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Abstract

Existing work on online learning for decision making takes the information available as a given and

focuses solely on choosing the best actions given this information. Instead, in this paper, the decision

maker needs to simultaneously learn both what decisions to make and what source(s) of information to

consult/gather data from in order to inform its decisions such that its reward is maximized. We formalize

this dual-learning and online decision making problem as a multi-armed bandit problem. If it were known

in advance which sources were relevant for which decisions, the problem would be simple - but they are

not. We propose algorithms that discover the relevant source(s) over time, while simultaneously learning

what actions to take based on the information revealed by the selected source(s). Our algorithm resembles

that of the well-known UCB algorithm but adds to it the online discovery of what specific sources are

relevant to consult to inform specific decisions. We prove logarithmic regret bounds and also provide a

matching lower bound on the number of times a wrong source is selected, which is achieved by RS-

UCB for specific cases. The proposed algorithm can be applied in many applications including clinical

decision assist systems for medical diagnosis, recommender systems, actionable intelligence, etc. where

observing the complete information of a patient or a consumer or consulting all the available sources to

gather intelligence is not feasible.

I. INTRODUCTION

Decision makers have access to vast amounts of different types of information. For instance, for medical

diagnosis, a clinician or a clinical decision system (CDS) can have access to a wealth of information

regarding the patient’s health which can inform what treatments should be selected. Existing methods

which learn online what decisions to make based on the available information assume that all this

information is available at the time when the decision needs to be made: they utilize all the information
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to learn how to select actions that lead to high rewards. However, in many applications, it may be

infeasible for the decision maker to access all the information. For instance, in the medical scenario

outline before, a clinician or CDS cannot perform enormous numbers of tests on the patients to inform

their treatment decisions. Moreover, it may be unnecessary to gather all the information since some of it

may not be informative for specific decisions. (For instance, some information about the patient’s health

may be irrelevant to the decision of prescribing a specific treatment.)

In this paper, we consider the problem of simultaneously learning what sources of information to

consider/what information to gather and what decisions to make on the basis of the obtained information

to maximize the reward. We formalize this problem as a budgeted Multi Armed Bandit (MAB) problem,

where the decision-maker can select at most R information sources. Learning in settings in which there

is a hard constraint on the number of sources that the decision-maker can consult is known as budgeted

learning [Cesa-Bianchi et al., 2011, Hazan and Koren, 2012].

The challenge in our setting is that the decision-maker does not observe additional information nor

does it receive an additional reward informing it on how relevant specific sources would have been if

they would have been selected to inform the current decision. The decision maker only observes the

reward obtained from choosing a specific action given the selected sources and hence, it must learn

which specific sources are relevant (informative) to which specific decisions (actions) solely from this

feedback.

We provide an algorithm, which we refer to as Relevant Source Upper Confidence Bound (RS-UCB),

which consists of two parts : (i) learning what sources to select to inform specific decisions (actions)

and (ii) learning what decisions (actions) to take. The learning is performed based on standard bandit

feedback.

The main contributions of the paper are :

• We first develop an algorithm (which we refer to as RS-UCB) that learns online which sources to

observe and which actions to take, for the special case in which the same subset of information

sources is relevant for all actions.

• We show that RS-UCB achieves logarithmic regret in time. Moreover, regret of RS-UCB scales with

number of relevant sources R instead of number of all sources D.

• We derive a lower bound for the number of times that any policy will necessarily elect the wrong

source (i.e. an irrelevant source). This lower bound is achieved by RS-UCB on specific cases.

• Finally, we provide a generalization of RS-UCB for the general case in which different sources

are relevant for different actions. We prove that this generalized algorithm also enjoys logarithmic
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regret.

II. RELATED WORK

The work most related to ours is that on contextual bandits - a class of MABs where actions are selected

on the basis of the available information, which is organized as ”contexts”. The traditional contextual

bandit problems assume that an information vector arrives to a decision maker which utilizes all the

available information to learn the actions that maximize the expected rewards. In contrast, in this work

we learn what information sources should a decision maker consult to make an optimal decision, i.e. it

should ”learn what to learn” to inform its decisions.

Contextual bandits have been studied extensively in the past 5 years [Chu et al., 2011, Slivkins, 2011,

Lu et al., 2010, Dudik et al., 2011, Langford and Zhang, 2007, Tekin and Van Der Schaar, 2014]. For

example, [Chu et al., 2011, Slivkins, 2011] study Lipschitz contextual bandits where a known similarity

metric on expected rewards of the actions is assumed for different contexts. The lower bound on the

regret for the Lipschitz contextual bandits is known to be exponential in the context dimension D [Chu

et al., 2011]. Our work differs from the existing works on contextual bandits in multiple ways. First,

to best of our knowledge, all past works assumed that all the information/contexts are observed when

making decisions. Instead, we only observe the sources (contexts) that are selected. Second, we assume

a relevance relation between the rewards of the arms and the context types and learn this relationship

online. This enables us to achieve regret bounds which scales with number of relevant sources R instead

of number of sources D. This is a huge performance improvement if D � R.

The work most related to ours is [Tekin and Van Der Schaar, 2014], which assumes an unknown

relevance relation between the context types and actions. They study traditional contextual bandit problem

with an unknown relevance relation between the source types and actions. In contrast, in our setting the

decision maker cannot observe the entire context vector but it has only access to the sources (context

types) that are selected. Hence, it also needs to learn which sources (context types) to select.

Another closely related line of work tackles the issue of budget limited learning [Cesa-Bianchi et al.,

2011, Hazan and Koren, 2012, Szepesvari and Zolghadr, 2013], where the learner is restricted to access

only a subset of the features from the set of training examples. Faced with this constraint, the learner’s

goal is to adaptively choose which features of the next training example it wants to observe, given the

observations of the features of the past training examples. The goal is to train a linear predictor with a low

expected loss given the distribution of the data instances. The problem is solved by generating adaptive

versions of well-known linear predictors such as Online Gradient Descent [Zinkevich, 2003], EG [Kivinen
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and Warmuth, 1997] and Pegasos [Shalev-Shwartz et al., 2011]. The solution constructs an unbiased

estimate of the feature vector or its gradient using random sampling techniques. Such random sampling

techniques have been used for a long time to solve least-squares and low-rank matrix approximation

problems involving very large matrices (see [Mahoney, 2011] and the references therein). Unlike the

above line of the work, which aims to find out the best linear predictor given observed features, the goal

of this paper is to identify: (i) relevant source(s) of information and (ii) the optimal action to be selected

given the information provided by observing/consulting/measuring the relevant source(s).

III. PROBLEM FORMULATION

A. Preliminaries

Let X denote the space of D-dimensional information vectors and x = (x1, x2, . . . , xD) be an element

in that space, with xd ∈ Xd being a source-d information. Let A = {1, 2, . . . ,K} denote the set of actions.

An instance of a problem is specified by an unknown distribution D over tuples (x,y), where x ∈ X is

the information vector and y = (ya)a∈A ∈ YK is the vector of the rewards where Y is the reward space

and ya is the reward associated with action a. Throughout the paper, we assume that the information

space is finite, i.e, |Xd| ≤M <∞ and rewards are bounded, i.e., Y = [0, 1]. The first assumption is not

restrictive since any bounded space can be discretized using techniques similar to the ones in [Slivkins,

2011]. The second assumption is standard in the multi-armed bandit literature.

Given a vector x and a set S ⊆ D, we write xS for the restriction of x to S (i.e.; a context

vector containing components in S). Let ȳSa (xS) be the marginal expected reward of action a when

the information vector contains xS , i.e., ȳSa (xS) = E(ya|xS) where the expectation is taken with respect

to the distribution of D(ya|xS). Let ȳa(x) denote the expected reward of action a given full information

vector x. Similarly, let ȳa be the marginal expected reward of action a, i.e., ȳa = E(ya) where expectation

is taken with respect to the distribution D(ya).

The decision maker works in a discrete time setting n = 1, 2, . . ., where the following events happen

sequentially in each time slot : (i) the decision maker starts with no information (both the information

vector xn and reward vector yn are latent) and selects the sources On ⊂ D with |On| = R with R

the observation constraint; ii) a partial information vector x̂n containing only the information from the

selected sources is revealed to decision maker; (iii) the decision maker chooses an action an from A;

(iv) the reward associated with selected action ya,n is revealed to decision-maker. (We use ya,n for yan,n

and x̂n for xOn,n to improve readability.)
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As mentioned previously, this model is different from contextual bandit problems [Chu et al., 2011,

Slivkins, 2011] where all sources/contexts are observed at each time and can inform decisions. In this

model, the decision maker needs to determine the source it wants to observe and has only access to

sources that it selects. For instance, in medical informatics, On corresponds to the medical tests (specific

blood tests, imaging tests etc.) which a patient needs to undertake, an is the treatment recommended to

the patient (which is informed by the selected medical tests) and ya,n represents the effectiveness of the

selected treatment.

B. Assumptions

We start by assuming that the rewards of actions only depend on the sources in R ⊂ D, which are

referred to as the set of relevant (informative) source types. All the other sources are assumed to be

irrelevant and hence, they are assumed to not convey any additional information about the reward. (In

Section 6, we will relax this assumption and allow different contexts to be relevant to different actions.)

The decision maker does not know which of these sources are relevant, i.e. which sources are in R and

hence, it needs to learn this. The assumptions we make are formalized next.

Assumption 1. i) There exists a minimal set R ⊂ D with |R| = R (the observability constraint) such

that for all a ∈ A, x ∈ X any sub-vector x̃ of x, we have

E(ya|xR, x̃) = E(ya|xR) (1)

ii) The sources are statistically independent of each other, i.e., for all x ∈ X , D(x) = Πd∈DD(xd).

The first part of the above assumption states that the expected reward of any action a depends only on

the sources in the set R; the second part states that the sources are statistically independent of each other.

This is a limitation of our work. We discuss the challenges of source selection with bandit feedback for

general information distributions in Section 8.

C. Problem Definition

Optimal actions can be computed based on the knowledge of D. Let a∗(xR) = arg maxa ȳ
R
a (xR)

be the action that has the maximum expected reward conditional on the information xR. Uncertainty

about D and the set of relevant information sources R induces uncertainty about the true optimal actions

a∗(xR).

Remark 1. Note that since ȳa(x) = ȳRa (xR) by assumption 1, we have a∗(x) = a∗(xR).
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Let hn = (On, x̂n, an, ya,n) be the observation tuple at the nth instance and Hn = {hτ}nτ=1 be the

history of observations up to the nth instance. Let ΩR denote the set of subsets of source set D with size

R, i.e., ΩR = {S : S ⊆ D, |S| ≤ R} and XR be the set of all possible information vectors containing R

sources, i.e., XR = {xS : S ∈ ΩR,x ∈ X}. A source selection policy πsource is a mapping from history

up to the (n− 1)th instance to ΩR, i.e., πsource : Hn−1 → ΩR. An action selection policy for information

x̂ from set of sources S ⊆ D is a mapping from history up to the (n−1)th instance and information x̂ to

action set A, i.e., πaction(x̂) : Hn−1 × x̂→ A. Let πaction be the all possible policies with history Hn−1,

i.e., πaction =
[
πaction(x̂)

]
x̂∈XR . A policy π is the combination of source and action selection policies,

i.e.,

π =
(
πsource,πaction) .

Let xn = (x1,x2, . . . ,xn), yn = (y1,y2, . . . ,yn) and πn denote the action (arm) selected at nth

instance by following policy π.1 The N -period distribution-independent regret of policy π is the random

variable,

RegπN (xN )

, EyN∼D(yN |xN )

N∑
n=1

[
ȳRa∗(x)(xR,n)− ȳRπn(xR,n)

]
where expectation is taken with respect to the distribution of the reward history. The regret defined above

is a random variable because it depends on the information vector history xN . The distribution-dependent

regret is

RegπN , E(xN ,yN )∼DN

N∑
n=1

[
ȳRa∗(x)(xR,n)− ȳRπn(xR,n)

]
The goal of this work is to learn an optimal policy that is able to minimize the distribution-dependent

regret subject to source observability constraints, i.e.,

minimize
π

RegπN

subject to |On| ≤ R, n = 1, . . . , N.

In the next section, we propose a method for solving this problem.

IV. UPPER CONFIDENCE BOUNDS FOR RELEVANCE DISCOVERY

In this section, we provide a variant of UCB policy [Auer et al., 2002], which we call as RS-UCB.

This policy works by associating an upper confidence index to each information source d and to each

1We drop the dependence of Hn and to the history for sake of brevity.
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T da (xd) Number of times action a is selected when source d with information xd is
observed, i.e.,

∑n
τ=1 I(d ∈ Oτ , xd,τ = x, aτ = a).

Ta Number of times action a is selected, i.e.,
∑n

τ=1 I(aτ = a).
T d Number of times source d is observed, i.e.,

∑n
τ=1 I(d ∈ Oτ ).

T d(xd) Number of times source d with information x is observed, i.e.,
∑n

τ=1 I(dτ =
d, xd,τ = x) .

ŷda(xd) Reward estimate for action a when source d with information xd is observed,
i.e., 1

T da (xd)

∑n
τ=1 ya,τ I(d ∈ Oτ , xd,τ = x, aτ = a).

ŷda Reward estimate for action a from source d, i.e., 1
T d
∑

xd
T d(xd)ŷ

d
a(xd).

TSa (xS) Number of times action a is selected based on observing information xS
from source S, i.e.,

∑n
τ=1 I(Oτ = S,xS,n = xS , aτ = a).

TABLE I: Counter and Reward Estimate Definitions

action a.

In our context, the algorithm must accomplish two tasks: find the relevant sources and, given the

information from the relevant sources, choose the best action. While the second task can be accomplished

using UCB, the first task requires a new algorithm. Based on the history Hn, Table I defines the counters

and reward estimates which are used throughout the paper. Note that we drop n from the notations to

improve readability.

Based on these counters and estimates, we define the following relevance metric

R̂eld ,
∑
a∈A

∑
xd∈Xd

T da (xd)

T d
|ŷda(xd)− ŷda|. (2)

The relevance metric estimates the difference in reward obtained if source d would have been observed.

for n ≥ 0 do
if F1

n 6= ∅ then
Randomly select at most R from set F1

n
else
On = arg maxS∈ΩR

∑
d∈S indd

end if
Observe x̂n
if F2

n 6= ∅ then
Select randomly from F2

n(x̂n)
else

Estimate ŷa(x̂n)
an = arg maxa∈A confa(x̂n).

end if
Observe ya,n.

end for

Fig. 1: Pseudocode of RS-UCB
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Let F1
n = {d ∈ D : T d = 0} be the set of sources that have not been selected until the nth instance. If

this set is non-empty, RS-UCB randomly selects min(R, |F1
n|) sources from the set. Otherwise, RS-UCB

assigns an index for each source based on their relevance metric and the confidence, i.e.,

indd , R̂eld +

√
8KM lnn

T d
.

Then, RS-UCB selects the sources with the highest indices, i.e.,

On = arg max
S∈ΩR

∑
d∈S

indd.

Having chosen sources On, the partial information vector x̂n is observed. Then, RS-UCB constructs an

estimate for the reward of every action a based on the observed information x̂n as

ŷa(x̂n) =
1

Ta(x̂n)

n∑
τ=1

ya,nI(Oτ = On,xOτ ,τ = x̂n, aτ = a)

Above, we used the notation Ta(x̂n) and ŷa(x̂n) instead of TOna (x̂n) and ŷOna (x̂n) to improve readability.

Having constructed these estimates, the action is selected based on the UCB policy. Let

F2
n(x̂n) = {a ∈ A : Ta(x̂n) = 0}

be the set of unselected actions for the observed information x̂n. If this set is non-empty, RS-UCB

randomly selects an action from this set. Otherwise, the action with the maximum confidence level is

selected, where the confidence of an action is defined as

confa(x̂n) , ŷa(x̂n) +

√
2 lnn

Ta(x̂n)
(3)

The pseudo code of RS- UCB is given in Figure 1.

Note that the online source selection part of RS-UCB is different than UCB since the decision maker

since the feedback is only the reward of the selected action. Hence, the relevance discovery uses solely

the rewards of obtained for the selected actions. Therefore, RS-UCB involves a dual-learning procedure

using the standard MAB feedback.

V. ANALYSIS OF RS-UCB

A. Preliminaries

In this section, we provide some definitions that are used for the regret analysis. The definitions for

the relevance and suboptimality gaps play important roles in the theoretical analysis of RS-UCB; they

are presented in Table II.
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δda(xd) relevance gap of information xd from source d for action a, i.e., δda(xd) =
|ȳda(xd)− ȳa|

δmin minimal relevance gap of action a for source d ∈ R , i.e.,
mina∈Amind∈Dminxd∈Xd δ

d
a(xd).

pmin minimal information probability for d ∈ R, i.e., mind∈Dminxd∈Xd D(xd)

δd(xd) minimal relevance gap for information xd for d ∈ R, i.e., mina δ
d
a(xd).

δdexp expected minimal relevance gap for source d, i.e., Exd∼D(xd)(δ
d(xd)).

δexp expected minimal relevance gap, i.e., mind∈R δ
d
exp.

∆a(xR) suboptimality gap of action a for information xR, i.e., ȳRa∗(x)(xR)−ȳRa (xR).
∆min minimal suboptimality gap, i.e., mina∈AminxR ∆a(xR).

TABLE II: Definitions of suboptimality and relevance gaps

Lemma 1. If T da (xd)→∞ as n→∞ for all a, d, xd, then under Assumption 1, we have

(i) |ŷda(xd)− ŷda|
p→ δda(xd),

ii) δda(xd) = 0 for all xd ∈ Xd and d ∈ D \ R

where
p→ denotes convergence in probability.

Proof. (Sketch) The first result follows from the continuous mapping theorem [Mann and Wald, 1943].

The second result can be shown using the tower property and the assumption 1. Detailed proofs of all

results can be found in the Supplementary material.

Lemma 1 presents technical results that guide the design of RS-UCB. Since δda(xd) = 0 for all irrelevant

sources d, the relevance metric defined in (2) converges to 0 for all irrelevant sources. Therefore, the

regret results will heavily depend on the relevance gap of the relevant sources. In the next section, we

formally provide theoretical results.

B. Distribution-Independent Regret Analysis of RS-UCB

The following theorem bounds the regret independent of information source distribution.

Theorem 1. (Distribution Independent Regret Bound) If δmin > 0, the regret of RS-UCB is bounded as

follows :

RegRS-UCB
N (xN ) ≤ A1 lnN +A2

with probability 1 where

A1 = 8
∑
xR

∑
a∈A\a∗(x)

∆−1
a (xR) + 32KMD(δmin)−2
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and

A2 = D + 2K(M + 1)RDπ2/3

+ (1 + π2/3)
∑
a∈A

∑
xR

∆a(xR).

Proof. (Sketch) The regret can be decomposed as

RegRS-UCB
N ≤

∑
xR

∆a(xR)E(TRa (xR))

+DRl +

N∑
n=1

∑
d∈D\R

E(I(d ∈ On, T d ≥ l))

where the first part can be bounded by using UCB-type bounds and second part can be divided into three

sub events. By choosing l = 32KM(δmin)−2 lnn+ 1 for source d, we can show that

E(I(d ∈ On, T d ≥ l)) ≤ 4K(M + 1)n−2. (4)

The final result can be achieved combining UCB-type bounds and this part.

Theorem 1 shows a regret bound that is independent of the information vector distribution that holds

for any information vector. The regret can be decomposed into two parts : selecting a wrong (irrelevant)

source and selecting a suboptimal action (which is the same as in the UCB algorithm).

Corollary 1. For the special case where R = 1, the regret is in the order of O
(
DKM(δ−2

min + ∆−1
min) lnN

)
.

In special case where there is one relevant source, regret scales linearly with the number of sources

D whereas the traditional contextual bandits scale exponentially with D. This leads to a significant

performance difference if the total number of sources is large. Moreover, our algorithm achieves this

regret using only partial information observation (only observing the selected sources). Since regret in

Theorem 1 is the distribution independent, it depends quadratically on the minimal relevance gap δ−1
min.

In the next section, we provide distribution-dependent regret bounds.

C. Distribution-Dependent Regret Bounds

Before providing the distribution-independent regret bound, we provide an intermediate result on the

number of times an irrelevant source is selected. Let NR = {n ≤ N : T r(n) ≥ 8(pmin)−2 lnn ∀r ∈ R}.
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Lemma 2. For all n ∈ NR, if δexp > 0, the expected number of times RS-UCB selects the irrelevant

source is bounded, i.e., ∀d ∈ D \ R,

E(x,y)∼D(T d(n)) ≤ 128KMδ−2
exp lnn

+ 5KDR(M + 1)π2/6 + 1.

Proof. (Sketch) We use three events used in Theorem 1 to bound the number of times RS-UCB selects

irrelevant sources. For any d ∈ D \ R

E(x,y)∼D(T d(n)) ≤ m+
∑
n∈NR

E(I(d ∈ On, T d ≥ m)).

By choosing m = 128KMδ−2
exp lnn + 1, it can be shown by using union and Chernoff bounds that for

n ∈ NR,

E(I(d ∈ On, T d ≥ m)) ≤ 5KD(M + 1)n−2.

The next theorem combines Lemma 2 with the regret due to selecting a suboptimal arm even the

relevant sources are selected.

Theorem 2. (Distribution Dependent Regret Bound) If δexp > 0 and pmin > 0, then the regret of RS-UCB

is bounded as follows :

RegRS-UCB
N ≤ A3 lnN +A4

where

A3 = 8R(pmin)−2 + 128KMD(δexp)−2

+ 8
∑
xR

∑
a∈A\a∗(x)

∆−1
a (xR)

and

A4 = (R+ 1)D + 5KDR(M + 1)π2/6

+ (1 + π2/3)
∑
a∈A

∑
xR

∆a(xR)

Proof. (Sketch) This result follows by combining Lemma 2 and UCB-type bounds.

Theorem 2 shows distribution-dependent regret bound. There are 2 important differences between the

regret bound in Theorem 1 and 2. Firstly, regret in Theorem 2 depends quadratically on δ−1
exp instead
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of δ−1
min. Note that δexp ≥ δmin by definition. Therefore, bound in Theorem 2 has better dependence on

relevance gaps. Secondly, there is an additional term which quadratically depends on p−1
min. The additional

term appears in the result since we bound the number of times irrelevant source selected by RS-UCB

when we have sufficient confidence in the relevant sources as seen from Lemma 2.

D. Lower Bounds

In this section, we first construct a simple problem for our setting and then prove a lower bound on

the number of times any policy selects a wrong (irrelevant) source.

Simple Problem : Consider 2 types of source with X1 = {i1, i2} and X2 = {i3, i4}, where source

1 is relevant and source 2 is irrelevant to all actions. Let ȳ1 =
(
ȳ1

1(i1), ȳ1
2(i1), ȳ1

1(i2), ȳ1
2(i2)

)
and ȳ2 =(

ȳ2
1(i3), ȳ2

2(i3), ȳ2
1(i4), ȳ2

2(i4)
)

where ȳda(xd) is the expected reward of arm a for information x from

source d. We assume that reward for action a with information xd from source d is Bernoulli distributed

with parameter ȳda(x). Assume that P(x1 = i1) = P(x2 = i3) = ν1 and P(x1 = i2) = P(x2 = i4) = ν2.

Note that decision-maker is restricted to select a single source in this simple problem, i.e., R = 1.

Theorem 3. Suppose that ȳ1 = (0.5+δ1/2, 0.5−δ1/2, 0.5−δ2/2, 0.5+δ2/2) and ȳ2 = (0.5, 0.5, 0.5, 0.5).

For any policy that aims to maximize its expected reward, E(x,y)∼D
[
T 2(n)

]
is lower bounded as follows,

E(x,y)∼D
[
T 2(n)

]
≥ lnn

S(δ1, δ2)
(5)

where

S(δ1, δ2) = ν1KL
(

1

2
,
1 + δ1

2

)
+ ν2KL

(
1

2
,
1 + δ2

2

)
,

and KL(x1, x2) denotes Kullback-Liebler divergence between Bernoulli distributions with mean x1 and

x2.

Proof. (Sketch) We convert this problem to a hypothesis testing problem by introducing two distributions

(D0 and D1) : source 1 is relevant in the first distribution and both are irrelevant in the second distribution.

We use the minimax bound on hypothesis testing [Tsyabkov, 2005] and simplify the KL divergence

between two distributions as

KL(Dn0 ,Dn1 ) ≤ S(δ0, δ1)E(T 2(n)). (6)

The lower bound shows that every policy which aims to distinguish relevant and irrelevant source

types requires O(lnn/S(δ1, δ2)) samples. Assume that the information arrival process is uniform, i.e
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ν1 = ν2 = 0.5. For this simple problem with uniform arrival process, for all actions δ1
a(i1) = δ1 and

δ1
a(i2) = δ2. Note that by using the upper bound for KL divergence of two Bernoulli distribution [Rigollet

and Zeevi, 2010], we get KL
(
0.5, 0.5 + δ1

2

)
≤ Cδ2

1 for some constant C > 0 independent of problem

parameters. Then, by using Jensen’s inequality, we can show that

0.5δ2
1 + 0.5δ2

2 ≥ (δ1
exp)2 = (0.5δ1 + 0.5δ2)2 (7)

where equality holds when δ1 = δ2. Therefore, we can argue that our source selection algorithm is

approximately optimal in the special case. However, there is a gap between the regret bound of RS-UCB

and lower bound for general case in terms of dependence to the relevance gap. Although RS-UCB is

optimal in the special cases, an algorithm which matches the lower bound for the general case may be

developed, which is left as a future work.

VI. EXTENSION TO ACTION-DEPENDENT RELEVANT SOURCES

Our current setting assumes that the relevant sources are the same for all actions. Our framework can

be adapted to learn the relevance relation for each action. Let R(a) denote the relevant sources for action

a; all the sources d ∈ D \ R(a) are irrelevant to action a. Let R = (R(a))a∈A be the set of relevant

sources, where |R| = R(observability constraint). Next, we provide an modified version of RS-UCB,

which we refer to as Generalized Relevant Source Upper Confidence Bounds (GRS-UCB).

For this extension, we define an action dependent relevance metric to select the sources, i.e.,

R̂el
a
d ,

∑
xd∈Xd

T da (xd)

T da

∣∣∣ŷda(xd)− ŷa
∣∣∣ .

Based on the action dependent relevance metric, we assign an index for each tuple of source and action

as

indad , R̂el
a
d +

√
8M lnn

T da

Based on these indices, we select sources and construct R̂n(a) for each action a for the nth instance. Let

On be all select sources, i.e., On =
[
R̂n(a)

]
a∈A

such that |On| = R. The details of source selection

procedure and pseudo-code for the GRS-UCB is given in supplementary material. Having constructed the

relevance sets, GRS-UCB selects the action with highest confidence where the confidence of an action

is defined as

confa(xR̂n(a)) , ŷR̂n(a)
a (xR̂n(a)) +

√√√√ 2 lnn

T
R̂n(a)
a (xR̂n(a))

.
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Next, we provide the distribution-independent regret analysis of GRS-UCB. Let δdmin(a) be the relevance

gap of source d for action a. Similar to Lemma 1, it can be shown that δdmin(a) = 0 for all the sources

d ∈ D \ R(a). Let δmin = mina∈Amind∈R(a) δ
d
min(a).

Theorem 4. If δmin > 0, then the regret of GRS-UCB is bounded as follows :

RegRS-UCB
N (xN ) ≤ A5 lnN +A6

with probability 1 where

A5 = 32K2DMδ−2
min + 8

∑
xR

∆−1
a (xR)

and

A6 = 2KD + 2K2DR(M + 1)π2/3

+ (1 + π2/3)
∑
a∈A

∑
xR

∆a(xR)

VII. NUMERICAL RESULTS

A. Description of Datasets

Dataset 1 (D1): This is the breast cancer diagnosis dataset from UCI archive [Lichman, 2013]. The

original dataset 569 instances and 30 clinically relevant attributes to the diagnosis (features extracted

fromdifferent radiological images). The label is either malignant or benign. We create 7 actions by

training Naive Bayes classifiers using (different) 10 instances from the dataset. Algorithms are tested on

50000 instances drawn uniformly from the original 569 instances (excluding 70 training instances) with

using 6 attributes out of original 30 attributes. For each patient, our learning algorithm decides which

radiological tests to perform and uses the features extracted from the obtained radiological to make a

diagnosis decision.

Dataset 2 (D2): This is a synthetic dataset. Data is generated using a uniform and has 2 sources with 3

possible values and 3 actions, i.e., P(xd,n = x) = 1/3 for each source d and information x and instance

n. Then, reward of the nth instance for action a is generated through a Bernoulli process with mean

ȳ1
a(x1,n). Therefore, relevant source is source 1. Total number of instances N = 100000.

B. Results

Results on irrelevant source selection In this result, we use (D2) to illustrate the source selection

method of RS-UCB. Figure 2 shows the percentage of irrelevant source selection of RS-UCB based on
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δexp. When δexp = 0.25, RS-UCB only selects irrelevant source 3% of time. The percentage of irrelevant

source selection is increasing quadratically with decreasing δexp as predicted by Theorem 2.
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Fig. 2: The effect of δexp on source selection method of RS-UCB

Results on prediction accuracy : In this result, we use (D1) to evaluate the performance of RS-UCB

with state-of-art contextual bandit algorithms : LinUCB ([Chu et al., 2011]), Epoch-Greedy ([Langford

and Zhang, 2007]) and ORL-CF [Tekin and Van Der Schaar, 2014]. Table III summarizes the performance

on the breast cancer dataset.

Table III shows that RS-UCB performs slightly better than LinUCB and ORL-CF and slightly worse

than Epoch-Greedy when R = 2. Note that RS-UCB requires less information to be observed/measured/consulted.

Although LinUCB and Epoch-Greedy are observing all the information, they do not consider the relevance

relationship, thereby leading to more exploration. The poor performance of ORL-CF is due to the adopted
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Algorithms # observations Error Relevance
RS-UCB R=1 8.9% Yes
RS-UCB R=2 7% Yes
ORL-CF 6 10% Yes
LinUCB 6 7.4% No

Epoch-Greedy 6 6.2 % No

TABLE III: Comparison with state-of-the art algorithms

relevance learning metric, which scales with DR+1.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel algorithm that is able to learn what information sources should a

decision maker consult to make optimal decisions, i.e. it “learns what to learn” to inform its decisions.

For the proposed algorithm, we show a logarithmic regret bound and matching lower bound.

In the current framework, the information sources are assumed to be independent of each other. When

the sources are dependent to each other, the relevance metric defined in (2) might not converge to relevant

information source since δda(xd) 6= 0 even if source d is irrelevant to decision making problem. Therefore,

new relevance metric should be used to identify the relevant source(s) for this case. This extension to

correlated sources is left as a future work.

There are many interesting other directions for future work. One especially promising direction is the

case in which consulting a source is costly, and consulting different sources involves different costs. In

such a setting, the decision maker needs to trades-off the impact of the informativeness of the sources

and the costs of consulting such sources on the total rewards.
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