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Abstract—This paper considers a noncooperative game in which
competing users sharing a frequency-selective interference channel
selfishly optimize their power allocation in order to improve their
achievable rates. Previously, it was shown that a user having the
knowledge of its opponents’ channel state information can make
foresighted decisions and substantially improve its performance
compared with the case in which it deploys the conventional iter-
ative water-filling algorithm, which does not exploit such knowl-
edge. This paper discusses how a foresighted user can acquire this
knowledge by modeling its experienced interference as a function
of its own power allocation. To characterize the outcome of the mul-
tiuser interaction, the conjectural equilibrium is introduced, and
the existence of this equilibrium for the investigated water-filling
game is proven. Importantly, we show that both the Nash equilib-
rium and the Stackelberg equilibrium are special cases of the con-
jectural equilibrium. We also develop practical algorithms to form
accurate beliefs and select desirable power allocation strategies.
Numerical simulations indicate that a foresighted user without any
a priori knowledge of its competitors’ private information can ef-
fectively learn how the other users will respond to its actions, and
induce the entire system to an operating point that improves both
its own achievable rate as well as the rates of the other participants
in the water-filling game.

Index Terms—Interference channel, power control, noncooper-
ative game, conjectural equilibrium.

I. INTRODUCTION

M ULTIUSER communication systems represent compet-
itive environments, where devices built according to

different standards and architectures compete for the limited
available resources. These devices can differ greatly in terms
of their channel conditions, user-defined utilities, action strate-
gies, ability to sense the environment and gather information
about competing users, and subsequently reason and adapt
their transmission strategies based on the available information.
Spectrum sharing among multiple competing devices in the
interference-limited communication systems represents such
an environment. In particular, the performance of each device
depends not only on its own power allocation strategy, but also
on that of the other devices. Individual devices may differ in
both their knowledge of the system-wide channel state infor-
mation (which is for instance constrained by their spectrum
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sensing abilities and/or information exchange overheads) as
well as their decision making mechanism for choosing their
optimal power allocation.

A. Literature Review

During the past two decades, multiuser power control in
wireless networks has been extensively modeled and analyzed
within the game theoretic framework. The existing literature
includes solutions for both narrowband and wideband power
control. These works can be further subdivided based on the
deployed utility functions, e.g., rate maximization, power
minimization, energy efficiency maximization, etc. For a
comprehensive review, we refer the readers to [1]–[3] and the
references therein.

This paper focuses on the multiuser interaction in fre-
quency-selective Gaussian interference channels in which
self-interested users are trying to maximize their achievable
rates. Throughout this paper, we focus on a simple, yet practical
approach, which minimizes the complexity of transceivers by
treating interference as additive noise. From a particular user’s
perspective, it is well known that, for fixed interference power,
the optimal power allocation is the so-called water-filling
solution. Therefore, the spectrum sharing problem can also be
regarded as a water-filling game. Specifically, the participants
in the water-filling game are modeled as players with individual
goals and strategies. They compete or cooperate with each
other until they can agree on an acceptable resource allocation
outcome. Existing research can be categorized into two types,
noncooperative games and cooperative games [4]–[15].

First, the formulation of the multiuser environment as a non-
cooperative game has appeared in several recent works [4]–[11].
An iterative water-filling (IW) algorithm has been proposed to
mitigate the mutual interference and optimize the performance
without the need for a central controller [4]. At every decision
stage, selfish users deploying this algorithm myopically max-
imize their achievable rates by water-filling across the entire
frequency band until a Nash equilibrium (NE) is reached. Suf-
ficient conditions under which the iterative water-filling algo-
rithm converges to a unique NE are derived and the closed form
solution to the water-filling problem is investigated for some
special scenarios [5]–[8]. Alternatively, self-enforcing protocols
are studied in the repeated game setting, where efficient, fair,
and incentive compatible spectrum sharing is shown to be pos-
sible by punishing misbehavior and thereby, compelling users
to cooperate [9].

Because the IW algorithm may lead to Pareto-inefficient
solutions [10], i.e., selfishness is detrimental in the interfer-
ence channel, there also have been a number of related works
studying spectrum sharing in the setting of cooperative games
[12]–[16]. Several (near-) optimal algorithms were proposed
to attain different operating points, e.g., weighted sum-rate
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maximization, proportional fairness, max-min fairness, etc., on
the Pareto boundary of the achievable rate region. These works
assume that users cooperatively maximize a common objective
function and require explicit information exchanges among the
users.

In short, most of the existing research mainly concentrates on
studying the existence and performance of NE in noncoopera-
tive games or on developing efficient algorithms to approach
the Pareto boundary in cooperative games. Our focus in this
paper is on the noncooperative setting, which explicitly con-
siders the self-interested and competitive nature of individual
players. However, most of the existing works in the noncollab-
orative setting often neglect an important intrinsic dimension
of the information-decentralized multiuser interaction. They as-
sume homogeneous users acting only based on their own pri-
vate information and disregarding their ability to acquire and
process information about their opponents, thereby being able
to improve their performance. The best response strategy of a
selfish user that knows its myopic opponents’ private informa-
tion, including their channel state information and power con-
straints, was first investigated in [11] using the Stackelberg equi-
librium (SE) formulation. It was shown in [11] that, surprisingly,
a foresighted user playing the SE can improve both its perfor-
mance as well as the performance of all the other users. These
results highlight the significance of information availability in
water-filling games. However, one key question remains un-
solved: how should a foresighted user acquire its desired infor-
mation and adapt its response?

B. Contributions

First, as opposed to our previous approach [11], which as-
sumes a foresighted user having perfect knowledge of its com-
petitors’ responses to its actions, we discuss in this paper how
the foresighted user without any such a priori knowledge can
accumulate this knowledge and improve its performance when
participating in the water-filling games. We propose that the
foresighted user can explicitly model its competitors’ response
as a function of its power allocation by repeatedly interacting
with the environment and observing the resulting interference.

Second, we introduce the concept of conjectural equilibrium
(CE) to characterize the strategic behavior of a user that models
the response of its myopic competing users, and the existence of
this equilibrium in the water-filling game is proven. Some pre-
viously adopted solutions, including NE and SE, are shown to
be special cases of the CE. The basic notion of CE was first pro-
posed by Hahn in the context of a market model [19]. A general
multi-agent framework is proposed in [20] to study the existence
of and the convergence to CE in market interactions. Specifi-
cally, a strategic user is assumed to model the market price as a
linear function of its desired demand. It is observed that it may
be better or worse off than without modeling, depending on its
initial belief. However, we note that using the linear model is
purely heuristic in [20]. In contrast to this heuristic belief for-
mation, we apply CE in the water-filling game, because it pro-
vides a practical solution concept to approach the performance
bound of SE.

Finally, we show that deploying the linear model to form
conjectures can suitably explore the problem structure of the
water-filling game, and therefore, it can lead to a substantial
performance improvement. Practical algorithms are developed

to form accurate beliefs and select desirable power allocation
strategies. It is shown that, a foresighted user without any a
priori knowledge can effectively learn how the other users will
respond to its actions and guide the system to an operating point
having comparable performance to the algorithm in [11], where
perfect a priori knowledge is assumed. More importantly, as op-
posed to the two-user algorithm in [11], the proposed algorithm
in this paper can be applied in general multiuser communication
scenarios, where more than two users exist.

The rest of the paper is organized as follows. Section II
presents the noncooperative game model, reviews the existing
related noncooperative solutions, and introduces the concept of
CE. The existence of this CE in the water-filling game is proven
in Section III. Section IV develops practical algorithms to form
beliefs and approach CE. Numerical results are provided in
Section V to show that a foresighted user can achieve sub-
stantial performance improvement if it models its competitors
in the water-filling game. In Section VI, we summarize the
connection and difference between our approach and related
work on repeated games, learning solutions and Stackelberg
formulations of power control problems, and discuss the pos-
sible extension to the communication scenarios with multiple
foresighted users. Conclusions are drawn in Section VII.

II. SYSTEM MODEL AND CONJECTURAL EQUILIBRIUM

In this section, we describe the mathematical model of the fre-
quency-selective interference channel and formulate the nonco-
operative multiuser water-filling game. We summarize the ex-
isting noncooperative game theoretic solutions and introduce
the conjecture equilibrium in the water-filling game context.

A. System Description and Existing Results

Fig. 1 illustrates a frequency-selective Gaussian interference
channel model. There are transmitters and receivers in
the system. Each transmitter and receiver pair can be viewed
as a player (or user). The transfer function of the channel from
transmitter to receiver is denoted as , where

. The noise power spectral density (PSD) that receiver
experiences is denoted as . Denote player ’s transmit

PSD as . For user , the transmit PSD is subject to its
power constraint

(1)

Indeed, the problem of finding the capacity region for this in-
terference channel has been open for many years. This paper
follows a suboptimal but practical approach that minimizes the
complexity of the transceiver by treating interference as noise.
For a fixed , user can achieve the following data rate:

(2)

where and are defined as and
.

To fully capture the performance tradeoff in the system, the
concept of a rate region is defined as

satisfying (1) and (2)
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Fig. 1. Gaussian interference channel model.

The multiuser interaction in the interference channel can be
modeled as a game. Let denote a game with

being the set of players, being
the set of actions available to the users (in which is the set of
actions available to user ), and being the users’
payoff functions (in which is the user ’s payoff
function) [17]. In the water-filling game, the players’ payoffs
are the respective achievable data rates and their strategies are
to determine their transmit PSDs satisfying the constraint in (1).

As aforementioned, existing research mainly focuses on two
types of games, i.e., cooperative games and noncooperative
games. Specifically, cooperative approaches aim to maximize
the weighted sum or weighted product of data rates [12]–[16].
Because of the nonconvexity of the rate as a function of
power allocations, the computational complexity of optimal
solutions (e.g., exhaustive search) in finding the rate region is
prohibitively high. Existing works aim to approach the Pareto
boundary of this rate region and provide near-optimal perfor-
mance. Moreover, it should be noted that cooperation among
users is indispensable for the multiuser system to operate at
the Pareto boundary. On the other hand, instead of solving
the optimization problem globally, the IW algorithm models
the users as myopic decision makers [4]. This means that
they optimize their transmit PSD by water-filling and compete
to increase their transmission rates with the sole objective
of maximizing their own data rates in (2) regardless of the
coupling among users. In other words, users are assumed to
be myopic, i.e., they update actions shortsightedly, without
considering the long-term impacts of taking these actions. The
outcome of this noncooperative scenario is characterized by the
concept of Nash equilibrium, which is defined to be any point

satisfying

(3)

where [17]. The exis-
tence and the uniqueness of NE are proven under a wide range
of realistic conditions and can be obtained by the IW algorithm
[5]–[7].

The recent approach in [11] demonstrates that the myopic be-
havior can be further improved. If a selfish user gets the private
information about its competitors and knows how they react, it
can foresightedly consider the coupling of players’ actions. In
this case, its best response strategy is to play the SE strategy.
To define SE, we first define the action to be a best response
(BR) to actions if

(4)

User ’s best response to is denoted as . Let
be the Nash equilibrium strategy 1 of the remaining

players if player chooses to play , i.e.

if (5)

The strategy profile is a Stackelberg equilibrium
with user leading2 if and only if [18]

(6)

Specifically, to find the SE in the water-filling game, we need to
solve the following bi-level programming problem [11], where
user 1 is assumed to be the foresighted user

(7)

It should be pointed out that the foresighted user needs to know
the private information of all its competi-
tors in order to formulate the above optimization. The previous
approach in [11] assumes that the foresighted user has the per-
fect knowledge of this private information. Importantly, it was
shown in [11] that users’ performance is substantially improved
compared with that of IW algorithm if the foresighted user plays
the SE strategy, even though the remaining users behave my-
opically. However, how such a foresighted user should accu-
mulate this required information remains unsolved. In the re-
maining part of this paper, we will show that the foresighted
user can obtain this information and improve its performance by
forming conjectures over the behavior of its competitors through
repeated interaction with the environment.

Before introducing the conjectural equilibrium, we de-
fine the discretized version of the water-filling game. In
practice, instead of optimizing over continuous frequency
variables, the frequency band is often divided into a total
number of small frequency bins [12]–[14], such that each
frequency bin could be viewed as a flat fading channel and

can be approximated as a constant within each
small frequency bin. Denote and

in for any
. As a result, (2) and (7) can be

reformulated correspondingly.

1For the cases where the equilibrium solution���� � is not unique for every
� , the Stackelberg equilibrium needs to be reformulated [18]. Note that in this
paper, ���� � is always unique in the water-filling game.

2Note that we investigate the steady-state performance and the initial action
order does not matter. The leader and the follower are differentiated based on
the users’ ability to forecast their competitors’ responses.
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B. Conjectural Equilibrium

In a game-theoretic setting, which equilibria will be played is
determined based on the existing assumptions about the players’
knowledge and beliefs. For example, the standard NE solution
is a set of strategies where no player has a unilateral incentive to
change its strategy. An implicit underlying assumption is that
each Nash player takes the other players’ actions as given. There-
fore, it chooses to myopically maximize its own payoff [17].
Another example is that of a SE strategy, where the foresighted
user needs to know the structure of the resulting for any

and believes that all the remaining players play the NE
strategy. Summarizing, the players operating at equilibrium can
be viewed as decision makers behaving optimally with respect
to their beliefs about the policies adopted by the other players.

To rigorously define the CE, we need to include two new ele-
ments and and, based on this, reformulate the strategic game

[20]. is the state space,
where is the part of the state relevant to the th user. Specifi-
cally, the state in the water-filling game is defined as the interfer-
ence that users experience. The utility function
is a mapping from users’ state space and actions to real num-
bers, . The state determination function

maps joint actions to states for each component
. Each user cannot directly observe the actions

chosen by the others, and each user has some belief about the
state that would result from performing its available actions. The
belief function is defined to be
such that represents the state that the player believes
that would result if it selects action . Notice that the beliefs are
not expressed in terms of other player’s actions and preferences,
and the multiuser coupling in these beliefs is captured directly
by individual users forming conjectures of the effects of their
own actions. In noncooperative scenarios, each user chooses the
action if it believes this action maximizes its utility.

Definition 1 (Conjectural Equilibrium): In the game de-
fined above, a configuration of belief functions and
a joint action constitute a conjectural equi-
librium, if for each

and

(8)

From the definition, we can see that, at CE, all users’ expec-
tations based on their beliefs are realized and each user behaves
optimally according to its expectation. In other words, users’
beliefs are consistent with the outcome of the play and they be-
have optimally with respect to their beliefs. CE considers the
users’ beliefs rather than their perfect knowledge as in
SE, which makes CE an appropriate solution concept when the
perfect knowledge is not available. The key problem is how to
configure the belief functions such that it leads to a CE having a
satisfactory performance. Section III discusses this problem in
water-filling games.

III. CONJECTURAL EQUILIBRIUM IN WATER-FILLING GAMES

In this section, we discuss how to configure a user’s be-
lief about its experienced interference as a linear function of

its transmit power, and show that such CE exists and it is a
relaxation of both NE and SE. We begin by stating several
fundamental assumptions used throughout the investigation
hereafter.

Assumption 1: There is only one foresighted user modeling
its competitors’ reaction as a function of its allocated power,
and all the remaining users are myopic users that deploy the
IW algorithm. Without loss of generality, we assume that this
foresighted user is user 1. The discussion of the extensions to
multiple foresighted users is addressed in Section VI.

Assumption 2: Every user is able to perfectly measure its
experienced equivalent noise PSD and interference PSD

in all frequency channels.
Assumption 3: Users react to any small variation in

their experienced interference by setting their power allocations
according to the water-filling strategy.

Assumption 4: In the lower-level problem formed by user
in (7), there always exists a unique NE. It has been

shown that under a wide range of realistic channels, the IW al-
gorithm converges to a unique Nash equilibrium [5]–[7]. De-
fine matrices in which and

, for . In particular, according to a
general sufficient condition developed recently that guarantee
the uniqueness of NE [6], we consider the channels that satisfy

for .
Next, we formally define the concept of stationary interfer-

ence.
Definition 2 (Stationary Interference): The stationary inter-

ference that user 1 experiences in the th channel is the accu-
mulated interference when best-response
users reach their NE in the lower-level problem in (7).
Note that is in fact a function of user 1’s power allocation

in the water-filling game and it can also be
denoted as .

A. Linear Belief of Stationary Interference

As discussed before, both the state space and belief functions
need to be defined in order to investigate the existence of CE. In
the market models for pure exchange economy [20], the market
price is impacted by the other consumers’ announced demand.
Therefore, it is natural to define the state to be the market price
in such scenarios. However, the proposed approach in [20] that
models and updates the belief on the market price as a linear
function of the excess demand is entirely heuristic. This is not
the case in our setting, where forming linear conjectures fits the
natural structure of the considered interference game.

In the water-filling game, we define state to be the sta-
tionary interference caused to user , because besides its own
power allocation, its utility only depends on the interference that
its competitors cause to it. Notice that the action available to user

is to choose the transmitted power allocations subjected to its
maximum power constraint. By the definition of belief function
in Section II-B, we need to express the stationary interference
as a function of the transmitted power. As we will see later, it is
natural to deploy linear belief models due to the linearity of the
caused stationary interference in terms of the allocated power,
and hence, forming such beliefs can lead to significant perfor-
mance improvements because they capture the inherent charac-
teristics of the actual interference coupling.
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Define as
for arbitrarily small pos-

itive variation in power . Given user 1’s power allocation
represents the power that

user allocate in the th channel at equilibrium.
Vector contains channel gains in the th
frequency bin. Indicator function is a mapping of

, which is defined to be: , if ,
and , otherwise. Based on these notations, the following
proposition motivates us to develop linear belief functions of
stationary interference.

Proposition 1 (Linearity of Stationary Interference): If the
number of frequency bins is sufficiently large, the first deriva-
tive of the stationary interference that user 1 experiences in
the th channel with respect to its allocated power in the th
channel satisfies

sign

if there does not exist

satisfying and

sign otherwise

if

in which is the Lagrange multiplier of
at the optimum of lower-level problem in (7). The

function is the indicator of which polyhedron the
piece-wise affine water-filling function [6] lies in. rep-
resents a constant determined by and the nonzero elements
of .

Proof: By the definition of , we have
. We differentiate two different cases:

1) If there does not exist any satis-
fying and , i.e., there is a nonzero
gap between the interference that users experi-
ences and their water-levels, it is straightforward to see that

.
Without loss of generality, we temporarily assume that
for . When users reach the equilib-

rium, we have from the optimality conditions of water-filling
solution:

in which

. . .
...

...
...

...

...
...

are the water-levels of all the water-filling
users. We consider the channel realizations satisfying

, which guarantees that the water-filling game has a unique NE
[6, Theorem 8]. Therefore, is invertible. It then follows
that

(9)

We also have , because if the width
of each frequency bin is sufficiently small, the fluctua-
tion of the water-level is negligible. In other words, if is suf-
ficiently large, we have . As a result, we have

if
if

(10)

in which . Note that if and
, all the derivations above still apply by removing

the th column and th row from cor-
respondingly. Hence, we can conclude is a
constant that depends on both and
the nonzero elements of .

2) If there exists satisfying and
, the stationary interference caused to user is the

same as its water-level . Therefore, a sufficiently small incre-
ment or decrement in user 1’s allocated power may cause

and to be different, i.e., the
stationary interference lies on the boundary between
two polyhedra that have different piece-wise affine water-filling
functions [6]. We need to treat the left-sided and the right-sided
first derivatives respectively, and similar conclusions can be de-
rived in the same way as in the first part.

Proposition 1 indicates that, the first derivative with respect to
a foresighted user’s allocated power in a certain channel is suffi-
cient to capture how the stationary interference varies locally in
that channel. We observe from (9) that

. Therefore, user 1 can de-
fine its belief function using the linear form 3 ,
in which is the estimate of and is a
constant representing the composite effect of user ’s
water-levels . This linear characterization of the stationary in-
terference can greatly simplify the implicit functional expres-
sion given by the solution of the lower-level problem
(7), while maintaining an accurate model of around the
feasible operating point .

B. Existence of Conjectural Equilibrium

Under the same known sufficient conditions discussed in [6],
[7], [11] for guaranteeing the existence of NE and SE, the exis-
tence of CE can be proven by showing that the first two types of

3Note that as long as the channel realization is random, for a fixed � , the
probability that the left-sided and right-sided derivatives in proposition 1 are not
equal is zero. We will assume that the first derivative exists hereafter. If it does
not exist, similar results can be derived by treating the left-sided and right-sided
first derivatives separately.
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TABLE I
COMPARISON AMONG NE, SE, AND CE IN WATER-FILLING GAMES

equilibrium are special cases of CE. To this end, Table I com-
pares the optimality conditions of the three types of equilibria
in the water-filling game.

As shown in Table I, the information requirement for playing
various equilibria differs. At NE, each user includes its sta-
tionary interference as a constant in the optimization, and its
action is the best response to . To play SE, the foresighted user
needs to know the functional expression of the stationary inter-
ference such that the bi-level program can be formed.
Specifically, the required information includes both the system-
wide channel state information , the noise PSD , and the
individual power constraint for .
In contrast, in the case of CE, the above information for playing
SE is no longer required and the foresighted user behaves opti-
mally with respect to its beliefs on how the stationary inter-
ference changes as a function of .

Proposition 2 (NE and SE as CE): Both the Nash equilibrium
and the Stackelberg equilibrium are special cases of conjectural
equilibrium.

Proof: To solve the CE, the optimization solving CE in
Table I is essentially

(11)

In order to show that both NE and SE are special cases of
CE, we only need to verify that at NE and SE, user 1’s ac-
tion is optimal with respect to its belief and its belief agrees
with its state. First, clearly, NE is a trivial CE with the param-
eters in user 1’s belief functions.
Next, denote the optimal solution of the
discretized version of problem (7). To prove SE is a CE, we
need to find the corresponding and and show that SE
also solves problem (11). Consider the belief function in Table I
with the parameters
and . As discussed before, such

parameters preserve all the local information of the objective
of (7) around into problem (11). KKT conditions hold at

since it solves problem (7). A sufficient condition that en-
sures SE to be a CE is that (11) belongs to convex optimiza-
tion, because KKT conditions are necessary and sufficient for
convex programming to attain its optimum. Appendix A pro-
vides a sufficient condition under which (11) is convex,
thereby proving that SE is a special CE if these conditions are
satisfied.

Proposition 2 indicates that the two isolating points, NE and
SE, are both CE, if parameters are prop-
erly chosen. Therefore, CE can be viewed as an operational ap-
proach to attain the SE if the system-wide information required
for solving SE is not available. It is because only the local infor-
mation including stationary interference and its first deriva-
tive is required to formulate (11), and this infor-
mation can be obtained using measurements performed at the
receiver.

In addition, we are interested in the existence of other CEs
besides these two points. Denote the parameters of any CE, e.g.,
NE or SE, as , and the optimal solution
of (11) given parameters as . Let

be a mapping defined as in which

(12)

The following proposition gives a sufficient condition which en-
sures that infinite CEs exist.

Proposition 3 (Infinite Set of CE): Let be a water-filling
game that satisfies condition . Suppose that all the users
form conjectures according to Table I. If there exist open neigh-
borhoods and of and , respectively,
such that is locally one-to-one for any

, then admits an infinite set of conjectural equilibria.
Proof: See Appendix B.

In summary, Proposition 1, 2, and 3 characterize the existence
and structure of conjectural equilibrium in water-filling games.
As shown in Fig. 2, NE and SE can be both special cases of
CE. Open sets of CE that contain NE and SE may exist in the

- plane and different conjectural equilibria correspond to dif-
ferent values of and . SE attains the maximal data rate that
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TABLE II
DYNAMIC UPDATES OF THE PLAY

Fig. 2. Structure of conjectural equilibria in water-filling games.

a foresighted user can achieve. According to Proposition 3, if
the foresighted user properly sets up its parameters , the so-
lution of CE in (11) coincides with the solution of SE in (7).
More importantly, as opposed to the SE in which the knowledge
of the system-wide private information is required, CE assumes
that the foresighted user knows only its stationary interference
and the first derivatives with respect to the allocated power,
which greatly simplifies the information acquisition. Therefore,
in order to approach the performance upper bound given by SE,
this paper adopts the approach of CE. Section IV will develop
practical conjecture forming and updating algorithms to select
out of the infinite CEs a desirable power allocation scheme that
provides comparable achievable rates with SE.

IV. CONJECTURE-BASED RATE MAXIMIZATION

Since Proposition 3 shows that infinite CEs may exist and SE
is the most desirable CE for a foresighted user, the parameters

of belief functions should be wisely chosen in order to
attain SE as a CE. Moreover, the one-shot game formulation and
declarative conclusions in the previous sections provide no hint
on how to approach the CE. In practice, it is also important to
construct algorithmic mechanisms to attain the desirable CE. To
arrive at a CE, a multiagent learning approach is proposed for
the repeated game setting [20]. Let and denote user ’s
belief and action at time . In the framework, at time , the users
update their beliefs and select their actions based on

their past observations. If we define learning as the players’ dy-
namic process of forming conjectures about the effects of their
actions, CE captures the achieved outcome when consistency of
conjectures within and across players emerges.

Similarly, this section proposes that users can update their be-
liefs in the repeated interaction setting and numerically exam-
ines their performance. Before going into the technical details, it
should be pointed out that the pursuit of the practical solution’s
convergence to CE is not the principal goal of our investigation.
Instead, computing power allocation strategies that require only
local information and achieve comparable rates with SE (which
requires global information) is the ultimate objective rather than
the convergence. In other words, any power allocation strategy
that lies outside the open CE set in Fig. 2 is favorable if it can
improve the performance compared with NE.

Table II summarizes the dynamic updates of all users’ states,
belief functions, and optimal actions in the water-filling game.
Specifically, at iteration , users’ states are determined by
their opponents’ power allocation. User 1 updates the param-
eters in its belief functions based on its state and
allocated power , and it also updates its power allocation

based on current operating points and its belief
. At the same time, myopic users set their belief

equal to their experienced interference and update their power
allocation based on the water-filling strategy. Note that Table II
implicitly assumes that user 1 will update after user ’s
IW algorithms converge such that user ’s power allo-
cations at time can be regarded as an equilibrium state.
The outcome of this dynamic play is a CE if exists
and . As discussed in the Proof of
Proposition 2, it is equivalent to check the convergence of user 1’s
updates. We can see from Table II that user 1 needs to complete
two updates at each iteration. The entire procedure in Table II
that enables the foresighted user to build beliefs and improve its
performance is named “Conjecture-based Rate Maximization.”
Appropriate rules for updating beliefs are discussed as follows.

: : Note that, we have
from Proposition 1,

user 1’s belief function takes the form of ,
and it satisfies at CE for any . As
discussed in the previous section, by setting the parameters

and , we can
preserve all the local information of the original SE problem
(7) around current feasible operating point . Therefore, we
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TABLE III
A DUAL ALGORITHM THAT SOLVES (11)

can update and using
and . By Assumption 3,

user 1 can approximate the parameters using

for small in which .
After in each iteration, user 1 needs to solve (11).

If Proposition 2’s assumption is not satisfied, (11) belongs to
the class of nonconvex optimization, which is generally hard to
solve and standard optimization algorithms can only be used to
determine local maxima [21]. However, in this application, we
are able to show that, as long as the number of frequency bins

is sufficiently large, (11) satisfies the time-sharing condition
[13], and its global optimum can be efficiently computed.

Definition 3 (Time-Sharing Condition [13]): Consider an op-
timization problem with the general form

(13)

where are objective functions that are not necessarily
concave, are constraint functions that are not necessarily
convex. Power constraints are denoted by . Let and be
optimal solutions to the optimization problem (13) with

and , respectively. An optimization problem of the
form (13) is said to satisfy the time-sharing condition if for any

, there always exists a feasible solution , such
that , and

.
Proposition 4 (Satisfaction of Time-Sharing Condition): As

the total number of subcarriers goes to infinity, (11) satisfies
the time-sharing condition.

Proof: Specifically, for problem (11),
. First, con-

sider and that are continuous functions of .

Fig. 3. Mismatch between (7) and (11).

By rule and are piece-wise contin-
uous, because Proposition 3 proves that and
are continuous in . With the piece-wise continuity of

, it is easy to check that the time-sharing condition
holds by following [13, Proof of Theorem 2].

: : It is shown in [13] that, if the op-
timization problem satisfies the time-sharing property,
then it has a zero duality gap, which leads to efficient
numerical algorithms that solve the nonconvex problem
in the dual domain. Consider the dual objective function

.
Since is convex, a bisection or gradient-type search over
the Lagrangian dual variable is guaranteed to converge to the
global optimum. Specifically, Algorithm 1 summarizes such a
dual method that solves nonconvex problem (11) using bisec-
tion update. As long as the time-sharing condition is satisfied,
Algorithm 1 converges to the global optimum. Hence, we can
always solve problem (11) regardless of its convexity.

Table IV summarizes the procedure of algorithm “Conjec-
ture-based Rate Maximization” (CRM). Next, we make several
remarks about this algorithm. First, since we want to achieve
better performance than NE, the initial operating point is
set to be the power allocation strategy that user 1 will
choose if it adopts the IW algorithm. Second, in , the
global optimum is not directly used to update . As
shown in Fig. 3, this is because (11) is only a local approxima-
tion at of the original SE problem (7) that we want to solve.
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TABLE IV
CONJECTURE-BASED RATE MAXIMIZATION

Using to update may decrease the actual achievable
rate , if a mismatch between (7) and (11) exists for the solu-
tion . Therefore, adopts line search and uses the
transmit PSD that lies in this interval and maximizes the actual
achievable rate to update . Therefore, it is guaranteed that
the achievable rate will not decrease after each iteration. Third,
as opposed to the two-user algorithm proposed in [11], CRM
is designed for the general multiuser scenario regardless of the
number of users. Last, CRM stops in limited iterations, but it is
not guaranteed to converge to a CE. It is because the first step
in may give but the line search returns

. However, if , CRM converges to
and the resulting outcome is a CE.

V. SIMULATION RESULTS

This section compares the performance of CRM with the IW
algorithm and the two-user suboptimal algorithm (TSA) that
searches SE assuming perfect knowledge of its opponent’s pri-
vate information [11]. We simulate a system with 50 subcar-
riers over the 15-MHz band. We consider frequency-selective
channels using a four-ray Rayleigh model with the exponen-
tial power profile and 60 ns root mean square delay spread. The
power of each ray is decreasing exponentially according to its
delay.

We first simulate the two-user scenario with
and . The total power of all rays of

and is normalized as one, and that of
and is normalized as 0.5. Fig. 4 shows an example of
user 1’s power allocations when deploying different algorithms
under the same conditions. In IW algorithm, user 1 water-fills
the whole frequency band by regarding its competitor’s interfer-
ence as background noise. In contrast, user 1 will not water-fill if

Fig. 4. User 1’s power allocation using different algorithms.

choosing CRM and TSA. It avoids the myopic behavior and im-
proves its performance by explicitly considering the stationary
interference caused by its opponent.

To evaluate the performance, we tested sets of frequency-
selective fading channels that satisfy Assumption 4. Denote user
’s achievable rate using CRM, IW, and TSA as , and

respectively. Fig. 5 shows the simulated cumulative prob-
ability of the ratio of over and . The curve indi-
cates that there is a probability of 59% that CRM returns the
same power allocation strategy as IW. On the other hand, the av-
erage improvement for user 1 of CRM over IW is 24%, which
achieves almost the same performance as TSA. As shown in
Fig. 5, is distributed symmetrically with respect to
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Fig. 5. Cdfs of � �� and � �� �� � �� ��.

Fig. 6. Cdfs of � �� �� � �� �� for modified CRM.

. CRM improves on average user 2’s data rate by
29% over IW, which is smaller than TSA. Similarly as in [11],
in very few cases, CRM results in a rate smaller than
in the IW algorithm.

The iteration time required by CRM is summarized in
Table V. As mentioned above, CRM stops after just one iter-
ation with a probability of 59% due to the problem mismatch
shown in Fig. 3. In most scenarios, CRM terminates within
4 iterations and the average number of required iteration is
only 1.75. To further improve the performance of CRM, we
can modify the original CRM to handle the problem mismatch
between (7) and (11). Notice that (11) is only a local approx-
imation of (7) at . Additional constraints can be added in
Algorithm 1, such that the optimum of (11) is searched only in
a certain region around rather than the whole domain of

. For example, can be restricted within
a certain threshold when performing Algorithm 1 for any

. We simulated the two-user scenarios with
additional restriction of . Fig. 6 shows the
simulated cumulative probability of for this modified

TABLE V
ITERATIONS REQUIRED BY DIFFERENT CRM ALGORITHMS

Fig. 7. Cdfs of � �� �� � �� �� �� for modified CRM.

CRM. As opposed to CRM, the probability that the modified
CRM returns the same power allocation strategy as IW is
reduced to 39% and the average performance improvement is
also increased for both users. Specifically, the average perfor-
mance improvement for user 1 is 29% and that of user 2 is 31%.
However, Table V shows that the improvement is achieved at
the cost of more iterations.

We also tested performance of modified CRM in multiuser
cases where TSA cannot be applied. We simulated the three-user
scenarios with and . The total power of
all rays of is normalized as one, and that of

is normalized as 0.33. Fig. 7 shows the simulated cumulative
probability of . The average improvement for user 1 of
modified CRM over IW is 29%, and that of the rest users is 8%.
We can see that, it benefits on average most of the participants
in the water-filling game if a foresighted user forms accurate
conjectures and plays the conjecture equilibrium strategy.

VI. RELATED WORK AND DISCUSSION

Several recent works apply repeated or stochastic games,
learning solutions, and Stackelberg formulations for power
control in wireless networks [9], [24]–[31]. This section dis-
cusses the differences as well as the connections between our
approach and this existing literature.

First, a typical repeated game approach for improving the in-
efficiency of the Nash equilibrium played in the one-shot power
control game is to deploy a punishment mechanism [9], [30],
[31]. The reason why the repeated game can gain better perfor-
mance than the one-shot game is guaranteed by the Folk the-
orem [17]. In the proof of the Folk theorem, users usually de-
ploy “trigger” strategies. A trigger strategy is a strategy which
punishes an opponent for any deviation from a prescribed or
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agreed-upon behavior. For the Folk theorem to work, all the
players must first agree to play a specific feasible outcome.
Then, the players will deploy the trigger strategy under which
any deviation from the prescribed/agreed-upon behavior is pun-
ished such that any gains made by the deviating player by dif-
fering from the prescribed behavior are at least cancelled out.
However, as we see from the proof of the Folk theorem, most
of the existing repeated game approaches require certain a priori
negotiations before the game actually starts. For example, if they
want to operate at the point that maximizes the network utility,
they need to jointly determine their optimal actions before the
game is played. The repeated nature of the game only provides
the players with the opportunity to punish any misbehavior, such
that the a priori selected equilibrium can be enforced. Our ap-
proach uses the repeated interaction among players in a dif-
ferent manner. Rather, we view it as an opportunity for the fore-
sighted user to gain the knowledge required information to play
the Stackelberg strategy. The key problem which we wanted to
investigate is: if all the other players are not willing to coop-
erate (e.g., because they cannot explicitly exchange informa-
tion) and they myopically play the best-response strategy, is it
still possible to improve the performance as compared to the
Nash equilibrium and how can this improvement be attained?
This question is different than the traditional approach and it
is important in heterogeneous communication environments in
which devices built according to different standards can gather
different information and exhibit various levels of “smartness”
in determining their transmission strategies.

Second, stochastic game formulations and learning solutions
have also been applied in wireless networks [24]–[29]. Most
of these works either use well-known learning techniques (e.g.,
Q-learning, no-regret learning) in order to improve their achiev-
able performance when playing the stochastic games, or apply
different learning solutions to achieve various equilibria (Nash
equilibrium, correlated equilibrium, etc.) to stabilize the com-
munication network. The major difference of our work from the
existing works is that we explore the problem structure of the
wideband power control, investigate how to attain possible con-
jectural equilibria with different belief configurations, and de-
sign simple, yet efficient belief function and belief updating rule
for the foresighted user to approach the Stackelberg equilibrium.

Last, there are several recent works that apply the traditional
Stackelberg formulation in power control games [32]–[34]. In
the traditional Stackelberg game, there exists a leader who de-
clares its strategy before the other players and then enforces
it [17]. The existing works usually use the Stackelberg formu-
lation to model the interaction between entities with different
priorities, e.g., primary users and secondary users in cognitive
radio networks [32]. We interpret the Stackelberg leader in a dif-
ferent way. Since we investigate the steady state performance,
the initial action order of the players does not matter. The leader
and followers are differentiated based on their ability to forecast
their competitors’ response to their actions.

In addition, we also would like to mention that, the proposed
formulation can be extended to the general communication sce-
nario, in which multiple users are foresighted. However, the
interaction in these cases becomes much more involved. Intu-
itively, since the degrees of freedom in the users’ belief configu-

ration increase as more users become foresighted learning users,
the achievable performance region of the proposed framework
will be a superset of the current region achieved by a single fore-
sighted user. For these foresighted users, a reasonable outcome
is to select an operating point in the set that achieves higher rates
for all the foresighted users than the rates achieved by the IW
algorithm:

for all

where are the number of foresighted users and is user
’s achievable rate if all the users play the Nash strategy. Sim-

ilarly as [12], [13], since this selection involves solving a mul-
tiobjective optimization problem, coordination is generally re-
quired among these foresighted users to determine the desirable
operation point. For example, they can exchange their local ob-
servations such that they can jointly optimize the multiobjective
problem [17]. The game essentially evolve from a noncooper-
ative game, played without explicit information exchange into
a cooperative game, involving implicit or explicit information
exchanges among foresighted users.

VII. CONCLUSION

This paper introduces the concept of conjectural equilibrium
in noncooperative water-filling games and discusses how a fore-
sighted user can model its experienced interference as a func-
tion of its own power allocation in order to improve its own data
rate. The existence of conjectural equilibrium is proven and both
game theoretic solutions, including Nash equilibrium and Stack-
elberg equilibrium, are shown to be special cases of this con-
jectural equilibrium. Practical algorithms based on conjectural
equilibrium are developed to determine desirable power alloca-
tion strategies. Numerical results verify that a foresighted user
forming proper conjectures can improves both its own achiev-
able rate as well as the rates of other participants, even if it has
no a priori knowledge of its competitors’ private information.
How to extend the framework to the scenarios in which mul-
tiple foresighted users coexist is a topic for future investigation.
While this paper has focused on the water-filling game, the idea
of forming conjectures based the available local information is
also applicable to any communication system where making
foresighted decisions is beneficial, e.g., distributed routing in
wired network [35].

APPENDIX A

Define where the
term represents the noise PSD. The second derivative of

is

Clearly, if is not always negative. We restrict
the domain of to be

because is the transmitted power and represents the
stationary interference, both of which are nonnegative. We de-
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(16)

rive a sufficient condition that guarantees is concave
in

and (14)

This condition can be simply verified by using inequality
analysis. Clearly, leads to and

. Therefore, is
equivalent to . We have

because when
. Hence, (14) leads to .

Based on sufficient condition (14), we can see, if
for any , (11)

belongs to convex programming. Therefore, if the following
sufficient condition:

holds, SE satisfies the KKT optimality condition and solves the
convex programming problem (11), i.e., SE is also a CE.

APPENDIX B

Proof of Proposition 3: If the water-filling game satisfies
condition , then (11) is convex. We can use the following
“maximum theorem” [6], [22, p. 116] to show that is
continuous.

(Maximum theorem) Let be a real-valued con-
tinuous function with domain , where
and are closed and bounded sets. Suppose that

is strictly concave in for each . The functions
is well defined for all

, and is continuous.
We can restrict the domain of parameters and in closed

and bounded set, e.g., , in which is a bound
satisfying . Apply the maximum
theorem with . The
optimal solution of (11) is the function in the
maximum theorem, and, hence, is a continuous function of

. As a result, is also continuous in . Note
that and are not necessarily continuously
differentiable.

By the definition of and conjectural equilibrium, we
have that implies conjectural equilibrium. Note

. If there exist open neighborhoods
and of and , and for

is locally one-to-one, by the implicit function theorem [23],
there exists open neighborhoods and of

and such that for each , there is a unique

satisfying . Therefore, admits an infinite set
of conjectural equilibria.

Alternatively, we can view as equations with
unknowns, hence, the equilibrium is usually not a single

point but a continuous surface. We can explore the structure
of to derive the expression of this surface. Particu-
larly, under condition , the solution of convex problem (11)
satisfies

(15)

where and are the Lagrange multipliers as in (11). The
optimal is given by (16), shown at the
top of the page. Note that the other root of (15) is removed by
checking its feasibility in . By substituting (16)
into (11) and (12), we can explicitly express in terms
of and , resulting in a very complex form of the surface.
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