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Conjectural Equilibrium in Water-filling Games 
Yi Su* and Mihaela van der Schaar 

ABSTRACT 

This paper considers a non-cooperative game in which competing users sharing a frequency-selective 

interference channel selfishly optimize their power allocation in order to improve their achievable rates. 

Previously, it was shown that a user having the knowledge of its opponents’ channel state information can 

make foresighted decisions and substantially improve its performance compared with the case in which it 

deploys the conventional iterative water-filling algorithm, which does not exploit such knowledge. This 

paper discusses how a foresighted user can acquire this knowledge by modeling its experienced interference 

as a function of its own power allocation. To characterize the outcome of the multi-user interaction, the 

conjectural equilibrium is introduced, and the existence of this equilibrium for the investigated water-filling 

game is proved. Interestingly, both the Nash equilibrium and the Stackelberg equilibrium are shown to be 

special cases of the generalization of conjectural equilibrium. We develop practical algorithms to form 

accurate beliefs and search desirable power allocation strategies. Numerical simulations indicate that a 

foresighted user without any a priori knowledge of its competitors’ private information can effectively learn 

the required information, and induce the entire system to an operating point that improves both its own 

achievable rate as well as the rates of the other participants in the water-filling game.  

Index Terms— interference channel, power control, non-cooperative game, conjectural equilibrium 

I. INTRODUCTION 

Multi-user communication systems represent competitive environments, where devices built according 

to different standards and architectures compete for the limited available resources. These devices can differ 
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greatly in terms of their channel conditions, user-defined utilities, action strategies, ability to sense the 

environment and gather information about competing users, and reason about the available information. 

Spectrum sharing among multiple competing devices in the interference-limited communication systems 

provides such a typical scenario. In particular, the performance of each device depends on not only its own 

power allocation strategy, but also that of the other devices. Individual devices may differ in both their 

knowledge of the system-wide channel state information (which is for instance constrained by their 

spectrum sensing abilities and/or information exchange overheads) and their decision making mechanism 

for choosing their optimal power allocation (which is determined by the implemented protocol).  

This paper focuses on the multi-user interaction in frequency-selective Gaussian interference channels. 

To model the competitive interaction among users, the existing literature investigating this problem often 

adopts a game theoretic optimization perspective [1]-[12]. Throughout this paper, we focus on a simple yet 

practical approach that minimizes the complexity of transceivers by treating interference as additive noise. 

From a particular user’s perspective, it is well-known that, for fixed interference power, the optimal power 

allocation is the so-called water-filling solution. Therefore, the spectrum sharing problem can also be 

regarded as a water-filling game. Specifically, the participants in the water-filling game are modeled as 

players with individual goals and strategies. They compete or cooperate with each other until they can agree 

on an acceptable resource allocation outcome. Existing research can be categorized into two types, non- 

cooperative games and cooperative games.  

First, the formulation of the multi-user environment as a non-cooperative game has appeared in several 

recent works [1]-[8]. An iterative water-filling (IW) algorithm has been proposed to mitigate the mutual 

interference and optimize the performance without the need for a central controller [1]. At every decision 

stage, selfish users deploying this algorithm myopically maximize their achievable rates by water-filling 

across the entire frequency band until a Nash equilibrium (NE) is reached. Sufficient conditions under 

which the iterative water-filling algorithm converges to a unique NE are derived and the closed form 

solution to the water-filling problem is investigated for some special scenarios [2]-[5]. Alternatively, 
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self-enforcing protocols are studied in the repeated game setting, where efficient, fair, and incentive 

compatible spectrum sharing is shown to be possible by imposing punishment in the case of misbehavior 

and enforcing users to cooperate [6].  

On the other hand, because the IW algorithm may lead to Pareto-inefficient solutions [7], i.e. selfishness 

is detrimental in the interference channel, there also have been a number of related works studying spectrum 

sharing in the setting of cooperative games [9]-[12]. Several (near-) optimal algorithms were proposed to 

address the problem of maximization of a certain user’s achievable rate while satisfying the minimum rate 

requirements of the other competing users. These works assume that users agree to cooperatively maximize 

a common objective function and require explicit information exchanges among the users.  

In short, most of the existing research mainly concentrates on studying the existence and performance of 

NE in non-cooperative games and developing efficient algorithms to approach the Pareto boundary in 

cooperative games. Our focus in this paper is on the non-cooperative setting, which explicitly considers the 

self-interested and competitive nature of individual players. However, most of the existing works in the 

non-collaborative setting often neglect an important intrinsic dimension of the information-decentralized 

multi-user interaction. Prior non-cooperative approaches often assume homogeneous users with only the 

knowledge of their own private information and do not consider users’ ability to improve their performance 

by acquiring and exploring the information of the opponents. The best response strategy of a selfish user 

that knows its myopic opponents’ private information, including their channel state information and power 

constraints, was first investigated in [8] using the Stackelberg equilibrium (SE) formulation. It was shown 

in [8] that surprisingly, a foresighted user playing the SE can improve both its performance as well as the 

performance of all the other users. These results highlight the significance of information availability in 

water-filling games. However, one key question remains unsolved: how should a foresighted user acquire 

its desired information and adapt its response?  

As opposed to our previous approach, which assumes a foresighted user with perfect knowledge of its 

competitors’ private information [8], we discuss in this paper how the foresighted user without any such a 
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priori knowledge can accumulate this knowledge and improve its performance in water-filling games. We 

propose that the foresighted user can explicitly model its competitors’ response as a function of its power 

allocation by repeatedly interacting with the environment and observing the resulting interference. The 

concept of conjectural equilibrium (CE) is introduced to characterize the strategic behavior of a user that 

models the response of its myopic competing users, and the existence of this equilibrium in the water-filling 

game is proved. Some previously adopted solutions, including NE and SE, are shown to be special cases of 

the CE. Practical algorithms are developed to form accurate beliefs and search desirable power allocation 

strategy. It is shown that, a foresighted user without any a priori knowledge can effectively learn its desired 

information and guide the system to an operating point having comparable performance to the algorithm in 

[8], where perfect a priori knowledge is assumed. More importantly, as opposed to the two-user algorithm 

in [8], the proposed algorithm in this paper can be applied in general scenarios where more than two users 

exist. 

The basic notion of CE was first proposed by Hahn in the context of a market model [15]. A general 

multi-agent framework is proposed in [16] to study the existence of and the convergence to CE in market 

interactions. Specifically, a strategic user is assumed to model the market price as a linear function of its 

desired demand. It is observed that it may be better or worse off than without modeling, depending on its 

initial belief. However, we note that using the linear model is purely heuristic in [16]. In contrast, we apply 

CE in the water-filling game, because it provides a practical solution concept to approach the performance 

bound of SE. We show that deploying the linear model to form conjectures can suitably explore the problem 

structure of the water-filling game, and therefore, lead to a substantial performance improvement. 

The rest of the paper is organized as follows. Section II presents the non-cooperative game model, 

reviews the existing non-cooperative solutions, and introduces the concept of CE. The existence of this CE 

in the water-filling game is proved in Section III. Section IV develops practical algorithms to form beliefs 

and approach CE. Numerical simulations show that a foresighted user can achieve substantial performance 

improvement if it models its competitors in the water-filling game. Conclusions are drawn in Section V. 
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II. SYSTEM MODEL AND CONJECTURAL EQUILIBRIUM 

In this section, we describe the mathematical model of the frequency-selective interference channel and 

formulate the non-cooperative multi-user water-filling game. We summarize the existing non-cooperative 

game theoretic solutions and introduce the conjecture equilibrium in the water-filling game context. 

A. System Description and Existing Solutions 

 
Fig. 1. Gaussian interference channel model. 

Fig. 1 illustrates a frequency-selective Gaussian interference channel model. There are K  transmitters 

and K  receivers in the system. Each transmitter and receiver pair can be viewed as a player (or user). The 

transfer function of the channel from transmitter i  to receiver j  is denoted as ( )ijH f , where 0 sf F≤ ≤ . 

The noise power spectral density (PSD) that receiver k  experiences is denoted as ( )kN f . Denote player 

k ’s transmit PSD as ( )kP f . For user k , the transmit PSD is subject to its power constraint: 

( )
0

sF
kP f df ≤∫ max

kP .                                                                       (1) 

For a fixed ( )kP f , if treating interference as noise, user k  can achieve the following data rate: 

( )
( ) ( ) ( )0

ln 1sF k
k

k j jkj k

P f
R df

f P f fσ α
≠

⎛ ⎞⎟⎜ ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟+⎜ ⎟⎜⎝ ⎠
∫ ∑

.                                              (2) 

where ( )k fσ  and ( )jk fα  are defined as ( ) ( ) 2/k kkN f H f  and ( ) ( )
2 2/jk kkH f H f .  

To fully capture the performance tradeoff in the system, the concept of a rate region is defined as 

( ) ( ) ( )( ){ }1 1, , : , , (1) (2)K KR R P f P f satisfying and= ∃" "R . 
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The multi-user interaction in the interference channel can be modeled as a game. Let ( ), ,U=G K A  denote 

a game with { }1, ,K= "K  being the set of players, k k∈=× KA A  being the set of actions available to the 

users (in which kA  is the set of actions available to user k ), and k kU U∈=× K  being the users’ payoff 

functions (in which :kU →A R  is the user k ’s payoff function) [13]. In the water-filling game, the 

players’ payoffs are the respective achievable data rates and their strategies are to determine their transmit 

PSDs satisfying the constraint in (1).  

As mentioned already in the introduction, existing research mainly focuses on two types of games, i.e. 

cooperative games and non-cooperative games. Specifically, cooperative approaches aim to maximize the 

weighted sum of data rates 
1

K
k kk
Rω

=∑ . Because of the non-convexity in the rate expression as a function 

of power allocations, the computational complexity of optimal solutions (e.g., exhaustive search) in finding 

the rate region is prohibitively high. Existing works [9]-[11] aim to approach the Pareto boundary of this 

rate region and provide near-optimal performance. Moreover, it should be noted that cooperation among 

users is indispensable for the multi-user system to operate at the Pareto boundary. On the other hand, instead 

of solving the optimization problem globally, the IW algorithm models the users as myopic decision makers 

[1]. This means that they optimize their transmit PSD by water-filling and compete to increase their 

transmission rates with the sole objective of maximizing their own data rates in (2) regardless of the 

coupling among users. In other words, users are assumed to be myopic, i.e., they update actions 

shortsightedly without considering the long-term impacts of taking these actions. The outcome of this 

non-cooperative scenario is characterized by the concept of Nash equilibrium, which is defined to be any 

point * *
1( , , )Ka a"  satisfying 

* * *( , ) ( , ) ,k k k k k k k kU a a U a a for all a and k− −≥ ∈ ∈A K                                          (3) 

where * * * * *
1 1 1( , , , , , )k k k Ka a a a a− − += " "  [13]. The existence and the uniqueness of NE are proved under a wide 

range of realistic conditions and can be obtained by the IW algorithm [2]-[4].  

The recent approach in [8] demonstrates that the myopic behavior can be further improved because this 
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does not consider the coupling nature of players’ actions and payoffs. If a selfish user gets the private 

information about its competitors and knows how they react, the best response strategy is to play the SE 

strategy. To define SE, we first define the action *
ka  to be a best response (BR) to actions ka−  if  

*( , ) ( , ),k k k k k k k kU a a U a a a− −≥ ∀ ∈ A .                                                     (4) 

User k ’s best response to ka−  is denoted as ( )k kBR a− . Let ( )kNE a  be the Nash equilibrium strategy1 of 

the remaining players if player k  chooses to play ka , i.e. 

( ) , ( )k k i i iNE a a if a BR a for any i k− −= = ≠ .                                             (5) 

The strategy profile * *( , ( ))k ka NE a  is a Stackelberg equilibrium with user k  leading if and only if [14] 

* *( , ( )) ( , ( )),k k k k k k k kU a NE a U a NE a a≥ ∀ ∈ A .                                              (6) 

Specifically, to find the SE in the water-filling game, we need to solve the following bi-level programming 

problem [8], where user 1 is assumed to be the foresighted user: 

( )

( )
( ) ( ) ( )

( )

( )

( )
( )

( )
( ) ( ) ( )

1

1
0

1 12

10

1

0
1,

max ln 1

. . ,

0,

arg max ln 1 , 2, , .

s

s

s

k k

F

KP f
k kk

F

F k
k KP f

k ik ii i k

P f
df

f f P f

s t P f df

P f

P f
P f df k K

f f P f

σ α

σ α

=

′ ∈
= ≠

⎛ ⎞⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟+ ⎟⎜⎝ ⎠

≤

≥

⎛ ⎞⎟⎜ ′ ⎟⎜ ⎟⎜= + =⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜⎝ ⎠

∫ ∑
∫

∫ ∑

max
1

"

P

A

        (7) 

It should be pointed out that the foresighted user needs to know the private information ( ) ( ), ,k ikf fσ α max
kP  

of all its competitors in order to formulate the above optimization. The previous approach in [8] assumes 

that the foresighted user has the perfect knowledge of this private information. Importantly, it was shown in 

[8] that users’ performance is substantially improved compared with that of IW algorithm if the foresighted 

user plays the SE strategy, even though the remaining users behave myopically. However, how such a 

foresighted user should accumulate this required information remains unsolved. In the remaining part of 

this paper, we will show that the foresighted user can obtain the information and improve its performance 

1For the cases where the equilibrium solution ( )kNE a  is not unique for every ka , the Stackelberg equilibrium needs to be 

reformulated [14]. Note that in this paper, ( )kNE a  is always unique in the water-filling game. 
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by forming conjectures over the behavior of its competitors through the repeated interaction.  

Before introducing the conjectural equilibrium, we define the discretized version of the water-filling 

game. In practice, instead of optimizing over continuous frequency variables, the frequency band is often 

divided into a total number of N  small frequency bins [9]-[11], such that each frequency bin could be 

viewed as a flat fading channel and ( ) ( ),k jkf fσ α  can be approximated as a constant within each small 

frequency bin. Denote ( ) ( ), ,n n
k k jk jkf fσ σ α α= =  and ( ) n

k kP f P=  in 1
s s

n nF f F
N N
− < <  for any 

{ }1, , , ,n N j k∈ ∈" K . As a result, (2) and (7) can be reformulated correspondingly. 

B. Conjectural Equilibrium 

In game-theoretic analysis, conclusions about the reached equilibria are based on assumptions about 

what knowledge the players possess. For example, the standard NE solution assumes that every player 

knows its own payoff and believes that the other players’ actions will not change. Therefore, it chooses to 

myopically maximize its own payoff [13]. Another example is that, to play the SE strategy, the foresighted 

user needs to know the structure of the resulting ( )kNE a  for any k ka ∈ A  and believes that all the remaining 

players play the NE strategy. Summarizing, the players operating at equilibrium can be viewed as decision 

makers behaving optimally with respect to their beliefs about the policies of other players.   

To rigorously define CE, we need to include two new elements S  and s  and, based on this, reformulate 

the strategic game ( ), , , ,U s=G K A S  [16]. k k∈=× KS S  is the state space, where kS  is the part of the state 

relevant to the k th user. Specifically, the state in the water-filling game is defined as the interference that 

users experience. The utility function k kU U∈=× K  is a map from users’ state space to real numbers, 

:k k kU × →S A R . The state determination function k ks s∈=× K  maps joint action to state with each 

component :k ks →A S . Each user cannot directly observe the actions chosen by the others, and each user 

has some belief about the state that would result from performing its available actions. The belief function 

k ks s∈=×� �K is defined to be :ks�  k k→A S  such that ( )k ks a�  represents the state that the player k  believes 

that would result if it selects action ka . Notice that the beliefs are not expressed in terms of other player’s 
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actions and preferences, and the multi-user coupling in these beliefs is captured directly by individual users 

forming conjectures of the effects of their own actions. In non-cooperative scenarios, each user chooses the 

action k ka ∈ A  if it believes this action maximizes its utility. 

Definition 1 (Conjectural Equilibrium): In the game G  defined above, a configuration of belief 

functions 1( , , )Ks s∗ ∗� �"  and a joint action 1( , , )Ka a a∗ ∗ ∗= "  constitute a conjectural equilibrium, if for each 

k ∈ K , 

 ( ) 1( , , )k k k Ks a s a a∗ ∗ ∗ ∗=� "  and ( )( )arg max
kk

k k k k
a

a U s a∗ ∗
∈

= �
A

.                                (8) 

From the definition, we can see that, at CE, all users’ expectations based on their beliefs are realized and 

each user behaves optimally according to its expectation. In other words, users’ beliefs are consistent with 

the outcome of the play and they behave optimally with respect to their beliefs. CE considers the users’ 

beliefs rather than their perfect knowledge ( )kNE a  as in SE, which makes CE an appropriate solution 

concept when the perfect knowledge is not available. The key problem is how to configure the belief 

functions such that it leads to a CE having a satisfactory performance. Section III discusses this problem in 

water-filling games. 

III. CONJECTURAL EQUILIBRIUM IN WATER-FILLING GAMES 

In this section, we discuss how to configure a user’s belief about its experienced interference as a linear 

function of its transmitted power, and show that such CE exists and it is a relaxation of both NE and SE. We 

begin by stating several fundamental assumptions used throughout the investigation hereafter. 

Assumption 1: There is only one foresighted user modeling its competitors’ reaction as a function of its 

allocated power, and all the remaining users are myopic users that deploy the IW algorithm. Without loss of 

generality, we assume that this foresighted user is user 1. 

Assumption 2: Every user is able to perfectly measure its experienced equivalent noise PSD n
kσ  and 

interference PSD 
1,

K n n
ik ii i k
Pα= ≠∑  in all frequency channels. 
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Assumption 3: Users 2, ,K"  react to any small variation in their experienced interference by setting their 

power allocations according to the water-filling strategy.  

Assumption 4: In the lower-level problem formed by user 2, ,K"  in (7), there always exists a unique NE. 

For the sufficient conditions of the existence and uniqueness of NE, we refer readers to [2]-[4]. 

We formally define the concept of stationary interference. 

Definition 2 (Stationary Interference): The stationary interference that user 1 experiences in the n th 

channel is the accumulated interference 1 12
Kn n n

i ii
I Pα

=
=∑  when best-response users 2, ,K"  reach their 

NE in the lower-level problem in (7). Note that 1nI  is in fact a function of user 1’s power allocation 

1
1 1, , NP P⎡ ⎤= ⎢ ⎥⎣ ⎦"P1  in the water-filling game and it can also be denoted as ( )1

nI 1P .  

A. Linear Belief of Stationary Interference 

As discussed before, both the state space and belief functions need to be defined in order to investigate 

the existence of CE. In the market models for pure exchange economy [16], the action set of each consumer 

is its desired demand based on the market price. The market price is also impacted by the other consumers’ 

announced demand. Therefore, it is natural to define the state to be the market price in such scenarios. 

However, it should be pointed out that, for the problem considered in [16], modeling and updating the belief 

on the market price as a linear function of the excess demand is entirely heuristic. However, this is not the 

case in our setting, where forming linear conjectures is natural for the considered interference game. 

In the water-filling game, we define state kS  to be the stationary interference caused to user k , because 

besides its own power allocation, its utility only depends on the interference that its competitors cause to it. 

Notice that the action available to user k is to choose the transmitted power allocations subjected to its 

maximum power constraint. By the definition of belief function in Section II.B, we need to express the 

stationary interference as a function of the transmitted power. As we will see later, it is natural to deploy 

linear belief models due to the linearity of caused stationary interference in terms of the allocated power, 

and hence, forming such beliefs can lead to significant performance improvements because they capture the 
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inherent characteristics of the actual interference coupling.  

Define ,n n+ −P P1 1  as 1
1 1 1, , , ,n n NP P Pε+ ⎡ ⎤= +⎢ ⎥⎣ ⎦" "P1 , 1

1 1 1, , , ,n n NP P Pε− ⎡ ⎤= −⎢ ⎥⎣ ⎦" "P1  for arbitrarily small 

positive variation in power ε . Given user 1’s power allocation P1 , ( ) [ ]2 , ,
Tn n

n KNE P P= "P1  represents the 

power that user 2, ,K"  allocate in the n th channel at equilibrium. Vector { }:nij i jα= ≠αn  contains 

channel gains in the n th frequency bin. Indicator function ( )sign=y x  is a mapping of { } 11 0,1 KK −− →R , 

which is defined to be: 1iy = , if 0ix > , and 0iy = , otherwise. Based on these notations, the following 

proposition motivates us to develop linear belief functions of stationary interference. 

Proposition 1 (Linearity of Stationary Interference): If the number of frequency bins N  is sufficiently 

large, the first derivative of the stationary interference that user 1 experiences in then th channel with 

respect to its allocated power in the m th channel satisfies 

( )( )( ) { }

( )( )( ) ( )( )( )
1 1 1 1

1

1

1 1

1 1

1

1

, , 2, , 0 0;

, , , , ;

0,

n n n n

n
n n

n k kn

n n
n n

n nn n
P P P P

n

m

I
c sign NE if there does not exist k K satisfying P and

P

I I
c sign NE c sign NE otherwise

P P

I
if m n

P

λ

+ −

−

→ →

∂ = ∈ = =
∂

∂ ∂= =
∂ ∂

∂ = ≠
∂

+

"α

α α

n

n n

P

P P

1

1 1  

in which { }( )2, ,n
k k Kλ ∈ "  is the Lagrange multiplier of 0n

kP ≥  at the optimum of lower-level problem in 

(7). The function ( )sign ⋅  is the indicator of which polyhedron the piece-wise affine water-filling function [3] 

lies in. ( ),c αn y  represents a constant determined by αn  and the non-zero elements of y . 

Proof: See Appendix A.  

Proposition 1 indicates that, the first derivative with respect to a foresighted user’s allocated power in a 

certain channel is sufficient to capture how the stationary interference varies locally in that channel. We 

observe from equality (11) that ( ) ( ) ( )1 1
1 1
n n n n n n

nI NE P− −= ⋅ = + − +h P h I G h I G g1 ν . Therefore, user 

1 can define its belief function using the linear form2 1 1
n n n nI Pβ γ= −� , in which nγ  is the estimate of 

1

1

n

n
I
P

∂−
∂

 and nβ  is a constant representing the composite effect of user 2, ,K" ’s water-levels ν . This 

2Note that as long as the channel realization is random, for a fixed N , the probability that the left-sided and right-sided 
derivatives in proposition 1 are not equal is zero. We will assume that the first derivative exists hereafter. If it does not exist, similar 
results can be derived by treating the left-sided and right-sided first derivatives separately. 
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linear characterization of the stationary interference can greatly simplify the implicit functional expression 

( )1
nI 1P  given by the solution of lower-level problem (7), while maintaining an accurate model of ( )1

nI 1P  

around the feasible operating point 1P . 

B. Existence of Conjectural Equilibrium 

Under the same known sufficient conditions discussed in [3][4][8] for guaranteeing the existence of NE 

and SE, the existence of CE can be proved by showing that the first two types of equilibrium are special 

cases of CE. To this end, Table I compares the optimality conditions of the three types of equilibria in the 

water-filling game.  

 User 1 User 2, ,K"  

Nash 
Equilibrium { }

{ } 2
1

arg max log 1
n
k k

nN
n k
k n nP k kn

P
P

Iσ′ ∈ =

⎛ ⎞′ ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜ +⎝ ⎠∑
A

 

Stackelberg 
Equilibrium { }

{ } ( )1 1

1
1 2

1 11
arg max log 1

n

nN
n

n nP n

P
P

Iσ′ ∈ =

⎛ ⎞′ ⎟⎜ ⎟⎜= + ⎟⎜ ⎟⎜ ′ ⎟+⎜⎝ ⎠
∑

1A P
 { }

{ } 2
1

arg max log 1
n
k k

nN
n k
k n nP k kn

P
P

Iσ′ ∈ =

⎛ ⎞′ ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜ +⎝ ⎠∑
A

{ }
{ } 2

1
arg max log 1

n
k k

nN
n k
k n nP k kn

P
P

Iσ′ ∈ =

⎛ ⎞′ ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜ +⎝ ⎠∑ �A
 

Conjectural 
Equilibrium 

1 1 1 1 1 1
2

, ,
K

n n n n n n n n n
i i

i
I P I P I Iβ γ α

=
= − = =∑� �  

1,

K
n n n n
k k ik i

i i k
I I Pα

= ≠
= = ∑�  

 
Table I.  Comparison among NE, SE, and CE in water-filling games. 

As shown in Table I, the information requirement for playing various equilibria differs. At NE, each user 

includes its stationary interference n
kI  as a constant in the optimization’s, and its action is the best response 

to n
kI . To play SE, the foresighted user needs to know the functional expression of the stationary 

interference ( )1
nI ′1P  such that the bi-level program can be formed. Specifically, the required information 

includes both the system-wide channel state information nα , the noise PSD n
kσ , and the individual power 

constraint max
kP  for { }1, , ,n N k∀ ∈ ∈" K . In contrast, in the case of CE, the above information for playing 

SE is no longer required and the foresighted user behaves optimally with respect to its beliefs 1nI�  on how 

the stationary interference changes as a function of 1
nP .  
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Proposition 2 (NE & SE as CE): Both Nash equilibrium and Stackelberg equilibrium are special cases 

of conjectural equilibrium. 

Proof: In order to show that both NE and SE are special cases of CE, we only need to verify that at NE 

and SE, user 1’s action is optimal with respect to its belief and its belief agrees with its state. First, clearly, 

NE is a trivial CE with the parameters 1
2

, 0
K

n n n n
i i

i
Pβ α γ

=
= =∑  in user 1’s belief functions. Next, denote 

1 , , N
SE SEP P⎡ ⎤= ⎢ ⎥⎣ ⎦"PSE   the optimal solution of the discretized version of problem (7). To prove that SE is a CE, 

we need to find the corresponding nβ  and nγ  and show that SE also solves problem (13). Consider the 

belief function in Table I with the parameters 1
1 1

1

n
n n n

n
I

I P
P

β
=

⎛ ⎞∂ ⎟⎜ ⎟= − ⋅⎜ ⎟⎜ ⎟⎜ ∂⎝ ⎠P P1 SE

 and 1

1

n
n

n
I
P

γ
=

∂= −
∂ P P1 SE

. As 

discussed before, such parameters preserve all the local information of the objective of problem (7) around 

PSE  into problem (13). KKT conditions hold at PSE  since it solves problem (7). A sufficient condition 

which ensures SE to be a CE is that problem (13) belongs to convex optimization, because KKT conditions 

are necessary and sufficient for convex programming to attain its optimum. Appendix B provides a 

sufficient condition 1SC  under which problem (13) is convex, thereby proving that SE is a special CE 

given these conditions. ■ 

Proposition 2 indicates that the two isolating points, NE and SE, are both CE, if parameters { },nβ=β  

{ }nγ=γ  are properly chosen. Therefore, CE can be viewed as an operational approach to attain SE if the 

system-wide information required for solving SE is not available. It is because only the local information 

including stationary interference 1nI  and its first derivative 1

1

n

n
I
P

∂
∂

 is required to formulate problem (13), and 

this information can be obtained using measurements performed at the receiver.  

In addition, we are interested in the existence of other CEs besides these two points. Denote the 

parameters of any CE, e.g. NE or SE, as { },nβ∗=β∗  { }nγ∗=γ∗ , and  the optimal solution of problem (13) 

given parameters ,β γ  as ( ),P1 β γ . Let : N N NF × →R R R  be a mapping defined as ( ),F =β γ  
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( ){ },nF β γ  in which 

( ) ( )( ) ( ), , ,n n n n n
nF NE Pβ γ= ⋅ − −β γ β γ β γh P1 1 .                                          (9) 

The following proposition gives a sufficient condition which ensures that infinite CEs exist. 

Proposition 3 (Infinite Set of CE): Let G  be a water-filling game that satisfies condition 1SC . Suppose 

that all the users form conjectures according to Table I. If there exist open neighborhoods NA⊂ R  and 

NB ⊂ R  of β∗  and γ∗  respectively, such that ( ), : NF A→i γ R  is locally one-to-one for any B∈γ , then 

G  admits an infinite set of conjectural equilibria. 

Proof: See Appendix C.  

γ

β

1R

•

•

1
NER

1
SER•

•

 

Fig. 2. Structure of conjectural equilibria in water-filling games. 

In summary, proposition 1, 2, and 3 characterize the existence and structure of conjectural equilibrium in 

water-filling games. As shown in Fig. 2, NE and SE can be both special cases of CE. Open sets of CE that 

contain NE and SE may exist in the β - γ  plane and these sets may be connected. SE attains the maximal 

data rate that a foresighted user can achieve. If the foresighted user properly sets up its parameters ,β γ , the 

solution of CE in problem (13) coincides with the solution of SE in problem (7). More importantly, as 

opposed to the SE in which the knowledge of the system-wide private information is required, CE assumes 

that the foresighted user knows only its stationary interference and the first derivatives with respect to the 

allocated power, which greatly reduces the complexity of information acquisition. Therefore, in order to 
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approach the performance upper bound given by SE, this paper adopts the approach of CE. Section IV will 

develop practical conjecture forming and updating algorithms to select out of the infinite CEs a desirable 

power allocation scheme that provides comparable achievable rates with SE.  

IV. ACHIEVING DESIRABLE CONJECTURAL EQUILIBRIA 

Since proposition 3 shows that infinite CEs may exist and SE is the most desirable CE for a foresighted 

user, it should wisely choose the parameters ,n nβ γ  of belief functions in order to attain SE as a CE. 

Moreover, the declarative conclusions drawn in Section III provide no hint on the achievability of the CE. 

However, in practice, it is more important to construct algorithmic mechanisms to attain the desirable CE.  

To arrive at CE, a multi-agent learning approach is proposed for the repeated game setting [16]. Let ,k ts�  

and ,k ta  denote user k ’s belief and action at time t . In the framework, at time t , the users update their 

beliefs ,k ts�  and select their actions ,k ta  based on their past observations. A learning algorithm converges if 

( )1, ,lim , ,t K t
t

s s
→∞

� �"  and ( )1, ,lim , ,t K t
t

a a
→∞

"  is a CE. If we define learning as the players’ dynamic process of 

building beliefs by forming conjectures about the effects of their actions, CE captures the achieved outcome 

when consistency of conjectures within and across players emerges.  

Similarly, this section proposes that users can update their beliefs in the repeated interaction setting and 

numerically examines their performance. Before going into the technical details, it should be pointed out 

that the pursuit of the practical solution’s convergence to CE is not the principal goal of our investigation. 

Instead, computing power allocation strategies that require only local information and achieve comparable 

rates with SE (which requires global information) is the ultimate objective rather than the convergence. In 

other words, any power allocation strategy that lies outside the open CE set in Fig. 2 is favorable if it can 

improve the performance compared with NE. 

A. Conjecture-based Rate Maximization 

Table II summarizes the dynamic updates of all users’ states, belief functions, and optimal actions in the 
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water-filling game. Specifically, at iteration t , users’ states ,k tI  are determined by their opponents’ power 

allocation. User 1 updates the parameters ,n n
t tβ γ  in its belief functions based on its state 1,ntI  and allocated 

power 1,
n
tP , and it also updates its power allocation 1, 1t+P  based on current operating points 1,tP  and its 

belief 1,t�I . At the same time, myopic users 2, ,K"  set their belief equal to their experienced interference 

and update their power allocation based on the water-filling strategy. Note that Table II implicitly assumes 

that user 1 will update after user 2, ,K" ’s IW algorithms converge such that user 2, ,K" ’s power 

allocations ,k tP  at time t  can be regarded as an equilibrium state. The outcome of this dynamic play is a CE 

if ,lim k tt→∞
P  exists and , ,lim limk t k t

t t→∞ →∞
= �I I . As discussed in the proof of proposition 2, it is equivalent to 

check the convergence of user 1’s updates. We can see from Table II that user 1 needs to complete two 

updates at each iteration. The entire procedure in Table II that enables the foresighted user to build beliefs 

and improve its performance is named “Conjecture-based Rate Maximization”. Appropriate rules for 

updating beliefs are discussed as follows. 

 User 1 User 2, ,K"  

State ,k tI  , 1 ,1,
Kn n n

k t i i ti i k
I Pα= ≠=∑  

Belief function 
:k k ks →� A S  

( )1, 1,

1, 1,

, ,n n n n
t t t t

n n n n
t t t t

I P

I P

β γ

β γ

←

= −

1Update
�

 , , ,1,
Kn n n n

k t k t ik i ti i k
I I Pα

= ≠
= =∑�  

Action 1, ,, ,t K ta a"  ( )1, 1 1, 1,,t t t+ ← 2Update �P P I  , 2
,1

arg max log 1
k k

nN
k

k t n n
k k tn

P
Iσ′ ∈ =

⎛ ⎞′ ⎟⎜ ⎟⎜= + ⎟⎜ ⎟⎜ ⎟+⎜⎝ ⎠
∑ �P

P
A

 
Table II.  Dynamic updates of the play.  

Update1: ,n n
t tβ γ  

Note that, we have ( ) ( )1 1
1 1
n n n n nI P− −= + − +h I G h I G gν  from proposition 1, user 1’s belief function 

takes the form of 1 1
n n n nI Pβ γ= −� , and it satisfies 1 1

n nI I= �  at CE for any { }1, ,n N∈ " . As discussed in the 

previous section, by setting the parameters 1
1 1

1

n
n n n

n
I

I P
P

β ∂= − ⋅
∂

 and 1

1

n
n

n
I
P

γ ∂=−
∂

, we can preserve all the 

local information of the original SE problem (7) around current feasible operating point 1,tP . Therefore, we 
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can update n
tβ  and n

tγ  using 
,

1
1 1

1

n
n n n
t n

I
I P

P
β

=

⎛ ⎞∂ ⎟⎜ ⎟= − ⋅⎜ ⎟⎜ ⎟⎜ ∂⎝ ⎠
tP P1 1

and 
,

1

1

n
n
t n

I
P

γ
=

∂= −
∂

tP P1 1

. By assumption 3, user 1 

can approximate the parameters using 
{ }( ) { }( )1 1 1 11

1 2

n n n nn

n

I P I PI
P

ε ε
ε

− −+ ∪ − − ∪∂ ≈
∂

1 1
n nP P

  for small ε  in 

which { }1 1 1
1 1 1 1, , , , ,n n NP P P P− − +=1 " "nP . 

After 1Update  in each iteration, user 1 needs to solve problem (13). If proposition 2’s assumption is not 

satisfied, problem (13) belongs to the class of non-convex optimization, which is generally hard to solve 

and standard optimization algorithms can only be used to determine local maxima [17]. However, in this 

application, we are able to show that, as long as the number of frequency bins N  is sufficiently large, 

problem (13) satisfies the time-sharing condition [10], and its global optimum can be efficiently computed. 

Definition 3 (Time-sharing Condition [10]): Consider an optimization problem with the general form: 

( )

( )

1

1

max

. . ,

N

n n
n

N

n n
n

o

s t

=

=
≤

∑

∑ c P

x

x

                                                                    (10) 

where ( )n no x  are objective functions that are not necessarily concave, ( )n nc x  are constraint functions that 

are not necessarily convex. Power constraints are denoted by P . Let n
∗x  and n

∗y  be optimal solutions to the 

optimization problem (10) with = xP P  and = yP P , respectively. An optimization problem of the form (10) 

is said to satisfy the time-sharing condition if for any 0 1v≤ ≤ , there always exists a feasible solution nz , 

such that ( ) ( )
1

1
N

n n
n

v v
=

≤ + −∑ x yc P Pz , and ( ) ( ) ( ) ( )
1 1 1

1
N N N

n n n n n n
n n n
o v o v o∗ ∗

= = =
≤ + −∑ ∑ ∑z x y . 

The following proposition indicates that problem (13) satisfies the time-sharing condition. 

Proposition 4 (Satisfaction of Time-sharing Condition): As the total number of sub-carriers N  goes to 

infinity, problem (13) satisfies the time-sharing condition. 

Proof: Specifically, for the optimization problem (13), ( ) ( )1 , , 1n n n
n

n no f Pσ β γ=x , ( ) 1
n

n n P=c x , = max
1P P . 

First, consider the continuous case in which ( )k fσ  and ( )jk fα  are both continuous functions of f . Set the 
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initial value ( ) ( ),f f0 0β γ  to be piece-wise continuous.  By rule 1Update , ( )fβt  and ( )fγt  are piece-wise 

continuous, because Appendix C proves that ( ),P1 β γ  and ( ),F β γ  are continuous in ( ),β γ . We have the 

piece-wise continuity of ( ) ( ),f fβ γ . The rest of the proof is similar to the proof of theorem 2 in [10]. ■ 

Update2: 1, 1t+P  

It is shown in [10] that, if the optimization problem satisfies the time-sharing property, then it has a zero 

duality gap, which leads to efficient numerical algorithms that solve the non-convex problem in the dual 

domain. Consider the dual objective function ( ) ( ){ }1
1

, , 1 1
1
max n n n
n

N
n n

Pn
d f P Pσ β γ

=
= − +∑ max

1Pη η η . Since ( )d η  is 

convex, a bisection or gradient-type search over the Lagrangian dual variable η  is guaranteed to converge 

to the global optimum. Specifically, Algorithm 1 summarizes such a dual method that solves non-convex 

problem (13) using bisection update. As long as the time-sharing condition is satisfied, Algorithm 1 

converges to the global optimum. Hence, we can always solve problem (13) regardless of its convexity. 

Algorithm 1 :  A dual method that solves problem (13) using bisection update 
 

input:{ } { } { }1 , , ,n n n
t tσ β γ max

1P   

initialization : ( )min max 0 min max, , /2, 0i= + =η η η η η  

repeat  

set 1
1 1

NP P⎡ ⎤= ⎢ ⎥⎣ ⎦1 "P  where 
1 , ,1

1
1 2 1

1 1
arg max log 1

n
n n n

n
n n

in n n nP f t t

P
P P

Pσ β γ σ β γ′ ∈

⎛ ⎞′ ⎟⎜ ′⎟= + −⎜ ⎟⎜ ⎟⎜ ′+ −⎝ ⎠dom
η . 

if 1
n

n
P <∑ max

1P , max i=η η ; else min i=η η . 

( )1 min max /2, 1i i i+ ← + = +η η η . 

 until iη  converges 
 

Table III. A dual algorithm that solves problem (13).  

Table IV summarizes the procedure of algorithm “Conjecture-based Rate Maximization” (CRM). Next, 

we make several remarks about this algorithm. First, since we want to achieve better performance than NE, 

the initial operating point 1,0P  is set to be the power allocation strategy 1
NEP  that user 1 will choose if it 
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adopts the IW algorithm. Second, in 2Update , the global optimum c
1P  is not directly used to update 1, 1

n
tP + . 

As shown in Fig. 3, this is because problem (13) is only a local approximation at ,t1P  of the original SE 

problem (7) that we want to solve. Using c
1P  to update 1, 1t+P  may decrease the actual achievable rate 1R , if 

a mismatch between problem (7) and (13) exists for the solution c
1P . Therefore, 2Update  adopts line search 

to guarantee that the achievable rate is increased at each iteration. Third, as opposed to the two-user 

algorithm proposed in [8], CRM is designed for the general multi-user scenario regardless of the number of 

users. Last, CRM is not guaranteed to converge. It may stop with 0v =  and ,
c

t ≠1 1P P  in 2Update , i.e. the 

maximizer of 1R  in the interval between ,t1P  and c
1P  in Fig. 3 is ,t1P . However, it can be easily verified 

that, if ,
c

t =1 1P P , CRM converges and the resulting outcome is a CE. 

Conjecture-based Rate Maximization 

initialization : 1,0 10, NEt = =P P  

repeat  

I.  ( )1, 1,, ,n n n n
t t t tI Pβ γ ← 1Update . 

II. ( )1, 1 1, 1,,t t t+ ← 2Update �P P I , which includes: 

1) Consider problem ( )
1 11

1 1 1, , , , 1
max , . . .n n n n n n

Nn n n
n n
f P s t P f and Pσ β γ σ β γ′∈ =

∈ ≤∑ ∑ max
1PF

dom  

2) Use Algorithm 1 to calculate the global optimum c
1P  of the above problem. 

3) Search in the interval of ( ) ( ), 1 0 1c
tv v v+ − ≤ ≤1 1P P  and find in the interval the power 

    allocation s
1P  that maximizes user 1’s actual achievable rate 1R . 

4) , 1
s

t+ ←1 1P P , 1t t= + . 

until no improvement can be made. 
 

Table IV.  Conjecture-based rate maximization.  
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1
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Fig. 3. Mismatch between problem (7) and (13). 

B. Illustrative Numerical Examples 

This sub-section compares the performance of CRM with the IW algorithm and a two-user suboptimal 

algorithm (TSA) that searches SE assuming perfect knowledge of its opponent’s private information [8]. 

We simulate a system with 200 sub-carriers over the 10-MHz band. We consider frequency-selective 

channels using a four-ray Rayleigh model with the exponential power profile and 100 ns root mean square 

delay spread. The power of each ray is decreasing exponentially according to its delay. 

We first simulate the two-user scenario with 200= =1 2P P  and ( ) ( )1 2 0.01f fσ σ= = . The total power 

of all rays of ( )11H f  and ( )22H f  is normalized as one, and that of ( )12H f  and ( )21H f  is normalized as 

0.5 . Fig. 4 shows an example of user 1’s power allocations when deploying different algorithms under the 

same conditions. In IW algorithm, user 1 water-fills the whole frequency band by regarding its competitor’s 

interference as background noise. In contrast, user 1 will not water-fill if choosing CRM and TSA. It avoids 

the myopic behavior and improves its performance by explicitly considering the stationary interference 

caused by its opponent.  

To evaluate the performance, we tested 510  sets of frequency-selective fading channels where the Nash 

equilibrium exists. Denote user i ’s achievable rate using CRM, IW and TSA as iR , NE
iR , and SE

iR′  

respectively. Fig. 5 shows the simulated cumulative probability of the ratio of iR  over NE
iR  and SE

iR′ . The 

curve indicates that there is a probability of 59% that CRM returns the same power allocation strategy as IW. 

On the other hand, the average improvement for user 1 of CRM over IW is 16.8%, which achieves almost 
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the same performance as TSA. As shown in Fig. 5, 1 1/ SER R ′  is distributed symmetrically with respect to 

1 1
SER R′= . CRM provides for user 2 an average improvement of 20.7% over IW, which is smaller than 

TSA. Similarly as in [8], only in very few cases, CRM will result in a rate 2R′  smaller than 2
NER  in the IW 

algorithm.  
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Fig. 4. User 1’s power allocation using different algorithms. 
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Fig. 5. Cdfs of / NE
i iR R  and / SE

i iR R′  ( )1,2i = . 
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The iteration time required by CRM is summarized in Table V. As mentioned above, CRM stops after 

just one iteration with a probability of 59% due to the problem mismatch shown in Fig. 3. In most scenarios, 

CRM terminates within 4 iterations and the average number of required iteration is only 1.84. To further 

improve the performance of CRM, we can modify the original CRM to handle the problem mismatch 

between (7) and (13). Notice that problem (13) is only a local approximation of problem (7) at ,t1P . 

Additional constraints can be added in Algorithm 1, such that the optimum of problem (13) is searched only 

in a certain region around ,t1P  rather than the whole domain of 
1 , ,
n n n
t t

fσ β γ . For example, 1 1,
n n

tP P′ −  can be 

restricted within a certain threshold when performing Algorithm 1 for any { }1, ,n N∈ " . We simulated the 

two-user scenarios with additional restriction of  1 1, 1n n
tP P′ − ≤ . Fig. 6 shows the simulated cumulative 

probability of / NE
i iR R  for this modified CRM. As opposed to CRM, the probability that the modified 

CRM returns the same power allocation strategy as IW is reduced to 36% and the average performance 

improvement is also increased for both users. Specifically, the average performance improvement for user 1 

is 24.4% and that of user 2 is 33.6%. However, Table V shows that the improvement is achieved at the cost 

of more iterations. 

Probability of required iterations  
1t = 2t = 3t = 4t = 5t ≥  

CRM 0.59 0.07 0.26 0.07 0.01 
Modified CRM 0.34 0.05 0.40 0.19 0.02 

 

Table V.  Iterations required by different CRM algorithms.  

We also tested performance of modified CRM in multi-user cases where TSA cannot be applied. We 

simulated the three-user scenarios with 200=kP  and ( ) 0.01k fσ = . The total power of all rays of ( )kkH f  is 

normalized as one, and that of ( ) ( )ijH f i j≠  is normalized as 0.33 . Fig. 7 shows the simulated cumulative 

probability of / NE
i iR R  . The average improvement for user 1 of modified CRM over IW is 26.3%, and that 

of the rest users is 9.7%. We can see that, it benefits most of the participants in the water-filling game if a 

foresighted user forms accurate conjectures and plays the conjecture equilibrium strategy. 
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Fig. 6. Cdfs of / NE
i iR R  ( )1,2i =  for modified CRM. 
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Fig. 7. Cdfs of / NE
i iR R  ( )1,2, 3i =  for modified CRM. 

V. CONCLUSION 

This paper introduces the concept of conjectural equilibrium in non-cooperative water-filling games and 

discusses how a foresighted user can model its experienced interference as a function of its own power 

allocation in order to improve its own data rate. The existence of conjectural equilibrium is proved and both 
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game theoretic solutions, including Nash equilibrium and Stackelberg equilibrium, are shown to be special 

cases of this conjectural equilibrium. Practical algorithms based on conjectural equilibrium are developed 

to determine desirable power allocation strategies. Numerical results verify that a foresighted user forming 

proper conjectures can improves both its own achievable rate as well as the rates of other participants, even 

if it has no a priori knowledge of its competitors’ private information.  

APPENDIX A 

Proof of Proposition 1 

By the definition of 1nI , we have 1
1

1 12

n nK
n i
im m

i

I P
P P

α
=

∂ ∂=
∂ ∂∑ . We differentiate two different cases:  

1) If there does not exist any { }2, ,k K∈ " satisfying 0n
kP =  and 0n

kλ = , i.e. there is none-zero gap 

between the interference that users 2, ,K"  experiences and their water-levels, it is straightforward to see 

that ( )( ) ( )( ) ( )( )n n
n n nsign NE sign NE sign NE −= =+P P P1 1 1 .  

Without loss of generality, we temporarily assume that 0n
kP >  for { }2, ,k K∈ " . When users 2, ,K"  

reach the equilibrium, we have from the optimality conditions of water-filling solution: 

( ) ( ) 1
n n

nNE P+ ⋅ + =I G P g1 ν , 

in which 

32 42 2
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313

24 34

, 1
1

2 3 1,

0

0

, ,

0

0

n n n
K n

n n n
K n

n n n

n
K K n KKn n n

K K K K

α α α
α ν

α α α
να

α α

α να
α α α

−

−

⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦⎢ ⎥
⎣ ⎦

"

"

% " #
##

# # #

"

G g ν , ( )2, ,i i Kν = "  are the water-levels 

of all the water-filling users. Note that the sufficient conditions of existence and uniqueness of NE generally 

require 1<G  [3], which leads to the fact that +I G  is invertible. Therefore, we have  

( ) ( ) ( )1 1
1

n n
nNE P− −= + − +P I G I G g1 ν .                                               (11) 
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We also have 
1

lim 0i
nN P

ν
→∞

∂ =
∂

, because if the width of each frequency bin /sF N  is sufficiently small, the 

fluctuation of the water-level is negligible. In other words, if N  is sufficiently large, we have 
1

0i
nP

ν∂ ≈
∂

. As 

a result, we have 

( ) ( ) 1
1

1 1

,

0,

n nnn
n

m m

if m nNEI
P P if m n

−⎧⎪− + =∂ ⋅∂ ⎪⎪= = ⎨⎪∂ ∂ ≠⎪⎪⎩

h I G gh P1 ,                                              (12) 

in which 21 31 1
n n n n

Kα α α⎡ ⎤= ⎢ ⎥⎣ ⎦"h . Note that if 0n
kP =  and 0n

kλ > , all the derivations above still apply by 

removing the k th column and k th row from ( ), , ,nnNEG P g1 ν  correspondingly. Hence, we can conclude 

1

1

n

n
I
P

∂
∂

 is a constant ( )( )( ), nc sign NEαn P1 that depends on both αn  and the non-zero elements of ( )nNE P1 . 

2) If there exists { }2, ,k K∈ " satisfying 0n
kP =  and 0n

kλ = , the stationary interference caused to user 

k  is the same as its water-level kν . Therefore, a sufficiently small increment or decrement ε  in user 1’s 

allocated power 1
nP  may cause ( )( )n

nsign NE +P1  and ( )( )n
nsign NE −P1  to be different, i.e. the stationary 

interference ( )nNE P1  lies on the boundary between two polyhedra that have different piece-wise affine 

water-filling functions [3]. We need to treat the left-sided and the right-sided first derivatives respectively, 

and similar conclusions can be derived in the same way as in the first part. ■ 

APPENDIX B 

Proof of Proposition 2 

To solve the CE, the optimization solving CE in Table I is essentially 

 { }1
1

2
1 11

1 1 11

max log 1

. . 0 , 0 .

n

nN

n n n nP n
Nn n n n n
n

P
P

s t P P and P

σ β γ

β γ
=

=

⎛ ⎞⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ + −⎝ ⎠

≥ − ≥ ≤

∑

∑ max
1P

 (13) 
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Define ( )
1 2, ,

1 2
ln 1a a b

xf x
a a bx

⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜ + −⎝ ⎠
 in which the term 1 0a ≥  represents the noise PSD. The second 

derivative of ( )
1 2, ,a a bf x  is ( )

( ) ( )( ) ( )

( ) ( )[ ]1 2

1 2 1 2
, , 22

1 2 1 2

2 1 2 1

1
a a b

a a a a b b b x
f x

a a bx a a b x

⎡ ⎤+ − + − + −⎣ ⎦′′ = −
+ − + − −

. Clearly, if 0b ≠ , 

( )
1 2, ,a a bf x′′  is not always negative. We restrict the domain of 

1 2, ,a a bf  to be 

{ } { }
1 2, , 20 0a a bf x a bx= ≥ ∩ − ≥dom , 

because x  is the transmitted power and 2a bx−  represents the stationary interference, both of which are 

non-negative. We derive a sufficient condition that guarantees ( )
1 2, ,a a bf x  is concave in 

1 2, ,a a bfdom : 

2
2

1
0 0.5 1 aa and b

a

⎛ ⎞⎟⎜ ⎟> < −⎜ ⎟⎜ ⎟⎜⎝ ⎠
.                                                            (14) 

This condition can be simply verified by using inequality analysis. Clearly, 2 0a >  leads to 1 2 0a a+ >  

and 2

1
0.5 1 1ab

a

⎛ ⎞⎟⎜ ⎟< − <⎜ ⎟⎜ ⎟⎜⎝ ⎠
. Therefore, ( )

1 2, , 0a a bf x′′ <  is equivalent to ( )( ) ( )1 2 2 1 2 1 0a a b b b x− + − + − > . We 

have ( )( ) ( )
1 2

1 2
, , 2 2 1 2

2

0.50 0 2 1 2 1 0
1a a b

a a bx f a bx bx a a a b b b x
a b
+ −∈ ⇒ − ≥ ⇒ − ⋅ ⋅ < ⇒− + − + − >

−
dom , 

because 1 2

2

0.5 1
1

a a b
a b
+ −⋅ >

−
 when 2

1
0.5 1

a
b

a

⎛ ⎞⎟⎜ ⎟< −⎜ ⎟⎜ ⎟⎜⎝ ⎠
,. Hence, the condition (14) leads to ( )

1 2, , 0a a bf x′′ < .  

Based on sufficient condition (14), we can see, if 
1

0 0.5 1
n

n n
nand

ββ γ
σ

⎛ ⎞⎟⎜ ⎟> < −⎜ ⎟⎜ ⎟⎜⎝ ⎠
 for any { }1, ,n N∈ " , 

problem (13) belongs to convex programming. Therefore, if the following sufficient condition 

1 1 1
1 1 1 1

1 1 1 1

1 10
2 2

n n n
n n n n

n n n n
I I I

I P and I P
P P Pσ== =

⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟− ⋅ > − < − ⋅ − ⋅⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜∂ ∂ ∂⎝ ⎠ ⎝ ⎠
1 :

P PP P P P1 SE1 SE 1 SE

SC  

holds, SE satisfies the KKT optimality condition and solves the convex programming problem (13), i.e. SE 

is also a CE. ■ 
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APPENDIX C 

Proof of Proposition 3 

If the water-filling game G  satisfies condition 1SC , then problem (13) is convex. We can use the 

following “maximum theorem” [3][18, p.116] to show that ( ),P1 β γ  is continuous.  

(Maximum theorem) Let ( ),x yφ  be a real-valued continuous function with domain X Y× , where X ⊂  

mR  and nY ⊂ R  are closed and bounded sets. Suppose that ( ),x yφ  is strictly concave in x  for each y . 

The functions ( ) ( ){ }argmax , :y x y x XφΦ = ∈  is well-defined for all y Y∈ , and is continuous. 

We can restrict the domain of parameters β  and γ  in closed and bounded set, e.g. n Mγ +≤ , in which 

M+  is a bound satisfying ( ) 1max n n

n
M −+ +� h I G g . Apply the maximum theorem with ( ), ,Rφ = P1 β γ  

( )1 , , 11
n n n

N n
n
f Pσ β γ=

=∑ . The optimal solution ( ),P1 β γ  of problem (13) is the function Φ  in the maximum 

theorem, and hence is a continuous function of ( ),β γ . As a result, ( ),F β γ  is also continuous in ( ),β γ . 

Note that ( ),P1 β γ  and ( ),F β γ  are not necessarily continuously differentiable. 

By the definition of ( ),F β γ  and conjectural equilibrium, we have that ( ),F = 0β γ  implies conjectural 

equilibrium. Note ( ),F = 0β γ∗ ∗ . If there exist open neighborhoods NA⊂ R  and NB ⊂ R  of β∗  and γ∗ , 

and for B∀ ∈γ , ( ), : NF A→i γ R  is locally one-to-one, by the implicit function theorem [19], there exists 

open neighborhoods 0
NA ⊂ R  and 0

NB ⊂ R  of β∗  and γ∗  such that for each 0B∈γ , there is a unique 

( )β γ satisfying ( )( ),F = 0β γ γ . Therefore, G  admits an infinite set of conjectural equilibria.  

Alternatively, we can view ( ),F = 0β γ  as N  equations with 2N  unknowns, hence, the equilibrium is 

usually not a single point but a continuous surface. We can explore the structure of ( ),P1 β γ  to derive the 

expression of this surface. Particularly, under condition 1SC , the solution of convex problem (13) satisfies 

( )( ) ( )( ) ( )2 2 1
1 1 1 1

1 1
1 2 1 0

n n
n n n n n n n n n

nP P
σ βγ γ σ β γ σ β
μ λ
+− − + − + + − =
−

,                        (15) 
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where 1nλ  and 1μ  are the Lagrange multipliers as in (13). The optimal ( ) ( ){ }1, ,nP=P1 β γ β γ  is given by 

( )
( )( ) ( ) ( ) ( ) ( )

( )

2 2 2 1
1 1 1

1 1
1

2 1 2 1 4 1
,

2 1

n n
n n n n n n n n n n

n
n

n nP

σ βσ β γ σ β γ γ γ σ β
μ λ

γ γ

⎡ ⎤+⎢ ⎥+ − + + − − − + −⎢ ⎥−⎣ ⎦=
−

β γ .       (16) 

Note that the other root of equation (15) is removed by checking its feasibility in 
1 , ,n n nfσ β γdom . By 

substituting (16) into (11) and (9), we can explicitly express ( ),F β γ  in terms of β  and γ , resulting in a 

very complex form of the surface. ■ 
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