most influential in determining the
correct diagnostic action. This information is provided to
the physician who can decide what information to exploit
so as to make efficient and effective diagnostic decisions.
The proposed algorithm’s performance is measured
through experiments that incorporate clinical, imaging,
and pathology data on 4,640 patients who underwent a
diagnostic mammogram at our institution. Results show
that an improvement in specificity can be achieved by
exploiting the contextual information associated with
the patient for the breast cancer diagnosis. Specifically,
the proposed algorithm outperforms the current clinical
approach by 36% in terms of the false positive rate given

a 2% false negative rate.

One future work is to continue evaluating the presented
framework and explore its implementation in the clinic. Un-
derstanding the utility and impact of the proposed approach in
the current practice of breast cancer diagnosis requires further
study. Nevertheless, the initial experimental results demon-
strate that our online contextual learning algorithm is efficient,
yet general and thus, it can potentially be used for diagnosis
assist in other disease domains. Each of these domains has its
own unique set of contextual information and desired patient
outcomes. For example, in lung cancer screening patients,
results of the low-dose computed tomography study (e.g.,
characterization of the nodule), pulmonary function tests,
smoking and medical history, and environmental exposures are
potential contexts. The contextual online learning algorithm
can be adapted to handle such scenarios, helping physicians
leverage available clinical big data to inform clinical decisions
in each of these respective disease domains.

APPENDIX A
PROOF OF PROPOSITION 1

First, the recommended strategy is consistent: 7(z') <
m(x") if o(z') < o(2”). The optimal solution will be among
the threshold-based strategies: n,(x) = 1, if o(z) > o,
and 7,(xz) = 0, otherwise. Second, the monotone property
is satisfied: E,po(m,(x),s(x)) < Epuo(ns(x),s(x)) and
E, i (m,(2),8(x)) > Epui(ms(x),s(x)), when ¢ > o’
Here we denote by po and p; the false negative rate and
the false positive rate. This implies that when a higher
threshold is chosen, actions for some contexts will change
from undergoing a biopsy to follow-up. Therefore, the false



negative rate is reduced and the false positive rate is increased.
Hence, a threshold o, exists, such that for any threshold-
based strategy m,(x) with ¢ > o, the following property
holds: E,p1 (7o (z), s(x)) > n, and Eypi(n,, (2),s(x)) < n.
Obviously, the optimal solution is 7, (), and we write the
optimal solution as 7*(x) for short.

APPENDIX B
PROOF OF THEOREM 1

We first describe the intuition of the proof, and then give
the proof. The intuition is to cluster the contexts into small
clusters over time. Within each context cluster, if o(z) within
the context cluster has a gap from o, and the estimation of
o(x) is accurate enough, then the strategy in these context
clusters are the same as the optimal strategy. The probability
that the estimation of o(x) has a large deviation from the true
value tends to 0. For the context clusters with o(x) close to o,
the strategies selected by the algorithm may not be the same
as the optimal strategy, however, the probability of context
arrivals in these clusters will tend to 0, since Pr{z : o(z) =
on} = 0. The strategy of the learning algorithm tends to the
optimal strategy except some context clusters whose arrival
probability tends to O.

Formally, we define Lipschitz conditions for the theorem.

(1) Patient outcome distribution: there exists a Lipschitz
constant Ly > 0, such that for all z,z’ € X, we have |o(x) —
o(a)| < Lule — o]

(2) Context distribution: there exists a Lipschitz constant
Lo > 0, such that for all z,2" € X, we have |f(z) — f(2/)] <
Loz — a'].

We consider the IPR r; at some sufficiently large patient
number ¢. Then we can see that the IPR can be decomposed
into two terms 1 = 741 + 7¢ 2, Where 74 1 is the regret caused
by clusters that have a o(z) near the threshold o,, and r; o
is the regret caused by clusters that have a o(z) far from
the threshold o,, but have a wrong estimation of f(x). We
denote by omin(C) = mingec o(z) the minimum probability
of being malignant for cluster C, and denote by 0p,.x(C) =
max,cc o(z) the maximum probability of being malignant
for cluster C. We define three types of clusters:

Type I cluster: the cluster for patient ¢ that has a 0yax(C)
smaller than or equal to the threshold minus a small value,
ie, {C: C € C'omax(C) < o — bt™*}, where b > 0,
0 < a < 1 are parameters.

Type II cluster: the cluster for patient ¢ that has a oy, (C)
greater than or equal the threshold plus a small value, i.e.,
{C:CeConn(C)>0,+bt ).

Type III cluster: the remaining clusters that have a o () near
oy, e, {C 1 C € Comn(C) —bt™* < 0y < Omax(C) +
bt—}.

Due to Berstein’s inequality, we have that the estimation for
the context arrival at a cluster C' has the following property:

M, o
Pr{|TC — F(O)] > bit' ™} < bpye ",

where b and by, are positive constants. And the realized ¢

in a cluster C' has the following property:

Pr{cc > omax(C) + bot! = or 5¢ < omin(C) — bot! =}
< bogge™t",

where bs and bgo are positive constants. We define the normal
state as the event that the estimations of f(z) and o(z) are
accurate enough. The set of normal states are denoted by
No = {|He - f(O)] < bit' =, omin(C) — bat' ™ < 5¢ <
Omax(C) + bat'=*}. And we denote the set of abnormal
state by Ao, which is the complementary set of N¢. The
probability of an abnormal state happens for one of the active
cluster is bounded by Y ~cci Pr{Nc}.

Hence, we can see that the regret for r; ; is caused by Type
III clusters, and can be bounded by

riq < Pr{z:z € C,omin(C) — bt~ < 0y < Omax(C)
bt} < K2V < ool

i

where K is a constant, and the inequality is due to the covering
property that the d — 1 dimensional surface o(z) = o, and
the Lipschitz condition that oppax (C) — omin(C) < L1270 .

The regret 7, o can be bounded by the probability that an
abnormal state Yo Pr{Nc} occurs. Hence, for patient ¢,
the IPR can be bounded by

ry = Tt,l + ’[“t’2
<D cect K27 4 bpe ™ 4 boge " < O(t*1+9(dx));

_ dx+1/24+V9+8dx /2
wh.ere g(dx) = U324y 2" A :
arrival and partition is considered as in Appendix D. Hence,

we obtain the ASR up to patient 1"

and the worst case context

T

R(T) =) e <O(T9™).

APPENDIX C
PROOF OF PROPOSITION 2

In order to show the equivalence of the two optimal strate-
gies, we consider the weighted error of choosing different
actions for context x. If the action 7(x) = 1 is chosen, then

Ec(n(z) =1,s(z)) = (1 — oy)0(x). (7)
If the action 7(z) = 0 is chosen, then
Ec(m(z) =0,s(x)) = 0y(1 — o(x)). (3)

Hence, the optimal strategy 71 (x) satisfies:

ml(z) = {
©)

By plugging (7) and (8) into (9), we have the optimal
strategy 7' (x):

(@) = {

Therefore, the proposition follows.

1, if Ec(m(z) =1,s(x)) < Ec(n(z) =0, s(x))

0, otherwise

1, if o(z) > oy

. (10)
0, otherwise



APPENDIX D
PROOF OF THEOREM 2

To prove Theorem 2, we first introduce some important
notions to characterize the properties of the cost. Let us
define 7/ as the best action corresponding to the context
at the center of the subspace C. Let us also define i,
as the expected weighted error, ficr = maXgec [z, and
He,x = Milgeo g . For a size 2! subspace C' (referred
to as “level 1), the suboptimal action set is defined as
Lo(B) = {7 ¢ ficys, — o > BLAY?271). We add
virtual exploration process into the algorithm: assume at least
2t* log(t) patients are diagnosed with error. We then can
decompose the ASR into three terms: the regret caused by
virtual exploration R.(7T), the regret caused by suboptimal
arm selection R;(7T'), and the regret caused by near optimal
arm selection R,,(T"). We first introduce three lemmas to show
useful properties of the DRA algorithm.

Lemma 1. The active cluster level [/ for patient ¢ can be at
most (log, t)/p + 1.

Proof: According to the context space partition process, we
have 22:1 2Pi < t, where [ 4+ 1 is the maximum level for
patient £. Hence, the result follows.

Lemma 2. The regret caused by virtual exploration in one
cluster up to patient ¢ is bounded by 2¢* log t.

Proof: Since the virtual exploration number can be bounded
by t*logt for each action, the result follows.

Lemma 3. If B = W%Tu + 2, and 2ap < z < 1, then
the regret caused by subo)ﬁtimal action selection in one cluster
up to patient ¢ is bounded by %

Proof: Let W denote the event that the current phase is
an exploitation phase in the context cluster C, and let V()
be the event that the suboptimal action 7 is selected in at time
t. Then, we have

T
Ros(T)< > > Pr{Wg Ve(m)}
t=1reLc(B)

T

<> X Pr{rer > fiox + Hi, Wi} ,

t=1reLc(B)
+Pr{fc7ﬂ'é < /7‘0771'6 - Ht,Wér} + Pr{’FC,T( > fCJrév
Fon < fiox + Hi,TFoms > fo s + Hi, W}
(11)

where H; = =2, 5 > 2a/p. The third term on the right
hand side of (11) is 0. Hence, we can bound the regret by

M=

Ros(T) <Y 5 Pr{fcs > Blres] + LdY*271%}
t=17€Lc(B)
_ _ /24— I —_ e
+Pr{fcrz, < E[Fons] — Ldy/ 72710} < 37 4172 < 42
t=1

(12)
We can see that the highest level of subspaces is at most
1 + loggp+ix 1. Then the maximum number of subspaces is
d
bounded by 92dx TTxT7 |
Therefore, according to Lemmas 2, we can bound the
exploration regret by

d
R.(T) < 221705 % log T. (13)

Accord to Lemma 3, we can bound the suboptimal regret
by

dx
22dx+1 2Tm
R(T) € ———— (14)
We can also bound the near optimal regret by
1+log2p+dx T
R.(T)< Y. BLdY*27l
=0 15)

dx+p—a

< BLAY/*22(x+p—a) i

Therefore, the ASR follows by setting z = 2a/p, and p =
datv9ait8adx V9"‘22+8°“1X. Since the IPR decreases as t increases, it can
be bounded by O(t9(@x)—1),

APPENDIX E
PROOF OF THEOREM 3 AND 4

For Theorems 3 and 4, the clinical ASR can be calculated
by another deviating regret term. For Theorem 3, this term can

T
be bounded by > e = €T'. For Theorem 4, this term can be
t=1

T i
bounded by > & < %;. Hence, Theorems 3 and 4 follow.
t=1
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