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A New Perspective on Multi-User
Power Control Games in Interference Channels

Yi Su and Mihaela van der Schaar

Abstract—This paper considers the problem of how to allocate
power among competing users sharing a frequency-selective
interference channel. We model the interaction between selfish
users as a non-cooperative game. As opposed to the existing
iterative water-filling algorithm that studies the myopic users,
this paper studies how a foresighted user, who knows the channel
state information and response strategies of its competing users,
should optimize its transmission strategy. To characterize this
multi-user interaction, the Stackelberg equilibrium is introduced,
and the existence of this equilibrium for the investigated non-
cooperative game is shown. We analyze this interaction in more
detail using a simple two-user example, where the foresighted
user determines its transmission strategy by solving as a bi-level
program which allows him to account for the myopic user’s
response. It is analytically shown that a foresighted user can
improve its performance, if it has the necessary information
about its competitors. Since the optimal solution of Stackelberg
equilibrium is computationally prohibitive, we propose a practi-
cal low-complexity approach based on Lagrangian duality theory.
Numerical simulations verify the performance improvements.
Possible ways to acquire the required information and to extend
the formulation to more than two users are also discussed.

Index Terms—Interference channel, power control, non-
cooperative game, Stackelberg equilibrium.

I. INTRODUCTION

THe multi-user power control problem in frequency-
selective interference channels was investigated from the

game-theoretic perspective in several prior works, including
[1]- [6]. In these multi-user wideband power control games,
users are modeled as players having individual goals and
strategies. They are competing or cooperating with each other
until they agree on an acceptable resource allocation outcome.
Existing research can be categorized into two types, non-
cooperative games and cooperative games.

First, the formulation of the multi-user wideband power
control problem as a non-cooperative game has appeared in
several recent works [1] [2]. An iterative water-filling (IW)
algorithm was proposed to mitigate the mutual interference
and optimize the performance without the need for a central
controller [1]. At every decision stage, selfish users deploying
this algorithm try to maximize their achievable rates by
water-filling across the whole frequency band until a Nash
equilibrium is reached. Alternatively, self-enforcing protocols
are studied in the non-cooperative scenario, in which incen-
tive compatible allocations are guaranteed [2]. By imposing
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punishments in the case of misbehavior and enforcing users
to cooperate, efficient, fair, and incentive compatible spectrum
sharing is shown to be possible.

Second, there also have been a number of related works
studying dynamic spectrum management (DSM) in the set-
ting of cooperative games [3]- [6]. Two (near-) optimal but
centralized DSM algorithms, the Optimal Spectrum Balancing
(OSB) algorithm and the Iterative Spectrum Balancing (ISB)
algorithm, were proposed to solve the problem of maximiza-
tion of a weighted rate-sum across all users [4] [5]. OSB has
an exponential complexity in the number of users. ISB only
has a quadratic complexity in the number of users because
it implements the optimization in an iterative fashion. An
autonomous spectrum balancing (ASB) technique is proposed
to achieve near-optimal performance autonomously, without
real-time explicit information exchanges [6]. These works
focus on cooperative games, because it is well-known that
the IW algorithm may lead to Pareto-inefficient solutions [7],
i.e. selfishness is detrimental in the interference channel.

In short, previous research mainly concentrates on studying
the existence and performance of Nash equilibrium in non-
cooperative games and developing efficient algorithms to
approach the Pareto boundary in cooperative games. However,
an important intrinsic dimension of this decentralized multi-
user interaction still remains unexplored. Prior research does
not consider the users’ availability of information about other
users and their potential to improve their performance when
having this information. Hence, determining what is the best
response strategy of a selfish user if it has the information
about how the competing users respond to interference still
needs to be determined. Moreover, it still needs to be estab-
lished if such strategies can lead to a better performance than
adopting the IW algorithm. It is important to look at these
scenarios in order to assess the significance of information
availability in terms of its impact on the users’ performance
in non-cooperative games, and show why selfish users have
incentives to learn their environment and adapt their rational
response strategies [8]. Intuitively, a “clever” user with more
information in this non-cooperative game should be able to
gain additional benefits [9].

Throughout this paper, we differentiate two types of selfish
users based on their response strategies:

1) Myopic user: A user that always acts to maximize its
immediate achievable rate. It is myopic in the sense that it
treats other users’ actions as fixed, ignores the dependence
between its competitors’ actions and its own action, and
determines its response such that maximize its immediate
payoff.
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2) Foresighted user: A user that selects its transmission
action by considering the long-term impacts on its perfor-
mance. It anticipates how the others will react, and maximizes
its performance by considering their reactions. It should be
highlighted that additional information is required to assist
the foresighted user in its decision making.

As opposed to previous approaches considering myopic
users [1], we discuss in this paper how foresighted users
should behave in non-cooperative power control games. We
explicitly show that a strategic user can gain more benefit if it
takes its competitors’ information and response strategies into
account. The concept of Stackelberg equilibrium is adopted in
order to characterize the optimal power control strategy of a
foresighted user by considering the response of its competing
users. For the two-user case, we formulate the foresighted
user’s decision making to be a bi-level programming problem,
show that the optimal solution is computationally prohibitive,
and provide a low-complexity algorithm based on Lagrangian
duality theory.

We also note that there are already some papers applying
Stackelberg equilibrium to allocate the resources in network-
ing [10]. However, the problems and the proposed solutions
in these papers are completely different from this paper. The
focus here is to study the strategic behavior of selfish users,
which has not been yet investigated in multi-user interference
channels.

The rest of the paper is organized as follows. Section II
presents the non-cooperative game model and introduces the
concept of Stackelberg equilibrium. In Section III, using a
simple two-user example, we formulate the foresighted user’s
optimal decision making as a bi-level programming prob-
lem and discuss the computational complexity of its optimal
solution. Section IV proposes a low-complexity dual-based
approach and provides the simulation results. Section IV also
discusses how the required information can be obtained by the
strategic users and the problem formulation in general multi-
user case. Conclusions are drawn in Section V.

II. SYSTEM MODEL

In this section, we describe the mathematical model of
the frequency-selective interference channel and formulate the
non-cooperative multi-user power control game. We introduce
the concept of Stackelberg equilibrium and prove the existence
of this equilibrium in the power control game.

A. System Description

Fig. 1 illustrates a frequency-selective Gaussian interference
channel model. There are K transmitters and K receivers in
the system. Each transmitter and receiver pair can be viewed
as a player (or user). The whole frequency band is divided
into N frequency bins. In frequency bin f , the channel gain
from transmitter i to receiver j is denoted as Hf

ij , where f =
1, 2, · · · , N . Similarly, denote the noise power spectral density
(PSD) that receiver k experiences as σf

k and player k’s transmit
PSD as P f

k . For user k, the transmit PSD is subject to its power
constraint:

N∑
f=1

P f
k ≤ Pmax

k . (1)

Fig. 1. Gaussian interference channel model.

Define Pk = {P 1
k , P 2

k , · · · , PN
k } as user k’s power allocation

pattern. For a fixed Pk, if treating interference as noise, user
k can achieve the following data rate:

Rk =
N∑

f=1

log2

(
1 +

P f
k |Hf

kk|2
σf

k +
∑

j �=k P f
j |Hf

jk|2

)
. (2)

To fully capture the performance tradeoff in the system, the
concept of a rate region is defined as

R = {(R1, · · · , RK) : ∃ (P1, · · · , PK) satisfying (1) and (2)} .
(3)

Due to the non-convexity in the capacity expression as a
function of power allocations, the computational complexity
of optimal solutions (e.g., doing exhaustive search) in finding
the rate region is prohibitively high. Existing works [4]- [6]
aim to compute the Pareto boundary of this rate region and
provide (near-) optimal performance with moderate complex-
ity. Moreover, it is noted that cooperation among users is
indispensable for this multi-user system to operate at the
Pareto boundary. On the other hand, the interference chan-
nel can also be modeled as a non-cooperative game among
multiple competing users. Instead of solving the optimization
problem globally, the IW algorithm models the users as my-
opic decision makers [1]. This means that they optimize their
transmit PSD by water-filling and compete to increase their
transmission data rates with the sole objective of maximizing
their own performance regardless of the coupling among users.
Under a wide range of realistic channel conditions [1] [13],
the existence and uniqueness of the competitive optimal point
(Nash equilibrium) is demonstrated and it can be obtained by
the IW algorithm, which significantly outperforms the static
spectrum management algorithms.

Throughout this paper, we also concentrate on the non-
cooperative game setting. In the IW algorithm, users are
assumed to be myopic, i.e., they update actions shortsightedly
without considering the long-term impacts of taking these
actions. We argue that the myopic behavior can be further
improved because it neglects the coupling nature of players’
actions and payoffs. In contrast with previous approaches, we
study the problem of how a foresighted user should behave
rather than taking myopic actions. This investigation provides
us some insights to the following question: why should a
strategic user sense its environment and learn the response
strategies of its competitors and consequently, what is the
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Fig. 2. Stackelberg game: the row player’s payoff is given first in each cell,
with the column player’s payoff following.

benefit that a foresighted user can achieve compared with the
myopic case?

To illustrate the foresighted behavior, Fig. 2 shows a simple
Stackelberg game [11]. Note that in this game, the row player
has a strictly dominant strategy [12], Down. Therefore, two
players will end up with a (Down, Left) play if the row player
is myopic. However, if the row player is aware of the column
player’s coupled reaction, they will end up with a (Up, Right)
play, which leads to an increased payoff for both players. It is
worth noticing that additional information is needed to attain
this performance improvement. The row player needs to know
the payoff and the response strategy of the column player. To
formulate how a strategic user can take foresighted actions,
we introduce the concept of Stackelberg equilibrium. The next
subsection will define the Stackelberg equilibrium and show
its existence in the power control game.

B. Stackelberg Equilibrium

Let G = [K, {Ak} , Uk] represent a game where K =
{1, · · · , K} is the set of players, Ak is the set of actions
available to user k, and Uk is the user k’s payoff [12]. In the
power control game, user k’s payoff Uk is the its achievable
data rate Rk and its action set Ak is the set of transmit PSDs
satisfying constraint (1). Recall that the Nash equilibrium is
defined to be any (a∗

1, · · · , a∗
K) satisfying

Uk (a∗
k, a∗

−k) ≥ Uk (ak, a∗
−k) for all ak ∈ Ak and k = 1, · · · , K,

(4)
where a∗

−k = (a∗
1, · · · , a∗

k−1, a
∗
k+1, · · · , a∗

K) [12].
We also define the action a∗

k to be a best response (BR) to
actions a−k if

Uk (a∗
k, a−k) ≥ Uk (ak, a−k) , ∀ ak ∈ Ak. (5)

The set of user k’s best response to a−k is denoted as
BRk(a−k).

The Stackelberg equilibrium is a solution concept originally
defined for the cases where a hierarchy of actions exists
between users [12]. Only one player is the leader and the other
ones are followers. The leader begins the game by announcing
its action. Then, the followers react to the leader’s action.
The Stackelberg equilibrium prescribes an optimal strategy for
the leader if its followers always react by playing their Nash
equilibrium strategies in the smaller sub-game. For example,
in a two player game, where user 1 is the leader and user 2
is the follower, an action a∗

1 is the Stackelberg equilibrium
strategy for user 1 if

U1 (a∗
1, BR2 (a∗

1)) ≥ U1 (a1, BR2 (a1)) , ∀a1 ∈ A1. (6)

For example, in Fig. 2, Up is the Stackelberg equilibrium
strategy for the row player.

Next, we define Stackelberg equilibrium in the general case.
Let NE(ak) be the Nash equilibrium strategy of the remaining
players if player k chooses to play ak, i.e. NE (ak) =
a−k, ∀ai = BRi (a−i) , ai ∈ Ai, i �= k. The strategy
profile (a∗

k, NE (a∗
k)) is a Stackelberg equilibrium with user

k leading iff

Uk (a∗
k, NE (a∗

k)) ≥ Uk (ak, NE (ak)) , ∀ak ∈ Ak. (7)

If multiple Nash equilibria exist in the followers’ sub-
game, the definition of Stackelberg equilibrium becomes more
complicated. Interested readers can refer to [10] [14] for more
details. This paper does not consider this case and focus on the
channels where a unique Nash equilibrium exists in the sub-
game [13]. In particular, the considered channel conditions are
specified as follows:

Considered Channels : Define αf
ij = |Hf

ij |2/|Hf
jj |2. For

each frequency bin, we consider a K × K channel gain
matrix Af (f = 1, · · · , N) , where [Af ]ij = αf

ij for i �= j

and [Af ]ii = 0. This paper considers diagonally dominant
channels in which

∥∥Af
∥∥

2
< 1 for any f ∈ {1, · · · , N} . It is

shown that a unique Nash equilibrium for the power control
game exists in these channels and it can be achieved using the
IW algorithm [13].

In fact, the requirement of hierarchic actions in the original
definition of Stackelberg equilibrium can be removed in our
problem if we consider the repeated interaction among all the
users. Regardless of the initial action order, the foresighted
user can always perform the Stackelberg strategy. As long as
it changes its transmit PSD, the other myopic users will water-
fill with respect to their updated noise-plus-interference PSDs
to gain an immediate increase in transmission rates until the
system converges to an equilibrium. We are interested in the
performance achieved at the steady state. Therefore, the initial
action order between the foresighted user and the myopic users
does not influence the final outcome of this game. Note that
initially we assume that a single foresighted user exists in
this game. How the users should decide to play foresightedly
or myopically and the extension to the cases where there are
multiple foresighted users will be discussed in Section IV.
The following theorem establishes the existence of Stackelberg
equilibrium in the considered power control game.

Theorem 1: Under the considered channel conditions, the
Stackelberg equilibrium always exists in the multi-user power
control game.

Proof : Suppose user 1 is the only foresighted user in
this game. First, user 1’s maximal achievable rate in an
interference-free environment is

Rmax
1 =

N∑
f=1

log2

(
1 + P f∗

1

∣∣∣Hf
11

∣∣∣2/σf
1

)
, (8)

where P f∗
1 = (λ − σf

1 /|Hf
11|2)+ is the water-filling solution,

(x)+ = max (0, x), and λ is a constant satisfying the con-
straint in (1) with equality.

Second, it has been shown that in the considered channels,
the existence and uniqueness of Nash equilibrium are always
guaranteed [13]. In the interference channel consisting of the
K − 1 followers, whatever form of P f

1 ∈ A1 user 1 chooses,
they will regard user 1’s transmit PSD as part of the fixed
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background noise PSD, i.e. σ̃f
j = σf

j +
∣∣∣Hf

j1

∣∣∣2 P f
1 , j �= 1 .

Since the channel gains in the followers’ sub-game still satisfy
the sufficient condition in [13], the convergence to a unique
Nash equilibrium always holds, i.e. a single NE (a1) exists
for ∀a1 ∈ A1.

To summarize, since R1 is bounded, and for ∀a1 ∈ A1,
the remaining players’ action will always lead to a Nash
equilibrium, we have

0 ≤ U1 (a1, NE (a1)) ≤ Rmax
1 , ∀a1 ∈ A1. (9)

Therefore, there exist a∗
1 ∈ A1 such that U1 (a∗

1, NE (a∗
1)) =

sup
a1∈A1

{U1 (a1, NE (a1))}. We can conclude that Stackelberg

equilibrium always exists for this power control game. �

III. PROBLEM FORMULATION

In this section, we study how to achieve the Stackelberg
equilibrium in the two-user case, and formulate the foresighted
behavior as a bi-level programming problem. We analyze the
computational complexity of the optimal solution, and show
that the optimum is computationally intractable for the bi-level
program. We start from the simplest two-user version, because
it is illustrative for understanding the interactions emerging
among competing users. The extension to the multi-user case
will be discussed in Section IV.

A. A Bi-level Programming Formulation

The Stackelberg equilibrium applied to the two-user power
control game can be represented by a bi-level mathematical
problem [14], in which the foresighted user acts as the leader
and the other user behaves as the follower. The leader chooses
a transmit PSD to maximize its own benefits by considering
the response of its follower, who reacts to the leader’s transmit
PSD by water-filling over the entire frequency band. Hence,
the Stackelberg equilibrium can be found by solving the
following optimization problem:

upper−
level

problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
P1

N∑
f=1

log2

(
1 +

P f
1

Nf
1 + αf

2P f
2

)
(a)

s.t.
∑N

f=1
P f

1 ≤ Pmax
1 , P f

1 ≥ 0, (b)

lower−
level

problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P2 = arg max
P′2

N∑
f=1

log2

(
1 +

P
′f
2

Nf
2 + αf

1P f
1

)
(c)

s.t. P
′f
2 ≥ 0,

∑N

f=1
P

′f
2 ≤ Pmax

2 , (d)

(10)

where Nf
1 = σf

1 /|Hf
11|2, αf

1 = |Hf
12|2/|Hf

22|2, Nf
2 =

σf
2 /|Hf

22|2, αf
2 = |Hf

21|2/|Hf
11|2. The sub-problem in (10.a)-

(10.b) is called the upper-level problem and (10.c)-(10.d)
corresponds to the lower-level problem. Recall that addi-
tional information is indispensable to formulate this bi-level
program. This information includes the other user’s channel
condition Nf

2 and αf
2 , maximum power constraint Pmax

2 , and
its response strategy, i.e. the IW algorithm. By letting P1 and
P2 to be the transmit PSDs of the IW algorithm PNE

1 and
PNE

2 , we can see that the Nash equilibrium actually gives a
lower bound of the problem in (10). Furthermore, by including
the opponent’s reaction into the lower-level problem, the user

can avoid the myopic IW approach and potentially improve
its performance. In addition, as we will show later, user 1’s
foresightedness turns out to even improve the myopic user’s
performance. Now we make several illustrative remarks by
showing two simple examples.

Remark 1: The Nash equilibrium achieved by the IW
algorithm may not solve the bi-level program (10). In other
words, there exist other feasible power allocation schemes that
can attain strictly better performance than that of the Nash
equilibrium.

Example 1: We consider a two-user system with the pa-
rameters N = 2, N1

1 = N2
2 = 4, N2

1 = N1
2 = 1, αf

i = 0.5
for ∀i, f , Pmax

1 = Pmax
2 = 10. In this simple two-channel

scenario, it is easy to derive that R1 = log2[1 + P 1
1 /(8.5 −

0.25P 1
1 )] + log2[1 + (10−P 1

1 )/(1.5 + 0.25P 1
1 )] bits. Because

∂R1
∂P 1

1
< 0, R1 is maximized when P 1

1 = 0. The achievable

rates attained at the Stackelberg equilibrium is RSE
1 ≈ 2.939

bits and RSE
2 ≈ 3.474 bits. The unique Nash equilibrium

is reached by PNE
1 = {2, 8} and PNE

2 = {8, 2} and its
achievable rates are RNE

1 = RNE
2 ≈ 2.645 bits.

Remark 2: For some channel realizations, the Nash strategy
solves the problem (10). If αf

i = 0 for ∀i, f , the upper-level
and lower-level problems in bi-level program (10) are reduced
to two uncoupled problems and the single user water-filling
solution can achieve the upper bound in (8). In addition, we
give a non-trivial example in which αf

i �= 0 for ∀i, f and the
Nash strategy still solves the problem in (10).

Example 2: Set the parameters N1
1 , N2

2 in Example 1 to be
6, and keep the remaining ones unchanged. We have R1 =
log2[1+P 1

1 /(11−0.25P 1
1 )]+log2[1+(10−P 1

1 )/(1+0.25P 1
1 )]

bits. In this channel realization, the Nash equilibrium coincides
with the Stackelberg equilibrium. Both equilibria are reached
at PNE

1 = {0, 10} and PNE
2 = {10, 0} and the resulting rates

are R1 = R2 ≈ 3.460 bits.
Remark 3: As opposed to the narrow-band case [15],

we would like to highlight that the degrees of freedom in
allocating the power across multiple bands is essential for
the foresighted user to improve its performance. Consider the
single-band case in which N = 1. Note that user i’s achievable
rate Ri is monotonically increasing in its transmitted power
Pi. If users selfishly maximize their achievable rates, all of
them will transmit at their maximum power in the single band,
which results in the unique Nash equilibrium. It is easy to
check that it is also the unique Stackelberg equilibrium and it
is also Pareto efficient.

Although these examples provide us some intuition about
the relationship between NE and SE, we are still interested in
computing the Stackelberg equilibrium in general scenarios.
The following subsection will reformulate the bi-level program
into a single-level problem, which helps us to understand the
computational complexity of the Stackelberg equilibrium in
the multi-user power control games.

B. An Exact Single-level Reformulation

Bi-level programming problems belong to the mathematical
programs having optimization problems as constraints. It is
well-known they are intrinsically difficult to solve [14]. To
understand the computational complexity, we first transform
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Fig. 3. Key steps of the dual approach of non-convex weighted sum-rate maximization.

the original bi-level program into a single-level reformulation
with the form of

max
P1

N∑
f=1

log2

(
1 +

P f
1

Nf
1 + αf

2gf
2 (P1, N2,ααα1, P

max
2 )

)

s.t.
∑N

f=1
P f

1 ≤ Pmax
1 , P f

1 ≥ 0,

(11)

in which gf
2 (P1, N2,ααα1, P

max
2 ) is a function that deter-

mines user 2’s allocated power in the f th channel, N2 ={
N1

2 , N2
2 , · · · , NN

2

}
, and ααα1 =

{
α1

1, α
2
1, · · · , αN

1

}
.

Note that the lower-level problem in (10) is a standard
convex programming problem. Its optimum is given by P f

2 =

gf
2 (P1, N2,ααα1, P

max
2 ) =

(
K2 − Nf

2 − αf
1P f

1

)+

, where K2 is

a constant that satisfies
∑N

f=1 P f
2 = Pmax

2 . In practice, K2 is
usually obtained using numerical (e.g. bisection) methods. In
fact, an explicit expression of gf

2 (P1, N2,ααα1, P
max
2 ) is needed

to analytically handle single-level formulation. Towards this
end, we first define a permutation π : {1, 2, · · · , N} →
{1, 2, · · · , N}, which ranks all the channels based on their
noise plus interference PSDs and satisfies

π (f1) < π (f2) , if Nf1
2 + αf1

1 P f1
1 < Nf2

2 + αf2
1 P f2

1 . (12)

Then, we can extend the results in [16], and have the closed-
form expression in (13), where k can be found according
to the condition specified in (14). We can see that function
gf
2 (P1, N2,ααα1, P

max
2 ) ranks all the frequency channels based

on the channel conditions and gradually increases the water-
level until the maximal power constraint is satisfied.

Even though we have the closed-form expression of
gf
2 (P1, N2,ααα1, P

max
2 ), the single-level problem (11) is still

intractable due to its non-convexity. Generally speaking, the
global optimum can only be found via an exhaustive search.
If we define the granularity in the foresighted user’s transmit
power as ΔP , then the value of P f

1 can be limited to
the set {0, ΔP , · · · , Pmax

1 } . By searching all the possible
combinations, the optimum can be found. Hence, such an
exhaustive search in

(
P 1

1 , · · · , PN
1

)
has a overall complexity

of O((Pmax
1 /ΔP )N ).

Recently, Lagrangian duality theory has been successfully
used to solve non-convex weighted sum-rate maximization in
interference channel with moderate computational complexity
[4]- [6]. We notice that the problem in (11) are similar
with the problems investigated in these works in that the
optimization variables P1 also appear in the denominators
of the objective function. The following sections will revisit
these dual approaches and show that these methods cannot
reduce the computational complexity of problem (11), thereby
demonstrating the challenges involved in optimally computing
the Stackelberg equilibrium.

C. Lagrangian Dual Approach for Non-convex Problems

We continue studying the simple two-user scenario to
introduce the dual method. In a two-user frequency- selective
interference channel, the weighted sum-rate maximization
investigated in [4]- [6] is given by (15), in which ω ∈ [0, 1] is a
fixed weight. The dual method forms the following Lagrangian
in (16), where λ1, λ2 ≥ 0 are Lagrangian dual variables. The
Lagrangian dual function is defined as

D (λ1, λ2) = max
P1,P2�−0

L (P1, P2, λ1, λ2) . (17)

Denote the objective function of problem (15) as f (P1, P2)
and the overall complexity of exhaustive search is
O((
∏

i (Pmax
i /ΔP ))N ). From optimization theory [17], we

know that, for arbitrary feasible P1, P2, we have f (P1, P2) ≤
D (λ1, λ2) . This leads to min

λ1,λ2
D (λ1, λ2) ≥ max

P1,P2

f (P1, P2)

, and min
λ1,λ2

D (λ1, λ2) provides an upper bound of the op-

timal value of the problem in (15). Generally speaking, if
f (P1, P2) is non-convex, the duality gap min

λ1,λ2
D (λ1, λ2) −

max
P1,P2

f (P1, P2) is not zero.

Fig. 3 summarizes the three key steps of a dual method,
the OSB algorithm [4] [5], that can efficiently find the global
optimum of the problem in (15). First, for fixed λ1, λ2,
the maximization of L (P1, P2, λ1, λ2) over P1, P2 in (17)
is decomposed into N uncoupled sub-problems, and each
of them corresponds to a per-bin optimization. Therefore,
the overall complexity of maximizing L (P1, P2, λ1, λ2) over
P1, P2 is only O(N

∏
i(P

max
i /ΔP )). Second, it is shown that,

for fixed k, the sum power of user k’s optimal power allocation
in a multicarrier system is a monotonic function of λk(Lemma
1, in [4]). This property guarantees that the bi-section dual
update over λ1, λ2 will converge to the dual optimum. Third,
it is also proven that, if the number of frequency bins N
is large enough and Hf

ij and σf
k are smooth in the spectral

domain, the optimization problem (15) satisfies the so-called
“time-sharing property” (Theorem 1 and 2, in [5]), and the
duality gap of this non-convex problem is zero. Combining
the three properties together, the dual approach can find
the global optimum with the computational complexity of
O(T1N

∏
i(P

max
i /ΔP )), where T1 is the number of iterations

needed for dual-update. We can see that the complexity of
the dual approach is greatly reduced compared with that of
the exhaustive search in the primal domain. In addition, it is
found in [5] that, if D (λ1, λ2) is approximated using a local
maximum of L (P1, P2, λ1, λ2), the ISB algorithm can achieve
near-optimal performance with the computational complexity
of O(T1T2N

∑
i(P

max
i /ΔP )), where T2 is the number of

iterations required for evaluating the local maximum.
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Fig. 4. Complexity and properties of the dual approach of computing the Stackelberg equilibrium.

gf
2 (P1, N2,ααα1, P

max
2 ) =

⎧⎨
⎩

1
k

(
Pmax

2 +
k∑

m=1

(
N

π−1(m)
2 + α

π−1(m)
1 P

π−1(m)
1

))
− Nf

2 − αf
1P f

1 , π (f) ≤ k,

0, π (f) > k,
(13)

k
(
N

π−1(k)
2 + α

π−1(k)
1 P

π−1(k)
1

)
−

k∑
m=1

(
N

π−1(m)
2 + α

π−1(m)
1 P

π−1(m)
1

)
< Pmax

2 ≤

(k + 1)
(
N

π−1(k+1)
2 + α

π−1(k+1)
1 P

π−1(k+1)
1

)
−

k+1∑
m=1

(
N

π−1(m)
2 + α

π−1(m)
1 P

π−1(m)
1

)
.

(14)

max
P1,P2

ω
N∑

f=1

log2

(
1 +

P f
1

Nf
1 + αf

2P f
2

)
+ (1 − ω)

N∑
f=1

log2

(
1 +

P f
2

Nf
2 + αf

1P f
1

)

s.t.
∑N

f=1
P f

1 ≤ Pmax
1 , P f

1 ≥ 0,
∑N

f=1
P f

2 ≤ Pmax
2 , P f

2 ≥ 0,

(15)

D. The Lagrangian Dual Approach for Computing Stackel-
berg Equilibrium

Now we apply the dual approach for our problem in (11) to
understand why the Stackelberg equilibrium in our considered
problem is intrinsically difficult to compute. Fig. 4 summarizes
the key properties of the dual approach that will be addressed
in the following parts. Denote the objective function of prob-
lem (11) as f ′ (P1) . Consider its dual objective function
D′ (μ) for a fixed Lagrangian dual variable μ:

D′ (μ) = max
P1�−0

L′ (P1, μ) , (18)

in which L′ (P1, μ) =
N∑

f=1

log2

(
1 + P f

1

Nf
1 +αf

2gf
2 (P1,N2,α1α1α1,Pmax

2 )

)
+

μ
(
Pmax

1 −∑N
f=1 P f

1

)
. For a given μ, denote the

optimal power allocation that maximizes (18) as
P1 (μ) = argmax

P1�−0
L′ (P1, μ) and Pf

1 (μ) = [P1 (μ)]f ,

The following lemma holds for P1(μ):
Lemma 1:

∑N
f=1 Pf

1 (μ) is monotonic decreasing in

μ. In addition, we have lim
μ→∞

∑N
f=1 P f

1 (μ) = 0 and∑N
f=1 Pf

1 (0) = +∞.

Proof : It is easy to see that
∑N

f=1 Pf
1 (0) = +∞. The rest

of the proof is the same as in Lemma 1 in [4].�
Fig. 5 gives a graphical illustration of the above Lemma.
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Fig. 5. Duality gap for the problem in (11).

Consider a sequence of optimization problems similar with
(11). These problems are parameterized by the constraint
imposed over user 1’s maximal sum power. The solid curve in
Fig. 5 is a plot of the optimal value

(∑N
f=1 P ∗f

1 , f ′ (P∗
1)
)

as

this constraint varies. The curve is plotted with
∑N

f=1 P ∗f
1

on the x-axis. The y-axis is located at the point where∑N
f=1 P ∗f

1 = Pmax
1 . The intersection of the curve with the

y-axis is the optimum of (11), i.e. max
P1

f ′ (P1). For a fixed

μ, by drawing a tangent line to the
(∑N

f=1 P ∗f
1 , f ′ (P∗

1)
)

curve and measuring the intersection of this tangent line with

L (P1, P2, λ1, λ2) =
N∑

f=1

{
ω log2

(
1 +

P f
1

Nf
1 + αf

2P f
2

)
+ (1 − ω) log2

(
1 +

P f
2

Nf
2 + αf

1P f
1

)
− λ1P

f
1 − λ2P

f
2

}
, (16)
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the y-axis, the value of D′ (μ) can be graphically obtained.
According to Lemma 1, as μ increases, the x-axis value
of the tangent point monotonically increases. We denote
μ∗ = arg min

μ
D′ (μ). Recall that Lemma 1 does not claim

the continuity of
∑N

f=1 Pf
1 (μ) in μ. It is because the allocated

powers in different frequency bins are coupled due to function
gf
2 (P1, N2,ααα1, P

max
2 ) and the time-sharing property in [5] is

not guaranteed for problem (11). The discontinuity may lead
to nonzero duality gap, i.e. at least two tangent points exist
on the tangent line in Fig. 5 and they correspond to different
power constraints Px

1 and Py
1. If the duality gap is positive, the

following theorem indicates that D′ (μ∗) provides a tighter
upper bound of the achievable rate than Rmax

1 in (8).
Theorem 2: If the duality gap is nonzero, i.e. D′ (μ∗) >

max
P1

f ′ (P1), the dual optimum provides a tighter upper bound

of user 1’s maximal achievable rate than the bound in (8), i.e.
D′ (μ∗) < Rmax

1 .
Proof : As shown in Fig. 5, the non-zero duality gap implies

that there exist at least two possible values for
∑N

f=1 Pf
1 (μ∗) ,

which are denoted as Px
1 and Py

1 and they satisfy Px
1 < Pmax

1 <
Py

1 . Denote the optimal power allocation of having power
constraints Px

1 and Py
1 as P−

1 and P+
1 respectively. We have the

equality in (19). Moreover, since Px
1 < Pmax

1 < Py
1, there exists

0 < υ < 1 such that Pmax
1 = υPx

1+(1−υ)Py
1. Immediately, we

get D′ (μ∗) = υf ′ (P−
1

)
+(1 − υ) f ′ (P+

1

)
. It corresponds to

the time-sharing scenario, in which the power allocation P−
1

is adopted for time-fraction υ and P+
1 for time-fraction 1−υ.

Consider the problem of allocating user 1’s power subject to
the maximal power constraint Pmax

1 in the interference-free
environment. We know that the optimal solution is the single-
user water-filling. Noting that Pmax

1 = υPx
1 + (1 − υ)Py

1 and
Px

1 �= Py
1, the aforementioned time-sharing strategy is sub-

optimal for this problem. Therefore, we have the inequality in
(20), and this concludes the proof. �

By Theorem 2, evaluating the dual function leads to a tighter
upper bound of Stackelberg equilibrium than Rmax

1 . However,
it is unfortunate that the computational complexity of opti-
mally maximizing L′ (P1, μ) is still O((Pmax

1 /ΔP )N ). This is
because term gf

2 (P1, N2,ααα1, P
max
2 ) in the denominator term

of (11) is also a function of the allocated power P f ′
1 (f ′ �= f)

, which makes it impossible to decouple the maximization
in (18) into N independent sub-problems. To conclude, the
complexity of optimal solution in the dual domain is the same
as the primal approach, which again highlights the fact that
the Stackelberg equilibrium is difficult to compute.

IV. LOW-COMPLEXITY ALGORITHM, SIMULATIONS, AND

EXTENSIONS

In this section, we propose a low-complexity dual algo-
rithm to search the Stackelberg equilibrium and examine its
achievable performance via extensive numerical simulations.
We also discuss how the strategic users can obtain the required
information and the extensions to general multi-user scenarios.

A. A Low-Complexity Dual Approach

As we have shown, the dual approach cannot reduce the
complexity of the global optimum of problem (11). However,

Algorithm 1 :A low-complexity dual approach

1: Input: Pmax
1 , Pmax

2 , Nf
1 , Nf

2 , αf
1 , αf

2 for ∀f
2: Initialize: P1 = PNE

1 , μmax, μmin

3: Repeat
4: μ =

(
μmax + μmin

)
/2.

5: Repeat
6: for f = 1 to N,
7: set P f

1 = arg maxP f
1∑N

f=1

{
ln
[
1 + P f

1

/(
Nf

1 + αf
2gf

2 (P1, N2,ααα1, P
max
2 )
)]

− μP f
1

}
by keeping P 1

1 , · · · , P f−1
1 , P f+1

1 , · · · , P N
1 fixed.

8: end
9: until

(
P 1

1 , · · · , PN
1

)
converges

10: if
∑N

f=1 P f
1 > Pmax

1 , μmin =
(
μmax + μmin

)
/2; else

μmax =
(
μmax + μmin

)
/2.

11: until it converges

TABLE I
USER 1’S COMPUTATIONAL COMPLEXITY FOR DIFFERENT ALGORITHMS.

Algorithm Computational complexity

Exhaustive search O((Pmax
1

/
ΔP )N )

Algorithm 1 O(T1T2NPmax
1

/
ΔP )

Iterative water-filling O(T3N)

inspired by the ISB algorithm [5], we develop an efficient
dual approach, which is listed as Algorithm 1. The basic
idea of the algorithm is to approximately evaluate D′ (μ) by
locally optimizing L′ (P1, μ). For fixed μ, the algorithm finds
the optimal P f

1 while keeping P 1
1 , · · · , P f−1

1 , P f+1
1 , · · · , PN

1

fixed, and changes the index f until it converges to a local
maximum for L′ (P1, μ). Then the algorithm updates μ using
bi-section search and repeats the procedure above until the
convergence is achieved.

As discussed in [5], the local optimum depends on the initial
starting point and the ordering of iterations. Moreover, the
proof of convergence of the whole algorithm becomes an issue.
Algorithm 1 sets the Nash equilibrium as the initial starting
point. In most of the experimental setting we have tested,
Algorithm 1 has been observed to converge to a feasible so-
lution within 10-15 iterations. The computational complexity
of this iterative algorithm is only O(T1T2NPmax

1 /ΔP ) and it
reduces the complexity of the optimal exhaustive search by a
factor of O((Pmax

1 /ΔP )N−1
/
(T2N)) , which is considerably

large for small ΔP and large N . Table I summarizes the
computational complexity comparison for user 1 if it adopts
different algorithms, in which T3 is the number of iterations
required in the iterative water-filling algorithm.

B. Illustrative Results

In this sub-section, we evaluate the performance of Algo-
rithm 1 by comparing with the IW algorithm. We simulate a
wireless system with 20 sub-carriers over the 6.25-MHz band.
We assume that Pmax

1 = Pmax
2 = 200 and σf

1 = σf
2 = 0.01 .

To evaluate the performance, we tested 105 sets of frequency-
selective fading channels where a unique Nash equilibrium
exists, which are simulated using a four-ray Rayleigh model
with the exponential power profile and 160 ns delay between
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D′ (μ∗) = f ′ (P−
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)
+ μ∗
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)
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. (19)
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+ (1 − υ) f ′ (P+
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) ≤ υ
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log2
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(20)
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Fig. 6. User 1’s power allocation using different algorithms.
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Fig. 7. User 2’s power allocation using different algorithms.

two adjacent rays [18]. The simulated power of each ray
decreases exponentially according to its delay. The total power
of all rays of Hf

11 and Hf
22 is normalized as one, and that of

Hf
12 and Hf

21 is normalized as 0.5.
Figures 6 and 7 show the power allocations for both

users using different algorithms. In the IW algorithm, each
user water-fills the whole frequency band by regarding its
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competitor’s transmit PSD as background noise until the Nash
equilibrium is achieved. In contrast, user 1 does not water-
fill if it adopts Algorithm 1. For example, in Fig. 6, user
1 allocates a large amount of power in frequency bin 3
even though it can gain an immediate increase in R1 by re-
allocating some of its power in the frequency bins 5 and 6
where the noise plus interference PSD is below its water-levels
in the frequency bins 7-12.

Denote user i’s achieved rate by deploying Algorithm 1
as R′

i . Fig. 8 shows the simulated cumulative distribution
functions (cdf) of R′

i/RNE
i . From the curve, Algorithm 1

achieves a higher rate for the foresighted user in all the
simulated realizations. The average rate improvement that
Algorithm 1 provides over the IW algorithm is 38%. In
addition, it is surprising to find that, in 95% of the simulation
settings, Algorithm 1 also results in a higher rate R′

2 than
RNE

2 for the myopic user, and the average rate improvement
is 45%. This is because user 1’s Stackelberg strategy mitigates
its interference caused to user 2.

We also simulate the scenarios in which the total power
of Hf

12 and Hf
21 is normalized as 0.25 and all the other

parameters remain the same as above. Fig. 9 shows the
simulated cdfs of R′

i/RNE
i . The average rate improvement

for user 1 is 27% and that of user 2 is 32%. It is intuitive that
the average rate improvement is decreasing when the power
of Hf

12 and Hf
21 decreases, because the interference coupling

between users and the foresighted user’s ability in shaping the
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myopic user’s response are both reduced.

C. Information Acquisition

Previous sections mentioned that, in order to play the
Stackelberg equilibrium, the additional information about the
competing user’s CSI, maximum power constraint, and power
allocation strategy is indispensable. In practice, there are
several possible methods to acquire this required information.

First, the myopic user has the incentive to provide the
required information, because its performance can be greatly
improved if the foresighted player knows the myopic player’s
private information. In the distributed setting, users can indi-
vidually decide whether or not to play the Stackelberg strategy
based on their computational hardware constraints. The user
that wants to behave myopically can reveal its information
to the foresighted user. This can be viewed as the user’s
cooperative behavior to avoid mutual interference.

When no information exchanges among users are possible,
the alternative way for users to gather this information is

through predictive modeling. If the foresighted user strategi-
cally changes its power allocation, it can measure and model
the resulting interference PSD, i.e. estimate the functional
expression of gf

2 (P1, N2,ααα1, P
max
2 ), without any information

exchange among users. For instance, in [19], we showed that
the foresighted user can effectively model its experienced
interference as a linear function of its own allocated power,
formulate a local approximation of the original bi-level pro-
gram, and substantially improve both users’ achievable rates.

D. Extensions to Multi-user Games

The two-user formulation can be extended to the general
cases in which multiple users can be myopic or foresighted.
The analysis in these cases becomes much more involved. We
denote the number of foresighted user as nf and the number
of myopic user as nm. We briefly address two remaining cases
as follows.

In the first case, nf = 1, nm > 1. As in
(11), we can still have the following single-level for-
mulation in (21), in which Nf

i = σf
i /|Hf

ii|2, N ={
Nf

i : i = 2, · · · , nm + 1, f = 1, · · · , K
}

,ααα =
{
αf

ij : i =

1, · · · , nm + 1 , j = 2, · · · , nm + 1, f = 1, · · · , K
}
,

and qf
k

(
P1, N,ααα, Pmax

2 , · · · , Pmax
nm+1

)
is the function deter-

mining user k’s allocated power in channel f . As a gen-
eral from of the two-user case, problem (21) is also non-
convex. It is easy to verify that Lemma 1 and Theorem
2 still hold. Although it is difficult to analytically derive
qf
k

(
P1, N,ααα, Pmax

2 , · · · , Pmax
nm+1

)
, we are still able to numer-

ically evaluate it. Hence, Algorithm 1 can be applied in this
case by replacing its lines 7 with numerically finding local
maxima of
N∑

f=1

⎡
⎣log2

⎛
⎝1 +

P
f
1

N
f
1 +

nm+1∑
k=2

α
f
k1q

f
k(P1,N,ααα,Pmax

2 ,··· ,Pmax
nm+1)

⎞
⎠ − μP f

1

⎤
⎦.

We simulate the three-user scenarios in which
∑N

f=1

∣∣∣Hf
ij

∣∣∣2 =

0.25 for i �= j, Pmax
i = 200, and σf

i = 0.01, and all the other
parameters remain the same as Section IV.B. Fig. 10 shows the
simulated cdfs of R′

i/RNE
i . The average rate improvement for

user 1 is 34% and that of user 2 and 3 is 10.5%. From Fig. 10,
we can see that, the Stackelberg strategy also benefits the two
myopic users in more than 83% of the channel realizations.

Assume now that we have multiple foresighted users,
i.e. nf > 1, nm ≥ 1 . In this case, the single objective
function in the original upper-level problem disappears
and it becomes a multi-objective optimization problem.
Using similar arguments in Theorem 1, we can show
that the Nash equilibrium still exists in the followers’
game. For these foresighted users, a reasonable outcome
is to choose an operating point in the set Rnf ={(

R1, · · · , Rnf

)
: Ri ≥ RNE

i , for all i = 1, · · · , nf

}
,

where RNE
i is user i’s achievable rate if all the users

are myopic. This point can be determined based on the
negotiation among the foresighted users. Cooperative game
theory provides many solution concepts, e.g. bargaining, for
choosing the operating point [12]. Note that the overall game
in this scenario is a mixture of cooperation and competition
in that the cooperation exists among the foresighted users
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max
P1

N∑
f=1

log2

(
1 +

P f
1

Nf
1 +

∑nm+1
k=2 αf

k1q
f
k

(
P1, N,ααα, Pmax

2 , · · · , Pmax
nm+1

)
)

s.t.
∑N

f=1
P f

1 ≤ Pmax
1 , P f

1 ≥ 0,

(21)

max
P1,··· ,Pnf

N∑
f=1

ωi log2

⎛
⎝1 +

P f
i

Nf
i +

∑nf+nm

k=nf +1 αf
kiq

f
k

(
P1, · · · , Pnf

, N,ααα, Pmax
nf +1, · · · , Pmax

nf +nm

)
⎞
⎠

s.t.
∑N

f=1
P f

i ≤ Pmax
i , P f

i � 0, Ri � RNE
i , i = 1, · · · , nf ,

(22)

while myopic players compete with each other. A possible
way of achieving the boundary point on Rnf is to let
some coordinator solve the weighted sum-rate maximization
in (22) and determine the transmitted PSDs for different
foresighted users. In (22), ωi ≥ 0 is user i’s weight. Although
this problem is generally difficult to solve optimally, some
low-complexity methods similar to Algorithm 1 can be
adopted to obtain sub-optimal solutions.

V. CONCLUSION

This paper considers the strategic behavior in determining
the transmit power PSD for selfish users sharing a frequency-
selective interference channel. We adopt the game theoretic
concept of Stackelberg equilibrium and model the two-user
case as a bi-level programming problem. We show that the
Stackelberg equilibrium is intrinsically difficult to compute
and propose a low-complexity approach based on Lagrangian
dual theory. Numerical results show the strategic user should
avoid shortsighted Nash strategy and it can substantially
improve both users’ performance if it knows the CSI and
response strategy of the competing user. Operational methods
for acquiring the necessary information and extensions to
multi-user scenarios are proposed. Obtaining satisfactory per-
formance with minimal information exchange while multiple
foresighted users exist is identified as a problem for further
investigation.
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