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Abstract—In this letter, we consider the problem of resource al-
location between two competing users sharing a binary symmetric
broadcast channel. We model the interaction between autonomous
selfish users in the resource allocation and analyze their strategic
behavior in manipulating the allocation outcome. We analytically
show that users will improve their performance (i.e., gain higher
allocated rates) if they have more information about the strategy
of the competing user.

Index Terms—Broadcast channel, strategic behavior.

I. INTRODUCTION

GAME theory has recently been applied to model and char-
acterize the multi-user interaction in communication set-

tings such as the information-theoretic multi-access channels
[1], interference channels [2], and operational contention-based
random access channels [3]. Issues such as fairness for multi-
user interactions in allocating rates to users have been studied
[1]. The existence and performance of equilibrium are studied
for multi- user frequency-selective interference channels and
ALOHA networks [2], [3].

As opposed to prior work, in which the main goal is mostly
to examine the system performance of the wireless system in a
game-theoretic setting from a system planner perspective, in this
letter, we focus on studying the strategic behavior of the selfish
users, i.e., their ability in manipulating the resource allocation
outcome. We study this problem in a simple setting: the binary
symmetric broadcast channels shared by two competing users.
We model the interaction in the resource allocation among au-
tonomous selfish users and analyze their behavior. We further
consider the cases in which one user has different amounts of
information about the strategy of other user. We show that this
information benefits strategic users and results in an improved
utility.

II. TWO-USER INTERACTION FOR BINARY SYMMETRIC

BROADCAST CHANNELS

We consider a broadcast channel consisting of a pair of binary
symmetric channels (BSCs) with parameters (i.e., the cross-over
probabilities) and (see pp. [4, pp. 568–570]). Without loss
of generality, we assume in this letter that .
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Fig. 1. System diagram.

The Pareto surface of the capacity region for this channel is
given by

(1)

where ,
, [4].

There are two users and a resource manager in the system,
and each user occupies a BSC. We denote by the
set of users. User holds the private information about its BSC
parameter , which lies in the set [4]. User
announces the public information about its . Note that for
strategic users, can differ from . For user , the set
of actions available for user to announce is denoted and

. Let and . Users have
preferences over the outcomes of the resource allocation, and
these preferences are represented by a utility function,

, where is the actual rate that user can achieve
in the allocation outcome. Fig. 1 shows the diagram of the re-
source allocation procedure. The resource manager calculates
user ’s achievable rate based on the public information
and allocates the resources based on certain policy that indi-
cates the system goal. In this letter, we assume that the resource
is divided based on the well-known proportional fair allocation
[5], i.e., is maximized, but other allocation rules could
also be implemented, and they will result in different strategic
behavior. Summarizing, the tuple de-
fines the model of interaction between the users [6].

The resource manager collects the public information and
determines the optimal that maximizes . Because the
capacity region is convex, the optimal value uniquely exists.
Taking the derivative with respect to , we have

(2)
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The optimum satisfies
. Note that , , and are functions

of . We will use , , , , , and
interchangeably hereafter. After the manager deter-

mines , users get their utilities. For example, if ,
and

. Note that in this letter, we focus on the allocation
outcome in the information-theoretic sense, rather than opera-
tional issues.

Existing work in the broadcast channel usually assumes that
the resource allocation is performed based on the channel state
information (CSI) fed back from the receivers. Since the system
goal does not always coincide with the goals of the selfish users,
the users have the incentives to strategically change their re-
ported CSI, i.e., the announced public information , to benefit
themselves. Each selfish user plays strategically to maximize
its own utility by announcing appropriate public information

, i.e.,

(3)

III. BEST RESPONSE IN THE TWO-USER INTERACTION

In order to understand the behavior of individual users, here
we first assume that user 1 reports and user 2 strategi-
cally reports instead of . The resource manager will treat
the cases in which and separately by trans-
forming into different physically degraded channels [4]. To de-
termine the optimal value of in (3), we discuss two cases.

1) First, if , the rate user 2 can achieve is
. Therefore, the problem in (3) is identical to

(4)

2) Second, if , the rate user 2 can achieve is
and problem (4) is identical to

(5)

Lemma 1: The best strategy for user 2 to maximize is to
report its public information as .

Proof: To show that maximizes , we
need to demonstrate that for both
and .

First, we consider the case with . Denote

. The re-
source manager always chooses to operate at
with , i.e.,

. In the following, we will show
that , ,
and . Because of these proper-
ties, if increases, needs to be increased in order to
keep . Hence, we can conclude that

. Using a similar argument, we can conclude
that .

To show , ,
and , we have

(6)

in which
,
, and .

Denote ,
, and

.
Taking the derivative with respect to , we have

(7)

Clearly, because

Taking the derivative with respect to , we have

(8)

Taking the derivative with respect to , we have

(9)
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Fig. 2. � for different announced p .

Let .
It is easy to show that . Therefore, we have

, which leads to .
Second, we consider the case in which . Using the fact

that for , by symmetry, we can also
conclude that for .

Therefore, we have for both and
. The optimal solution of (3) is .

We simulate an example in which and
. The result is shown in Fig. 2. We can see that mono-

tonically increases in , and the best strategy in maximizing
is to let .

In fact, given , considering the discontinuity of the
allocated rate as a function of (see Fig. 2), user 2 will
always choose to announce that , where and

. Similarly, given , user 1 will always choose to
announce that . Therefore, for and ,
where and , nobody will deviate from this point
because no user can gain more utility by unilaterally changing
its action . Hence, based on the definition of the Nash
equilibrium [6], we can conclude that the considered interaction
between the users reaches Nash equilibrium.

For an intuitive explanation about the result, we resort to the
idea of the superposition coding for the degraded broadcast
channel [4, Theorem 15.6.2]. An auxiliary random variable will
serve as a cloud center distinguishable by both receivers. The
worse receiver can only see the clouds, while the better receiver
can see the individual codewords within the clouds. The worse
receiver wants to decrease the size of the clouds, since it can only
distinguish the clouds and decreasing the cloud size will increase
his rate. On the contrary, the better receiver wants to increase the
sizeofcloudsso thathecanaccommodatemorebits ineachcloud.
In our problem, is the variable indicating the size of the clouds.
Recall that when (i.e., cloud size is zero) and

when (i.e., cloud is large and overlapped such
that user 2 getsnothing). In short, the worse receiverwants a small

, but the better receiver prefers a large . In Lemma 1, we have
alreadyshownthat .By“moderatelybragging,”
a worse receiver can decrease the size of the clouds and increases
his rate. However, if he excessively brags, he will become “the
better receiver” conceptually, and he needs to decode within each

cloud so that shrinking the cloud size does not benefit him. The
discontinuity comes from the fact that if goes across , the
roles of the better receiver and the worse receiver switch, which
causes the achievable rates of these two different coding schemes
not to be continuous at the boundary of unless .

IV. IMPACT OF SIDE INFORMATION

In this section, based on the results of the previous section, we
briefly discuss the impacts of the side information about the other
user’s strategy. We will show that a user having additional infor-
mation about the strategy of the other user will increase its utility.
In practice, it is usually difficult for users to accurately access
the complete information about the other user’s strategy, but it is
possible to have some side information about them. This kind of
side information could be obtained by repeatedly participating in
the resource allocation and observing the multi-user interaction.
We assume that the public information that user 1 announces
is a random variable with the probability density function
(pdf) , . User 2 has side information relevant
to with pdf , . Assume and have joint
pdf , , . User
2 determines its response such that its utility, the expectation
of its allocated rate , is maximized as follows:

(10)

can be expressed as

(11)

where represents the rate allocated to user 2 with
public information and .

Therefore, this expectation-maximization strategy is equiva-
lent to

(12)

Now we consider three types of with different
amounts of side information and examine the corresponding im-
pacts. In the first case, suppose there exists an injective function

and . Hence, provides
all the information about and .
Second, we consider the general as an intermediate
case, in which no injective function mapping to exists
and . In the third case, is independent of ,
i.e., provides no information about and .
The best response and corresponding expected utility that
user 2 can achieve in the th case is different. In the following,
we will investigate these different cases in detail.

In the first case, given the side information , from Lemma 1,
the best strategy is to announce . Thus

(13)
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In the second case, is given in (11) for the general .
In the third case, we have

, and therefore

(14)

The second equality holds because the maximizer of is
independent of .

Denote and

. By Lemma 1, we know

that , . Therefore, in the second
case, , , ;
otherwise, we can construct an injective function that maps
to . Consequently, we have

(15)

By setting , we can show another inequality

(16)

The inequality in (16) strictly holds, because in the second
case, , , , and

.
Combining the two inequalities, we have

(17)

From (17), we can conclude that more side information about
the strategy of the others will help the strategic users improve
their performance. Therefore, strategic users in the resource al-
location have the incentive to obtain as much side information

about the strategy of other users as possible. To quantify the
amount of this side information, we can define it based on the
following achieved utility:

(18)

Note that ,

which is a function of . Therefore,
is a function of . Similarly, because

, is a function of

. We can see that coincides with the well-
known mutual information [4] if the utility functions
take the form

(19)

In other words, the mutual information is a spe-
cial case of this utility-based information measure .
Strategic users always try to obtain as much amount of
as possible in order to benefit themselves. In practice, this side
information could be attained if the users are equipped with
advanced radios, such as cognitive radios, with the abilities to
sense, infer, and learn the environment.

V. CONCLUSIONS

In this letter, we study the strategic behavior by presenting an
example of a two-user binary symmetric broadcast channel. We
examine the interactions between autonomous selfish users in
the resource allocation and analyze their strategic behaviors. We
also explicitly show that users will improve their performance
if they have additional information about the strategy of other
users. Hence, although in this letter we only consider a simple
two-user binary symmetric broadcast channel and assume the
rule of proportional fairness, our results show that determining
how to attain this additional information in a multi-user strategic
interaction setting deserves investigation in future research.
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