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Abstract—In this paper, we study the system-level computa-
tional resource allocation problem among multiple multimedia
tasks. We consider the multimedia tasks to be autonomous, i.e.,
they are selfish and behave strategically. We propose a resource
allocation framework based on mechanism design to prevent the
tasks from behaving strategically and manipulating the available
system resources. We apply two mechanisms in the framework
and assess their advantages over proportional-share resource
allocation algorithms, which are often used in multimedia systems.
We show in the simulations that the incorporation of mechanism
design for system resource allocation is a promising solution that
achieves efficient, fair and robust allocation against manipulation
from strategic applications.

Index Terms—Mechanism design, multimedia systems, multi-
media tasks, system resource management.

I. INTRODUCTION

W ITH the advent of video streaming, IPTV, video surveil-
lance, etc., multiple multimedia processing tasks, such

as processing and compression, need to be executed concurrently
and are required to share the available system resources, e.g., the
CPU time, local and main memory, and cache, etc. Among them,
the CPU time allocation is one of the most widely studied topics
[3], [5]–[7]. Hence, we also focus in this paper on the problem
of CPU processing time allocation among multimedia tasks, be-
cause this represents one of the main resource bottlenecks [14].
The resource allocation solutions studied in this paper, however,
can also be applied to other types of system resources.

Early computer systems research addresses the problem of
resource allocation using scheduling [4]. Scheduling focuses on
determining when to allocate system resources to a specific task.
In [4], the authors propose the Earliest-Deadline-First (EDF)
policy that allocates resources to the task having the most immi-
nent deadline. However, this policy is inefficient for multimedia
applications because it does not take into account the soft dead-
lines characteristics of multimedia applications and the impact
on multimedia quality. Alternatively, the SMART algorithm in
[6] extends the EDF scheduling policy by adopting the propor-
tional-share (PS) algorithm to prioritize the tasks based on their
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importance, as defined by each user. SMART iteratively allo-
cates resources to competing tasks starting from the tasks having
the highest priority and the most urgent deadline. However, the
priority is computed using predetermined weights. Therefore,
the algorithm cannot take advantage of the complexity-scala-
bility of multimedia tasks to achieve different quality-resource
tradeoffs.

Subsequent research takes into account the resource alloca-
tion’s impact on the quality of the multimedia tasks [3], [8]. For
instance, in [8], a piecewise linear utility function is introduced
to characterize the quality of audio tasks as a function of the
CPU utilization. In [3], the proposed resource allocation policy
incrementally allocates the CPU processing time to each task
proportionally to the user’s importance/priority. At the applica-
tion layer, each task finds the best configuration to maximize
its quality for the given amount of CPU processing time. The
quality-awareness of the architecture is based on the coarse as-
sumption that the quality of a multimedia task increases linearly
with the amount of allocated resources. However, the quality of
each multimedia task scales differently depending on the un-
derlying multimedia content and the algorithm (e.g., encoding)
parameters.

A limitation of existing solutions on resource allocation in
computer systems is that they heavily depend upon the appli-
cations declaring their resource demand in a truthful manner,
and they lack robustness against strategic manipulation from
applications. In this paper, we propose to complement existing
solutions for multi-task resource allocation by explicitly con-
sidering the individual characteristics and the strategic behav-
iors of multimedia tasks using mechanism design. Our mecha-
nism-design based framework complements previous research
on system resource allocation [3], [5]–[7] by providing quality-
aware resource allocation that is robust against manipulation.
We model how the allocated resources impact the multimedia
quality of the various tasks and propose a global adaptation
framework for resource allocation in multimedia systems based
on two mechanisms with different properties and overheads: the
Vickrey–Clarke–Groves (VCG) mechanism [1] and a recently
proposed budget-balanced pricing mechanism (BBPM) [2]. We
analyze the features of these two mechanisms in the context of
multimedia system resource allocation. Specifically, we study
the resulting quality measurements and the associated overheads
for the two mechanisms against those of the PS algorithm that
is often used for resource allocation [3], [5]–[7].

This paper is organized as follows. In Section II, we in-
troduce the global adaptation framework for system resource
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Fig. 1. Proposed global adaptation framework.

allocation and formulate the studied multi-task resource allo-
cation problem. In Section III, we introduce the tasks’ resource
adaptation strategies, message exchanges between tasks and the
system resource manager, and characterize the various alloca-
tions for multimedia systems when using the VCG and BBPM
mechanisms. In Section IV, we analyze the overhead and
optimality gap associated with our proposed global adaptation
framework. In Section V, we compare the simulation results for
the proposed global adaptation framework against the popular
PS policy. The conclusions are presented in Section VI.

II. MULTI-USER VIDEO TRANSMISSION—PROBLEM

FORMULATION AND SYSTEM DESCRIPTION

We propose a global adaptation framework for system re-
source allocation similar to the one defined in [3]. We enhance
this framework by allowing each multimedia task to adopt a
quality-complexity (Q-C) model to quantify its quality as a
function of the amount of resources allocated to it. Based on its
Q-C model, a task negotiates for resources with the system re-
source manager (RM). Moreover, we adopt mechanism design
solutions for the computation of the resource allocation by the
RM. In the following sections, we will discuss the reasons why
we use mechanism design. First, we present an overview of the
proposed framework.

A. Overview of the Framework

Fig. 1 shows the architecture of the global adaptation
framework. The framework is a cross-layer resource allo-
cation scheme that coordinates the information between the

application layer and hardware layer to facilitate the resource
allocation decision. The cross-layer information exchanges
are implemented as part of a resource management control
plane (RMCP). The RMCP supports two-way information
exchanges between the OS layer and the application layer,
e.g., the resource demands of tasks and the resource allocation
decision by the RM. The RMCP also enables the RM to query
the system for information on the available resources and the
number of concurrently running tasks.

Since the implementation of the framework is not the focus
of this paper, we refer the interested readers to [10] for more
details about the implementation of such system software. The
global adaptation framework is modeled as follows:

1) Hardware Layer: In this paper, we focus on the allocation
of the computational resource in the form of CPU cycles. The
maximum number of cycles per second that a CPU is capable
of providing is determined by the CPU frequency, which we
assume to be fixed. We denote to be the -th task’s CPU cycle
demand. For generality, we represent the CPU resource demand
of task by normalized CPU utilization , where

(1)

By definition, the normalized cycle value satisfies .
2) Application Layer: We assume there are video de-

coding tasks indexed by waiting to be serviced.
Each decoding task requires some number of CPU cycles for its
successful execution. This demand is represented by the normal-
ized CPU utilization , which we refer to as the CPU utilization
of task . In this paper, the utilization is measured by profiling
the reference H.264 decoder in [9] with queries to a high-res-
olution CPU timer through a Windows API [15] to gather the
number of cycles required to decode a sequence. The CPU uti-
lization of a video decoding task depends on the video sequence
and the decoding parameters, which we abstract by the com-
plexity profile . For simplicity, we encapsulate these factors
into a joint variable , i.e., , called the “type” of
task . Each task can operate at various complexity levels by
adjusting its complexity profile (i.e., decoding parameters) and
has a quality-complexity (Q-C) model that specifies the
video quality given the type of the task and the CPU utiliza-
tion [13]. In this paper, the Q-C models are derived using
the methodology described in the Appendix. In the RMCP, each
task is represented by an agent [18], which negotiates with the
RM to determine the resource allocation to the task, and a com-
mensurate complexity profile. For clarity, we refer to the infor-
mation submitted by agents as “messages” transmitted by tasks
in the RMCP.

3) OS Layer: A global adaptation is initiated by the RM
whenever there are significant variations in the resource de-
mands, e.g., when a task enters or exits the system. Through
the RMCP, the RM and the tasks are involved in a message ex-
change process, where the content of the messages in the RMCP
depends on the employed resource allocation policy. The choice
of resource allocation policy depends on the application, e.g.,
mechanism design or PS. At the end of the message exchange
process, the RM determines a resource allocation decision and
enforces the allocation through the OS scheduler until the next
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TABLE I
RESOURCE ALLOCATION AMONG THREE MULTIMEDIA TASKS WHEN TASK 1

MANIPULATES THE RESOURCE ALLOCATION BY MISREPORTING ITS SEQUENCE

TO BE THE MOBILE SEQUENCE

invocation of global adaptation. The scheduler can adopt any
existing scheduling policy, e.g., EDF. However, we note that
scheduling is not the focus of this paper. Finally, tasks are exe-
cuted with the decoding parameters derived from the complexity
profile of their Q-C models.

B. Problem Formulation

The resource allocation problem for the global adaptation
framework can be formulated as follows:

(2)

where represents the utility function of task given
the allocated resource and the transfer . The transfer
depends on the employed mechanism and will be introduced
in greater detail in Sections III-B and III-C. In our framework,
the RM utilizes the transfer to encourage truthful revelation of
each task’s type. If no transfer is employed, as in traditional re-
source allocation frameworks, the utility function of task re-
duces to its Q-C model, i.e., .

Equation (2) can be solved by the RM without employing any
mechanism design concept. However, under traditional quality-
aware resource allocation frameworks, tasks can take strategic
behaviors and deceive the RM by revealing false information.
For example, a task can misreport its video characteristics, e.g.,

when , in order to gain more re-
source than it requires. Table I shows the resource allocation
decision among three video decoding tasks (tasks 1–3) when
one of the tasks strategically misreports its sequence. We as-
sume task 1 is the strategic task and represents the video de-
coding task of the Foreman sequence, i.e., .
However, instead of reporting its true sequence, it reveals itself
to be a decoding task of a more complex sequence, i.e., the Mo-
bile sequence . To highlight the effect of manip-
ulation, we assume the other tasks declare their true types, i.e.,

and .
Compared with the resource allocation when all tasks reveal

their true types, the result shows that the manipulation by task 1

causes task 2 and 3 to be admitted at a lower quality. Previous
quality-aware resource allocation frameworks [3], [8] cannot
successfully address this unfairness caused by tasks’ manipu-
lation because the RM could not verify the truthfulness of tasks
until the actual execution. Even if the RM could detect such
strategic behaviors after the execution of tasks, the RM would
have to discard the previous resource allocation and re-initiate
the global adaptation.

III. MECHANISM DESIGN FOR MULTIMEDIA SYSTEMS

In this section, we introduce two game-theoretic mechanism
designs for the global adaptation framework. In Section III-A,
we present the desired properties of a mechanism design for the
global adaptation framework. In Section III-B, we introduce the
VCG mechanism. Section III-C presents the BBPM mechanism.
In Section III-D, we discuss the convergence issue associated
with the BBPM. Lastly, we discuss the constraints on the Q-C
model and propose a piecewise linear approximation of the Q-C
model in Section III-E.

A. Desired Mechanism Design Properties

To prevent tasks from untruthfully declaring their resource
requirements, mechanism design introduces the concept of tax-
ation, which is referred to as the transfer and denoted by for
task (the transfer can be tokens or another form of currency
adopted by the system to tax the various multimedia tasks). The
transfer integrated into each task’s utility is designed to penalize
the task by increases in its transfer. Since each task aims to max-
imize its utility, the employment of transfer effectively deters
manipulation by tasks. Importantly, the actual value of a transfer
depends on the deployed mechanism.

A game-theoretic mechanism is devised by its mechanism
designer to achieve certain desired properties at the equilibrium
[1]. Specifically, a mechanism designer formulates the
mapping function , the messages of the RM

, the messages of tasks
such that ,

where and are the
allocated resources and transfer, which achieve the properties
desired by the designer. In the following subsections, we will
discuss the mapping functions in greater details in Section III-B
and III-C.

For the resource allocation problem considered in this paper,
there are several properties that a mechanism design should
possess.

1) Efficiency: In our proposed framework, the RM utilizes
mechanism design to solve the resource allocation problem in
(2). Hence, the resulting outcome is utility-maximizing,
which is called “efficient” [17]. Mathematically, an efficient
outcome is the solution to the following problem:

(3)

where
. The VCG and BBPM mechanisms

employed in this paper have been shown to satisfy efficiency
[1], [2].
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2) Incentive Compatibility: For tasks, incentive compati-
bility means that truthful revelation of their types is the optimal
strategy to maximum their own utilities. It also implies that the
local utility-maximization of each task will lead to the global
maximization of the system utility. In other words, an incen-
tive compatible mechanism design intrinsically encourages
truth-revelation of the types of various tasks. Both the VCG
and BBPM mechanisms are known to be incentive compatible
[1], [2].

3) Individual Rationality: Individual rationality states that
the utilities of tasks joining the global adaptation framework will
not be worse off after the allocation, i.e.,

(4)

Tasks have zero utility if they do not join the resource allocation
framework. Hence, (4) can be interpreted as motivation for tasks
to voluntarily participate in the resource allocation. Both mech-
anisms possess the property of individual rationality [1], [2].

In addition to the properties mentioned above, the BBPM is
shown to be budget balanced [2]. The property of budget balance
states that the net value of the transfer imposed by the RM for
all tasks is zero at equilibrium, i.e.,

(5)

Therefore, tasks can achieve higher system utility under the
BBPM mechanism than the VCG mechanism.

The other difference between the VCG mechanism and
the BBPM is the equilibrium concept. The VCG mechanism
converges to the so-called dominant strategy equilibrium,
which states that for each task , there exists a message

irrespective of the other tasks’ messages
such that

(6)

where and is the feasible mes-
sage space for task . Under the dominant strategy equilib-
rium, a task does not need to know the messages of the other
tasks to maximize its own utility.

The BBPM implements another type of equilibrium concept,
the Nash equilibrium. At Nash equilibrium, given a specific
equilibrium message of the other tasks, the message

of task satisfies

(7)

Compared with (6), the Nash equilibrium concept is weaker
because for each task , the utility is maximized only under the
assumption that the messages of tasks other than are

unchanged. This implies that a task must know the messages
of the other tasks in order to maximize its own utility under
Nash equilibrium. However, this does not necessarily suggest
that the BBPM will have higher message exchange overhead.
The overhead will be further discussed in Section IV-B.

In summary, the properties of efficiency and incentive com-
patibility suggest that a global adaptation framework based on
mechanism design does not require frequent monitoring of the
system to prevent strategic behaviors from tasks. The property
of individual rationality is essential for the tasks to voluntarily
join the global adaptation. Lastly, the budget balance property
results in a higher system utility for the BBPM mechanism. Ide-
ally, we would like to have a mechanism design that incorpo-
rates all of the above properties. In the next subsections, we dis-
cuss how to implement the various mechanisms for multimedia
systems.

B. VCG Mechanism

In the VCG mechanism, the tasks and RM are engaged in
a single-round message exchange process through the RMCP.
The message exchange process of the VCG mechanism consists
of the following steps:

Step 1. RMCP Messages of Multimedia Tasks: The message
that each task submits to the RM contains the parameters

of its Q-C model . We note that a task could be designed
to reveal false information in an effort to gain as much resources
as possible. However, we will show that the transfer defined in
the VCG mechanism makes “truth-telling” the best strategy for
all the tasks.

Step 2. Allocation Decision: Based on the tasks’ RMCP mes-
sages, the RM solves the global adaptation resource allocation
problem in (2) to determine the optimal allocation that max-
imizes the sum of tasks’ qualities. In the VCG mechanism, the
objective is to maximize the system quality. However, we will
show later that such maximization also maximizes the system
utility. Let denote the Q-C model based on the revealed
type of task . The optimization problem becomes:

(8)

Step 3. Transfer Computation: Based on the resource alloca-
tion decision derived in Step 2, the RM computes the transfer

for each task . In the VCG mechanism, the transfer is
the RMCP message by the RM, i.e., , and is de-
fined to be the total quality loss of all tasks due to the presence
of task in the resource allocation. Let be the solution to
the optimization problem in (8) without task participating in
the resource allocation. The transfer is computed by:

(9)
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The first term in (9) calculates the sum of quality of all tasks
excluding task when task participates in the resource alloca-
tion. The second term is the other tasks’ aggregated valuation
without task ’s participation in the allocation. It is clear from
(9) that the transfer will always be non-positive. Plugging (9)
into (8), the utility of task is described by

(10)

Under the VCG mechanism, revealing the true type is the best
strategy for task . This can be seen from (10), which states that
task tries to maximize its utility function by manipulating its
revealed type . However, the last term in (10) is independent
of the strategic behavior of task . Therefore, the best that a task
can hope for by manipulating its type is to maximize the terms
in the square bracket in (10), i.e.,

(11)

Comparing (11) with (8), the best strategy for task in order
to maximize its utility is to reveal its true type , irrespective of
other tasks’ revealed types . In conclusion, the VCG mech-
anism is utility maximizing even though the objective of the
mechanism is to maximize the system quality.

C. The Budget-Balanced Pricing Mechanism

By relaxing the constraint of dominant strategy equilibrium,
in [2] a budget-balanced pricing mechanism that is Nash equi-
librium incentive compatible is introduced. Unlike the VCG
mechanism, the BBPM is budget balanced and can achieve
higher utility. In the BBPM, tasks iteratively exchange mes-
sages through the RMCP. Moreover, tasks do not directly reveal
their true valuations, e.g., the parameters of the Q-C models,
to the RM. Instead, their valuations are represented by a single
variable , which can be thought of as a pricing. The details of
the BBPM are as follows:

Step 1. Initialization: The RM determines an initial resource
allocation and initial price for each task. Due to the
possible strategic manners of tasks, the best policy for the
resource manager is to treat all tasks equally by assigning
each of them with the same resource allocation and price, e.g.,

.
Step 2. RMCP Messages of Multimedia Tasks: The RM and

the tasks iteratively exchange the pricing information based on
the tasks’ CPU utilizations. The step is repeated until equilib-
rium is reached:

2.1 RMCP Messages of the RM. Under the BBPM, the RM
conveys two variables, , to each task as the

RMCP message. Let represents task ’s valuation of the re-
source. For the first iteration, we have and .
The RMCP messages of the RM is defined
by

(12)

which represents the average price per unit of resource from the
other tasks, and

(13)

which is the excess resource demand excluding the demand
from task . The messages from the RM are used by tasks to
compute their transfer.

2.2 RMCP Messages of Multimedia Tasks. Given the message
transmitted by the RM, each task maximizes

its utility by solving the following resource allocation problem:

(14)

The transfer function in (14) is defined by

(15)

where

(16)

The first term in (15) represents the price task pays/earns for
buying/selling amount of resource from/to the other
users. The second term is the penalty that task pays due to
the mismatch of its price to the average price of the other tasks

. The third term in (15) is introduced to prevent the
solution from reaching an inefficient Nash equilibrium such as
i) for all the users and ii) the total demand exceeds the
available resource, i.e., . The variable in (15) can
be thought of as the step size for updating the price. Its influence
on the convergence of the mechanism will be discussed in the
next subsection.

Plugging (15) into (14), the optimization problem can be
written as

(17)
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Observe that the third term in (17) is non-negative no matter
what the values of are. Therefore, the maximization of
the utility can only occur when the transfer is minimized, i.e.,

(18)

Hence, the problem in (17) can be decomposed by first
solving the following equation

(19)

and then determining the price according to (18). At the end of
the step, task submits its message to the RM, i.e.,

.
Step 3. Allocation Decision: After reaching the equilibrium,

the RM allocates the resource based on the equilibrium message
, where and . At

equilibrium, the squared term in (15) becomes zero. Hence, the
transfer for task calculated by the RM is

(20)

D. Convergence of the BBPM

The BBPM introduced in Subsection III.C is an iterative al-
gorithm and its convergence depends on the value of the step
size . From (18), the value of is inversely proportional to
the amount that the price changes per iteration. Therefore, a
small may cause the price to oscillate and affect the con-
vergence of the mechanism. On the other hand, if is too large,
the mechanism will exhibit a slow convergence rate. One so-
lution to satisfy the convergence speed and the stability of the
mechanism is to adopt a variable step size scheme, i.e., a small
step size is used as the initial value and then changed to a larger
value in the subsequent iterations in order to guarantee conver-
gence [21].

In addition to the step size, the initial price that the
RM conveys to the tasks also affects the convergence speed.
If the gap between and the equilibrium price is large, the
message exchange process will take more iterations to reach
convergence.

E. Constraint on the Q-C Model and a Piecewise Linear
Approximation of the Model

The two mechanisms discussed above impose certain con-
straints on the Q-C model in order to produce an efficient
allocation. The VCG mechanism assumes a quasi-linear utility
function in order to satisfy the properties discussed in Sec-
tion III-A, [1]. On the other hand, the BBPM imposes stricter
constraints—strict concavity and differentiability—on the
utility function in order to guarantee efficiency [2]. We note
that the utility functions defined in (8) and (17) are quasi-linear
by definition. Hence, the VCG mechanism will always pro-
duce efficient allocation within the scope of discussion in this
paper. For the BBPM, since the transfer in (14) is a function
of tasks’ Q-C model, the constraints of strict concavity and
differentiability applies directly to the Q-C model. For strict
concavity, it has been shown that the Q-C models of efficient
video coders satisfy the property [19], [20]. Differentiability

Fig. 2. Example of the piecewise linear Q-C model for task � when the number
of segments of the model is � � �.

limits the feasible Q-C model to be a continuous function for
an efficient allocation.

The optimization problems in (8) and (17) can be solved by
nonlinear programming techniques. However, the associated
computation demand may prohibit the deployment of the
proposed framework in real-time applications. By relaxing
the constraints on the Q-C model and utilizing a piecewise
linear Q-C model, we can devise heuristics that reduce the
computation overhead. Specifically, we assume a - segment
piecewise linear Q-C model as follows:

where

(21)

An example of the piecewise linear Q-C model is illustrated
in Fig. 2. A piecewise linear Q-C model does not satisfy the
strict concavity and differentiability properties. Therefore, the
resource allocation based on a piecewise linear model will be
suboptimal. We will study the gap to optimality in Section IV-C.

IV. QUANTIFYING THE OVERHEADS OF THE RESOURCE

ALLOCATION MECHANISMS

A. Computational Overhead

Based on the assumption of the piecewise linear Q-C model
proposed in Section III-E, we propose two greedy algorithms
that have linear complexity for both mechanisms. First of all,
we note that in the piecewise linear Q-C model introduced in
Section III-E, the quality gain per unit resource must be
non-increasing with the increment of , i.e.,
since the empirically-derived Q-C models in the Appendix are
concave. To facilitate the VCG greedy algorithm, we sort in
descending order. If , the order is randomly deter-
mined. We denote the ordered list of by for
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Fig. 3. Greedy algorithm for the VCG mechanism.

where is the total number piecewise linear components across
all of the tasks, i.e., in our example. We also de-
note the increase in CPU utilization associated with by .
For example, if the descending list of quality gain per unit re-
source comes from ,
we have the associated CPU utilization increment indexed by

.
The VCG greedy algorithm allocates the resource in de-

scending order of the quality gain per unit resource, as specified
by , until there is no resource available or all tasks have
reached their maximum quality . Let be the index set
of the reordered utility gain per unit time of task . Con-
tinuing with the prior example, we have belonging
to task 1. This leads to . The greedy algorithm
for the optimization problem in (8) is shown in Fig. 3. The
algorithm can also be applied to the transfer computation in
(9). The computational complexity of the algorithm consists
of sorting the quality gain per unit resource and iteratively
updating the variables. Since the sorting is the dominant factor
and needs only to be done once, the overall computational
complexity of the VCG mechanism is .

For the BBPM, due to the iterative nature it is more difficult to
quantify the computational complexity. However, we can study
the complexity it takes to solve (8) per message exchange itera-
tion. Plugging in the piecewise linear Q-C model, the optimiza-
tion in (19) can be reformulated as

(22)

Hence, the maximizing value of depends on the term
, which represents the quality gain per unit resource

Fig. 4. Greedy algorithm for the BBPM.

revised by . An example of the revised quality gain per unit
resource is illustrated in Fig. 3 as the dotted line. Due to the con-
cavity of the Q-C model, decreases as the index increases.
In order to maximize (22), each task should increase its re-
source demand until the revised quality gain per unit resource
becomes less than or equal to zero, i.e., . Based on
the above observation, we devise the algorithm in Fig. 4 for the
BBPM optimization problem in (14).

The computational complexity of the algorithm is ,
where . However, from the simulation results
that will be presented in Section V, the BBPM takes several it-
erations to reach the equilibrium. Hence, the lower per-iteration
complexity for the BBPM does not guarantee that the overall
complexity will be less than the VCG mechanism.

B. Message Exchange Overhead

The message exchange overhead introduces additional delay,
which is undesirable for real-time applications Therefore, we
quantify the message exchange overhead as the number of pa-
rameters exchanged by the tasks and the RM per message ex-
change iteration. In the VCG mechanism, the message of the
RM to each task is the transfer, i.e., . The mes-
sage transmitted by each task contains the parameters of the
piecewise linear Q-C model, i.e.,

. These messages are only transmitted once. Hence,
the number of messages for the VCG mechanism is ,
where . Note that for the VCG mechanism, the
message exchange overhead is linear with the number of tasks
and the number of parameters of the Q-C model.

For the BBPM, we consider the per-iteration overhead. From
Section III-C, the RM conveys to task the average price and the
excess demand of all tasks except for , i.e., .
Task solves the optimization problem in (17) and transmits
the resource demand and its valuation of the resource back to
the RM, i.e., . Hence, the number of messages
per iteration for the BBPM is . Note that the mes-
sage exchange overhead of the BBPM is independent of the em-
ployed Q-C model and only depends on the number of iterations
to reach the equilibrium and on the number of tasks present in
the system.

C. Gap to Optimality

Although the proposed greedy algorithms can be combined
with piecewise linear Q-C models to reduce the resource allo-
cation overhead, the resulting optimality gap needs to be consid-
ered. To illustrate this tradeoff, we employ a 50-segment piece-
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TABLE II
COMPARISON OF THE OPTIMAL ALLOCATION DERIVED BY NONLINEAR PROGRAMMING FOR THE CASE OF CONTINUOUS Q-C MODELS AND THE SUBOPTIMAL

ALLOCATION DERIVED BY THE GREEDY ALGORITHM IN FIG. 4 FOR THE CASE OF 50-SEGMENT PIECEWISE LINEAR Q-C MODELS

wise linear Q-C model for each task and show the resource al-
location decision in Table II. The piecewise linear Q-C models
are derived from approximating the continuous Q-C model in
the Appendix.

Compared with the optimal allocation derived by nonlinear
programming and continuous Q-C models, the quality gap is
less than 0.2 dB for each task, which is not noticeable by a
human observer. We only show one allocation decision for the
greedy algorithms since both algorithms produce the same allo-
cation. This justifies the utilization of a smooth piecewise linear
Q-C model to reduce the computation overhead for solving the
optimization problems in (8) and (17) while producing near-op-
timal solutions. Hence, we only show the resource allocation
results derived by employing 50-segment piecewise linear Q-C
models and the greedy algorithms henceforward.

V. SIMULATION RESULTS

In this section, we provide simulation results to explicitly
quantify the performance of multimedia tasks under the pro-
posed resource allocation framework. In Section V-A, we com-
pare the resulting quality for the various resource allocation
schemes and show the degradation in performance upon the
arrivals of extra tasks in the system. We discuss the overhead
incurred by the application of mechanism design in the global
adaptation framework in Subsection V.B.

For the simulation, we utilize the H.264 coder in [9] to
obtain the continuous Q-C models for Foreman, Mobile, and
Coastguard sequences as described in the Appendix. Based on
the continuous Q-C model, we derive piecewise linear Q-C
models in order to utilize the greedy algorithms discussed in
Section IV-A. Unless otherwise specified, we denote task 1, 2
and 3 to represent the decoding task of Foreman, Mobile, and
Coastguard sequences henceforward.

A. Comparison of Resource Allocation Schemes

First, we compare the resource allocation decision of the
global adaptation framework proposed in this paper and that of
the proportional-share (PS) algorithm. We choose the PS algo-
rithm because it is pertinent to the resource allocation problem
discussed in this paper. Besides, the PS algorithm is widely
adopted in various resource allocation literatures [3], [5]–[7].
For the experiment, we also utilize the EDF scheduling policy
similar to [3], [6]. We assume there are three tasks (task 1–3)
being serviced in the system. Each task has a minimum CPU

TABLE III
COMPARISON OF THE RESOURCE ALLOCATIONS AND THE RESULTING

QUALITY MEASUREMENTS BETWEEN THE PROPOSED GLOBAL ADAPTATION

FRAMEWORK AND THE CONVENTIONAL PS ALGORITHM

utilization that is defined to be the CPU utilization that achieves
30 dB PSNR for a given sequence. We choose the value of 30
dB because it is recognized as a threshold for acceptable video
quality [21]. For the Q-C models derived in the Appendix,
task 2 requires the most resources while task 1 and 3 already
satisfy the 30 dB PSNR criterion at a comparatively low CPU
utilization at 0.1. Hence, the minimum utilization for the three
tasks are chosen to be (0.1, 0.3, 0.1). Based on this knowledge,
the weightings for the PS algorithm are determined to be (0.15,
0.7, 0.15). Table III shows the resulting resource allocations and
the quality for individual tasks by applying the PS algorithm
and the VCG mechanism in the proposed global adaptation
framework. We do not show the result of BBPM because it
produces the same allocation decision as the VCG mechanism.

By employing mechanism design, the system quality receives
nearly 3 dB PSNR gain over the resource allocation by the PS al-
gorithm. The main problem with the PS algorithm is that the re-
source allocation relies heavily on the weightings choice. Even
if the Q-C model of each task is known, it is still possible to have
a resource allocation that is far from the optimal allocation, as
demonstrated by the result in Table III. Besides, PS-based algo-
rithms do not have the ability to deal with the strategic behavior
of tasks.

Next, we examine the quality impact on existing tasks when
new tasks join the global adaptation framework. The setup is de-
scribed as follows. We assume at time 0 the RM makes the re-
source allocation decisions for three tasks. The duration of each
task is set to be 10 s. At the fifth second, two new tasks join the
global adaptation framework. Table IV shows the initial results
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TABLE IV
RESOURCE ALLOCATION AND QUALITY MEASUREMENTS WHEN THE SYSTEM INITIALLY RUNS

THREE TASKS AND TWO ADDITIONAL TASKS JOIN AFTER 5 S

TABLE V
NUMBER OF ITERATIONS TAKEN TO PRODUCE THE OUTCOME FOR THE VCG,
BBPM MECHANISMS AND THE PS ALGORITHM. BBPM-NP DENOTES THE

NUMBER OF ITERATIONS TAKEN BY UTILIZING NONLINEAR PROGRAMMING

FOR THE CASE OF CONTINUOUS Q-C MODELS. BBPM-GREEDY

REPRESENTS THE NUMBER OF ITERATIONS OBTAINED BY THE PROPOSED

GREEDY ALGORITHM IN FIG. 4 UNDER THE ASSUMPTION OF

PIECEWISE LINEAR Q-C MODELS

and the updated results at time 5 s for the VCG mechanism and
the PS algorithm.

The result shows that mechanism design achieves better
fairness among tasks. The mechanism-design based framework
assigns fewer resources to decoding tasks of the Foreman
sequence (task 2, 3, 5) since the quality impact for these tasks
is lesser than that for the decoding tasks of the Coastguard
sequence (task 1,4). Therefore, we conclude that the mecha-
nism-design based global adaptation framework scales with the
number of tasks and achieves graceful quality degradation for
the various already admitted tasks.

B. Quantification of Mechanism’s Overhead

In this experiment, we assume that all tasks report true types
and follow the same setup in the previous subsection to assess
the overhead incurred by the application of mechanism design.
Since the actual time taken to produce the outcome highly de-
pends on the implementation of an algorithm, we measure the
number of iterations taken for the computation of the outcome.
The results presented in Table V shows that the BBPM takes
the most iterations to reach convergence. However, the proposed
greedy algorithm for BBPM can be used to reduce the overhead
of the resource allocation.

We further examine the convergence rate of the BBPM
against the number of tasks presented in the global adaptation

Fig. 5. Number of iterations taken to produce the outcome versus the number
of tasks participating in the global adaptation.

framework. For the experiment, we concurrently run nine
video decoding tasks of the Coastguard sequence and measure
the number of iterations taken by the BBPM mechanism.
We choose the Coastguard sequence because it is the least
complexity-demanding task. This enables us to run nine tasks
simultaneously without having any of the tasks being rejected
due to the lack of resources. Fig. 5 illustrates the result. It shows
that there exists a non-linear relationship between the number
of iterations taken to reach the convergence and the number of
tasks presented in the system.

From Subsection III.B, the per-iteration computational over-
head of the VCG and the BBPM mechanisms are
and respectively under the assumption of a piecewise
linear Q-C model. Compared with the computational
overhead of the PS algorithm, the two mechanisms have higher
per-iteration computational overhead.

Finally, the message exchange overhead should also be con-
sidered since it could be a dominant factor in a computer net-
work setup with transmission delays. For the PS algorithms, the
RM only needs to determine the weightings of tasks based on
their minimum CPU utilizations as defined in Subsection V.A.
Hence, the PS algorithm has the least message exchange over-
head, with the number of parameters being . The message
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exchange overhead of the VCG mechanism depends on how
complex the employed Q-C model is, e.g., the number of seg-
ments of a piecewise linear Q-C model. For the piecewise-linear
model employed in the paper, the message exchange overhead
is . Similarly, the message exchange overhead of
the BBPM, for this particular experiment, is .

In summary, our simulation results show that the two mecha-
nisms considered in this paper produce efficient resource alloca-
tion decisions that maximize the system utility. We categorize
the overhead introduced by the two mechanisms into compu-
tational overhead and the message exchange overhead. For the
BBPM mechanism, our simulation result shows that the number
of iterations taken to reach equilibrium grows significantly when
there are more than six tasks in the system. The non-linear rela-
tionship between the number of tasks and the number of itera-
tions could limit the application of the BBPM mechanism only
to small systems that handle fewer tasks. In contrast, the VCG
mechanism does not have such limitation. However, its message
exchange overhead grows linearly with the number of parame-
ters of the Q-C model. Therefore, the choice of the two mech-
anisms depends on the system specifications and requirements.
Although both mechanisms have higher computational and mes-
sage exchange overhead, we note that the overhead of mecha-
nism-design based solutions is acceptable since the global adap-
tation is not invoked frequently.

VI. CONCLUSION

In this paper, we study the problem of system-level resource
allocation in multitask multimedia systems, while explicitly
considering the strategic behaviors of tasks. We propose a
global adaptation framework based on mechanism design to
deter the tasks from manipulating the resource allocation.
By modeling the quality-complexity functions of multimedia
tasks, the proposed framework takes into account the unique
characteristics of individual tasks. We study how two popular
mechanisms can be efficiently integrated in existing global
adaptation frameworks for resource allocation. Compared with
the PS algorithm, the simulation results show that the resulting
resource allocation decision is both utility/quality maximizing
and robust against task manipulation. In addition, we also
investigate practical issues associated with implementing
mechanism design for system resource allocation, such as the
computational overhead and the message exchange overhead
incurred. We conclude that the properties of efficiency, fairness
and robustness against manipulation of mechanism design
justify the additional overhead introduced by the adoption of
mechanism design in the global adaptation framework. For the
problem considered in this paper, we conclude that the VCG
mechanism is a better solution due to its simplicity and faster
convergence property. The framework proposed in the paper
can be extended to support multiprocessor systems or to include
energy constraints. These topics and the implementation of the
proposed framework are part of our future research.

APPENDIX

For the derivation of the Q-C models, we utilize the
H.264/AVC joint model reference coder in [9] throughout the

Fig. 6. Plot of the Q-C models for Foreman, Mobile, and Coastguard
sequences.

TABLE VI
SET OF PARAMETERS USED FOR THE DERIVATION OF THE Q-C MODELS

paper. However, we note that the methodology can be applied
to forthcoming coder standards as well to obtain a similar Q-C
model.

First, we represent the CPU utilization for task by , which
is the normalized CPU cycles per second required to decode a
particular sequence. The quality is represented by the average
PSNR in the unit of dB. It is well known that the CPU uti-
lization of a video task depends on the type , which consists
of the characteristics of a sequence and varies according to
the complexity profile . Similarly, the type also influences the
PSNR quality measurement. We leverage the scalable nature of
video decoding tasks to depict their Q-C functions. Specifically,
each video decoding task is decoded using a set of complexity
profiles . The resulting CPU utilization and quality measure-
ments constitutes the achievable Q-C set for a
task given its set of complexity profile . Similar to the opera-
tional rate-distortion models [11], we obtain the Q-C model by
least-mean-square curve fitting the hull of the operational Q-C
set.

For illustration, we applied the above methodology to ob-
tain the Q-C models for Foreman, Mobile, and Coastguard se-
quences. The complexity profile consists of the bit-rat and
the group-of-pictures (GOP) structure , i.e., .
Table VI shows the collection of parameters of the complexity
profile. The sequences are decoded at CIF resolution and 30 Hz
frame-rate with 300 frames decoded. Fig. 6 plots the derived
Q-C models based on the parameters listed in Table VI.

From Fig. 6, the derived Q-C models are concave. They are
also monotonically increasing. We assume that every point on
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the Q-C model is achievable. This assumption is reasonable be-
cause for H.264/AVC-based coders, the techniques of data par-
titioning and hierarchical B frames can be used to create various
layers.
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