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Structural Solutions for
Additively Coupled Sum Constrained Games

Yi Su and Mihaela van der Schaar

Abstract—We propose and analyze a new family of games
played by resource-constrained players. In particular, each
strategic user has a single sum resource constraint over its
action space and its own action impacts its own payoff through
additive combinations of the other users’ actions. We investigate
convergence properties of various solutions for these games
with and without real-time information exchange. First, when
users cannot exchange messages with each other, but desire to
maximize their individual utilities, we derive sufficient conditions
under which best response dynamics converges to a globally
asymptotically stable Nash equilibrium. Second, when users can
exchange price signals in real-time to achieve coordination,
we also establish the convergence properties of two action
update mechanisms, including gradient play and Jacobi update.
The investigated game model and our proposed solutions are
readily applicable to various multi-user interaction, including
communication networking applications, such as power control
and flow control.

Index Terms—Game theory, multi-user communications, Nash
equilibrium, best-response dynamics, Gradient play, Jacobi up-
date, pricing mechanism.

I. INTRODUCTION

AME theory provides a formal framework for describing

and analyzing the interactions of users that behave
strategically. Recently, there has been a surge in research
activities that adopt game theoretic tools to investigate a wide
range of modern communications and networking problems,
such as flow and congestion control, network routing, load
balancing, power control, peer-to-peer content sharing, etc
[1]- [5]. In resource-constrained communication networks, any
action taken by a user usually affects the utilities of the other
users sharing the same resources and hence, it needs to be
carefully chosen. Depending on the characteristics of different
applications, numerous game-theoretical models and solution
concepts have been proposed to characterize the multi-user
interactions and optimize the users’ decisions in communi-
cation networks. A variety of game theoretic solutions have
been developed to characterize the resulting performance of
the multi-user interaction, including Nash equilibrium (NE)
and Pareto optimality [6].

The majority of the existing game theoretic research works
in communication networking applications usually depend on
the specific structures of action sets and utility functions in
the investigated multi-user interaction. By considering or even
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architecting these specific structures, the associated games
become analytically tractable and possess various important
convergence properties. For instance, if users cannot exchange
messages with each other and choose to individually maximize
their utilities, to show the existence of and the convergence to
a pure NE, several well-investigated classes of game models
and frameworks, such as concave games, supermodular games,
potential games, and variational inequality theory, have been
extensively applied in various communication scenarios [7]-
[13]. When real-time information exchange is possible, various
mechanisms have also been proposed to enable collaborative
users to jointly improve their performance and find the opti-
mum joint policy. A well-known example is the framework
of network utility maximization (NUM) started by Kelly etc
[14]. It has recently been widely adopted in communication
networks to analyze the trade-off between fairness and effi-
ciency and various distributed resource allocation algorithms
has been designed within the framework. In particular, for a
convex NUM problem that can be decomposed into several
subproblems by introducing Lagrange multipliers associated
with different resource constraints, its global optimum can be
computed using distributed algorithms by deploying message
passing mechanisms [15].

To our knowledge, power control is one of the first few
communication problems in which researchers start to apply
game theoretic tools to investigate various properties. An
interesting and important topic that has been extensively
addressed recently is how to optimize multiple devices’ power
allocation when sharing a common frequency-selective inter-
ference channel. In [18], Yu et. al. first defined such a power
control game from a game-theoretic perspective, proposed a
best-response algorithm in which all users iteratively update
their power allocations using the water-filling solution, and
proved several sufficient conditions under which the algorithm
globally converge to a unique pure NE. Many follow-up
papers further establish several weaker sufficient convergence
conditions with or without real-time information exchange
[19]- [23]. We note that, the class of power control games is,
on the one hand, narrow, but on the other hand, very important
for communications. This is because in resource-constrained
communication systems, there exist a family of multi-user
interaction scenarios that share similar structures as the power
control games. The purpose of this paper is to introduce and
analyze a general framework that abstracts the common char-
acteristics of this family of multi-user interaction scenarios.
We explore the specific structures of the induced coupling
among users and derive sufficient conditions that guarantee
the convergence of different generic distributed algorithms
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given the availability of real-time information exchange. In
particular, the main contributions of this paper are as follows.

First of all, we define the model of Additively Coupled Sum
Constrained Games (ACSCGQG) that arises in several commu-
nication and networking application. In particular, ACSCG
is a special case of Rosen’s concave games [30] and the
central features of ACSCG are: 1) each user is resource-
constrained in the sense that each of them is individually
subject to a sum constraint; 2) users’ utilities are separable
across different dimensions in their action spaces; 3) the payoff
in each dimension is determined by an additive combination
of its own action and a function of the other users’ actions.

Second, we derive the convergence conditions of various
generic distributed algorithms with and without real-time
information exchange. When no message exchanges between
users is available and every user behaves to maximize its
own utility, whether a NE exist and how to achieve it are of
particular interests. In ACSCG, a pure NE exists in ACSCG
due to Rosen’s result. Our key contribution in this context is
that we consider the best response dynamics to search for such
a pure NE. We explore the properties of the additive coupling
among users given the sum constraint and provide several
sufficient conditions under which best response dynamics
converges linearly! to the unique NE of ACSCG, for any
set of feasible initialization with either sequential or parallel
updates. We also explain the relationship between our results
and the conditions previously developed in the game theory
literature [30]- [32]. For games in which every user’s action
space is a vector set subjected to a single sum-constraint,
our results identify sufficient conditions that guarantee both
best response and gradient play dynamics globally converge
to a pure NE, which can be regarded as a counterpart of
Gabay’s dominance solvability condition in games with single
dimensional strategy [32]. When users can collaboratively ex-
change messages to coordinate with each other, we present the
sufficient convergence conditions of two alternative distributed
pricing algorithms, i.e. gradient play and Jacobi update. Our
proposed convergence conditions generalize the results that
have been previously obtained in [18]- [23] for the multi-user
power control problem and they are immediately applicable
to other multi-agent applications in communication networks
that fulfill the requirements of ACSCG.

The rest of this paper is organized as follows. Section II
defines the model of ACSCG. For ACSCG models, Sections
IIT and IV present several distributed algorithms with and
without real-time information exchange respectively and pro-
vide sufficient conditions that guarantee the convergence of
the proposed algorithms. Section V presents the numerical
examples and conclusions are drawn in Section VI.

II. GAME MODEL

In this section, we introduce some basic definitions from
the theory of strategic games, define the model of ACSCG,
and present some illustrative examples.

'A sequence z(*) with limit z* is linearly convergent if there exists a
constant ¢ € (0, 1) such that |#(¥) —z*| < ¢|lz(*=1) —2*| for k sufficiently
large [29].
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A. Strategic Games, Nash equilibrium, and Pareto Optimality

A strategic game is a suitable model for the analysis of a
game where all users act independently and simultaneously
according to their own self-interests and with no or limited
a priori knowledge of the other users’ strategies. This can
be formally defined as a tuple I’ = (N, A, u). In particular,
N = {1,2,...,N} is the set of rational decision-makers.
Define A to be the joint action set A = X e Ay, with A,
being the action set available for user n. The vector utility
function © = Xp,enu, iS a mapping from the individual
users’ joint action set to real numbers, ie. u : A — RN,
In particular, u,(a) : A — R is the utility of the nth user
that generally depends on the strategies a = (a,,,a_,,) of all
users, where a,, € A, denotes a feasible action profile of
user n, and a_,, = X, ~p@;, is a vector of the strategies of
all users except n. We also denote by A_,, = X2, Ap, the
joint action set of all users except n. To capture the multi-
user performance tradeoff, the utility region is defined as
U= {(u1(a),...,un(a))| 3 a € A}. Various game theoretic
solutions were developed to characterize the resulting perfor-
mance in both models, among which the most well-known
ones include NE and Pareto optimality [6]. Significant research
efforts have been devoted in the literature to constructing
operational algorithms in order to achieve NE and Pareto
optimality in various games with special structures of action
set A, and utility function wu,,.

1) Nash equilibrium: definition, existence, and conver-
gence: To avoid the overhead of performing real-time infor-
mation exchange, network designers may prefer fully decen-
tralized solutions in which the participating users simply com-
pete against other users by choosing actions a,, € A, to self-
ishly maximize their individual utility functions w,,(a,,a_,),
given the actions a_,, € A_,,. Most of these approaches focus
on investigating the existence and properties of NE. NE is de-
fined to be an action profile (a7, a3, ..., a% ) with the property
that for every player, it satisfies u,(a’,a* ) > u,(a,,a* )
for all a,, € A,, i.e. given the other users’ actions, no
user can increase its utility alone by changing its action. For
an extensive discussion of the methodologies studying the
existence, uniqueness, and convergence of various equilibrium
in communication networks, we refer the readers to [16].
Many of the well-known results rely on specific structural
properties of action set .4 and utility function u in the
investigated multi-user interactions. For example, to establish
the existence of and convergence to a pure NE, we can
examine whether A and u satisfy the conditions of concave
games, supermodular game, potential game, etc. Specifically,
to apply the existence result of a pure NE in concave games
[30], we need to check the following conditions: i) each
player’s action set A4,, is convex and compact; and ii) the utility
function u,,(a,,a_,) is continuous in a and quasi-concave2
in a, for any fixed a_,. As additional examples of games
that guarantee the convergence to NE, it is well-known that,
in supermodular games [7] [9] and potential games [11] [12],
the best response dynamics can be used to search for a pure
NE. Suppose that utility function u,, is twice continuously

2f : R™ — R is quasi-concave if domf is convex and {z € domf|f(z) >
a} are convex for all a.
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differentiable, Vn € N. If A,, is a compact subset of R (or
more generally A,, is a nonempty and compact sublattice?),
VYn € N, establishing that game T' is a supermodular game is
equivalent to showing that wu,, satisfies

0%u,,
Oa,0a,, —

If action set A in game T is an interval of real numbers, we
can show that game I' is a potential game by verifying
2
V(m,n)e./\/a,m;én,%:& 2)

2) Pareto optimality and network utility maximization:
It is important to note that operating according to a Nash
strategy will generally limit the performance of the user itself
as well as of the entire network, because the available network
resources are not always effectively exploited due to the
conflicts of interest occurring among users. As opposed to the
NE-based approaches, there exists a large body of literature
that focuses on studying how users can jointly improve the
system performance by optimizing a certain common objective
function f(uq(a),uz(a),...,un(a)). This function represents
the allocation rule based on which the system-wide resource
allocation is performed. Different objective functions, e.g. sum
utility maximization in which f(uj(a),us(a),...,uy(a)) =
Zf:f:l un(a), can provide reasonable allocation outcomes by
considering the trade-off between fairness and efficiency. A
profile of actions is Pareto optimal if there is no other profile
of actions that makes every user at least as well off and at
least one user strictly better off.

The majority of these approaches focus on studying how
to efficiently or distributively find the optimum joint policy.
There exists a large body of literature that investigates how
to compute Pareto optimal solutions in large-scale networks
where centralized solutions are infeasible. Many structural
results have been obtained for many generic distributed al-
gorithms. A famous example is the NUM framework that
develops distributed algorithms to solve network resource
allocation problems [14]. The majority of the results in the
existing NUM literature are based on convex optimization
theory, in which the investigated problems share the following
structures: the objective function f(uq(a),usz(a),...,un(a))
is convex*, inequality resource constraint functions are convex,
and equality resource constraint functions are affine. It is
well-known that, for convex optimization problems, users
can collaboratively exchange price signals that reflect the
“cost” for consuming the constrained resources and the Pareto
optimal allocations that maximizes the network utility can be
determined in a fully distributed manner [15].

Summarizing, these general structural results with and with-
out real-time message exchange turn out to be very useful
when analyzing various multi-user interactions in commu-
nication networks. A lot of existing works are devoted to
constructing or shaping the multi-user coupling such that it fits

Y(m,n) € N?,m #n, (1

3 A real m-dimensional set V is a sublattice of R™ if for any two elements
a,b € V, the component-wise minimum, a A b, and the component-wise
maximum, a V b, are also in V.

4f :R™ — R is convex if domf is a convex set and f(0z + (1 —0)y) <
0f(z) + (1 0)f(y). Yz, y € domf,0 < 0 < 1.
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into these frameworks and the corresponding generic solutions
can be directly applied. In the remaining part of this paper,
we will derive several structural results for a particular type
of multi-user interaction scenario. The following subsection
gives the definition of ACSCG and presents several exemplary
application scenarios.

B. Additively Coupled Sum Constrained Games

Definition 1: A multi-user interaction I' = (N, A, u) is
considered a ACSCG if it satisfies the following assumptions:
Al: Yn € N, action set A,, C R¥ is defined to be’

K
An = {(a’iwaif" 70’5) ’ a”IfL € [a’g,il??a?ﬁcx] and Za'lz S Mn}
k=1

3

A2: The utility function u,, satisfies
K

up(a) =
k=1

[k (ah + fEasn) = ghan)]. @)

in which h%(.) is an increasing and strictly concave function.
Functions f*(-) and gk (-) are both twice differentiable.

The ACSCG model defined by assumptions Al and A2
covers a broad class of multi-user interactions. Assumption
Al indicates that each player’s action set is a K -dimensional
vector set and its action vector is sum-constrained. This
represents the communication scenarios in which each user
needs to determine its multidimensional action in various
channels or networks while the total amount of resources it can
consume is constrained. Assumption A2 implies that a user’s
utility is separable and can be represented by the summation of
concave functions k¥ minus “penalty” functions g* across the
K dimensions. In particular, within each dimension, the input
of h* is an additive combination of a* and f*(a_,,). Since a*
only appears in the concave function h%, it implies that each
user’s utility is concave in its own action, i.e. diminishing re-
turns per unit of user n’s invested action a,,, which is common
for many application scenarios in communication networks.
The key features of the game model defined by Al and A2
include: each user’s action is subjected to a sum constraint;
users’ utilities are impacted by additive combinations of a¥
and f¥(a_,) through concave functions h%. Therefore, we
term game I that satisfies assumptions Al and A2 as ACSCG.
In the following section, we present several illustrative multi-
user interaction examples that belong to ACSCG.

C. Examples of ACSCG

Example 1: We first consider a simple two-user game with
two-dimension action spaces, i.e. N = K = 2. The utility
functions are given by®

un(a) = \/a% + (“1})2 _ (“39n>2 N \/a% - (ai;)2 R (az2 BE

5We consider a sum constraint throughout the paper rather than a weighted-
sum constraint, because a weighted-sum constraint can be easily converted
to a sum constraint by rescaling A,. Besides, we nontrivially assume that
ZK amax > M

k=1%nk = -

SIn this example, since there are only two users, the subindex —n denotes
the user but n.
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for n = 1, 2. The resource constraints are Zi:l af < M, in
which M,, > 0 and a* > 0 for Vn, k.

Example 2: (Power control in frequency-selective Gaussian
interference channel [18] [21]) There are N transmitter and
receiver pairs in the system. The entire frequency band is
divided into K frequency bins. In frequency bin k, the channel
gain from transmitter ¢ to receiver j is denoted as H, fj, where
k=1,2,.---, K. Similarly, denote the noise power spectral
density (PSD) that receiver n experiences as ¢* and player
n’s transmit PSD as P*. The action of user n is to select its
transmit power P,, = [P} P?... Pk ] and the transmit PSD
is subject to its power constraint: Z weq Py < PR For a
fixed P,,, if treating interference as noise, user n can achieve
the data rate in (5).

Example 3: (Delay minimization in Jackson Networks [17])
As an additional example, we consider a network of N nodes.
A Poisson stream of external packets arrive at node n with
rate i, and the input stream is split into K traffic classes,
which are individually served by exponential servers. Denote
node n’s input rate and service rate for class k as ¥* and p*
respectively. Therefore, the action of node n is to determine
the rates for different traffic classes W, = [} 92 .. K]
and the total rate is subject to the minimum rate constraint:
Zszlwﬁ > o™i The packets of the same traffic class
constitute a Jackson network in which Markovian routing is
adopted: packets of class k completing service at node m are
routed to node n w1th probability 7F  or exit the network
with probability 7%, = 1 — Zf:] 7k .. Denote the arrival
rate for class k at node n as nn By Jackson’s Theorem, we
have nf = w’“ + N phrk n = 1,2,--- K. Denote
[Rk]mn = rnm’ Tk = (I Rk) 1’ and Umn = [Tk]nm
Equivalently, we have nf = Z7Nn:1 vk 4k Each node aims
to minimize its total additional M/M/1 queueing delay incurred
by accommodating its traffic:

mn

1 1
) ; (,u,’ﬁb - Zm 1 VR, k- Zm¢n vk Pk )

(6)

Example 4: (Asynchronous transmission in digital sub-

scriber lines network [20]) The basic setting of this example

is similar as that of Example 2 except that inter-carrier

interference (ICI) exist among different frequency bins. Due

to the loss of the orthogonality, the interference that user n
experiences in frequency bin k is

2(27 —J) mnpﬁn) (7

m#n  j=1

fr®P_,

in which (3) is the ICI coefficients that represents the relative
interference transmitted signal in a particular frequency bin
generates to its jth neighbor bin. In particular, it takes the
form

() = 7 Ry @®)
=N ey <j<%i#o

It satisfies the symmetric and circular properties, i.e. y(—j) =
v(j) = v(K — j). User n’s achievable rate in the presence of
ICI is given by

NIN
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Hf, Pk
ok + X o (S4S1 9k = ) B P )

K
(P) = Zlog2 1+
k=1

©))

We can verify that Examples 1-4 satisfy assumptions Al
and A2 and belong to ACSCG. The details of functions % (-),
f%(-) and g% (-) are summarized in Table I. For each example,
Table I also summarizes the applicable convergence conditions
that will be provided in the remaining parts of the paper. We
would like to mention that Example 3 can be shown to be
a special case of ACSCG by slightly transforming the action
sets and utilities. We can define user n’s action as —V,,. For
user n, the sum constraint becomes Zle —w’“ < —z/z,‘?i“ and
minimizing d,,(¥) is equivalent to maximizing —d,,(¥).

Remark 1: (Issues related to ACSCG) Since the ACSCG
model represents a good abstraction of numerous multi-user
resource allocation problems, we aim to investigate the conver-
gence properties of various distributed algorithms in ACSCG
with and without real-time message passing.

On one hand, it is straightforward to verify that ACSCG is a
special case of Rosen’s concave games [30]. Therefore, at least
one pure NE is admitted. In practice, we want to provide the
sufficient conditions under which the best response dynamics
provably and globally converges to a pure NE. However, the
existing literature, e.g. the diagonal strict concavity (DSC)
conditions in [30] and the supermodular game theory [7]- [9],
does not provide such convergence conditions for the general
ACSCG model. For example, the DSC conditions developed
by Rosen for general concave games do not guarantee the
convergence of best response dynamics [30]. Even if the utility
functions in ACSCG possess the supermodular type structure,
due to the sum constraint, the action set of each user is
generally not a sublattice’. Therefore, the convergence results
based on supermodular games cannot be directly applied in
ACSCG. On the other hand, if we want to maximize the sum
utility by enabling real-time message passing among users,
we also note that, the utility u,, is not necessarily jointly
convex in a because of the existence of g¥(-). Therefore, the
existing algorithms developed for the convex NUM are not be
immediately applicable either.

In fact, a unique feature of the ACSCG is that different
users’ actions are additively coupled in h%(-) and each user’s
action space is sum-constrained. In the following sections,
we will fully explore these specific structures and address the
convergence properties of various distributed algorithms with
and without real-time information exchange.

III. SOLUTIONS WITHOUT MESSAGE PASSING

In the applications where system designers focus on fully
decentralized strategies to avoid the heavy signaling required
to achieve coordination, the participating users can simply
choose actions to selfishly maximize their individual utility
functions wu,(a) without taking into account the utility de-
gredation caused to the other users. In particular, each user

7In supermodular games, for each player, the action set is a nonempty and
compact sublattice. We can verify that with the sum constraint, A, is usually
not a sublattice by taking the component-wise maximum.
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P):Z]Og2(1+ k+znn 1}{ pk):Z(logQU —|—ZHman logga —I—ZHman ) (5)
k=1 n mz#n ~tmnTm k=1 m=1 m#n
TABLE I
EXAMPLES 1-4 As ACSCG.
[ Examples || fE(a_,) | RE (z) | gk (a_,) | Convergence conditions |
La_,) = (@l )?  (@Z,)?
Example 1 niS—n/ = (a24 2 (a19 2 VT 0 (C4) and (C6)
Z(a_n) = —— ="
2 E_pk
Example 2 > I:IT” ok log, (o + HE, x) logy (o + mZn Hpn Pr) (C1)-(C8)
m n nn
— T
Example 3 b j%&wﬁ S e oS ok ok (CH-(C8)
7[,;' n - - m#n
Example 4 3 ( ) %Pﬁﬂ logy(ok + HE, z) | logy(ck + HE, fk(a_y)) (C4)-(C8)
=+

individually solves the following optimization program:

(10)

i, )
The steady state outcome of such a multi-user interaction
is usually characterized as a NE, at which given the other
users actions a_,, no user can increase its utility alone by
unilaterally changing its action. It is worth pointing out that,
since there is no coordination signal among users, the Nash
strategy generally does not lead to a Pareto-optimal solution.
Section IV will discuss distributed algorithms in which users
exchange coordination signals in order to improve the system
efficiency.

A. Properties of Best Response Dynamics in ACSCG

For ease of presentation, in this subsection, we temporarily
focus on the scenarios in which f¥(a_,) takes the following

form
: mn Tﬂ Y

m#n

(1)

in which F,’fm € R, Vm,n, k. We can see that, for user n,
fF(a_,) is the linear combination of the remaining users’
action in the same dimension k. Specifically, both Example
2 and 3 in Table I belong to this category. In Section III-B,
we will extend the results derived for the functions f*(a_,)
defined in (11) to general f¥(a_,). The key differences
between all the sufficient conditions that will be provided in
this section are summarized in Table II.

Since h%(-) is concave, the objective in (10) is a concave
function when the other users’ actions a_,, are fixed. To find
the globally optimal solution of the problem in (10), we can
first form its Lagrangian

K
(Mn - Z a’fz)

L, (an, A) = up(a) + A (12)
k=1
in which af € [a g“,?, ap'%]. Take the first derivatives of (12),
we have
dak dak -

Denote
IF(a_n, \) 2 H

in which [z]¢ = max{min{z,a},b}. The optimal solution
of (10) is given by a*F I¥(a_,,\*), where the La-
grange multiplier \* is chosen to satisfy the sum constraint
Ele ar® = M,,. We define the best response operator B (-)
as

n)

We consider the dynamic adjustment process in which users
revise their actions over time based on their observations about
their opponents. A well-known candidate for such adjustment
processes is the so-called best response dynamics. In the best
response algorithm, each user updates its action using the best
response strategy that maximizes its utility function in (4).
We consider two types of update orders, including sequential
update and parallel update. Specifically, in sequential update,
individual players iteratively optimize in a circular fashion
with respect to its own action while keeping the actions of
its opponents fixed. Formally, at stage ¢, user n chooses its
action according to

= B ([a] D

On the other hand, players adopting the parallel update their
actions at stage t according to

We obtain several sufficient conditions under which best
response dynamics converges. Similar convergence conditions
are proved in [19]- [21] for Example 2 in which h¥(z) =
log, (¥ + HE, x). We consider more general functions h% (-)
and further extend the convergence conditions in [19]- [21].

1) General hE(-): The first sufficient condition is devel-
oped for the general cases in which the functions h%(-) in the

utilities u,,(-) are specified in assumption A2. Define

Ohk

- Y Fha ] (14)

m#n

=)o

Br(a_,) =1"(a_,, \"). (15)

t 1
CHEREERRE

t—1

S al ,aly (16)

n—1»

A7)

max] & | maxy |[FF | ifm#£n
(T Joon = { 0, otherwise. (18)
and let p(T™#*) denote the spectral radius of the matrix T™*.
Theorem 1: If
p(T™) < . (C1)
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TABLE II
COMPARISON AMONG CONDITIONS (C1)-(C6).

| Conditions [| Assumptions about fF(a_,) | hE(z) | Measure of residual error al,' * — a?, | Contraction factor |
€D an A2 T-norm 2p(To%)
(11) and EF_ have max
€2 the same sign f(;r”é’k:, m#n A2 I-norm p(T™)
(C3) (11) (20) weighted Euclidean norm p(S™?%)
(C4) general A2 I-norm 2p(T7)
Lcs @_n) have the same sign —ma
(C5) oak! same Sig A2 1-norm p(T™3)
for Vae Ak, k', m #n
(C6) general (20) weighted Euclidean norm (ST

then best response dynamics converges linearly to the unique
NE of game I, for any set of initial conditions belonging to
A with either sequential or parallel updates.

Proof: It can be proved by showing that the best response
dynamics defined in (16) and (17) is a contraction mapping.
See Appendix A for details. l

In multi-user communication applications, it iS common to
have games of strategic complements (or strategic substitutes),
i.e. the marginal returns to any one component of the player’s
action rise with increases (or decreases) in the components
of the competitors’ actions [35]. Mathematically, if w, is
twice differentiable, strategic complementarities (or strategic
substitutes) can be described as

(?Qun(an7 a_p)

Oal,0ak,

un(an,a )

>0, Ym # n, (or -
- 7 Oal,0ak,

<0, Vm # n).
19)
For instance, in Examples 2 and 4, increasing user n’s trans-
mitted power creates stronger interference to the other users
and decreases their marginal achievable rates. Similarly, in
Example 3, increasing node n’s input traffic rate congests all
the servers in the network and increases the marginal queueing
delay. For the ACSCG models that exhibit strategic comple-
mentarities (or strategic substitutes), the following theorem
further relaxes condition (C1).
Theorem 2: For I" with strategic complementarities (or
strategic substitutes) in utility functions, i.e. F,’fm < 0,
Vk,m #n, (or EF_ >0, Yk, m # n), if

p(Tmax) < 1 , (C2)

then best response dynamics converges linearly to the unique
NE of game I, for any set of initial conditions belonging to
A with either sequential or parallel updates.

Proof: It can be shown by adapting the proof of Theorem
1. See Appendix B. B

Remark 2: (Implications of conditions (C1) and (C2)) The-
orem 1 and Theorem 2 give sufficient conditions for best
response dynamics to globally converge to a unique fixed
point. Specifically, maxy |F¥ | can be regarded as a measure
of the strength of the mutual coupling between user m and
n. The intuition behind (C1) and (C2) is that, the weaker the
coupling among different users is, the more likely that best
response dynamics converges. Consider the extreme case in
which F¥ = 0,Vk,m # n. Since each user’s utility is not
impacted by the remaining users’ action a_,,, the convergence
is immediately achieved after a single best-response iteration.
If no restriction is imposed on F¥ | Theorem 1 specifies a mu-

mn?

tual coupling threshold under which best response dynamics

provably converge. The proof of Theorem 1 can be intuitively
interpreted as follows. We regard every best response update as
the users’ joint attempt to approach the NE. Due to the linear
coupling structure in (11), user n’s best response in (14) can be
expressed in terms of linear combinations of a_,,. As a result,
the residual error |’ —a,| . which is the 1-norm distance
between the updated action profile a’™! and the current action
profile a’, can be upper-bounded using linear combinations
of |af, —al '] in which m # n. Recall that F¥  can be
either positive or negative. We also note that, if a, # al !,
a!, —a'~! contains both positive and negative terms due to
the sum-constraint. In the worst case, distance |afjr 1 afl}l is
maximized if {FF, } and {af;' — a%!~1} are co-phase mul-
tiplied and additively summed, i.e. F¥  (af! — aft=1) > 0,
for Vk = 1,..., K, m # n. After an iteration, all users except
n contributes to user n’s residual error at stage t + 1 up to
> mn 2maxy, |[EF|[al, —al 1| . Under condition (C1), it
is guaranteed that the residual error contracts with respect to
the special norm defined in (70). Theorem 2 focuses on the
situations in which the signs of F¥ are the same, Vm # n, k.
In this case, {F%, } and {ak’ —a¥'~!} cannot be co-phase
multiplied. Therefore, the range of convergence enlarges and
hence, condition (C2) stated in Theorem 2 is weaker than
condition (C1) in Theorem 1.

Remark 3: (Relation to the results in references [19]- [21])
Similarly as [19] [20], our proofs choose 1-norm as the dis-
tance measure for the residual errors a’"! —a’ after each best-
response iteration. However, by manipulating the inequalities
in a different way, condition (C2) is more general than the
results in [19] [20], where they require maxy Fffm < ﬁ
Interestingly, condition (C2) recovers the result obtained in
[21] where it is proved by choosing Euclidean norm as the
distance measure for the residual errors a‘! — al after each
best-response iteration. However, the approach in [21] using
Euclidean norm only applies to the scenarios in which A (-) is
a logarithmic function. We prove that condition (C2) applies
to any h%(.) that is increasing and strictly concave.

2) A special class of h¥(-): In addition to conditions (C1)
and (C2), we also develop a sufficient convergence condition
for a family of utility functions parameterized by a negative
number 6. In particular, h%(-) : Ry — R satisfies

B log(ay + Fp,x), if § = —1,
— k ko_\0+1
n(@) nt Pt if 1< <0orf<—1.

(20)
and o € R and F¥, > 0. The interpretation of this type of

utilities has been addressed in [24]. It is shown that varying
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the parameter 6 leads to different types of fairness across
ok +FF (ak —I—Zm#l k ak ) forall k. In particular, § = —1
corresponds to the proportional fairness; if § = —2, then
harmonic mean fairness; and if § = —oo, then max-min
fairness. We can see that, Examples 2 and 3 are special cases
of this type of utility functions. In these cases, best response
dynamics in equation (14) is reduced to

1 (141 1 ani
lqlz a—na/\ = [ Tk AT — mn m:| ’
(21)

Define [S™%],,, in (22). For the class of utility functions in

(20), Theorem 3 gives a sufficient condition that guarantees

the convergence of the best response dynamics defined in (21).
Theorem 3: For hE(-) defined in (20), if

p(smaX) < ]_7 (C3)

then best response dynamics converges linearly to the unique
NE of game I, for any set of initial conditions belonging to
A and with either sequential or parallel updates.

Proof: Tt can be proved by showing that the best response
dynamics defined in (21) is a contraction mapping with respect
to weighted Euclidean norm. See Appendix C for details. ll

Remark 4: (Relation between conditions (C3) and the re-
sults in reference [21]) For aforementioned Example 2, Scutari
et al. established in [21] a sufficient condition under which the
iterative water-filling algorithm converges. The iterative water-
filling algorithm is essentially belongs to best response dynam-
ics. Specifically, in [21], Shannon’s formula leads to 6 = —1
and cross channel coefficients satisfy FF > 0,Vk,m # n.

mn —

Equation (21) reduces to the water-ﬁlhng formula

Z anIk
mn m m]n ?

”" m#n

lfl (a—n7 )\) =

(23)

and [S™*],,,, = maxy F¥ . By choosing weighted Euclidean

norm as the distance measure for the residual errors a’;"! —a’,
after each best-response iteration, Theorem 3 generahzes the
results in [21] for the family of utility functions defined in
(20).

Remark 5: (Relation between conditions (ClI), (C2) and
(C3)) The connections and differences between conditions
(C1), (C2) and (C3) are summarized in Table II. We have
addressed the implications of (C1) and (C2) in Remark 2.
Now we discuss their relation with (C3). First of all, condition
(C1) is proposed for general h%(-) and condition (C3) is
proposed for the class of utility functions defined in (20).
However, Theorem 1 and Theorem 3 individually establish
the fact that best response dynamics is a contraction map
by selecting different vector and matrix norms. Therefore,
in general, (C1) and (C3) does not immediately imply each
other. Note that [S™*],., < Cunn - maxy |EFF | in which
Cmn satisfies (24). The physical interpretation of (,y,, is the
similarity between the preferences of user m and n across
the total K dimensions of their action spaces. Recall that
both §™** and T™** are non-negative matrices and S™** is
element-wise less than or equal to max,, £y, (ma T . By the
property of non-negative matrix and condition (C1), we can
conclude p(S™*) < p(max,zn Crmn T™™) < MaX,4n 4’”".
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Fig. 1. Relation between (C1) and (C3).

The relation between (C1) and (C3) is pictorially illustrated
in Fig. 1. Specifically, if users have similar preference in their
available actions and the upper bound of (,,, that measures
the difference of their preferences is below the following
threshold:

M (P / Fm)
minkﬂn#n( nn/ mm

we have p(S™*) < 1 and hence, (C1) is stronger than (C3).
We also would like to point out that, the LHS of (25) is a
function of A and the LHS = 1 if § = —1. When 6 = —1,
T™ coincides with §™%*, Mathematically, in this case, (C3)
is actually more general than (C2), because it still holds even
if ¥ have different signs.

mn

<2, (25)

)1+%

B. Extensions to General ffif ()

As a matter of fact, the results above can be extended
to the more general situations in which f%(-) is a nonlinear
differentiable function, Vn, k and its input a_,, consists of the
remaining users’ action from all the dimensions. Accordingly,
equation (14) becomes

Bl ) 2 [{ 2270 - )

The conclusions in Theorem 1, 2, and 3 can be further
extended as Theorem 4, and 5, 6 that are listed below. We
only provide the proof of Theorem 4 in Appendix D. The
detailed proofs of Theorem 5 and 6 are omitted because they
can be proven similarly as Theorem 4.

For general f¥(.), we denote

max
an,k

- (26)
amip

8f (a,n)

K .
e, 2 MaXac A k' P peq I “Ha | ifm#n
0, otherwise.
(27)

Besides, for h”(-) defined in (20), we define [S™
Theorem 4: If

N in (28).

prnax 1

T < -,
p(T77) < 5
then best response dynamics converges linearly to the unique
NE of game T, for any set of initial conditions belonging to

A with either sequential or parallel updates.

(€4
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il s B (R )“%} -
(S, 2 zkkK:ll( riyd e ol , ifmEn (22)
0, otherwise.
K 1+ 4 rk 1+ % rk
Cmn _ Zk 1( ) 19 . max ( nn) 91 c |:1’ maxk( nn mm) :| ) (24)
Ek 1(Fk )1+§ k (Fﬁlm)l—,—? mlnk(ijn mm)
ZK ( Rk )1+1 af (a,n) F::; 1+% .
57 2 { By e (S (52 () ) it o
0, otherwise.

Proof': It can be proved by combining the proof of Theorem
1 and the mean value theorem for vector-valued functions. See
Appendix D for details. l

Similarly as in Theorem 2, for the general ACSCG models
that exhibit strategic complementarities (or strategic substi-
tutes), we can further relax condition (C4).

Theorem 5: For I" with strategic complementarities (or

k
strategic substitutes), i.e. % >0,Ym #n,k,k,ac A,
(or afa“‘g") <0,Ym #n, kK ,ac A, if

p(Tmax) < 1’ (CS)

then best response dynamics converges linearly to the unique
NE of game I, for any set of initial conditions belonging to
A with either sequential or parallel updates.

Theorem 6: For hE(-) defined in (20), if

p(Smax) < 17 (C6)

then best response dynamics converges linearly to the unique
NE of game I, for any set of initial conditions belonging to
A with either sequential or parallel updates.

Remark 6: (Implications of conditions (C4), (C5), and
(C6)) By mean value theorem, we know that the upper bound

of additive sum of first derivatives > p el ‘%‘ governs
the maximum impact that user m’s action can make over user
n’s utility. As a result, Theorem 4, Theorem 5, and Theorem
6 indicate that Zf 1 Ofn 8(17") ‘ can be used to develop
similar sufficient conditions for the global convergence of best
response dynamics. Table II summarizes the connections and
differences between all the aforementioned conditions from
(C1) to (C6). We can verify that, for the linear function
fE(-) that is defined in (11) and studied in Section III-A,

Va € A, m # n, it satisfies
afﬁ(a—ﬂ) _ Fﬁln?
dakl 0,

In addition, we can see that, in Example 4, f,’f() is actually
a affine function with

ifk' =k

otherwise. (29)

OffP_n)  f y(k—K)HF,, ifk =k 30)
opPk 0, otherwise.
and S™* is reduced to
5™, 2 | maxw SE Ak —K)HE . ifm#n
mm 0, otherwise.
(31)

As an immediate result of Theorem 6, we have the following
corollary which specifies a sufficient condition that guarantees
the convergence of iterative water-filling algorithm for the
asynchronous transmission in multi-carrier systems [20].
Corollary 1: In Example 4, if the matrix S" defined in
(31) satisfies
p(S™) < 1, (32)

then iterative water-filling algorithm converges linearly to
the unique NE of game I', for any set of initial conditions
belonging to A and with either sequential or parallel updates.

C. Connections to the Results of Rosen [30], McKenzie [31],
Gabay [32], and Facchinei [13]

1) Gradient play and Rosen’s DSC conditions: As we men-
tioned earlier, ACSCQG is actually a special subclass of Rosen’s
concave games. In [30], Rosen proposed a continuous-time
gradient projection based iterative algorithm to obtain a pure
NE under the assumption of DSC conditions. Here we present
a discrete version of the algorithm in [30], named “gradient
play”. Specifically, at stage ¢, each user ﬁrst determines the
gradient of its own ut111ty function u,(a,,a’>!). Then each
user updates its action an using gradient projection according
to
Oun(a,,a’l)

da; &3

!
ank’t = af;t ! + Kn

and

t _ 1,t 2,
- [a77,7 ay” -

n n'l

a “ay = a;’zl’ta;’zz’t T a‘;y,K’t:| H H27 (34)
Ay,

where k,, is the stepsize and [V]|J|4'|T|L2 denotes the projection

of the vector v onto user n’s action set .4, with respect

to the Euclidean norm || - ||2. If &, is chosen to be suffi-

ciently small, gradient play approximates the continuous-time

gradient projection algorithm. For each nonnegative vector

Kk = |K1...kN], define

[mvlul(a) K:QVQUQ(a) KNVNUN(a)]T.

(35)
The definition of DSC given in [30] is that, for fixed x > 0,
if for every a’,a! € A, we have

(al _ aO)Tg(ao7 K) 4 (aO _ al)T

g(a, ’i) =

g(a, k) > 0. (36)
A sufficient condition for DSC provided by Rosen is that the
symmetric matrix G(a, x) + GT (a, ) be negative definite for
a € A, where G(a, k) is the Jacobian with respect to a of
g(a, k).
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2) McKenzie’s dominant diagonal conditions in ACSCG:
We notice that Jacobi matrix G(a, x) with a dominant diagonal
is sufficient to guarantee that G(a, ) + G” (a, x) is negative
definite. The general definition of matrices with dominant
diagonals are proposed by McKenzie in [31]. In particular,
a matrix A is said to have a dominant diagonal if there exist
numbers d,, > 0 such that

dnlann| > Y dlamnl.

m#n

(37)

By Theorem 2 in [31], it is immediate that A+ A7 is negative
definite. As a result, the DSC conditions hold and a pure NE
can be found using gradient play for sufficiently small x,,.

In ACSCG games, it is easy to verify equation (38) in which
the elements in T are defined as

—~mn afk (a_n)
T g = 2 27 39
[ ek 0k’ (39)
k
[Tmax] é ma'XaEA,k’ Z?:l ‘%@Z") , if m 7é n
0, otherwise.
(40)

3) Facchinei’s variational approach: In [13] and the ref-
erences therein, the uniqueness and convergence of NE are
proved based on the variational inequality approach. How-
ever, the conditions in [13] (e.g. strong monotonicity or P-
property) are very generally difficult to check and have no
straightforward interpretation for communication networks.
The conditions required for convergence in our manuscript
are easy to check and have a clear communication meaning
(e.g. measure of the strength of the mutual coupling between
users).

D. Connections to Linearly Coupled Communication Games

We investigated in [27] the convergence properties in certain
communication scenarios, namely linearly coupled communi-
cation games (LCCG), in which each user has a convex action
set A, C Ry and the utility functions take the form

N
— Z T Gm)-

m=1

up(a) = 41)
It has been used to model the flow control of various classes
of traffic in communication networks [34]. In best response
dynamics, at stage ¢, user n chooses its action according to

ﬂn(ﬂ’ - ZmGN\{n} Tmafﬁl)

7-77,(1 + ﬁn)

We can see that, LCCG is similar to ACSCG in the sense
that the best response iterations at stage ¢ in (14) and (42)
both contain the linear combinations of a‘~!. However, since
A, € R in LCCG, we can explicitly derive the Jacobian
matrix for best response dynamics and determine the exactly
locations of all its eigenvalues. Consequently, we are able to
develop the necessary and sufficient condition that ensures the
spectral radius of the Jacobian matrix to be less than 1 and best
response dynamics globally converges. However, in ACSCG,
due to the sum-constraint, there exists a non-linear operation
[z]¢ in equation (14). This complicates the analysis of the

B,(a'™!) =

(42)
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Jacobian matrix’s eigenvalues. Therefore, we usually choose
various appropriate matrix norms to bound the spectral radius
of the Jacobian matrix and ensure the best response iteration
converge under these matrix norms. This approach generally
results in various sufficient, but not necessary, conditions.

IV. SOLUTIONS WITH MESSAGE PASSING

In this section, our objective is to coordinate the users’
actions in ACSCG to maximize the overall performance of the
system, measured in terms of their total utilities. Specifically,
the optimization problem we want to solve is

(43)

We will study two distributed algorithms in which the partici-
pating users exchange price signals that indicate the “cost” or
“benefit” that its action causes to the other users. Allocating
network resources via pricing has been well-investigated for
convex NUM problems [14], where the original NUM problem
can be decomposed into distributively solvable subproblems
by setting price for each constraint resources, and each sub-
problem has to decide the amount of resources to be used de-
pending on the charged price. However, unlike in conventional
NUM, pricing mechanisms may not be immediately applicable
in ACSCQG if utility functions are non-concave. Therefore, we
are interested in characterizing the convergence condition of
different pricing algorithms in ACSCG.

We know that for any local maximum a* of problem (43),

there exist unique Lagrange multipliers \,,, 7}, -, v and
vt -, v/N such that the following Karush-Kuhn-Tucker

(KKT) conditions hold for all n € N:

Oun(a®) Oum(a*) PR
W+ZW2/\71+Vn—Vn,Vn (44)
m#n
K
An(za,’z* - Mn) —0, A\, >0 (45)
k=1
Vﬁ(&ﬁ* - agl’a;;x) Oa V;Zc(agl,l]? - a:,*) 07 Vﬁ,vl/Lk > 0.
(46)

Denote ¥ user m’s marginal fluctuation in utility per unit
decrease in user n’s action a within the kth dimension

~ Oun(a)
dak

which can be viewed as the cost charged (or compensation
paid) to user m for changing user m’s utility. Using (47),
equation (44) can be rewritten as

Oun,(a

k k k
ﬂ—mn(anm 7m) -

(47)

aak D DR o L D W Ve VN L)
m#n
If we assume fixed prices {n%,,} and action profile a* , con-

dition (48) gives the necessary and sufficient KKT condition
of the following problem:

n( 49
Jhax u (49)

53 )

m#n
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b0 0
. th% 0
GT(a, k) = Oz
0o Eo

At an optimum, a user behaves as if it maximize the differ-
ences between its utility minus its payment to the other users
in the network due to its impact over the other users’ utilities.
Different distributed pricing mechanisms can be developed
based on the individual objective function in (49) and the
convergence conditions may also vary based on the specific
action update equation. As we mentioned earlier, since the
optimization problem in (43) is not necessarily convex, the
pricing algorithms developed for convex NUM, e.g. gradient
and subgradient algorithms, can not be directly applied. In
the next two subsections, we will make use of two distributed
pricing mechanisms and provide the sufficient conditions that
guarantee their convergence to feasible operating points that
satisfy the KKT conditions. For ease of presentation, similarly
as in Section ITI-A, we temporarily assume f*(a_,,) takes the
form in (11).

A. Gradient Play

The first distributed pricing algorithm that we consider is
the gradient play algorithm. As opposed to equations (33) and
(34), the update iterations of gradient play need to be prop-
erly redefined in presence of real-time information exchange.
Specifically, at stage ¢, users adopting this algorithm exchange
price signals {7%¥=11 using the gradient information at stage
t — 1. Within each iteration, each user first determines the
gradient of the objective in (49) based on the price vectors
{mk:t=11 and its own utihty function u, (a,,a""). Then each
user updates its action a!, using gradient projection algorithm

according to

Tkt ket—1 uy,(an, a Et—1
ap,’ = a, + K(T E Tmn - (50
m#n
and
t = 1t 2t K7t] [t 2 Kt 1112 51)
an = @y Ay ap = |Gy Ay ap .
n

in which the stepsize £ > 0. The following theorem provides
a sufficient condition under which gradient play algorithm will
converge monotonically provided that we choose small enough
positive constant k.

Theorem 7: If ¥n, k,x,y € A_,,

21k
inf a hn(x)

nf “=2 2 > —o0, and || g} (x) = Vg (v)|| < L'[x—v]]:

(C7)
gradient play converges for a small enough stepsize &.
Proof: 1t can be proved by showing the gradient of the
objective function in (43) is Lipschitz continuous and applying
Proposition 3.4 in [26]. See Appendix E for details. B
Remark 7: (Application of condition (C7)) A sufficient con-
dition that guarantees the convergence of distributed gradient

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 12, DECEMBER 2012

1431][( /QQT12 /QNTlN
2N

HQIK /QNT (38)
/ilTNl IQQTNQ HNIK

projection algorithm is the Lipschitz continuity of the gradient
of the objective function in (43). For example, in the power
control problem in multi-channel networks [22], we have
hy(x) = logy(ay + Hp,x) and gi(P_,) = logy(oy; +
> mzn HYn Pry)- For this configuration, we can immediately
verify that condition (C7) is satisfied. Therefore, this gradient
play algorithm can be applied. Moreover, as in [22], if we
can further ensure that the problem in (43) is convex for
some particular utility functions, the gradient play algorithm
converges to the unique optimal solution of (43) at which

achieving KKT conditions implies global optimality.

B. Jacobi Update

We consider another alternative strategy update mechanism
called Jacobi update [28]. In Jacobi update, every user adjusts
its action gradually towards the best response strategy. Specifi-
cally, the maximizer of problem (49) takes the following form

ox =
(52)
in which \,, yn, and V are the Lagrange multipliers that
satisfy complementary slackness in (45) and (46), and 7%, is
defined in (47). In Jacobi update, at stage ¢, user n chooses
its action according to
ak,t _ afl,t—l + H[B’k(at—l) _

n n —n

B;k(a,n) = [ ]_I(An—&—uﬁ—u,/f-i- Z wfnn) —

m#n

akt=1], (53)

in which the stepsize x > 0. The following theorem establishes
a sufficient convergence condition for Jacobi update.

Theorem 8: If Vn,k,x,y € A_,, (C8) is satisfied, then
Jacobi update converges if the stepsize « is sufficiently small.

Proof: It can be proved using the descent lemma and
mean value theorem. The details of the proof are provided
in Appendix F. B

Remark 8: (Relation between condition (C8) and the result
in [23]) Shi et al. consider the power allocation for multi-
carrier wireless networks with non-separable utilities. Specif-
ically, u,(-) takes the form

k k
- S (1 et ) o0

in which 7;(-) is an increasing and strictly concave function.
Since the utilities are non-separable, the distributed pricing
algorithm proposed in [23], which in fact belongs to Jacobi
update, requires only one user to update its action profile at
each stage while keeping the remaining users’ action fixed.
The condition in (C8) gives the convergence condition of the
same algorithm in ACSCG. We prove in Theorem 7 that, if the
utilities are separable, convergence can still be achieved even
if these users update their actions at the same time. Therefore,
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Fig. 2. Actions versus iterations in Example 1.

we do not need an arbitrator to select the only one user that
updates its action at each stage.

Remark 9: (Complexity of signaling) The complexity of
message exchange measured in terms of the number of price
signals to update in (47) is generally of the order of O(K N?).
It is worth mentioning that the amount of signaling can be
further reduced to O(K N ) in the scenarios where g¥(-) are
functions of ) £n Fk ak  Tn thlS case, each user only need
to announce one price signal 7% for each dimension of its
action space:

Oun,(a )

T (ak ak ) = — (55)

Consequently, 7k can be determined based on 7k ==
Fk 7k which greatly reduces the overhead of signaling

requirement. It is straightforward to check that only O(K N)
messages need to be generated and exchanged per iteration in
both examples (5) and (6).

Remark 10: (Extension to general cases) As a matter of
fact, conditions (C7) and (C8) apply to a broader class of
multi-user interaction scenarios, including the general model
defined in (4). Specifically, as addressed 1n Remark 7, the
Lipschitz continuity of the gradient of Z _, up(a) is suf-
ficient to guarantee that gradient play with small enough
stepsize achieves an operating point at which KKT conditions
are satisfied. In addition, we can use the same technique in
Appendlx F to show the convergence of Jacobi play given that
sup,, h h (x) < 0, ¥n, k, and the gradient of En L Un(a) is
L1psch1tz contlnuous

V. NUMERICAL EXAMPLES

In Section II-C, we present several illustrative examples
of ACSCG. This section uses Examples 1 and 3 to illustrate
various distributed algorithms addressed in the paper.

<0, and van x) — vgﬁ(y)HSL’llx—yH,
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(C8)

We start with Example 1 to verify the proposed convergence
conditions of best response dynamics. Even though it is
a simple two-user game with A, C 7R?2, existing results
in the literature cannot immediately determine whether or
not the best response dynamics in this simple game can
globally converge to a NE. Specifically, in Example 1, we
have equation (56). Note that in this example, h%(-) belongs
to the class of function defined in (20) with 8 = —0.5
and F* = 1, Vn, k. According the definition of (27) and
(28), we have F [s "1, is given in
(57). Similarly, we can obtain [S""*]y; = Mg Therefore,
p(8™) = 11\/ . Hence, by condition (C6), we know
if MMy < 121, the best response dynamics is guaranteed
to converge to a unique NE in Example 1. We numerically
simulate a scenario with parameters M; = 0.6 and My = 1.1.
Note that M;Ms = 0.66 < %. We generate multiple
initial action profiles of aj and aj, iterate the best response
dynamics, and obtain the action sequences a! and al. Fig. 2
shows the trajectories of a%’t and a%’t for different realizations.
We can see that, the best response dynamics converges to a
unique NE. An interesting phenomenon that can be observed
from the analysis above is that, the convergence condition
may depend on the maximum constraints M; and Ms. This
differs from the observation in [21] that the presence of
the transmit power and spectral mask constraints does not
affect the convergence capability of the iterative water-filling
algorithm. This is because when functions k(a, ) are affine,
e.g. in Example 2, 3, and 4, the elements in T and 8™
are independent of the values of M; and Ms. Therefore, (C1)-
(C6) are independent of M,, for affine f*(a_,,). However, for
non-linear f¥(a_,,), the values of M; and My specify the
range of users’ feasible action sets .A; and Ay. It will vary
T and S™ accordingly. In other words, in presence of
non-linear coupled f¥(a_,), convergence may depend on the
players’” maximum sum constraints.

Now we consider Example 3, which is the problem of min-
imizing queueing delays in a Jackson network. In particular,
we consider a network with N = 5 nodes and K = 3 traffic
classes. The total routing probability 1 — 7 , that node m will
route packets of class k completing service to other nodes is
the same for Vm € N. We varied the total routing probability

1—rk, and generated multiple sets of network parameters
in which rmn are uniformly distributed for n = 1,2,--- | N,

pk are uniformly selected in [4,5] for ¥n, k, and ™" are

uniformly chosen in [0.6,1] forn =1,2,--- | N.
First of all, we compare the range of validity of the

proposed convergence conditions. As we mentioned before,
[1-R")~

Nnm

we have FF == in this example. Note that

[(A-RF) =1
(I-R") ' =14+3 (R ’)“ )% and R” is a non-negative matrix.
Therefore, we can conclude FX > 0,¥m # n, k. Moreover,
since h¥(r) = —ﬁ, we choose to compare conditions

(C2) and (C3). In Flg 3 we plot the probability that conditions
(C2) and (C3) are satisfied versus the total routing probability
1 — rk,. From Fig. 3, we can see that the probability of
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Ofp(a_n) _ al;n dfi(a—n) _ _2a2—n dfn(a_n) _ _2a1—n dfn(a_) _ 2 (56)
dal, 27 0da*, 9 ' da-, 5 7 da%, -
K
—max _ an a_n 8f2k(a_n) _ a% 201% 2a% 2 _ 11
5™ he = max{maXZ} mi@ \Tg = e { max 5 S max S5+ ot = S (57

= (C2)
= (C8)
0.9+ g
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Fig. 3. Probability of (C2) and (C3) versus 1 — rijO for Vm, k, N = 5,
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Fig. 4. Delays of nodes versus iterations.

guaranteeing convergence decreases as the routing probability
1 — 7k increases and condition (C3) shows a similar but
slightly broader validity than (C2). Fig. 4 shows three nodes’
delay trajectories using both sequential and parallel updates
in a certain network realization in which (C2) and (C3) are
satisfied. We can see that, the parallel update converges faster
than the sequential update.

In Fig. 3, we also note that the probability that (C2) or (C3)
is satisfied transits very quickly from the almost certain con-
vergence to the non-convergence guarantee as 1 — ¥  varies

3.73
= Nash equilibrium
= Gradient play

372 = = Jacobi update

3.71

===

3.7

Total delay

3.68

3.67

T =L == == =====
-

3.66

,

3.65

3.64 I I I I |
0

iteration

Fig. 5. Tllustration of convergence for gradient play and Jacobi update.

from 0.5 to 0.58. Similar observations have been drawn in the
multi-channel power control problem [21], where § = —1
in (20) and the probability that condition (C3) is satisfied
exhibits a neat threshold behavior as the ratio between the
source-interferer distance and the source-destination distance
varies. In Jackson networks, this threshold can be roughly
estimated. Define [S*],,,, = F¥  for m # n and [S*],,, =0
for n € N. If we fix 1— rk ., for Vm k, we prove in Appendix
G that p(S*) < m - 1 for Vk. Therefore, p(S*) < 1

when 7%, > 0.5. We would like to estimate p(T™*) and
p(S™2%) based on p(S¥). Note that T™** defined in (18) is
the element-wise maximum over S* for & = 1,2,..., K. Since
T™2% and S* non-negative matrices, we know that p(T™%*) >
maxy p(Sk). In addition, recall the effect of maxy, n Cmn
discussed in Remark 5. We can approximate p(S™**) defined
in (22) using p(S™*) ~ max, », (mn Maxy p(Sk) Therefore
we expect that p(T™*) and p(S™**) exceeds 1 for r¥,, < 0.5,
which agrees with our observation from Fig. 3. The physical
interpretation is that, if the packets exit the network with
a probability less than 50% after completing its service,
i.e. more than half of the served packets will be routed to
other nodes, the strength of the mutual coupling among users
becomes too strong and the multi-user interaction in Jackson
networks will gradually lose its convergence guarantee.

In addition, we numerically compare two distributed algo-
rithms in which users pass coordination messages in real time,
including Jacobi update and gradient play. Fig. 5 shows the
delay evolution of both distributed solutions for a particular
simulated network in which we set x = 0.2. We initialize the

system parameters such that inf, j, % — SN _ ok gk >0
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and both conditions (C7) and (C8) are satisfied. We can see
that, in spite of the non-concave nature of problem (43), both
algorithms cause the total marginal delay to monotonically
decrease until it reaches an operating point at which KKT
conditions (44)-(46) are satisfied. Using the same stepsize k,
Jacobi play converges more quickly than gradient play in this
example. Similar observations are drawn in the other simulated
examples, which is because the update directions of these
two algorithms are different. Jacobi play algorithm moves
directly towards the optimal solution of (49), which is a local
approximation of the original optimization program in (43),
whereas gradient play algorithm simply updates the actions
along the gradient direction of (43).

VI. CONCLUSION

In this paper, we propose and investigate a game model
named additively coupled sum constrained games in which
each player is subjected to a sum constraint and its payoff
are additively impacted by the remaining users actions. The
convergence properties of various generic distributed adjust-
ment algorithms, including best response, gradient play, and
Jacobi update, have been addressed. The sufficient conditions
obtained in this paper generalize the existing results devel-
oped in the multi-channel power control problem and can be
extended to other applications that belong to ACSCG.

APPENDIX A
PROOF OF THEOREM 1

The following lemma is needed to prove Theorem 1.

Lemma 1: Consider any non-decreasing function p(x) and
non-increasing function g(x). If there exists a unique z*
such that p(z*) = ¢(z*), and the functions p(x) and ¢(z)
are strictly increasing and strictly decreasing at z = z*
respectively, then z* = arg min, {max{p(z), q(x)}}.

Proof of Lemma 1: See Lemma 1 in [20]. B

Denote af* as the action of user n in the kth dimen-
sion after iteration ¢. Recall that [h%]'(-) > 0, for Wn, k.

Therefore, f Lakt = M, is satisfied at the end of any
iteration ¢ for any user n. Define [x]" = max{z,0} and
[z]” = max{—=z, 0}. It is straightforward to see that
K K
Z[G’Z’t - aﬁ7t ]Jr = Z[G’Z’t - aqli7t ]ﬂVn,t,t'. (58)
k=1 k=1
We also define
K p—
i) 23 [hal, o) - al] (59)
k=1
and
K +
@) 2N [ -t 60
k=1

in which [*(.) is defined in (14). Since h%(.) is a con-
tinuous increasing and strictly concave function, it is clear
that {ah _1(~) is a continuous decreasing function. If
p" t()\”fC) # 0 (i.e. it has not converged), p™*(z) (¢™*(x),
respectlvely) is non-decreasing (non-increasing) in z, and
strictly increasing (strictly decreasing) at z = A:+!. From (58)
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it is always true that p™!(AEFL) = g™ t(ALL). We first prove
the convergence of the parallel update case in (17). For Vn, we
have equations and equalities (61)-(68). where (61) and (68)
follows from (58), (62) follows from the definition of p™? and
g™ in (59) and (60), (63) is due to Lemma 1 in which z = A\f,
(64) follows from the definition of p™* and ¢™?, the expression
of ak* in (17), and the fact that [[z]2 — [y]2]" < [z —¢]*
and [[z]% — [y]%] " < [z — y]™, (65) is due to the fact that
[z4y|T < [2]"+[y]" and [z+y]~ < [z]”+[y] 7, (67) follows
by using [37, zrye]™ < 3oy lwellysl = 2k el (el ™ +
lyr) ™) < maxy |xk| > ([yx] T + [yx] 7). For user n, we define

that ef, = |ak! —ak!=1| . Inequality (68) can be written as
eltl < Zm?ﬁn [T™*],,nel, in which T™* is defined in (18).

Since T™®* is a nonnegative matrix, by the Perron-
Frobenius Theorem [26], there exists a positive vector w =
[@7 ...wN] such that

[T e = (T), (69)
where |[|-||%

as

mat 18 the weighted maximum matrix norm defined

N
1 § : o NxN
1H%’a,X’N EZ jil[A]ij, AeR . (70)

1A%

0, mat —

Define the vectors e!™! £ [eft eft1  elHT

'Y N ] and
el = [el,eb,...,e]T. The set of inequalities in (68) can
be expressed in the vector form as 0 < e!*! < T™**¢!, By
choosing the vector w that satisfies |[T™*[|¥, . = p(T™*)

and applying the infinity norm || - ||%, we obtain the following
mall€’l%, (7D

Finally, based on (68) and (71), it follows that

le" % < 2 Tmee ||, < 2T

mips 0 e+ 2, < 2T 12
neN Wy,
el el
< 20T e ‘max = 2p(TH) -max % (72)
Therefore, if | T™|%, . = p(T™) < i, the best re-

sponse dynamlcs in (17) is a contraction with th“e modulus
[T %, o With respect to the norm max, ez 112" ” " We can
conclude that, the best response dynamlcs has a unlque fixed
point a* and, given any initial value a”, the update sequence
{at} converges to the fixed point a*.

In the sequential update case, the convergence result can be
established by using the proposition 1.4 in [26]. The key step
is to obtain

et+1 t+1 et.

mag 5 < 201 max { - ma 21} 079
A simple induction on n yields
t+1 et
hE T, <P e, 9

for all n. Therefore, inequality (68) also holds for the sequen-
tial update and the contraction iteration globally converges to
a unique equilibrium. W
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K K K
Z[af{“‘l — a1t = max { Z Rl _ ght] Z[af{“‘l - aﬁ’t]_} 61)
k=1 k=1 k=1
:max{pnt(/\tJrl) nt()\tJrl)} (62)
< m&X{p"’t(/\lt ):a™ (N} (63)
+ & -
< max { Z [ Z ]” — af,;tfl)] ,Z [ Z Fffm(af,;t — aﬁ;tfl)] } (64)
m#n k=1 m#n
K
< max { Z Z mn k ! ak K 1):| ’ Z |:F1{r€1n(a1l?r;t a‘fr;til)} } (65)
k=1m#n k=1 m#n
K N K
—max{ 3 3 [Fhalak —aki )] [Fhalalit ki )] | (66)
m#n k=1 m#n k=1
- o k T k k B
t_ ,t—1 R =1
K +
Z 2max| kol Z [ k.t aﬁ;tfl} , (68)
m#n k=1
APPENDIX B Therefore, if FX > 0,Ym # n,k or FF, < 0,Ym # n,k,

PROOF OF THEOREM 2

If F,’fm > 0,Vm # n, k, the inequalities after (66) become

K +
ax{ Z Z {Fffm(afﬁt — afi;t_l)} ,

m;én k=1

3D [Fha(al —akh)] 7s)
m#n k=1
< gnm]?xﬂfm - max {kZi [a,ﬁ;t af,;tfl} +7
K
Z{ akit 1} } (76)
k=1
K
= S max i, 3 [kt al ] (77
metn k=1
Similarly, for F¥ < 0,Ym # n, k, we have
akt — ghit= +
{ﬂ;ﬂ;{ t_ gkt 1)} ’
Z Z [ akit ﬁ;t—l)} 7} (78)

m#n k=1

K
< Z m}iix{—Ffjm} .rnax{ Z {af,;t _ afr.it_l}Jr,

m#n k=1

i{ ) 79
= 275 m]?x{— mn} Z[ kt 1]+ (80)

given (C2), the sequence {a’} contracts with the modulus
Ik +
p(T™*) < 1 under the norm maxne,\/% and the

convergence follows readily. B

APPENDIX C
PROOF OF THEOREM 3

Let ||-||¥ denote the weighted Euclidean norm with weights
w=[wr...wk]T, ie x| £ (3, wi|zi|?)1/? [25]. Define
the simplex (81) in which ), «7*** > 1. The following lemma
is needed to prove Theorem 3.

Lemma 2: The projection with respect to the weighted
Euclidean norm with weights w, of the K-dimensional real
vector —Xg = —[z0,1,- .., 70, k)7 onto the simplex S defined
in (81), denoted by [—x¢]%, is the optimal solution to the
following convex optimization problem:

0] £ argmin|[x — (—=xo)|; (82)
and takes the following form:
. A\ g
xk:[——xmk} Ck=1,... K (83)
wk ‘,EZ‘HI)

where A > 0 is chosen in order to satisfy the constraint
1 K *
7 Dokt T = L.

Proof of Lemma 2: See Corollary 2 in [21]. B

For h” (-) defined in (20), user n updates its action according
to (84) and \* is chosen to satisfy Eszl a;*f = M,,. Define
the vector update operator as [BR(a_,)]x = a* and the
coupling vector as

[C” (a—n é n Z mn m (85)
m#n
with k € {1,..., K}. We also define
S dlag( FL F2 .. F,{fn) (86)
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K
1
Se{xeRN: 2N m = Lap S <™, Vh =12, K}, (81)
K
k _ gk . L yi+d 1o ik
at =% (a_,, \*) = [(F_%) () i~ 2 Fhne n} - (84)
and ) ) K where (91) follows from the non-expansion property of the
I A [ X Y a_n}T. (87) Projector []%" in the norm || - |3 (See Proposition 3.2(c) in
SN - S & 8 [26]), (93) follows from the triangle inequality [25], and ™

Therefore, the coupling vector can be alternatively rewritten

as
C.la_,) =al, + Z F .an
m#n

Define a weight matrix W = [wy ...
[W]kn is chosen according to

(88)
w ] in which the element

(Fk )1+;

nn
Zk . ( Fk )1+§
By Lemma 2, we know that the vector update operator
BR, (a_,) in (21) can be interpreted as the projection of the

coupling vector —C,,(a_,,) onto user n’s action set .4, with
respect to || - |57, i.e.

(Wikn = [Wnlrx = (89)

BRn(a—n) = [_Cn (a—nﬂ Jw41 .

Given any a"), a(?) € A, we define respectively, for each user
n, the weighted Euclidean distances between these two vectors
and their projected vectors using (90) as en = Ha,(f) —a,(ll) H;v"
and epg, HBR,L (1)) BR,(a ||2 Again, we first
prove the convergence of the parallel update case in (17). We
have ¥n € N,

(90)

—l1_ MW\W¥n _ T )y ||
enw,, = | [~Ca@]y — [~Caa®)] |
<[len@®) — ca@)|™ O1)
2
m#n m#n 2
= [ Frn@? 2| ©2)
m#n 2
@) _ aan[™
S Z F (am _aTFIL) 9
m#n
m#n
S / Wole N2/ @k (K2
=y Z[Wm}k([an]kk ] ) (am —al ) (94)
m#n k=1 mlk
wale\ |5 :
< 5 mp(Fal 25| S 6~ )
m#n m k=1
935)
_ / . [Wnx (2) _ (D) [|Wm
_ Z [Smax]mnem7 (97)
m#n

in (97) is defined according to (22).

The rest of the proof is similar as the proof after equation
(68) in Appendix A. Details are omitted due to space limita-
tions. W

APPENDIX D
PROOF OF THEOREM 4

The beginning part of the proof is the same as the proof
of Theorem 1. For any user n with general f¥(-), the in-
equalities after (62) become (98 - 103) where (98) follows
from the definition of p™! and ¢"! and the expression of
abt and Bf(a_,,\) in (17) and (26), (99) follows from
the mean value theorem for vector-valued functions with
& = cal + (1 — a)a’~! and a € [0,1]. By (C4), it is
straightforward to show that the iteration is a contraction by
following the same arguments in Appendix A. The rest of the

proof is omitted. H

APPENDIX E
PROOF OF THEOREM 6

The gradient play algorithm in (49) is in fact a gradient
projection algorithm with constant stepsize x. In order to
establish its convergence, we first need to prove that the
gradient of the objective in (43) is Lipschitz continuous, with
a Lipschitz constant given by L > 0, i.e.

N N
n=1 n=1 (104)

It is known that it has the property of Lipschitz continuity if
it has a Hessian bounded in the Euclidean norm.

The Hessian matrix H of Zf:;l un(a) can be decomposed
into two matrices: H = H; + Hy, in which the elements of
matrix H; are defined in (105) with F¥ = 1 and the elements
of matrix Hy are

zz%mﬂ

n=1 k=

dak,da)

| < Lllx=yll, vx,y € A

Rl

:_ZZ 51@37:'

Recall that g¥(-) is Lipschitz continuous and it satisfies

| v 9h0 = vai )| < Llx =] v kxy € AL

Consequently, we have ||[Ha|ls < NKL'. As a result, we
can estimate the Lipschitz constant L using the inequalities
in (107). We can choose the RHS of (107) as the Lipschitz
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— a7t < max{p™(\,), ¢ (A)}

K K _
K K
o max{ ’,t _ aﬁ;,t—l)rr’
k=1 m#nk/'=
K K k _
XY géc,?, (€4, )(aky = b)) } (99)
k=1 m#nk'=1 m
K K a k , ,
< max { Z Z Z [36{’3 (€ )kt fnﬂg_l)r"
k=1m#n k'=1 m
K K k , , _
SN S [P ety - al )] } (100)
k=1m#n k'=1 m
K K a k , ,
SOt ob b ol TR
m#n k'=1k=1 m
K K a k , , _
> [om €k —al )] } aon
m#n k'=1k=1 m
K K
< {H}f}xZ ;g{’; (6,) } - { > [ah —al )"
m#n k=1 k'=1
K —
+ Z [(afn’t afr;7t71)] } (102)
k'=1
K k K
=2 2 {H;%XZ | gj; €, } 3 [kt el (103)
m#n k=1 m k'=1
82 N & hk k Fk k
L;l kgl n(an+m§n mnam)} B N 8322}15 (aﬁ_*_ Z Fylrcln m)Fk ‘FZI:N ifk=j (105)
- n=1 m#n
Oar,day T), otherwise.
0?hk
[H[2 < [[Hil[2 + [[Hall2 < V/[[Hul[1][Hi oo + NKL < supk‘ 5o ‘ max Z Z| ZFhl+ NKL. (107)

constant L . By Proposition 3.4 in [26], we know that if
0 < k < 2/L, the sequence a’ generated by the gradient
projection algorithm in (50) and (51) converges to a limiting
point at which the KKT conditions in (44)-(46) are satisfied.
]

APPENDIX F
PROOF OF THEOREM 7
We know from the proof of Theorem 6 that, under Condition
(CD, Zf:;l un(a) is Lipschitz continuous and the inequality

in (104) holds. Recall that Zﬁle un(x) is continuously dif-
ferentiable. Therefore, by the descent lemma [26], we have

vx,y € A N
)77 (D un(y))

Z Un (x

)2 > unly) +(x—

L 2
=5 =l
(108)

m=1n=1

Therefore, in order to prove S0 u,(at) > 32N w,(a?=1),
we only need to shothhat

(at Zun t— 1 2

n=1

~

3 lla" =a =t} (109)

for sufficiently small . Substituting (53) into (109), we can
see that it is equivalent to

N K N _
oo 03, un(at!
S5 (BHalh) — akt) ) _1k7t_(1 )
n=1k=1 8a”
;N K
zreg 3 Y (BH@E) —a )L @10
n=1k=1

By equation (52), we have
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ey ot—1 k-1 OhEq-1 kyt— D
B, (aZ,) —a, :[E} ()\ +yn—un+Z7T

m#n

2 : k,t—1 k,t—1
- anam an’

m#n

(111)

and

827]:’:1 Un (at_l) o

k,t—1 n
8@,”’ 8I

Ohk ki

N
1 ko kit— 1
- + E Frnam
m#n #n

(112)
By the mean value theorem, there exists 5,’2 € R such that

a k k,t— k k,t— 1
- a/nY + } anam
'm;én

k,t—1
Tmn
m#n
8h k,t— k,t— 1
an7 + E an A

m#n
— ()\n—i—z/n 1/” + Z 71']” 1) + ()\n—&—l/ﬁ—u,/f)
m#n
21k N
S {+ S ok
m#n

_ [%]_I(An—s—yn yn +T§Lﬂ'kt 1)}+)\n+ljﬁ—l/;k.

Multiplying (111) and (112) leads to

1 un( t— l)

a?]itl

N K o921k kq_
=—§2§2%Q%¢>{[2;]10n+4—1¢
Z ktl}g

m#n
afjf*l) (A + ,/5 _ V’k)

n

N K
S S (Bra) — okt O

(113)

In the following, we differentiate two cases in which the
Lagrange multipliers \,,, yn, ynk take different values.

First of all, if \, = v} = y = 0 for all k,n, equation
(113) can be simplified as
N K
g 82 up(at™1)
k(at—1 k,t—1 —1 Un
>SS (mial ) i) O
n=1k=1 an
N K 921k ko1 ,
=33 e [Ge] et
0%x oz
n=1k=1
2
+ 30 i) —ak -3 b 1}- (114)

On the other hand, if A, > 0, ¥ > 0, or v.* > 0 for some
k,n. Due to complementary slackness in (45) and (46), We

E:ktl
TT. .

3795
know that
/\,L>O:>ZB Mn>z:a’“lt 1
k=1
V >OjB (t 1)_amax>akt 17
k>0, :>B ( al” 1)—amm<akt 1
As a result, the last term in (113) satisfy
N K
(Br@D)) —ab'™h) -+ vk = v,f)
n=1k=1
N K
:Z)\nZ(B;Lk(at_fnl) k.t 1)
n=1 k=1
N K
£30 S AR -t
n=1k=1
N K
+ 3wk (et - BE@h) > 0 (115)
n=1k=1

Therefore, in both cases, the following inequality holds

Y& O un(al™t)

2D (BraS) - ey ™) ==
N K 21k k- ,
2= ) 25;5"”) ' { [Fe] (vt

2
+ kit 1) Z okt 1}
N K
0?hk (z) et 12
=22 s (BI@5) —ay ) 16

Finally, we can conclude that the inequality in (110) holds for

Kk < 2. (—max,sup, 2 "( 9hu(2)y Recall that Jacobi update
requires € (0,1]. The step51ze K can be eventually chosen

LHONSIY |

as 0 < k < min{2 - (— max;, sup, 2

APPENDIX G
UPPER BOUND OF p(S")

Denote 17 = [1 1--- l]T. If we fix 1 — 7k for Vm, k, we
have 1"RF = (1 — rk,)17. Note that Y* = (I - R¥)~! =
I+3°° (RF)". We have 177k = lT(I+Zl L(REY) =174
(1—rk )1k and 177 = L 01 . Therefore, |Y*|; =

1
——. Since F¥, = [[ik]]"’" and TF = 1+3°° | (R¥)?, we know

[?2]% > 1 for Vn. Denote a diagonal matrix diag(Y*) with
the entries of T* on the diagonal. Recall that [S¥],,,, = F¥
for m # n, and [S*],,,, = 0 for n € N/. We can conclude that
p(8*) < I8[oc < [(TF)T — diag(TH)]oo < [(TH)T|oc —1 =
T, — 1= —1.

TnO
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