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Abstract—This paper studies the value of learning for cognitive
transceivers in dynamic wireless networks. We quantify the util-
ity improvement that can be obtained by a wideband user that
learns the stationary usage pattern of the spectrum occupied by
narrowband users and, based on this learned information, adapts
its transmission. Specifically, we investigate the basic tradeoff
between the learning duration and the achievable performance
in stationary environments. We apply optimization and large-
deviation theory to analytically derive an upper bound of the
minimum required learning duration, given the user’s tolera-
ble performance loss and outage probability. Furthermore, since
learning techniques require the information feedback of the spec-
trum usage pattern between the transceivers, we investigate how
a cognitive user can further improve its performance by taking
into account its feedback delay. The impact of inaccurate delay
estimation on the achievable performance is also quantified.

Index Terms—Cognitive users, feedback delay, learning, wire-
less networks.

I. INTRODUCTION

A PROMISING way of improving the radio spectrum uti-
lization is to build cognitive wireless devices [1] that can

benefit from the opportunistic deployment of unused spectral
opportunities from various frequency bands [1]–[3]. While
conceptually simple, the realization of cognitive wireless de-
vices is highly challenging. Several problems must be solved:
sensing over a wide frequency band, identifying and character-
izing available spectrum opportunities, exploiting the identified
transmission opportunities, etc. In particular, as stated in [1],
a cognitive wireless device should be able to “learn from the
environment and adapt its internal states to statistical variations
in the incoming RF stimuli by making corresponding changes
in certain operating parameters (e.g., transmit power, carrier
frequency, and modulation strategy) in real time.”

Learning techniques have already been deployed to im-
prove the performance of a broad class of wired and wireless
communication systems. They enable the dynamically inter-
acting communication devices to acquire information, build
knowledge, and ultimately improve their performance [4]–
[7]. For instance, appropriate learning solutions are studied in
distributed environments consisting of players with very limited
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information about their opponents, such as the Internet [4]. In
[5], a reinforcement learning algorithm is proposed to maxi-
mize the average throughput in sensor communications without
explicitly knowing the model of the environment. By mod-
eling the interaction among noncooperative nodes in wireless
ad hoc networks as a repeated game, a reinforcement learning
algorithm is proposed to design power control in wireless
ad hoc networks [6], where it is shown that the learning dynam-
ics can eventually converge to Nash equilibrium and achieve
a satisfactory performance. In [7], a novel learning approach is
proposed for wireless users to dynamically and efficiently share
spectrum resources by considering the time-varying properties
of their traffic and channel conditions.

As opposed to the previous works, which focus on studying
the long-term convergence behavior of certain learning algo-
rithms [4]–[6] or determine the operational shorter-term perfor-
mance without providing any performance guarantees [7], this
paper aims at characterizing and analytically quantifying the
achievable performance that can be obtained by cognitive users
with learning capabilities in wireless networks. We study how
much a cognitive device with no prior knowledge should learn
about its environment, e.g., the time-varying channel condition
or experienced interference, in order to reach its performance
(utility) requirement. Particularly, if the environment is station-
ary, we explicitly quantify the benefits that a user can derive in
terms of its improved utility by learning for a longer duration,
i.e., based on a larger number of observations about the envi-
ronment. We apply optimization and large-deviation theory to
derive an upper bound of the minimum observation duration,
given the performance guarantee desired by the user. Then,
noticing that the information required for cognitive devices to
perform learning is usually gathered through the information
feedback from the receiver to the transmitter and, hence, that
this information can be delayed during the feedback process,
we study how a cognitive device can improve its performance
if it accurately knows the feedback delay. We also quantify
the impact of imperfect delay measurements on the achieved
performance.

While this paper focuses on studying learning in wireless
network settings, the proposed solutions can be generalized
to other applications [5], [7] wherein cognitive communica-
tion devices deploy strategic learning solutions to accumulate
knowledge about its environment and, based on this, improve
its performance. The rest of this paper is organized as follows.
Section II presents the deployed system model and formulates
the problem of learning and adapting to the spectrum usage
pattern. In Section III, we analytically derive an upper bound
of the minimum required learning duration. Section IV presents

0018-9545/$25.00 © 2009 IEEE



2826 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 6, JULY 2009

Fig. 1. Investigated cognitive wireless networks.

several illustrative numerical results, and Section V quantifies
the impact of spectrum usage information feedback delay.
Conclusions are drawn in Section VI.

II. SYSTEM MODEL

In this section, we present the mathematical model of the
investigated dynamic wireless system and formulate the prob-
lem of learning the stationary spectrum occupation pattern by a
cognitive transceiver [1].

A. System Description

We assume a cognitive wireless system that is similar with
the one studied in [3] (see Fig. 1). The total number of fre-
quency channels in the system is N , and each has a bandwidth
of B. The majority of radio devices in this system are nar-
rowband users. These devices can dynamically utilize the idle
spectrum bands by enabling carrier frequency switching and
“packing” all the active radios tightly in the spectral domain.
A simple example is shown in Fig. 1. If one device releases
the frequency band f2, the device occupying frequency f4 will
switch to f2. The system state is defined as the number of
channels nnb that are occupied by the narrowband users. The
arrival and departure rates of these devices are assumed to
follow a Poisson distribution. As a result, the spectrum usage
pattern can be captured as a continuous-time Markov chain [3],
[8], [9]. Fig. 2 shows an example of the Markov chain with the
infinitesimal generator [10]

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

−λ1 λ1

μ1 −(λ2 + μ1) λ2

μ2 −(λ3 + μ2)
. . .

. . .
. . . λN

μN −μN

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(1)

Note that the Markov chain model and its corresponding
infinitesimal generator Q can take various forms based on the
configuration of the considered wireless network. Denote the
steady-state probability vector of the spectrum usage pattern as
π = [π0, π1, . . . , πN ], in which πi represents the probability of
having active i narrowband devices in the system. No matter
what form the infinitesimal generator Q takes, we always have

πQ = 0. (2)

Fig. 2. Example of continuous-time Markov chain model.

As shown in Fig. 1, we also consider a wideband device in
the system, which can transmit over all N frequency channels.
The noise power at frequency band i is Ni, and its channel gain
is hi.1 Each active narrowband device causes an interference
power of I to the wideband receiver. The wideband device
is subjected to a total power constraint of Pmax. Denote the
power vector across all frequency bands P = [P1, . . . , PN ]T,
in which Pi is the power allocated in frequency band i. Note
that the probability that the wideband receiver experiences an
interference in channel i from the narrowband user equals∑N

n≥i πn, and the probability of having no interference equals∑n<i
n=0 πn. Hence, the achievable rate is given by

R(π,P ) =
N∑

i=1

(
N∑

n≥i

πnB log
(

1 +
hiPi

Ni + I

)

+
n<i∑
n=0

πnB log
(

1 +
hiPi

Ni

))
. (3)

Note that we do not associate priority types (i.e., primary or
secondary) with the narrowband and wideband devices. How-
ever, it is possible to consider the interaction among devices of
different priorities. For example, transmit-power mask for the
cognitive wideband radio transmitter can be created [20].

B. Learning Duration and Performance

As previously mentioned, we would like to determine to what
extent the wideband device should learn the spectrum usage
pattern in order to explore its available spectrum opportunities.
Fig. 3 shows this learning process wherein the wideband re-
ceiver periodically senses the spectrum and feeds back to its
transmitter the number of interfering narrowband devices nt

nb

at time t. Specifically, the wideband device models its envi-
ronment by simply counting the number of active narrowband

1This paper assumes a static channel. The same technique can be applied if
the channel dynamics is also taken into consideration. For example, a Rayleigh
fading channel can also be modeled using the Markov chain model [23].
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Fig. 3. Spectrum usage feedback of the wideband device.

devices that it encountered in the past and approximating the
stationary spectrum usage pattern π by the observed frequen-
cies of the system states discussed previously.2 We define an
empirical frequency function

γt(n) = ct(n)

/
N∑

n=0

ct(n) (4)

where ct(n) is a counting function satisfying c0(n) = 0, ∀n ∈
{0, 1, . . . , N}, and

ct(n) =
{

ct−1(n) + 1, if nt
nb = n

ct−1(n), otherwise.
(5)

The wideband user approximates the steady state π using the
empirical frequency function γt and takes the best response
action P (γt) that maximizes

R(γt,P ) =
N∑

i=1

(
N∑

n≥i

γt(n)B log
(

1 +
hiPi

Ni + I

)

+
n<i∑
n=0

γt(n)B log
(

1 +
hiPi

Ni

))
(6)

i.e., P (γt) = arg maxP T1≤Pmax R(γt,P ), with 1 =
[1, . . . , 1]T.3 We denote the achievable rate when the wideband
user takes the best response to the empirical frequency
function γt as Ra(γt) = R(π,P (γt)). Similarly, we define
the maximal achievable rate to be Ra(π) = R(π,P (π)).

Throughout this paper, learning duration refers to the number
of available observed spectrum usage patterns over time for the
wideband user to update γt(n) and approximate the steady-
state distribution π. Intuitively, the performance of learning
is expected to improve if more observations are available. In
this paper, we aim at determining how many observations are
sufficient for a learning user to reach a certain desirable perfor-
mance guarantee. Specifically, given the tolerable performance

2Typical detection methods include energy detection, coherent detection,
etc. [21].

3Note that, here, we normalize the feedback period, and we implicitly assume
that this period is sufficiently large such that the spectrum usage pattern will be
independent of the previous sampled usage pattern. Section V will discuss the
optimal strategies for various feedback delays and sampling intervals.

loss ΔR with respect to perfectly knowing π and the outage
probability δR, we want to determine

Minimum Required Learning Duration :
min t, s.t. Prob (Ra(π) − Ra(γt) ≥ ΔR) ≤ δR. (7)

The wideband user’s learning and adaptation mechanisms are
summarized in Table I.

The next section will investigate this tradeoff between learn-
ing duration and its achievable performance.

III. MINIMUM REQUIRED LEARNING DURATION

This section aims at solving the previous stated problem of
determining the minimum learning duration for a cognitive user
in a stationary environment, given its tolerable performance
loss and outage probability. Specifically, we derive an upper
bound of the minimum required learning duration and discuss
the tradeoff between the learning duration and the achievable
performance.

Although similar bounds exist in statistical learning theory,
e.g., Hoeffding’s inequality [11], it is still difficult to solve the
problem in (6) because these bounds do not directly apply to
our considered problem. However, we can find an upper bound
for the solution of the problem in (6). Having such a bound
is important from both a theoretical and a practical perspec-
tive, because, due to the real-time adaptation requirement of
cognitive networks [1], only limited observations are usually
available to cognitive users, and thus, it becomes necessary for
them to understand the basic tradeoff that can be made between
the obtained performance and the learning duration. For this,
we adopt tools from large-deviation theory, which quantifies the
exponential decay of probability measures for certain kinds of
tail events [12]. According to the large-deviation theory, the em-
pirical frequency function γt(n) of a random sample of size t
drawn from π satisfies

Prob
(
D(γt‖π) ≥ δ

)
≤
(

N + t
N

)
2−δt ∀δ > 0 (8)

where D(p‖q) is the Kullback–Leibler (KL) distance between
two probability mass functions (pmfs) p(x) and q(x) [13].
Then, we need to convert the performance loss Ra(π) −
Ra(γt) into the KL distance D(γt‖π). Note that these
two metrics do not always perfectly align with each other.
The basic idea in determining an upper bound is to find a
value of δ such that D(γt‖π) ≤ δ always leads to Ra(π) −
Ra(γt) ≤ ΔR. By setting t to satisfy

(
N+t
N

)
2−δt ≤ δR,

we have Prob(D(γt‖π) ≥ δ) ≤ Prob(Ra(π) − Ra(γt) ≥
ΔR) and, this value provides an upper bound for the problem
in (6). As shown in Fig. 4, we divide this procedure into
three steps. First, we construct a convex set B in the standard
probability simplex Ω = {γ|1Tγ = 1,γ � 0} such that, for all
γ ∈ B, it satisfies Ra(π) − Ra(γ) ≤ ΔR. Second, by solving
convex optimization problems that minimize the KL distance
between π and the pmfs that lie on the boundary of B, we obtain
the desired value of δ, which is denoted as δDmin in Fig. 4.
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TABLE I
WIDEBAND USER’S LEARNING AND ADAPTATION MECHANISMS

Fig. 4. Performance loss and KL distance.

Third, we apply large-deviation theory and derive an upper
bound of the minimum required observations. In the following
sections, we will explain each step in detail.

A. Extreme Points With Performance Loss Constraints

First, in the probability simplex Ω, we construct a convex
set B that contains the actual pmf. Let A = {{k, j} : k, j ∈
{0, 1, . . . , N} and k < j} such that A contains a total number
of M =

(
N+1

2

)
combinations of any two different integers in

{0, 1, 2, . . . , N}. Let (S)m denote the mth element of set S.
Based on the tolerable performance loss ΔR, we choose a
total number of 2M pmfs and view them as “extreme points”
of the set B in which we are going to derive an upper
bound of the minimum required learning duration. For m =
1, 2, . . . , 2M , the 2M pmfs that we are interested in satisfy the
following:

P1) γm ∈ Ω;
P2) γm(n) = πn, if n �∈ (A)m.

Note that P2) ensures that these pmfs have only two ele-
ments that are different from the stationary distribution π. The

pmfs that satisfy P1) and P2) can be rewritten as γm(n, δm)
defined by

γm(n, δm)

=

⎧⎨
⎩

πn − δm, if n = ((A)m)1
πn + δm, if n = ((A)m)2 , m = 1, 2, . . . , 2M
πn, if n �∈ (A)m.

(9)

Denoting γm(δm) = [γm(0, δm), . . . , γm(N, δm)], now, we
can determine the extreme points by setting the parameter
δm based on the tolerable performance loss ΔR. For m =
1, 2, . . . ,M

δm =
{

πl with l = ((A)m)1 , if Sδ = ∅

min δ ∈ Sδ, otherwise
(10)

in which Sδ = {δ : Ra(π) − Ra(γm(δ)) ≥ ΔR and δ ≥
0}, and

δm+M =
{
−πl, with l = ((A)m)2 , if S−δ = ∅

min δ ∈ S−δ, otherwise
(11)

where S−δ = {δ : Ra(π) − Ra(γm(−δ)) ≥ ΔR and δ ≥ 0}.
Due to the nonnegative property in P1), when n ∈ (A)m, if
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Sδ = ∅ or S−δ = ∅, we set γm(n, δm) to be zero to ensure
that the performance loss is as close to ΔR as possible. On the
other hand, if Sδ �= ∅ or S−δ �= ∅, the “extreme points” are the
pmfs that cause an exact performance loss of ΔR.

Using the convex hull of the aforementioned 2M extreme
points, we construct a convex set B within which to derive
an upper bound of the minimum required learning duration
in (6), i.e.,

B=

{
γ :γ =

2M∑
m=1

αmγm(δm), αm≥0, and
2M∑

m=1

αm =1

}
.

(12)

Proposition 1 (Satisfying Performance Loss Constraints):
Any γ ∈ B satisfies Ra(π) − Ra(γ) ≤ ΔR.

The proof is given in Appendix A. Proposition 1 ensures that
any convex combinations of the extreme points still satisfy the
tolerable performance loss requirement, which enables us to
apply optimization theory to convert the metric of performance
loss ΔR into KL distance δDmin in the following step.

B. KL Distance Minimization in Convex Set

In the first step, a convex set B is constructed based on the
tolerable performance loss ΔR. Next, we apply large-deviation
theory to translate the performance loss ΔR into another metric,
the KL distance δD. The basic idea is to solve an optimization
problem to find the minimum KL distance δDmin such that,
for any γ that satisfies D(γ‖π) ≤ δDmin , we have Ra(π) −
Ra(γ) ≤ ΔR. Particularly, the optimization problem can be
formulated as

min
γ

D(γ‖π)

s.t. γ ∈ S(B) (13)

where S(B) represents the surface of the convex set B, i.e.,
S(B) = B \ int(B). Here, we denote the interior of the set B
as int(B) [14].

Note that the KL distance D(γ‖π) is convex in the pair
(γ,π), and γ ∈ S(B) is a linear constraint [13]. Therefore,
the problem in (13) essentially belongs to convex program-
ming, and the optimal solution can efficiently be obtained by
solving the optimization problem for each polyhedron on the
boundary S(B) [15]. Because the convex combinations of the
extreme points in B cover the adjacent region of the actual
stationary distribution π, the minimum of (13) that ensures
that D(γ‖π) ≤ δDmin is a sufficient condition to ensure that
Ra(π) − Ra(γ) ≤ ΔR.

C. Minimum Learning Duration Calculation

In the second step, we show that D(γ‖π) ≤ δDmin always
leads to Ra(π) − Ra(γ) ≤ ΔR. Hence, an upper bound of the
solution to the problem in (6) can be obtained by solving

min t

s.t. Prob
(
D(γt‖π) ≥ δDmin

)
≤ δR. (14)

Applying (8) from large-deviation theory, we have the fol-
lowing proposition.

Proposition 2 (An Upper Bound of Minimum Required
Learning Duration): Suppose the wideband device updates its
empirical frequency function γt and takes the best-response
action with respect to γt. An upper bound T of the solution
of problem (6) is

T = Min_t(δDmin , N, δR) (15)

in which

Min_t(x, y, z)=min
{
t : t ∈ Z+ and

(
y + t

y

)
·2−tx≤z

}
.

Proof: Combining (8) and (14), we know that any t that
satisfies (

N + t
N

)
2−δDmin t ≤ δR (16)

is an upper bound of the solution of problem (6). Let F (t) =(
N+t
N

)
2−δDmin t. We have F (t + 1)/F (t) = (1 + (N/t +

1))2−δDmin and limt→∞(F (t + 1)/F (t)) = 2−δDmin < 1.
Therefore, we can conclude that limt→∞ F (t) = 0. As a result,
by choosing T = Min_t(δDmin , N, δR) as the minimum
integer in the feasible region of inequality (16), we obtain an
upper bound of the optimum solution of (6). �

Subsequently, we provide some intuition to interpret the
previously derived upper bound. Define f : R → R to be the
function that maps the tolerable performance loss ΔR into
the minimum KL distance δDmin . Obviously, f is a nonin-
creasing function because a larger ΔR enlarges the set B and
increases the corresponding δDmin . The upper bound of the
minimum learning duration can be rewritten as

T = Min_t (f(ΔR), N, δR) . (17)

We can make several key observations by examining this
upper bound.

Remark 1: Decreasing the acceptable performance loss ΔR

will lead to a larger minimum observation duration T , which
is a direct consequence of the nonincreasing property of
function f .

Remark 2: Decreasing the outage probability δR will in-
crease T . This remark is also quite intuitive.

Remark 3: If the number of channels N is increased, the
upper bound of the required observations T also increases in
order to ensure that the outage probability is smaller than the
threshold of δR. This argument holds because a larger number
of channels N will cause

(
N+t
N

)
to increase and δDmin to be

smaller than or equal to its original value (given that the steady-
state probability distribution π is unchanged). Intuitively, a
larger N adds additional uncertainty in the learning process and
increases the upper bound T .

IV. ILLUSTRATIVE EXAMPLES

This section simulates an example to illustrate all the pre-
viously proposed procedures. We consider a cognitive system
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Fig. 5. Learning duration and performance loss.

with N = 2, λ1 = μ2 = 2 users/time slot, and λ2 = μ1 =
1 user/time slot, and the power constraint of the wideband
device is Pmax = 40 dBm. Its channel gain and the power
of noise and interference are given by h1 = −117 dB, h2 =
−120 dB, and N1 = N2 = I = −80 dBm. It is easy to solve
that the stationary distribution is π = [0.25 0.5 0.25]. Fig. 5
shows the simulated learning curve that indicates the learning
duration versus the resulting performance loss. We can see that
the performance loss ΔR is decreased by learning for a longer
duration.

We set the parameters in problem (6) to be ΔR = 10−2.5 and
δR = 10−2. Figs. 6 and 7 show the procedure of obtaining the
upper bound in Section III-B. Noting that N = 2, we choose six
extreme points γ1, . . . , γ6 in total, which are determined based
on the rate–pmf curves in Fig. 6. These plotted curves indicate
the achievable rates for three pmfs, including γ(0) = 0.25,
γ(1) = 0.5, and γ(2) = 0.25, i.e., γ(0) + γ(1) = 0.75. The
convex hull of these extreme points γ1, . . . , γ6 is the extreme
point set B. The dashed hexagon in Fig. 7 is the surface S(B)
on which we minimize the KL distance. Solving the convex
optimization problem (13) leads to δDmin = 0.1265. Using
(15), we obtain that T = Min_t(0.1265, 2, 10−2) = 161. As
shown in Fig. 7, if the learning duration is larger than T , the
KL distance between the actual stationary distribution π and
the observed empirical frequency function γt will lie within
the solid circle with an outage probability that is less than δR.

We also examine the tightness of the upper bound in different
settings. The tolerable performance loss ΔR is varied to be
10−2, 10−2.5, and 10−3, while the outage probability δR is set
to be a constant of 10−2. In each scenario, we use Monte Carlo
methods to calculate the actual required learning duration Ta.
The results are summarized in Table II. From the table, we can
see that the bound is not very tight, which can be explained
by the observation that the space between the solid circle and
the dashed hexagon is large. At the same time, we also find
that the ratio of T/Ta increases when the performance loss
ΔR is decreased, because the mismatch between the contours
is increased as ΔR decreases. Moreover, we can also see that,

Fig. 6. Constructing the extreme points.

Fig. 7. KL distance minimization in S(B).

TABLE II
LEARNING DURATIONS FOR DIFFERENT PERFORMANCE

LOSS REQUIREMENTS

by carefully choosing the extreme points, S(B) can be enlarged
to approach the contour of Ra(γ) and therefore improve the
tightness of the upper bound. However, since we are mostly
interested in deriving the minimum required learning duration
for intermediate values of ΔR, the actual value Ta and the
upper bound T are still of the same magnitude. In addition, it
is important to note that, even though the bound is not tight, it
still guarantees that, sensing the environment and learning for
this time interval, the cognitive device can achieve the desired
performance.
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Fig. 8. Feedback delay of the spectrum usage.

V. IMPACT OF FEEDBACK DELAY

In this section, we discuss the impact of the feedback
delay of spectrum usage information, which causes the re-
ceived information to be out of date and degrades the perfor-
mance. The feedback delay exists due to several reasons, e.g.,
wireless propagation, signal processing expense, and protocol
overhead.

We denote the feedback delay of the spectrum usage pattern
nnb from the receiver to the transmitter as dt. As shown in
Fig. 8, the spectrum usage pattern that the transmitter receives at
time t is actually the usage pattern that the receiver experienced
at time t − dt.

As stated in Section III, the infinitesimal generator Q of
the Markov chain can take various forms based on the system
specification. Define the transition probability matrix S(t), in
which Si,j(t) is the probability that a Markov process is in state
j at time t, given that it is in state i at time 0. Based on the
stochastic process theory [10], we know that S(t) is the solution
of the Kolmogorov equation, which takes the form of

S(t) =
N+1∑
i=1

vie
tξiωi (18)

in which ξ1, ξ2, . . . , ξN+1 are the N + 1 distinct eigenvalues
of matrix Q, and v1,v2, . . . ,vN+1 and ω1,ω2, . . . ,ωN+1 are
the corresponding right and left eigenvectors of matrix Q. In
particular, the matrix Q for the considered Markov process
has an eigenvalue ξ1 = 0 with the corresponding right and
left eigenvectors v1 = [1, 1, . . . , 1]T and ω1 = π. All the other
eigenvalues ξ2, . . . , ξN+1 of Q have strictly negative real parts.

Given the latest feedback nt−dt

nb , the optimization of power
allocation at the transmitter is converted into

max
P T1≤Pmax

R
(
πt,P

∣∣∣nt−dt

nb

)
(19)

in which πt = [πt
0, π

t
1, . . . , π

t
N ] is the probability vector of the

spectrum usage pattern nt
nb with πt

n|nt−dt

nb = S
n

t−dt
nb

,n
(dt) =

Pr(nt
nb = n|nt−dt

nb ). From (18), we have

lim
t→+∞

S(t) = v1ω1. (20)

Therefore, when dt → +∞, πt → ω1 = π, which is indepen-
dent of nt−dt

nb . As a result, R(πt,P |nt−dt

nb ) in (19) is reduced
to R(π,P ) in (3). We can conclude that learning the stationary
distribution π of frequency usage pattern and optimizing the
power allocation with respect to this distribution are optimal
only when the feedback delay is large.

On the other hand, we note that the achievable rate in (3) can
be further improved, if both the transmitter and the receiver
have perfect and instantaneous channel state information [22],
i.e., the delay of information feedback is zero. In fact, in the
limited feedback delay scenarios, the best strategy is not to learn
the stationary distribution, and the transmitter needs to explore
the timeliness of the feedback information nt−dt

nb , because
πt in (19) is a function of the limited feedback delay dt.
In particular, R(πt,P |nt−dt

nb ) in the optimal transmission
strategy of (19) will become

R
(
πt,P |nt−dt

nb

)
= R
(
S

n
t−dt
nb

,:
(dt),P

)

=
N∑

i=1

(
N∑

n≥i

S
n

t−dt
nb

,n
(dt) · B log

(
1 +

hiPi

Ni + I

)

+
n<i∑
n=0

S
n

t−dt
nb

,n
(dt)B log

(
1 +

hiPi

Ni

))
(21)

where Si,:(dt) represents the ith row of S(dt). The problem
is converted into how to accurately estimate S(t) at t = dt.
Due to the periodic nature of the feedback information nt

nb, the
wideband device is able to sample the transition probability ma-
trix S(t) at t = Δt, 2Δt, . . . by updating empirical frequency
functions and use numerical algorithms [16], such as curve
fitting, to estimate S(t) for noninteger multiples of Δt. As long
as the environment is stationary and the sampling data are large
enough, the wideband device can accurately estimate S(dt).

Now, we investigate the impact of imperfect estimation of the
feedback delay dt. Practical methods of measuring the feedback
can be found in [17] and [18]. Suppose that the estimate that
the wideband device has about the feedback delay dt is d′t. The
performance degradation ΔR(d′t) of imperfect estimation d′t is
given by

ΔR (d′t) =
N∑

i=0

πi [R (Si,:(dt),P (Si,:(dt)))

−R (Si,:(dt),P (Si,: (d′t)))] . (22)

We derive an upper bound of this performance degradation
based on Markov chain theory and formally state the result as
Theorem 1.

Theorem 1: The performance degradation ΔR(d′t) defined
in (22) depends on two terms |d′t − dt| and min(d′t, dt).
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Fig. 9. Transition probability of S0,0(dt) and S0,1(dt).

Specifically, ΔR(d′t) is bounded as

0 ≤ ΔR (d′t) ≤ α (|d′t − dt|) e−β min(d′
t,dt) (23)

in which α(•) is a nonnegative function satisfying α(0) = 0
and limt→+∞ α(t) exists, and β > 0.

Proof: See Appendix B.
Two key observations can be made from the aforementioned

theorem. First, it is straightforward to see that the performance
loss is a function of |d′t − dt| and the performance loss is
zero if d′t = dt. More importantly, the theorem indicates that
the performance loss decreases at least exponentially with
min(d′t, dt). This result indicates the significance of the timeli-
ness of the information feedback. In addition, the existence of
limt→+∞ α(t) implies that the infinite estimation error of the
feedback delay causes bounded performance loss. With the in-
crease of min(d′t, dt), the effect of inaccurate estimation of the
delay dt over the performance diminishes at least exponentially.

We verify the performance improvement by considering
the feedback delay. We use an example with the parame-
ters N = 2, λ1 = μ2 = 0.02 user/time slot, and λ2 = μ1 =
0.01 user/time slot. It is easy to show that, for example, the three
eigenvalues of Q are ξ1 = 0, ξ2 = −0.02, and ξ3 = −0.04, and
the transition probability matrix S(t) is given by (24), shown at
the bottom of the page.

The transition probability of S0,0 and S0,1 is plotted as a
function of the feedback delay dt in Fig. 9. As we expect,
if the feedback delay dt → 0, the spectrum usage pattern nt

nb

has a large possibility to be equal to nt−dt

nb , i.e., the transmitter
exactly knows how many narrowband users are currently active.
On the other hand, if dt → +∞, the spectrum usage pattern
will converge to the stationary distribution π. Therefore, if dt is

Fig. 10. Performance loss of inaccurate estimate over dt.

Fig. 11. Performance loss of inaccurate estimate for fixed dt − d′t.

not sufficiently large, the wideband transmitter should optimize
its power allocation with respect to the transition probability
matrix S(dt) rather than the stationary distribution π.

Next, we numerically show the improvement of measuring
the feedback delay dt. The feedback delay dt is assumed to be
two, and the performance loss ΔR(d′t) is shown in Fig. 10. We
can see that it agrees with the argument that α(0) = 0 and that
limt→+∞ α(t) exists in Theorem 1. Compared with taking the
best response to the stationary distribution, perfectly knowing
the value of feedback delay can increase the achievable rate
by 3.5%. We also vary d′t while fixing dt − d′t to be ten and
plot the corresponding ΔR(d′t) in Fig. 11. We can see that
the performance loss ΔR(d′t) decreases exponentially with d′t,
which complies, as expected, with Theorem 1.

S(t) = 0.25 ×

⎡
⎣ 1 + 2e−0.02t + e−0.04t 2 − 2e−0.04t 1 − 2e−0.02t + e−0.04t

1 − e−0.04t 2 + 2e−0.04t 1 − e−0.04t

1 − 2e−0.02t + e−0.04t 2 − 2e−0.04t 1 + 2e−0.02t + e−0.04t

⎤
⎦ (24)
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VI. CONCLUSION

This paper studies the minimum required observations that
a wideband user should have in order to learn about the
stationary probability distribution of its experienced environ-
ment, given the required performance guarantee. The derived
results provide several insights for understanding the basic
tradeoff that can be made in communication systems between
the learning duration and the achievable performance. We
also consider the impact of information feedback delay and
quantify the performance loss for imperfect estimation of the
delay. Such insights are important for designing and evaluat-
ing future communication protocols with learning capabilities
such that engineers can build practical systems which are
able to achieve the desired complexity versus performance
tradeoff.

APPENDIX A

Proof of Proposition 1: We provide the proof for the case
of N = 2. Similar proofs can be established for N > 2.

For any P = [P1 P2]T satisfying P T1 = Pmax, because
R(π,P ) is concave in P , there exists a region [P 1, P 1] such
that Ra(π) − R(π,P ) ≤ ΔR if and only if P1 ∈ [P 1, P 1].

It is easy to verify that ((∂R(γ,P ))/∂Pi) = (hi/(Ni +
hiPi)) −

∑N
n≥i γn(hiI/((Ni + hiPi)(Ni + hiPi + I))).

Based on optimization theory, we know that the optimal
solution P γ = [P γ

1 P γ
2 ]T maximizing R(γ,P ) satisfies

∂R(γ,P )
∂Pi

∣∣∣∣
Pi=P γ

i

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

hi

Ni+hiP
γ
i
−

N∑
n≥i

γn
hiI

(Ni+hiP
γ
i )(Ni+hiP

γ
i

+I) =λ, if P γ
i >0

hi

Ni
−

N∑
n≥i

γn
hiI

Ni(Ni+I) <λ, if P γ
i =0

(25)

in which λ is a constant.
Note that, for any γ1, γ2 that satisfy Ra(π) − Ra(γi) ≤

ΔR, i = 1, 2, we have P γi

1 ∈ [P 1, P 1]. Because
∂R(γ,P )/∂Pi monotonically decreases in Pi, we have
P

θγ1+(1−θ)γ2
1 ∈ [min(P γ1

1 , P γ2
1 ),max(P γ1

1 , P γ2
1 )] for any

θ ∈ [0, 1]. It follows that P
θγ1+(1−θ)γ2
1 ∈ [P 1, P 1].

Since any γ ∈ B can be expressed as a convex combination
of the extreme points γm and these extreme points satisfy
that Ra(π) − Ra(γi) ≤ ΔR, we can conclude that Ra(π) −
Ra(γ) ≤ ΔR for any γ ∈ B. �

APPENDIX B

To show Theorem 1, we first derive a lemma that describes
the relative distance between the rows of S(dt) and S(d′t) as a
function of dt and d′t.

Lemma 1: There exist a nonnegative function α′(•) and a
constant β′ > 0, such that the difference between the ith row of

S(dt) and S(d′t) is bounded as

N∑
n=0

|Si,n(dt) − Si,n (d′t)| ≤ α′
i (|d′t − dt|) e−β′ min(d′

t,dt)

(26)

in which α′
i(•) is a nonnegative function satisfying α′

i(0) = 0
and limt→+∞ α′

i(t) exists.
Proof of Lemma 1: Following the arguments and the

remarks in [19], we have

N∑
n=0

|Si,n(dt) − Si,n (d′t)|

≤ 1
2
‖[Si,: (|dt − d′t|) − Si,:(0)] S (min (d′t, dt))‖L2(1/π)

≤ 1
2
‖Si,: (|dt − d′t|) − Si,:(0)‖L2(1/π) e−β′ min(d′

t,dt)

in which the definition of ‖ • ‖L2(1/π) and the positive constant
β′ can be found in [19].

Denote α′
i(|d′t − dt|) = (1/2)‖Si,:(|dt − d′t|) −

Si,:(0)‖L2(1/π). We have α′
i(0) = (1/2)‖Si,:(0) −

Si,:(0)‖L2(1/π) = 0 and limt→+∞ α′
i(t) = (1/2)‖Si,:(+∞) −

Si,:(0)‖L2(1/π) = (1/2)‖π − Si,:(0)‖L2(1/π). �
Proof of Theorem 1: It is easy to see that ΔR(d′t) ≥ 0

because P (Si,:(dt)) = arg maxP T1≤Pmax R(Si,:(dt),P ).
To show the second inequality, we have

ΔR (d′t)=
N∑

i=0

πi [R(Si,:(dt),P (Si,:(dt)))

−R(Si,:(dt),P (Si,: (d′t)))]

=
N∑

i=0

πi

[
N∑

n=0

Si,n(dt)Rn(P (Si,:(dt)))

−
N∑

n=0

Si,n(dt)Rn(P (Si,: (d′t)))

]

=
N∑

i=0

πi

[
N∑

n=0

Si,n(dt)Rn(P (Si,:(dt)))

−
N∑

n=0

Si,n (d′t) Rn(P (Si,: (d′t)))

]

+
N∑

i=0

πi

N∑
n=0

Rn(P (Si,:(d′t)))(Si,n (d′t)−Si,n(dt))

in which Ri(P ) represents the achievable rate of P when
the number of active narrowband users is i. Applying the
Cauchy–Schwarz inequality and Lemma 1, we derive again
ΔR (d′t), shown at the top of the next page.

Denote α(|d′t − dt|) =∑N
i=0 πi

√
2·
∑N

n=0 maxt>0 Rn(P (Si,:(t)))·α′
i(|d′t − dt|) and

β = β′/2. It is easy to verify that α(0) = 0 and limt→+∞ α(t)
exists. �
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ΔR (d′t) ≤
N∑

i=0

πi

N∑
n=0

max {Rn (P (Si,:(dt))) , Rn (P (Si,: (d′t)))}

· |Si,n(dt) − Si,n (d′t)| +
N∑

i=0

πi

N∑
n=0

Rn (P (Si,: (d′t)))

· |Si,n (d′t) − Si,n(dt)|

≤
N∑

i=0

πi

√√√√ N∑
n=0

|Si,n (d′t) − Si,n(dt)|

·

√√√√ N∑
n=0

(max {Rn (P (Si,:(dt))) , Rn (P (Si,: (d′t)))} + Rn (P (Si,: (d′t))))

≤ e−
β′
2 min(d′

t,dt) ·
N∑

i=0

πi ·
√

α′
i (|d′t − dt|)

·

√√√√ N∑
n=0

(max {Rn (P (Si,:(dt))) , Rn (P (Si,: (d′t)))} + Rn (P (Si,: (d′t))))

≤ e−
β′
2 min(d′

t,dt) ·
N∑

i=0

πi

√√√√2 ·
N∑

n=0

max
t>0

Rn (P (Si,:(t))) · α′
i (|d′t − dt|)
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