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Abstract—This paper discusses a special type of multi-user
communication scenario, in which users’ utilities are linearly
impacted by their competitors’ actions. First, we explicitly
characterize the Nash equilibrium and Pareto boundary of the
achievable utility region. Second, the price of anarchy incurred
by the non-collaborative Nash strategy is quantified. Third, to
improve the performance in the non-cooperative scenarios, we in-
vestigate the properties of an alternative solution concept named
conjectural equilibrium, in which individual users compensate
for their lack of information by forming internal beliefs about
their competitors. The global convergence of the best response
and Jacobi update dynamics that achieve various conjectural
equilibria is analyzed. It is shown that the Pareto boundaries
of the investigated linearly coupled games can be sustained as
stable conjectural equilibria if the belief functions are properly
initialized. The investigated models apply to a variety of realistic
applications encountered in the multiple access design, including
wireless random access and flow control.

Index Terms—Nash equilibrium, Pareto-optimality, conjec-
tural equilibrium, non-cooperative games.

I. INTRODUCTION

GAME theory provides a formal framework for studying
the interactions of strategic agents. Recently, there has

been a surge in research activities that employ game theory to
model and analyze a wide range of application scenarios in
modern communication networks [1]-[4]. In communication
networks, any action taken by a single user usually affects
the utilities of the other users sharing the same resources.
Depending on the characteristics of different applications,
numerous game-theoretical models and solution concepts have
been proposed to describe the multi-user interactions and
optimize the users’ decisions in communication networks.
Roughly speaking, the existing multi-user research can be
categorized into two types, non-cooperative games and cooper-
ative games. Various game theoretic solutions were developed
to characterize the resulting performance of the multi-user
interaction, including the Nash Equilibrium (NE) and the
Pareto-optimality [18].

Non-cooperative approaches generally assume that the par-
ticipating users simply choose actions to selfishly maximize
their individual utility functions. It is well-known that if de-
vices operate in a non-cooperative manner, this will generally
limit their performance as well as that of the whole system,
because the available resources are not always efficiently
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exploited due to the conflicts of interest occurring among
users [5]. Most non-cooperative approaches are devoted to
investigating the existence and properties of the NE. In partic-
ular, several non-cooperative game models, such as S-modular
games, congestion games, and potential games, have been
extensively applied in various communication scenarios [6]-
[9]. The price of anarchy, a measure of how good the system
performance is when users play selfishly and reach the NE
instead of playing to achieve the social optimum, has also
been addressed in several communication network applications
[10][11].

On the other hand, cooperative approaches in commu-
nication theory usually focus on studying how users can
jointly improve their performance when they cooperate. For
example, the users may optimize a common objective function,
which represents the Pareto-optimal social welfare allocation
rule based on which the system-wide resource allocation is
performed [12][32]. A profile of actions is Pareto-optimal if
there is no other profile of actions that makes every player
at least as well off and at least one player strictly better
off. Allocation rules, e.g. network utility maximization, can
provide reasonable allocation outcomes by considering the
trade-off between fairness and efficiency. Most cooperative
approaches focus on studying how to efficiently find the
optimum joint policy. It is worth mentioning that information
exchanges among users is generally required to enable users
to coordinate in order to achieve and sustain Pareto-efficient
outcomes.

In this paper, we present a game model for a particular
type of non-cooperative multi-user communication scenario.
We name it linearly coupled communication games, because
users’ utilities are linearly impacted by their competitors’
actions. In particular, the main contributions of this paper are
as follows. First, based on the assumptions that we make about
the properties of users’ utility, we characterize the inherent
structures of the utility functions for the linearly coupled
games. Furthermore, based on the derived utility forms, we
explicitly quantify the NE and Pareto boundary for the linearly
coupled communication games. The price of anarchy incurred
by the selfish users playing the Nash strategy is quantified. In
addition, to improve the performance in the non-cooperative
scenarios, we investigate an alternative solution: conjectural
equilibrium (CE). Using this approach, individual users are
modeled as belief-forming agents that develop internal beliefs
about their competitors and behave optimally with respect to
their individual beliefs. Necessary and sufficient conditions
that guarantee the convergence of different dynamic update
mechanisms, including the best response and Jacobi update,
are addressed. We prove that these adjustment processes based
on conjectures and non-cooperative individual optimization
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can be globally driven to Pareto-optimality in the linearly
coupled games without the need of real-time coordination
information exchange among agents.

The rest of this paper is organized as follows. Section II
defines the linearly coupled communication games. For the
investigated game models, Section III explicitly computes the
NE and Pareto boundary of the achievable utility region and
quantifies the price of anarchy. Section IV introduces the CE
and investigates its properties under both the best response and
Jacobi update dynamics. Conclusions are drawn in Section V.

II. GAME MODEL

In this section, we first provide a general game-theoretic
formulation of the multi-user interaction in communication
systems. Following the proposed definition, we define the
linearly coupled communication games and provide concrete
examples of the investigated game model.

A. Linearly Coupled Communication Games

The multi-user game in various communication scenarios
can be formally defined as a tuple Γ = ⟨𝒩 ,𝒜, 𝑢,𝒮, 𝑠⟩. In
particular, 𝒩 = {1, 2, . . . , 𝑁} is the set of communication
devices, which are the rational decision-makers in the system.
Define 𝒜 to be the joint action space 𝒜 = ×𝑛∈𝒩𝒜𝑛, with 𝒜𝑛

being the action set available for user 𝑛. As opposed to the
traditional strategic game definition[18], two new elements 𝒮
and 𝑠 are introduced into the game formulation. Specifically,
𝒮 is the state space 𝒮 = ×𝑛∈𝒩𝒮𝑛, where 𝒮𝑛 ⊆ ℛ+ is the
part of the state relevant to user 𝑛. The state is defined to
capture the effects of the multi-user coupling such that each
user’s utility solely depends on its own state and action. In
other words, the utility function 𝑢 = ×𝑛∈𝒩𝑢𝑛 is a mapping
from the individual users’ state space and action space to real
numbers, 𝑢𝑛 : 𝒮𝑛×𝒜𝑛 → ℛ. The state determination function
𝑠 = ×𝑛∈𝒩𝑠𝑛 maps joint actions to states for each component
𝑠𝑛 : 𝒜 → 𝒮𝑛. To capture the performance tradeoff, the
utility region is defined as 𝒰 = {(𝑢1(a), . . . , 𝑢𝑁(a))∣ ∃ a =
(𝑎1, 𝑎2, . . . , 𝑎𝑁 ) ∈ 𝒜}.

It is straightforward to see that the game formulation
Γ = ⟨𝒩 ,𝒜, 𝑢,𝒮, 𝑠⟩ satisfies the traditional strategic game
definition. The utilities of all users depend on the actions of
all the users. However, not every non-cooperative game can
be formulated as this tuple Γ. In general, for each 𝑛 ∈ 𝒩 ,
we may not find a real-value state 𝒮𝑛 ⊆ ℛ+ and its relevant
state determination function 𝑠𝑛 : 𝒜 → 𝒮𝑛 such that user
n’s utility solely depends on its own state 𝑠𝑛 and action
𝑎𝑛. Fortunately, in numerous communication network settings,
we can reformulate the multi-user game as a tuple Γ by
appropriately defining the state 𝒮 and the state determination
function 𝑠. This formulation is useful to define the linear
coupled communication games and the concept of conjectural
equilibrium that can achieve Pareto optimality in the linear
coupled communication games without real-time information
exchange .

Definition 1: A multi-user interaction is considered a lin-
early coupled communication game if the action set 𝒜𝑛 ⊆ ℛ+

is convex and the utility function 𝑢𝑛 satisfies:

𝑢𝑛(a) = 𝑎𝛽𝑛
𝑛 ⋅ 𝑠𝑛(a), (1)

in which 𝛽𝑛 > 0. In particular, the basic assumptions about
𝑠𝑛(a) include:

A1: 𝑠𝑛(a) is non-negative;
A2: Denote 𝑠′𝑛𝑚(a) = ∂𝑠𝑛(a)

∂𝑎𝑚
and 𝑠′′𝑛𝑚(a) = ∂2𝑠𝑛(a)

∂𝑎2
𝑚

. 𝑠𝑛(a)
is strictly linear decreasing in 𝑎𝑚, ∀𝑚 ∕= 𝑛, i.e. 𝑠′𝑛𝑚(a) < 0
and 𝑠′′𝑛𝑚(a) = 0; 𝑠𝑛(a) is non-increasing and linear in 𝑎𝑛,
i.e. 𝑠′𝑛𝑛(a) ≤ 0 and 𝑠′′𝑛𝑛(a) = 0.

A3: 𝑠𝑛(a)
𝑠′𝑛𝑚(a) is an affine function, ∀𝑛 ∈ 𝒩 ∖ {𝑚}.

A4: 𝑠′𝑛𝑚(a)
𝑠𝑛(a)

=
𝑠′𝑘𝑚(a)
𝑠𝑘(a)

, ∀𝑛, 𝑘 ∈ 𝒩 ∖ {𝑚}; 𝑠′𝑚𝑚(a)
𝑠𝑚(a) = 0 or

𝑠′𝑛𝑚(a)
𝑠𝑛(a)

, ∀𝑛 ∕= 𝑚.
Assumptions A1 and A2 indicate that increasing 𝑎𝑚 for any

𝑚 ∕= 𝑛 within the domain of 𝑠𝑛(a) will linearly decrease user
𝑛’s utility. Assumptions A3 and A4 imply that a user’s action
has proportionally the same impact over the other users’ utility.
The structure of the utility functions that satisfy assumptions
A1-A4 will be addressed in Section III.

The following lemmas indicate the inherent structure of the
utility functions {𝑢𝑛}𝑁𝑛=1 when the requirements A1-A4 are
satisfied.

Lemma 1: Under assumptions A1-A3, the irreducible fac-
tors of 𝑠𝑛(a) over the integers are affine functions and have
no variables in common.

Lemma 1 reveals the structural properties of the utility
functions {𝑢𝑛}𝑁𝑛=1 when assumption A1-A3 are satisfied.
Based on Lemma 1, the following lemma further refines these
properties of {𝑢𝑛}𝑁𝑛=1 when the additional assumption A4 is
imposed.

Lemma 2: Under assumptions A1-A4, for any polynomial
𝑏𝑖𝑛(a) in the factorization 𝑠𝑛(a) =

∏𝑀𝑛

𝑖=1 𝑏
𝑖
𝑛(a), ∀𝑛 ∈ 𝒩 , if

∣V(𝑏𝑖𝑛(a))∣ ≥ 2 or V(𝑏𝑖𝑛(a)) = {𝑎𝑛}, 𝑏𝑖𝑛(a) is an irreducible
factor of 𝑠𝑚(a), ∀𝑚 ∈ 𝒩 ; if V(𝑏𝑖𝑛(a)) = {𝑎𝑚},𝑚 ∕= 𝑛,
𝑏𝑖𝑛(a) is an irreducible factor of 𝑠𝑗(a), ∀𝑗 ∈ 𝒩/{𝑚}.

Remark 1: For the linearly coupled games satisfying as-
sumptions A1-A4, suppose we factorize all users’ state func-
tions. Lemma 2 indicates that any factor with at least two
variables must be a common factor of all the users’ state
functions, and any factor with a single variable 𝑎𝑘 must be
a common factor of state functions for users excluding 𝑘. In
reality, it corresponds to the communication scenarios in which
the state, i.e. the multi-user coupling, is impacted by a set of
users that result in a similar signal to all the users.

We define two basic types of linearly coupled games sat-
isfying the assumptions A1-A4. In Type I games, user 𝑘’s
action linearly decreases all the users’ states but itself. Hence,
the utility functions take the form

𝑢𝑛(a) = 𝑎𝛽𝑛
𝑛 ⋅

∏
𝑚 ∕=𝑛

(𝜇𝑚 − 𝜏𝑚𝑎𝑚). (2)

In Type II games, all the users share the same non-factorizable
state function and their utility functions are given by

𝑢𝑛(a) = 𝑎𝛽𝑛
𝑛 ⋅ (𝜇−

𝑁∑
𝑚=1

𝜏𝑚𝑎𝑚). (3)

B. Illustrative Examples

There are a number of multi-user communication scenar-
ios that can be modeled as linearly coupled communication
games. For example, in the random access scenario in [15]
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belongs to Type I games. The action of a node is to select
its transmission probability and a node 𝑛 will independently
attempt transmission of a packet with transmit probability 𝑝𝑛.
The action set available to node 𝑛 is 𝒜𝑛 = [0, 1] for all 𝑛 ∈ 𝒩 .
In this case, the utility function is defined as

𝑢𝑛(p) = 𝑝𝑛 ⋅
∏
𝑚 ∕=𝑛

(1− 𝑝𝑚). (4)

As an example for Type II games, in flow control [16], 𝑁
Poisson streams of packets are serviced by a single exponential
server with departure rate 𝜇 and each class can adjust its
throughput 𝑟𝑛. The utility function is defined as the weighted
ratio of the throughput over the average experienced delay:

𝑢𝑛(r) = 𝑟𝛽𝑛
𝑛 ⋅ (𝜇−

𝑁∑
𝑚=1

𝑟𝑚), (5)

in which 𝛽𝑛 > 0 is interpreted as the weighting factor.
In this paper, we are interested in investigating how to

achieve Pareto optimal resource allocation outcomes without
real-time information exchange. It is well-known that NE
is generally inefficient in communication games [17], but it
has the advantage that achieving it may not require explicit
message exchanges, while Pareto-optimality can usually be
achieved only by exchanging implicit or explicit coordination
messages among the participating users. In particular, the
pricing-based distributed network resource allocation schemes
have been well-investigated in the network utility maximiza-
tion (NUM) framework [12]. Most of these existing solutions
assume that users can collaboratively and repeatedly exchange
price signals between each other. As a concrete example, the
readers are referred to [27]-[29] in which researchers inves-
tigate how to optimize the random access scenario based on
different informational availabilities. In several recent works
[14][15], we have applied an alternative solution in different
communication scenarios to improve the system performance
in non-cooperative settings, namely the conjectural equilib-
rium [21]. The following sections aim to compare the solutions
of NE, Pareto boundary, and CE in terms of the payoffs and
informational requirements in the linearly coupled multi-user
interaction satisfying the assumptions A1-A4.

We also would like to mention that, all the games that
have the properties A1-A4 can be viewed as compositions
of these two basic types of games. Investigating the general
cases requires combining the techniques used in this paper
and [15] and the combination of Type I and Type II games is
for now mainly of mathematic interest. Therefore, we focus
on investigating the two basic types to gain the fundamental
understanding of the linearly coupled multi-user interaction.
A brief summary of the properties of Type I games will be
provided in Section IV-E For the details about its various
game-theoretic solutions, we refer the readers to [15] and the
references therein. The rest of this paper will focus on Type
II games.

III. COMPUTATION OF THE NASH EQUILIBRIUM AND

PARETO BOUNDARY FOR LINEARLY COUPLED GAMES

In this section, we show that the computation of the NE and
the Pareto boundary in linearly coupled games is equivalent

to solving linear equations. Specifically, we investigate the
inherent structures of the utility functions satisfying assump-
tions A1-A4 and define two basic types of linearly coupled
games. The performance loss incurred by the Nash strategy
are quantified for Type II games.

A. Nash Equilibrium

In non-cooperative games, the participating users simply
choose actions to selfishly maximize their individual utility
functions. The steady state outcome of such interactions is an
operating point, at which given the other users’ actions, no
user can increase its utility alone by unilaterally changing its
action. This operating point is known as the Nash equilibrium,
which is formally defined below [18].

Definition 2: A profile a of actions constitutes a Nash
equilibrium of Γ if 𝑢𝑛(𝑎𝑛, a−𝑛) ≥ 𝑢𝑛(𝑎

′
𝑛, a−𝑛) for all

𝑎′𝑛 ∈ 𝒜𝑛 and 𝑛 ∈ 𝒩 .
We are interested in computing the NE in the linear coupled

games. From equation (1), we have

∂ log[𝑢𝑛(a)]

∂𝑎𝑚
=

{
𝛽𝑛/𝑎𝑛 + 𝑠′𝑛𝑛(a)/𝑠𝑛(a), 𝑖𝑓 𝑚 = 𝑛;
𝑠′𝑛𝑚(a)/𝑠𝑛(a), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(6)
On one hand, if 𝑠′𝑛𝑛(a) = 0, ∀𝑛 ∈ 𝒩 , since user 𝑛’s utility

function strictly increases in 𝑎𝑛, we have trivial NE at which
𝑎∗𝑛 is the maximal element in 𝒜𝑛 that lies in the domain of
𝑠(⋅), ∀𝑛 ∈ 𝒩 .

On the other hand, if 𝑠′𝑛𝑛(a) ∕= 0, ∀𝑛 ∈ 𝒩 , according to
assumption A3, since the multi-user interactions are linearly
coupled, we have

𝑠𝑛(a) = 𝑓𝑚𝑛 (a−𝑚) + 𝑔𝑚𝑛 (a−𝑚)𝑎𝑚, (7)

where 𝑓𝑚𝑛 (a−𝑚), 𝑔𝑚𝑛 (a−𝑚) are both polynomials and
𝑔𝑛𝑛(a−𝑛) ∕= 0. From this, it follows

𝑠′𝑛𝑛(a)
𝑠𝑛(a)

=

[
𝑓𝑛𝑛 (a−𝑛)
𝑔𝑛𝑛(a−𝑛)

+ 𝑎𝑛

]−1

. (8)

At NE, we have

∂ log[𝑢𝑛(a)]

∂𝑎𝑛
= 0, ∀𝑛 ∈ 𝒩 . (9)

Under assumption A3 and A4, 𝑓𝑛
𝑛 (a−𝑛)
𝑔𝑛𝑛(a−𝑛)

is a affine function,
which enables us to explicitly characterize the NE. Denote
𝑓𝑛
𝑛 (a−𝑛)
𝑔𝑛𝑛(a−𝑛)

= ℎ𝑛(a−𝑛). Equation (9) can be rewritten as

𝛽𝑛 ⋅ ℎ𝑛(a−𝑛) + (𝛽𝑛 + 1) ⋅ 𝑎𝑛 = 0, ∀𝑛 ∈ 𝒩 . (10)

Therefore, the solutions of Equations (10) are the NE of the
linearly coupled games and computing the NE is equivalent
to solving 𝑁 -dimension linear equations.

B. Pareto Boundary

Since log(⋅) is concave and log[𝑢𝑛(a)] is a composition of
affine functions [19], 𝑢𝑛(a) is log-concave in a and the log-
utility region log𝒰 is convex. Therefore, we can characterize
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the Pareto boundary of the utility region as a set of a optimiz-
ing the following weighted proportional fairness objective1:

max
a

𝑁∑
𝑛=1

𝜔𝑛 log[𝑢𝑛(a)], (11)

for all possible sets of {𝜔𝑛} satisfying 𝜔𝑛 ≥ 0 and∑𝑁
𝑛=1 𝜔𝑛 = 1. Denote the optimal solution of problem (11)

as a𝑃𝐵 , which satisfies the following first-order condition:

∂
∑𝑁

𝑘=1 𝜔𝑘 log[𝑢𝑘(a)]

∂𝑎𝑛

∣∣∣∣
a=a𝑃𝐵

= 0, ∀𝑛 ∈ 𝒩 , (12)

Under assumptions A1-A3, the LHS of equation (12) can
be rewritten as equation (13). By Lemma 1 and assumption
A4, we have

𝑠′𝑘𝑚(a)

𝑠𝑘(a)
=

1

𝜓𝑚(a)
, ∀𝑘 ∈ 𝒩 ∖ {𝑚}, (14)

in which 𝜓𝑚(a) is a affine function. Therefore, equation (13)
is equivalent to equation (15). We can compute the Pareto
boundary of the linearly coupled games by solving linear
equations (16).

C. Nash Equilibrium and Pareto Boundary in Type II Games

For Type II games with utility functions given in (3), we
have

𝑠′𝑛𝑛(a)
𝑠𝑛(a)

=
−𝜏𝑛

𝜇−∑𝑁
𝑚=1 𝜏𝑚𝑎𝑚

. (17)

Therefore, Equation (10) can be reduced to

(1 + 𝛽𝑛)𝜏𝑛𝑎𝑛 + 𝛽𝑛
∑
𝑚 ∕=𝑛

𝜏𝑚𝑎𝑚 = 𝛽𝑛𝜇, ∀𝑛 ∈ 𝒩 . (18)

The solution of the linear equations gives the NE, and its
closed form has been addressed in [22] for 𝜏𝑛 = 1, ∀𝑛 ∈ 𝒩 .
For the general case, it is easy to verify that the NE is given
by

𝑎𝑁𝐸
𝑛 =

𝛽𝑛𝜇

𝜏𝑛(1 +
∑𝑁

𝑚=1 𝛽𝑚)
, ∀𝑛 ∈ 𝒩 . (19)

Similarly, to compute the Pareto boundary of Type II games,
Equation (15) can be reduced to

(1+𝜔𝑛𝛽𝑛)𝜏𝑛𝑎𝑛+𝜔𝑛𝛽𝑛
∑
𝑚 ∕=𝑛

𝜏𝑚𝑎𝑚 = 𝜔𝑛𝛽𝑛𝜇, ∀𝑛 ∈ 𝒩 . (20)

The solution is given by

𝑎𝑃𝐵𝑛 =
𝜔𝑛𝛽𝑛𝜇

𝜏𝑛(1 +
∑𝑁

𝑚=1 𝜔𝑚𝛽𝑚)
, ∀𝑛 ∈ 𝒩 . (21)

From Section II-B, we know that the region log𝒰 is
convex. Therefore, we can compare the efficiency of a𝑁𝐸

and a𝑃𝐵 using the system-utility metric
∑𝑁

𝑛=1 𝜔𝑛 log[𝑢𝑛(a)].
Specifically, we have equation (22).

Denote 𝑤0 = 1, 𝑥0 =
1+

∑𝑁
𝑗=1 𝜔𝑗𝛽𝑗

1+
∑𝑁

𝑗=1 𝛽𝑗
, 𝑤𝑛 = 𝜔𝑛𝛽𝑛, and

𝑥𝑛 =
1+

∑𝑁
𝑗=1 𝜔𝑗𝛽𝑗

𝜔𝑛(1+
∑

𝑁
𝑗=1 𝛽𝑗)

, ∀𝑛 ∈ 𝒩 . Therefore, equation (23) holds.

Using the inequalities among the arithmetic, geometric and

1Note that the utility region 𝒰 is not necessarily convex. Therefore,
its Pareto boundary may not be characterized by the weighted sum of
{𝑢𝑛(a)}𝑁𝑛=1.

harmonic means [24], we can derive inequality (24). Both
inequalities hold with equality if and only if 𝑥0 = 𝑥1 = . . . =
𝑥𝑁 , i.e. 𝜔1 = . . . = 𝜔𝑁 = 1. However, since we require∑𝑁

𝑛=1 𝜔𝑛 = 1, (24) holds as strict inequalities, which leads
to inequality (25). Based on Equation (25), we can make two
important observations. First, due to the lack of coordination,
the NE in Type II games is always strictly Pareto inefficient.
Second, as opposed to Type I games where NE may result in
zero utility for certain users [15], the efficiency loss in Type
II games are lower bounded, which means that every user
receives positive payoff at NE. Noticing that the performance
gap between 𝑢𝑛(a

𝑁𝐸) and 𝑢𝑛(a
𝑃𝐵) is non-zero, we will

investigate how the non-cooperative CE solution can improve
the system performance for Type II games.

IV. CONJECTURAL EQUILIBRIUM FOR THE LINEARLY

COUPLED GAMES

A. Definitions

In game-theoretic analysis, conclusions about the reached
equilibria are based on assumptions about what knowledge
the players possess. For example, the standard NE strategy
assumes that every player believes that the other players’
actions will not change at NE. Therefore, it chooses to
myopically maximize its immediate payoff [18]. Therefore,
the players operating at equilibrium can be viewed as decision
makers behaving optimally with respect to their beliefs about
the strategies of other players.

To avoid detrimental Nash strategy and encourage coopera-
tion, the conjecture-based model has been introduced by Well-
man and others [20][21] to enable non-cooperative players
to build belief models about how their competitors’ reactions
vary in response to their own action changes. Specifically,
each player has some belief about the state that would result
from performing its available actions. The belief function
𝑠𝑛 is defined to be 𝑠𝑛 : 𝒜𝑛 → 𝒮𝑛 such that 𝑠𝑛(𝑎𝑛)
represents the state that player 𝑛 believes it would result in if
it selects action 𝑎𝑛 . Notice that the beliefs are not expressed
in terms of other players’ actions and preferences, and the
multi-user coupling in these beliefs is captured indirectly by
individual players forming conjectures of the effects of their
own actions. By deploying such a behavior model, players will
no longer adopt myopic behaviors that do not forecast 𝑠𝑛, but
rather they will form beliefs 𝑠𝑛(𝑎𝑛) about how their actions
𝑎𝑛 will influence the aggregate effects 𝑠𝑛 incurred by their
competitors’ responses and, based on these beliefs, they will
choose the action 𝑎𝑛 ∈ 𝒜𝑛 if it believes that this action will
maximize its utility. The steady state of such a play among
belief-forming agents can be characterized as a conjectural
equilibria.

Definition 3: In the game Γ, a configuration of belief
functions (𝑠∗1, . . . , 𝑠

∗
𝑁 ) and a joint action 𝑎∗ = (𝑎∗1, . . . , 𝑎

∗
𝑁 )

constitute a conjectural equilibrium, if for each 𝑛 ∈ 𝒩 ,

𝑠∗𝑛(𝑎
∗
𝑛) = 𝑠𝑛(𝑎

∗
1, . . . , 𝑎

∗
𝑁 ) and 𝑎∗𝑛 = arg max

𝑎𝑛∈𝒜𝑛

𝑢𝑛(𝑠
∗
𝑛(𝑎𝑛), 𝑎𝑛).

From the above definition, we can see that, at CE, all
players’ expectations based on their beliefs are realized and
each agent behaves optimally according to its expectation. In
other words, agents’ beliefs are consistent with the outcome
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∂
∑𝑁

𝑘=1 𝜔𝑘 log[𝑢𝑘(a)]

∂𝑎𝑚
= 𝜔𝑚

(
𝛽𝑚
𝑎𝑚

+
𝑠′𝑚𝑚(a)

𝑠𝑚(a)

)
+

∑
𝑘 ∕=𝑚

𝜔𝑘
𝑠′𝑘𝑚(a)

𝑠𝑘(a)
(13)

∂
∑𝑁

𝑘=1 𝜔𝑘 log[𝑢𝑘(a)]

∂𝑎𝑚
=

{
𝛽𝑚𝜔𝑚/𝑎𝑚 + (1− 𝜔𝑚)/𝜓𝑚(a), 𝑖𝑓 𝑠′𝑚𝑚(a) = 0;
𝛽𝑚𝜔𝑚/𝑎𝑚 + 1/𝜓𝑚(a), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(15)

∂
∑𝑁

𝑘=1 𝜔𝑘 log[𝑢𝑘(a)]

∂𝑎𝑚
= 0 ⇒

{
𝛽𝑚𝜔𝑚𝜓𝑚(a) + (1 − 𝜔𝑚)𝑎𝑚 = 0, 𝑖𝑓 𝑠′𝑚𝑚(a) = 0;
𝛽𝑚𝜔𝑚𝜓𝑚(a) + 𝑎𝑚 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(16)

𝑁∑
𝑛=1

𝜔𝑛 log
𝑢𝑛(a

𝑁𝐸)

𝑢𝑛(a𝑃𝐵)
=

𝑁∑
𝑛=1

𝜔𝑛𝛽𝑛 log
1 +

∑𝑁
𝑗=1 𝜔𝑗𝛽𝑗

𝜔𝑛(1 +
∑𝑁

𝑗=1 𝛽𝑗)
+ log

1 +
∑𝑁

𝑗=1 𝜔𝑗𝛽𝑗

1 +
∑𝑁

𝑗=1 𝛽𝑗
(22)

of the play and they use “conjectured best responses" in
their individual optimization program. The key challenges are
how to configure the belief functions such that cooperation
can be sustained in such a non-cooperative setting and how
to design the evolution rules such that the communication
system can dynamically converge to a CE having satisfactory
performance.

B. Linear Beliefs

As discussed before, the belief functions need to be defined
in order to investigate the existence of CE. To define the belief
functions, we need to express agent 𝑛’s expected state 𝑠𝑛 as
a function of its own action 𝑎𝑛. The simplest approach is to
design linear belief models for each user, i.e. player 𝑛’s belief
function takes the form

𝑠𝑛(𝑎𝑛) = 𝑠𝑛 − 𝜆𝑛(𝑎𝑛 − �̄�𝑛), (26)

for 𝑛 ∈ 𝒩 . The values of 𝑠𝑛 and �̄�𝑛 are specific states and
actions, called reference points and 𝜆𝑛 is a positive scalar. In
other words, user 𝑛 assumes that other players will observe its
deviation from its reference point �̄�𝑛 and the aggregate state
deviates from the reference point 𝑠𝑛 by a quantity proportional
to the deviation of 𝑎𝑛− �̄�𝑛. How to configure 𝑠𝑛, �̄�𝑛, and 𝜆𝑛
will be addressed in the rest of this paper. As a matter of
fact, there are various ways to configure the belief function.
We adopt the linear belief represented in (26) due to two key
reasons. First of all, the linear form represents the simplest
belief model based on which a user can model the impact of its
environment. More importantly, as we will prove in the paper,
building and optimizing over such simple beliefs is sufficient

to achieve any operating point on the Pareto boundary as a
stable conjectural equilibrium.

The goal of user 𝑛 is to maximize its expected utility 𝑎𝛽𝑛
𝑛 ⋅

𝑠𝑛(𝑎𝑛) taking into account the conjectures that it has made
about the other users. Therefore, the optimization a user needs
to solve becomes:

max
𝑎𝑛∈𝒜𝑛

𝑎𝛽𝑛
𝑛 ⋅

[
𝑠𝑛 − 𝜆𝑛(𝑎𝑛 − �̄�𝑛)

]
. (27)

For 𝜆𝑘 > 0, user 𝑛 believes that increasing 𝑎𝑛 will further
reduce its conjectured state 𝑠𝑛. The optimal solution of (27)
is given by

𝑎∗𝑛 =
𝛽𝑛(𝑠𝑛 + 𝜆𝑛�̄�𝑛)

𝜆𝑛(1 + 𝛽𝑛)
. (28)

In the following, we first show that forming simple linear
beliefs in (26) can cause all the operating points in the
achievable utility region to be CE.

Theorem 1: For Type II games, all the positive operating
points in the utility region 𝒰 are essentially CE.

Proof : For each positive operating point (𝑢∗1, . . . , 𝑢
∗
𝑁) (i.e.

𝑢∗𝑛 > 0, ∀𝑛 ∈ 𝒩 ) in the utility region 𝒰 , there exists at least
one joint action profile (𝑎∗1, . . . , 𝑎

∗
𝑁) ∈ 𝒜 such that 𝑢∗𝑛 =

𝑢𝑛(a∗), ∀𝑛 ∈ 𝒩 . We consider setting the parameters in the
belief functions {𝑠𝑛(𝑎𝑛)}𝑁𝑛=1 to be:

𝜆∗𝑛 = 𝛽𝑛 ⋅ 𝜇−∑𝑁
𝑚=1 𝜏𝑚𝑎

∗
𝑚

𝑎∗𝑛
, ∀𝑛 ∈ 𝒩 . (29)

It is easy to check that, if the reference points are 𝑠𝑛 = 𝜇−∑𝑁
𝑚=1 𝜏𝑚𝑎

∗
𝑚, �̄�𝑛 = 𝑎∗𝑛, we have 𝑠𝑛(𝑎

∗
𝑛) = 𝑠𝑛(𝑎

∗
1, . . . , 𝑎

∗
𝑁 )

and 𝑎∗𝑛 = argmax𝑎𝑛∈𝒜𝑛 𝑢𝑛(𝑠𝑛(𝑎𝑛), 𝑎𝑛). Therefore, this
belief function configuration and the joint action a∗ =

𝑁∑
𝑛=1

𝜔𝑛 log
𝑢𝑛(a

𝑁𝐸)

𝑢𝑛(a𝑃𝐵)
=

𝑁∑
𝑛=1

𝑤𝑛 log 𝑥𝑛 + 𝑤0 log 𝑥0 =

𝑁∑
𝑛=0

𝑤𝑛 ⋅ log (
𝑁∏
𝑛=0

𝑥𝑤𝑛
𝑛 )1/

∑𝑁
𝑛=0 𝑤𝑛 (23)

(1 +
∑𝑁

𝑛=1 𝜔𝑛𝛽𝑛)
2

(1 +
∑𝑁

𝑛=1 𝜔
2
𝑛𝛽𝑛)(1 +

∑𝑁
𝑛=1 𝛽𝑛)

=

∑𝑁
𝑛=0 𝑤𝑛∑𝑁
𝑛=0

𝑤𝑛

𝑥𝑛

≤ ( 𝑁∏
𝑛=0

𝑥𝑤𝑛
𝑛

) 1
∑𝑁

𝑛=0
𝑤𝑛 ≤

∑𝑁
𝑛=0 𝑥𝑛𝑤𝑛∑𝑁
𝑛=0 𝑤𝑛

= 1 (24)
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(1 +

𝑁∑
𝑛=1

𝜔𝑛𝛽𝑛) ⋅ log (1 +
∑𝑁

𝑛=1 𝜔𝑛𝛽𝑛)
2

(1 +
∑𝑁

𝑛=1 𝜔
2
𝑛𝛽𝑛)(1 +

∑𝑁
𝑛=1 𝛽𝑛)

<

𝑁∑
𝑛=1

𝜔𝑛 log
𝑢𝑛(a

𝑁𝐸)

𝑢𝑛(a𝑃𝐵)
< 0 (25)

(𝑎∗1, . . . , 𝑎
∗
𝑁 ) constitute the CE that results in the utility

(𝑢∗1, . . . , 𝑢∗𝑁). ■
Theorem 1 establishes the existence of CE, i.e. for a partic-

ular a∗ ∈ 𝒜, how to choose the parameters {𝑠𝑛, �̄�𝑛, 𝜆𝑛}𝑁𝑛=1

such that a∗ is a CE. However, it neither tells us how these
CE can be achieved and sustained in the dynamic setting nor
clarifies how different belief configurations can lead to various
CE.

We consider the dynamic scenarios in which users revise
their reference points based on their past local observations
over time. Let 𝑠𝑡𝑛, 𝑎

𝑡
𝑛, 𝑠

𝑡
𝑛, 𝑠

𝑡
𝑛, �̄�

𝑡
𝑛 be user 𝑛’s state, action, belief

function, and reference points at stage 𝑡, in which 𝑠𝑡𝑛 = 𝜇−∑𝑁
𝑚=1 𝜏𝑚𝑎

𝑡
𝑚. We propose a simple rule for individual users to

update their reference points. At stage 𝑡, user 𝑛 sets its 𝑠𝑡𝑛 and
�̄�𝑡𝑛 to be 𝑠𝑡−1

𝑛 and 𝑎𝑡−1
𝑛 . In other words, user 𝑛’s conjectured

utility function at stage 𝑡 is

𝑢𝑡𝑛(𝑠
𝑡
𝑛(𝑎𝑛), 𝑎𝑛) = 𝑎𝛽𝑛

𝑛 ⋅
[
𝜇−

𝑁∑
𝑚=1

𝜏𝑚𝑎
𝑡−1
𝑚 − 𝜆𝑛(𝑎𝑛 − 𝑎𝑡−1

𝑛 )
]
.

(30)
Since we have defined the users’ utility function at stage 𝑡,
upon specifying the rule of how user 𝑛 updates its action 𝑎𝑡𝑛
based on its utility function 𝑢𝑡𝑛(𝑠

𝑡
𝑛(𝑎𝑛), 𝑎𝑛), the trajectory of

the entire dynamic process is determined. The remainder of
this paper will investigate the dynamic properties of the best
response and Jacobi update mechanisms and the performance
trade-off among the competing users at the resulting steady-
state CE. In particular, for fixed {𝜆𝑛}𝑁𝑛=1, Section IV-C
derives necessary and sufficient conditions for the convergence
of the best response and the Jacobi update dynamics. Sec-
tion IV-D quantitatively describes the limiting CE for given
{𝜆𝑛}𝑁𝑛=1 and investigates how the parameters {𝜆𝑛}𝑁𝑛=1 should
be properly chosen such that Pareto efficiency can be achieved.

C. Dynamic Algorithms

1) Best Response: In the best response algorithm, each
user updates its action using the best response that maximizes
its conjectured utility function in (30). Therefore, at stage
𝑡, user 𝑛 chooses its action according to equation (31). In
equation (31), users adopt the previously observed state 𝑠𝑡−1

𝑛

and action 𝑎𝑡−1
𝑛 as reference points to update their belief

functions and optimize action 𝑎𝑡𝑛 to maximize their utilities.
At stage 𝑡+1, these reference points will be further revised as
𝑠𝑡𝑛 and 𝑎𝑡𝑛 after all the users update their actions. This update
procedure follows the standard Gauss-Seidel method [30]. We
are interested in characterizing the convergence of the update
mechanism defined by (31) when using various 𝜆𝑛 to initialize
the belief function 𝑠𝑛.

To analyze the convergence of the best response dynamics,
we consider the Jacobian matrix of the self-mapping function
in (31). Let 𝐽𝑖𝑘 denote the element at row 𝑖 and column 𝑘 of
the Jacobian matrix J. The elements of the Jacobian matrix

J𝐵𝑅 of (31) are defined as:

𝐽𝐵𝑅𝑖𝑘 =
∂𝑎𝑡𝑖
∂𝑎𝑡−1

𝑘

=

{
𝛽𝑘(𝜆𝑘−𝜏𝑘)
𝜆𝑘(1+𝛽𝑘)

, if 𝑖 = 𝑘,

− 𝛽𝑖𝜏𝑘
𝜆𝑖(1+𝛽𝑖)

, if 𝑖 ∕= 𝑘.
(32)

For Type II games, the following theorem gives a necessary
and sufficient condition under which the best response dynam-
ics defined in (31) converges.

Theorem 2: For Type II games, a necessary and sufficient
condition for the best response dynamics to converge is

𝑁∑
𝑛=1

𝜏𝑛𝛽𝑛
𝜆𝑛(1 + 2𝛽𝑛)

< 1. (33)

Proof : The best response dynamics converges if and only
if the eigenvalues {𝜉𝐵𝑅𝑛 }𝑁𝑛=1 of the Jacobian matrix J𝐵𝑅 in
(32) are all inside the unit circle of the complex plane [25], i.e.
∣𝜉𝐵𝑅𝑛 ∣ < 1, ∀𝑛 ∈ 𝒩 . To determine the eigenvalues of J𝐵𝑅, we
have equation (34). Therefore, we can see that, the eigenvalues
of J𝐵𝑅 are the roots of[ 𝑁∑

𝑛=1

𝜏𝑛

𝜆𝑛(1− 1+𝛽𝑛

𝛽𝑛
𝜉)

− 1
]
⋅
𝑁∏
𝑛=1

(
𝜉 − 𝛽𝑛

1 + 𝛽𝑛

)
= 0. (35)

Denote 𝑞(𝜉) =
∑𝑁

𝑛=1
𝜏𝑛

𝜆𝑛(1− 1+𝛽𝑛
𝛽𝑛

𝜉)
. First, we assume that

𝛽𝑖 ∕= 𝛽𝑗 , ∀𝑖, 𝑗. Without loss of generality, consider 𝛽1 <
𝛽2 < ⋅ ⋅ ⋅ < 𝛽𝑁 . In this case, the eigenvalues of J𝐵𝑅 are
the roots of 𝑞(𝜉) = 1. Note that 𝑞(𝜉) is a continuous func-
tion and it strictly increases in (−∞, 𝛽1

1+𝛽1
), ( 𝛽1

1+𝛽1
, 𝛽2

1+𝛽2
),

⋅ ⋅ ⋅ , ( 𝛽𝑁−1

1+𝛽𝑁−1
, 𝛽𝑁

1+𝛽𝑁
), and ( 𝛽𝑁

1+𝛽𝑁
,+∞). We also have

lim𝜉→( 𝛽𝑛
1+𝛽𝑛

)− 𝑞(𝜉) = +∞, lim𝜉→( 𝛽𝑛
1+𝛽𝑛

)+ 𝑞(𝜉) = −∞, 𝑛 =

1, 2, ⋅ ⋅ ⋅ , 𝑁 , and lim𝜉→−∞ 𝑞(𝜉) = lim𝜉→+∞ 𝑞(𝜉) = 0.
Therefore, the roots of 𝑞(𝜉) = 1 lie in (−∞, 𝛽1

1+𝛽1
),

( 𝛽1

1+𝛽1
, 𝛽2

1+𝛽2
), ⋅ ⋅ ⋅ , ( 𝛽𝑁−1

1+𝛽𝑁−1
, 𝛽𝑁

1+𝛽𝑁
). Since 𝑞(𝜉) strictly in-

creases in (−∞, 𝛽1

1+𝛽1
), we have ∣𝜉𝐵𝑅𝑛 ∣ < 1, ∀𝑛 ∈ 𝒩 if and

only if 𝑞(−1) =
∑𝑁

𝑛=1
𝜏𝑛𝛽𝑛

𝜆𝑛(1+2𝛽𝑛)
< 1.

Second, we consider the cases in which there exists 𝛽𝑖 = 𝛽𝑗
for certain 𝑖, 𝑗. Suppose that {𝛽𝑛}𝑁𝑛=1 take 𝐾 discrete values
𝜅1, ⋅ ⋅ ⋅ , 𝜅𝐾 and the number of {𝛽𝑛}𝑁𝑛=1 that equal to 𝜅𝑘 is
𝑛𝑘. In this case, Equation (35) is reduced to

[ 𝑁∑
𝑛=1

𝜏𝑛

𝜆𝑛(1 − 1+𝛽𝑛

𝛽𝑛
𝜉)

− 1
]
⋅
𝐾∏
𝑘=1

(
𝜉 − 𝜅𝑘

1 + 𝜅𝑘

)𝑛𝑘
= 0. (36)

Hence, equation 𝑞(𝜉) = 1 has 𝑁+𝐾−∑𝐾
𝑘=1 𝑛𝑘 roots in total,

and 𝜉 = 𝜅𝑘

1+𝜅𝑘
is a root of multiplicity 𝑛𝑘−1 for Equation (36),

∀𝑘. All these roots are the eigenvalues of matrix J𝐵𝑅. Simi-
larly, the roots of 𝑞(𝜉) = 1 lie in (−∞, 𝜅1

1+𝜅1
), ( 𝜅1

1+𝜅1
, 𝜅2

1+𝜅2
),

⋅ ⋅ ⋅ , ( 𝜅𝐾−1

1+𝜅𝐾−1
, 𝜅𝐾

1+𝜅𝐾
). A necessary and sufficient condition

under which ∣𝜉𝐵𝑅𝑛 ∣ < 1, ∀𝑛 ∈ 𝒩 is still 𝑞(−1) < 1, i.e.∑𝑁
𝑛=1

𝜏𝑛𝛽𝑛

𝜆𝑛(1+2𝛽𝑛)
< 1. ■

Remark 2: Theorem 2 indicates that, if the condition in
(33) is satisfied, the best response dynamics converges linearly
to the CE. The convergence rate is mainly determined by
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𝑎𝑡𝑛 = 𝐵𝑛(a𝑡−1) :=
𝛽𝑛(𝜇−∑

𝑚∈𝒩∖{𝑛} 𝜏𝑚𝑎
𝑡−1
𝑚 )

𝜆𝑛(1 + 𝛽𝑛)
+
𝛽𝑛(𝜆𝑛 − 𝜏𝑛)𝑎

𝑡−1
𝑛

𝜆𝑛(1 + 𝛽𝑛)
(31)

det(𝜉𝐼 − J𝐵𝑅) =

∣∣∣∣∣∣∣∣∣∣

𝜉 − 𝛽1(𝜆1−𝜏1)
𝜆1(1+𝛽1)

𝛽1𝜏2
𝜆1(1+𝛽1)

. . . 𝛽1𝜏𝑁
𝜆1(1+𝛽1)

𝛽2𝜏1
𝜆2(1+𝛽2)

𝜉 − 𝛽2(𝜆2−𝜏2)
𝜆2(1+𝛽2)

. . . 𝛽2𝜏𝑁
𝜆2(1+𝛽2)

...
...

. . .
...

𝛽𝑁𝜏1
𝜆𝑁 (1+𝛽𝑁 )

𝛽𝑁𝜏2
𝜆𝑁 (1+𝛽𝑁 ) . . . 𝜉 − 𝛽𝑁 (𝜆𝑁−𝜏𝑁 )

𝜆𝑁 (1+𝛽𝑁 )

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

𝜉 − 𝛽1(𝜆1−𝜏1)
𝜆1(1+𝛽1)

𝜏2
𝜏1

(
𝛽1

1+𝛽1
− 𝜉

)
. . . 𝜏𝑁

𝜏1

(
𝛽1

1+𝛽1
− 𝜉

)
𝛽2𝜏1

𝜆2(1+𝛽2)
𝜉 − 𝛽2

1+𝛽2
. . . 0

...
...

. . .
...

𝛽𝑁𝜏1
𝜆𝑁 (1+𝛽𝑁 ) 0 . . . 𝜉 − 𝛽𝑁

1+𝛽𝑁

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

(
𝜉 − 𝛽1

1+𝛽1

) ⋅ [1−∑𝑁
𝑛=1

𝜏𝑛
𝜆𝑛(1− 1+𝛽𝑛

𝛽𝑛
𝜉)

]
0 . . . 0

𝛽2𝜏1
𝜆2(1+𝛽2)

𝜉 − 𝛽2

1+𝛽2
. . . 0

...
...

. . .
...

𝛽𝑁𝜏1
𝜆𝑁 (1+𝛽𝑁 ) 0 . . . 𝜉 − 𝛽𝑁

1+𝛽𝑁

∣∣∣∣∣∣∣∣∣∣∣

(34)

max𝑛∈𝒩 ∣𝜉𝐵𝑅𝑛 ∣. Suppose 𝛽1 < 𝛽2 < ⋅ ⋅ ⋅ < 𝛽𝑁 and 𝜉𝐵𝑅1 <
𝜉𝐵𝑅2 < ⋅ ⋅ ⋅ < 𝜉𝐵𝑅𝑁 . From the proof of Theorem 2, we can
see that, under condition (33), −1 < 𝜉𝐵𝑅1 < 𝛽1

1+𝛽1
< 𝜉𝐵𝑅2 <

⋅ ⋅ ⋅ < 𝜉𝐵𝑅𝑁 , and 𝛽𝑁−1

1+𝛽𝑁−1
< 𝜉𝐵𝑅𝑁 < 𝛽𝑁

1+𝛽𝑁
. Therefore, the rate

of convergence can be approximated by max{∣𝜉𝐵𝑅1 ∣, ∣𝜉𝐵𝑅𝑁 ∣}.
Note that choosing larger {𝜆𝑛}𝑁𝑛=1 increases 𝜉𝐵𝑅1 . Hence,
if −1 < 𝜉𝐵𝑅1 < −∣𝜉𝐵𝑅𝑁 ∣, increasing {𝜆𝑛}𝑁𝑛=1, i.e. having
more self-constraint users, accelerate the convergence rate
of the best response mechanism. On the other hand, since
𝜉𝐵𝑅𝑁 > 𝛽𝑁−1

1+𝛽𝑁−1
, the convergence rate is lower bounded by

𝛽𝑁−1

1+𝛽𝑁−1
. Therefore, if more than two users associate large

weighting factors 𝛽 with their individual actions in the utility
functions, we have 𝛽𝑁−1

1+𝛽𝑁−1
→ 1 and the best response

dynamics converges slowly.
Remark 3: Theorem 2 generalizes the necessary and suffi-

cient condition derived in [22], where users are assumed to be
symmetric, i.e. 𝜏𝑛 = 1, ∀𝑛 and they adopt the Nash strategy by
choosing 𝜆𝑛 = 𝜏𝑛, ∀𝑛. Due to lack of symmetry, the derivation
in [22] is not readily applicable to analyze the convergence of
the best response dynamics. The proof of Theorem 2 instead
directly characterizes the eigenvalues of the Jacobian matrix,
and hence, provides a more general convergence analysis of
the dynamic algorithms that allow users to update their actions
based on their independent linear conjectures.

Remark 4: In Type II games, a locally stable CE is also
globally convergent, which is purely due to the property of its
utility functions specified in (3). From (32), we can see that
all the elements in J𝐵𝑅 are independent of the joint play a𝑡−1.
This is in contrast with Type I games considered in [15], where
local stability of a CE may not imply its global convergence
and the best response dynamics may only converge if the
operating point is close enough to the steady-state equilibrium.

2) Jacobi Update: We consider another alternative strategy
update mechanism called Jacobi update [23]. In Jacobi update,

every user adjusts its action gradually towards the best re-
sponse strategy. At stage 𝑡, user 𝑛 chooses its action according
to

𝑎𝑡𝑛 = 𝐽𝑛(a𝑡−1) := 𝑎𝑡−1
𝑛 + 𝜖

[
𝐵𝑛(a𝑡−1)− 𝑎𝑡−1

𝑛

]
, (37)

in which the stepsize 𝜖 > 0 and 𝐵𝑛(a𝑡−1) is defined in (31).
The following theorem establishes the convergence property
of the Jacobi update dynamics.

Theorem 3: In Type II games, for given {𝜏𝑛, 𝛽𝑛, 𝜆𝑛}𝑁𝑛=1,
the Jacobi update dynamics converges if the stepsize 𝜖 is
sufficiently small.

Proof : The Jacobian matrix J𝐽𝑈 of the self-mapping func-
tion (37) satisfies J𝐽𝑈 = (1 − 𝜖)𝐼 + 𝜖J𝐵𝑅. Therefore, its
eigenvalues {𝜉𝐽𝑈𝑛 }𝑁𝑛=1 are given by 𝜉𝐽𝑈𝑛 = 1−𝜖+𝜖𝜉𝐵𝑅𝑛 . From
the proof of Theorem 2, we know that 𝜉𝐵𝑅𝑛 < 1, ∀𝑛 ∈ 𝒩 .
Therefore, if 𝜖 < 2

1−min𝑛 𝜉𝐵𝑅
𝑛

, we have 𝜉𝐽𝑈𝑛 ∈ (−1, 1), ∀𝑛 ∈
𝒩 and the Jacobi update dynamics converges. ■

Remark 5: Theorem 3 indicates that, for any
{𝜏𝑛, 𝛽𝑛, 𝜆𝑛}𝑁𝑛=1 > 0, the Jacobi update mechanism
globally converges to a CE as long as the stepsize is set
to be a small enough positive number. In other words, the
small stepsize in the Jacobi update can compensate for the
instability of the best response dynamics even though the
necessary and sufficient condition in (33) is not satisfied.

D. Stability of the Pareto Boundary

In order to understand how to properly choose the param-
eters {𝜆𝑛}𝑁𝑛=1 such that it leads to efficient outcomes, we
need to explicitly describe the steady-state CE in terms of the
parameters {𝜆𝑛}𝑁𝑛=1 of the belief functions. Denote the joint
action profile at CE as (𝑎∗1, . . . , 𝑎∗𝑁). From Equation (31), we
know that

(𝜆𝑛 + 𝛽𝑛𝜏𝑛)𝑎
∗
𝑛 +

∑
𝑚∈𝒩∖{𝑛}

𝛽𝑛𝜏𝑚𝑎
∗
𝑚 = 𝛽𝑛𝜇, ∀𝑛 ∈ 𝒩 . (38)
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Fig. 1. The trajectory of the best response and Jacobi update dynamics.

The solutions of the above linear equations are

𝑎𝐶𝐸𝑛 =
𝛽𝑛𝜇

𝜆𝑛(1 +
∑𝑁

𝑚=1
𝜏𝑚𝛽𝑚

𝜆𝑚
)
, ∀𝑛 ∈ 𝒩 . (39)

Based on the closed-form expression of the CE, the following
theorem indicates the stability of the Pareto boundary in Type
II games.

Theorem 4: For Type II games, all the operating points on
the Pareto boundary are globally convergent CE under the best
response dynamics.

Proof : Comparing Equations (21) and (39), we can see
that, (𝑎𝐶𝐸1 , . . . , 𝑎𝐶𝐸𝑁 ) = (𝑎𝑃𝐵1 , . . . , 𝑎𝑃𝐵𝑁 ) if and only if
𝜆𝑛 = 𝜏𝑛/𝜔𝑛. Substitute it into the LHS of (33):

𝑁∑
𝑛=1

𝜏𝑛𝛽𝑛
𝜆𝑛(1 + 2𝛽𝑛)

=

𝑁∑
𝑛=1

𝜔𝑛𝛽𝑛
1 + 2𝛽𝑛

<

∑𝑁
𝑛=1 𝜔𝑛
2

=
1

2
. (40)

Condition (33) is satisfied for all the Pareto-optimal operating
points. In fact, we have min𝑛 𝜉

𝐵𝑅
𝑛 = 0, which is because

𝑞(0) =
∑𝑁

𝑛=1
𝜏𝑛
𝜆𝑛

=
∑𝑁

𝑛=1 𝜔𝑛 = 1. Therefore, under
the best response dynamics, the Pareto boundary is globally
convergent. ■

In addition, we also note that Theorem 3 already indicates
the stability of the Pareto boundary under Jacobi update as
long as the parameters {𝜏𝑛, 𝛽𝑛, 𝜆𝑛}𝑁𝑛=1 are properly chosen.

Remark 6: Since
∑𝑁

𝑛=1 𝜔𝑛 = 1, we can see from the
previous proof that, the belief configurations {𝜆𝑛}𝑁𝑛=1 lead
to Pareto-optimal operating points if and only if

𝑁∑
𝑛=1

𝜏𝑛
𝜆𝑛

= 1. (41)

Therefore, we can see that, to achieve Pareto-optimality in
these non-cooperative scenarios, users need to choose the
belief parameters {𝜆𝑛}𝑁𝑛=1 to be greater than or equal to
the parameters {𝜏𝑛}𝑁𝑛=1 in the utility function {𝑢𝑛}𝑁𝑛=1 and
the summation of 𝜏𝑛

𝜆𝑛
should be equal to 1. Define user 𝑛’s

conservativeness as 𝜏𝑛
𝜆𝑛

, which reflects the ratio between the
immediate performance degradation −𝜏𝑛Δ𝑎𝑛 in the actual
utility function and the long-term effect −𝜆𝑛Δ𝑎𝑛 in the

TABLE I
ACTIONS AND PAYOFFS AT NE AND PARETO BOUNDARY

User 1 User 2 User 3

𝑎𝑁𝐸
𝑖 1.25 0.625 0.25

𝑢𝑁𝐸
𝑖 3.4939 1.5625 1.25

𝑎𝑃𝐵
𝑖 0.833 0.417 0.167

𝑢𝑃𝐵
𝑖 3.8036 2.0833 2.0412

conjectured utility function if user 𝑛 increases its action
by Δ𝑎𝑛. The condition in Equation (41) indicates that, to
achieve efficient outcomes, the non-collaborative users need
to jointly maintain moderate conservativeness by considering
the multi-user coupling and appropriately choosing {𝜆𝑛}𝑁𝑛=1.
By “moderate", we mean that users are neither too aggressive,
i.e. 𝜆𝑛 → 𝜏𝑛 and

∑𝑁
𝑛=1

𝜏𝑛
𝜆𝑛

→ 𝑁 , nor too conservative, i.e.

𝜆𝑛 → +∞ and
∑𝑁

𝑛=1
𝜏𝑛
𝜆𝑛

→ 0. If more than one user plays
the Nash strategy and choose 𝜆𝑛 = 𝜏𝑛, Equation (41) does not
hold and the resulting operating point is not Pareto-optimal.
Therefore, myopic selfish behavior is detrimental.

Similarly as in (22), we have inequality (42). Using Jensen’s
inequality, we can conclude

∑𝑁
𝑛=1 𝜔𝑛 log

𝑢𝑛(a
𝐶𝐸)

𝑢𝑛(a𝑃𝐵) ≤ 0 and∑𝑁
𝑛=1 𝜔𝑛 log

𝑢𝑛(a
𝐶𝐸)

𝑢𝑛(a𝑃𝐵)
= 0 if and only if 𝜔𝑛 = 𝜏𝑛

𝜆𝑛
, ∀𝑛.

Therefore, if a CE is Pareto efficient, user 𝑛’s conservativeness
𝜏𝑛/𝜆𝑛 corresponds to the weight assigned to user 𝑛 in the
weighted proportional fairness defined in (11).

As an illustrative example, we simulate a three-user system
with parameters 𝛽 = [1.5 1 0.5], 𝜏 = [3 4 5], 𝜇 = 10, 𝜔𝑛 =
1
3 , ∀𝑛. In this case, the joint actions and the corresponding
utilities at NE and Pareto boundary are summarized in Table I.
The price of anarchy quantified according to (25) is −0.2877
and the lower bound in (25) is −0.5754. As discussed in
Section III-C, both the upper bound and lower bound in
(25) are not tight. Fig. 1 shows the trajectory of the action
updates under both best response and Jacobi update dynamics,
in which 𝑎0𝑛 = 0.5, 𝜆𝑛 = 𝜏𝑛

𝜔𝑛
, ∀𝑛, and 𝜖 = 0.5. The best

response update converges to the Pareto-optimal operating
point in around 8 iterations and the Jacobi update experiences
a smoother trajectory and the same equilibrium is attained
after more iterations.

E. Discussions

1) Comparison Between Type I and Type II games: As
mentioned before, the properties of Type I games have been
investigated in the context of wireless random access[15].
Table II summarizes some similarities and differences between
both types of games. First, the two algorithms exhibit different
properties under the best response dynamics. In Type I games,
the stable CE may not be globally convergent. However, the
local stability of a CE implies its global convergence in Type II
games. Second, it is shown in [15] that any operating point that
is arbitrarily close to the Pareto boundary of the utility region
of Type I games is a stable CE. Similarly, the entire Pareto
boundary of Type II games is also stable. At last, different
relationships between the parameter selection and the achieved
utility at equilibrium have been observed for the two types
of games. In particular, in Type I games, user 𝑛’s utility 𝑢𝑛
is approximately proportional to the inverse of the parameter
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𝑁∑
𝑛=1

𝜔𝑛 log
𝑢𝑛(a

𝐶𝐸)

𝑢𝑛(a𝑃𝐵)
=

𝑁∑
𝑛=1

𝜔𝑛𝛽𝑛 log
𝜏𝑛(1 +

∑𝑁
𝑗=1 𝜔𝑗𝛽𝑗)

𝜆𝑛𝜔𝑛(1 +
∑𝑁

𝑗=1
𝜏𝑗𝛽𝑗

𝜆𝑗
)
+ log

1 +
∑𝑁

𝑗=1 𝜔𝑗𝛽𝑗

1 +
∑𝑁

𝑗=1
𝜏𝑗𝛽𝑗

𝜆𝑗

(42)

TABLE II
COMPARISON BETWEEN TYPE I AND TYPE II GAMES.

Games Best response dynamics Stability vs. efficiency Fairness vs. parameter selection

Type I local stability ⇐ global convergence stable at near-Pareto-optimal points 𝑢𝑛 ∝ 𝜏𝑛/𝜆𝑛

Type II local stability ⇔ global convergence stable at the Pareto boundary 𝜔𝑛 = 𝜏𝑛/𝜆𝑛 at the Pareto boundary

𝜆𝑛 in its belief function. In contrast, in Type II games, if
the CE is Pareto-optimal, the ratio 𝜏𝑛/𝜆𝑛 coincide with the
weight 𝜔𝑛 assigned to user 𝑛 in the proportional fairness
objective function. In other words, based on the definition of
proportional fairness [26], we know

𝑁∑
𝑛=1

𝜏𝑛(𝑢
′
𝑛 − 𝑢∗𝑛)
𝜆𝑛𝑢∗𝑛

≤ 0, (43)

in which (𝑢′1, 𝑢
′
2, . . . , 𝑢

′
𝑁 ) is the users’ achieved utility associ-

ated with any other feasible joint action and (𝑢∗1, 𝑢
∗
2, . . . , 𝑢

∗
𝑁)

is the optimal achieved utility for problem (11) with 𝜔𝑛 =
𝜏𝑛/𝜆𝑛 and

∑𝑁
𝑛=1 𝜔𝑛 = 1.

2) Pricing Mechanism vs. Conjectural Equilibrium: In
order to achieve Pareto-optimality, information exchanges
among users is generally required in order to collaboratively
maximize the system efficiency. The existing cooperative com-
munication scenarios either assume that the information about
all the users is gathered by a trusted moderator (e.g. access
point, base station, selected network leader etc.), to which it is
given the authority to centrally divide the available resources
among the participating users, or, in the distributed setting,
users exchange price signals (e.g. the Lagrange multipliers for
the dual problem) that reflect the “cost" for consuming per unit
constrained resources to maximize the social welfare and reach
Pareto-optimal allocations. As an important tool, the pricing
mechanism has been applied in the distributed optimization
of various communication networks [12]. However, we would
like to point out that, the pricing mechanism generally requires
repeated coordination information exchange among users in
order to determine the optimal actions and achieve the Pareto-
optimality. In contrast, for the linear coupled communication
games, since the specific structure of the utility function is
explored, the CE approach is able to calculate the Pareto
efficient operating point in a distributed manner, without
any real-time information exchange among users. In fact,
the underlying coordination is implicitly implemented when
the participating users initialize their belief parameters. Once
the belief parameters are properly initialized by the proto-
col according to (41), using the proposed dynamic update
algorithms, individual users are able to achieve the Pareto-
optimal CE solely based on their individual local observations
on their states and no message exchange is needed during
the convergence process. Therefore, the conjecture equilibrium
approach is an important alternative to the pricing-based
approach in the linearly coupled games.

3) Connection to Bayesian Games, Markov Games, and
Linear Games With Linearly Coupled Constraints: The sim-

ilarity between conjectural equilibrium and Bayesian equilib-
rium is that players in both games have beliefs and players
can update their beliefs during the game. In Bayesian game,
players have imperfect information about the characteristics of
the other players [18]. A player’s uncertainty, i.e. its belief, is
captured by a probability measure over some set of possible
“states of nature". However, in conjectural games, user n’s
belief is defined as a map from its own action set 𝒜𝑛 to its
own state set 𝒮𝑛. Note that in Bayesian games, it is implicitly
assumed that user n’s action 𝑎𝑛 has no direct impact over the
"state of nature" and their beliefs are usually updated using
Bayes’ rule.

Conjectural equilibrium has been proposed as a solution
for Markov games (or stochastic games) with incomplete
information [31]. In these games, players cannot observe
the payoff functions of other players. As opposed to other
solution concepts, e.g. reinforcement learning, in conjectural
equilibrium, players have beliefs that are maps from their own
action space to their state spaces. Players will form and update
beliefs about other players by learning during the interactions
with other players.

In [32], the authors define a class of linear games with
linearly coupled constraints (LCCG). They propose an iterative
approach to solve for the Nash equilibrium for linear games
with linearly coupled constraints. The key idea is to interpret
the slack variables associated with the constraint as fictitious
players that can be implemented as service channels. However,
how to compute the Pareto efficient solutions for LCCG is not
addressed in [32]. The linearly coupled communication games
studied in this paper are similar to the game model investigated
in [32] in that the users’ best response functions are implicit
affine functions. As a result, computing Nash equilibrium
for both games is equivalent to solving linear equations. In
addition, as discussed in Section III-B, the Pareto boundary
for linearly coupled communication games can be determined
by solving linear equations. The conjectural equilibrium is
proposed as a practical solution to achieve Pareto optimality
without real-time message passing.

V. CONCLUSION

We derive the structure of the utility functions in the multi-
user communication scenarios where a user’s action has pro-
portionally the same impact over other users’ utilities. The per-
formance gap between NE and Pareto boundary of the utility
region is explicitly characterized. To improve the performance
in non-cooperative cases, we investigate a CE approach which
endows users with simple linear beliefs which enables them to
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select an equilibrium outcome that is efficient without the need
of explicit message exchanges. The properties of the CE under
both the best response and Jacobi dynamic update mechanisms
are characterized. We show that the entire Pareto boundary in
linearly coupled games is globally convergent CE which can
be achieved by both studied dynamic algorithms without the
need of real-time message passing. A potential future direction
is to see how to extend the CE approach to certain particular
non-linearly coupled multi-user communication scenarios.

APPENDIX A
PROOF OF LEMMA 1

Proof : Denote the factorization of 𝑠𝑛(a) as

𝑠𝑛(a) =

𝑀𝑛∏
𝑖=1

𝑏𝑖𝑛(a), (44)

in which 𝑀𝑛 represents the number of the non-constant
irreducible factors in 𝑠𝑛(a). Define V(⋅) as the mapping
from a polynomial to the set of variables that appear in that
polynomial. Based on assumption A2, we immediately have

V(𝑏𝑖𝑛(a)) ∩ V(𝑏𝑗𝑛(a)) = ∅, ∀𝑖, 𝑗(𝑗 ∕= 𝑖), 𝑛.

Without loss of generality, we assume that 𝑎𝑗 ∈ V(𝑏1𝑛(a))
and 𝑏1𝑛(a) = 𝑓 𝑗𝑏1𝑛

(a−𝑗)+ 𝑔𝑗𝑏1𝑛
(a−𝑗)𝑎𝑗 . Then 𝑓 𝑗𝑛(a−𝑗), 𝑔𝑗𝑛(a−𝑗)

in (7) are given by

𝑓 𝑗𝑛(a−𝑗) = 𝑓 𝑗𝑏1𝑛
(a−𝑗) ⋅

𝑀𝑛∏
𝑖=2

𝑏𝑖𝑛(a),

and

𝑔𝑗𝑛(a−𝑗) = 𝑔𝑗𝑏1𝑛
(a−𝑗) ⋅

𝑀𝑛∏
𝑖=2

𝑏𝑖𝑛(a).

Therefore, 𝑓𝑚
𝑛 (a−𝑚)
𝑔𝑚𝑛 (a−𝑚) =

𝑓𝑗

𝑏1𝑛
(a−𝑗)

𝑔𝑗
𝑏1𝑛

(a−𝑗)
. By assumption A3, we have

that the degree of
𝑓𝑗

𝑏1𝑛
(a−𝑗)

𝑔𝑗
𝑏1𝑛

(a−𝑗)
is less than or equal to 1. Since

𝑏1𝑛(a) is irreducible, we can conclude that 𝑔𝑗𝑏1𝑛
(a−𝑗) is a

constant and the degree of 𝑓 𝑗𝑏1𝑛
(a−𝑗) is less than or equal

to 1. Note that the arguments above hold, ∀𝑗, 𝑛. Therefore,
the degree of 𝑏𝑖𝑛(a) is one, ∀𝑛 ∈ 𝒩 , 𝑖 = 1, . . . ,𝑀𝑛, which
concludes the proof. ■

APPENDIX B
PROOF OF LEMMA 2

Proof : By assumption A2, 𝑠′𝑛𝑚(a) < 0, ∀𝑚 ∕= 𝑛, we
have ∣V(𝑠𝑛(a))∣ ≥ 𝑁 − 1, ∀𝑛 ∈ 𝒩 . By Lemma 1, the
irreducible factors of 𝑠𝑛(a) have no common variables and
they are affine functions. Suppose ∣V(𝑏𝑖𝑛(a))∣ ≥ 2 and
{𝑎𝑚, 𝑎𝑙} ∈ V(𝑏𝑖𝑛(a). By assumption A4, we know that
𝑠′𝑛𝑚(a)
𝑠𝑛(a)

=
𝑠′𝑘𝑚(a)
𝑠𝑘(a)

=
𝑏′𝑖𝑛𝑚(a)
𝑏𝑖𝑛(a)

, ∀𝑛, 𝑘 ∈ 𝒩 ∖ {𝑚}. Therefore,
it follows

𝑠𝑘(a) =
𝑠′𝑘𝑚(a)𝑏𝑖𝑛(a)

𝑏′𝑖𝑛𝑚(a)
. (45)

Since 𝑏′𝑖𝑛𝑚(a) is a constant, we can see that 𝑏𝑖𝑛(a) is an
irreducible factor of 𝑠𝑘(a), ∀𝑘 ∈ 𝒩 ∖ {𝑚}. By symmetry, we
can conclude that 𝑏𝑖𝑛(a) must also be an irreducible factor of

𝑠𝑘(a), ∀𝑘 ∈ 𝒩 ∖{𝑙}. Therefore, 𝑏𝑖𝑛(a) is an irreducible factor
of 𝑠𝑘(a), ∀𝑘 ∈ 𝒩 . Similarly, we can prove the remaining parts
of Lemma 2. ■
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