
 1/36

Abstract—In recent years, cross-layer multimedia system design and optimization has

garnered significant attention; however, there is no existing rigorous methodology for

optimizing two or more system layers (e.g. the application, operating system, and hardware

layers) jointly while maintaining a separation among the decision processes, designs, and

implementations of each layer. Moreover, existing work often relies on myopic

optimizations, which ignore the impact of decisions made at the current time on the

system’s future performance. In this paper, we propose a novel systematic framework for

jointly optimizing the different system layers to improve the performance of one

multimedia application. In particular, we model the system as a layered Markov Decision

Process (MDP). The proposed layered MDP framework enables each layer to make

autonomous and foresighted decisions, which optimize the system’s long-term performance.

Index Terms—Cross-layer multimedia system design, Foresighted decision making,

Layered Markov decision process.

I. INTRODUCTION
Cross-layer adaptation is an increasingly popular solution for optimizing the performance of

complex real-time multimedia applications implemented on resource constrained systems [5]-[8]

[12] [13]. This is because system performance can be significantly improved by jointly

optimizing parameters, configurations, and algorithms across two or more system layers, rather

Towards a General Framework for Cross-Layer
Decision Making in Multimedia Systems

Nicholas Mastronarde*, Mihaela van der Schaar

The authors are with the University of California Los Angeles, Dept. of Electrical Engineering (EE), 56-147 Engineering IV Building, 420
Westwood Plaza, Los Angeles, CA 90095; phone: 1-310-825-5843; fax: 1-310-206-4685; e-mail: nhmastro@ee.ucla.edu (N. Mastronarde);
mihaela@ee.ucla.edu (M. van der Schaar).

*Corresponding author. Address and contact information above.

 2/36

than optimizing them in isolation. The system layers that are most frequently included in the

cross-layer optimization are the application (APP), operating system (OS), and hardware (HW)

layers. For example, in [5] [6] [13], the APP layer’s configuration (e.g. encoding parameters) and

the HW layer’s operating frequency are adapted; meanwhile, in [7] [8] [12], the resource

allocation and scheduling strategies at the OS layer are also adapted.

The abovementioned cross-layer solutions share two important shortcomings. First, the

formulations and the presented solutions are all highly dependent on a specific cross-layer

problem, and therefore cannot be easily extended to other joint APP-OS-HW optimizations. This

exposes the need for a rigorous and systematic methodology for performing cross-layer

multimedia system optimization. Second, the abovementioned cross-layer solutions result in sub-

optimal performance for dynamic multimedia tasks because they are myopic. In other words,

cross-layer decisions are made reactively in order to optimize the immediate reward (utility)

without considering the impact of these decisions on the future reward. For example, even the

“oracle” solution in [6], which has exact knowledge about the consumed energy and required

instruction counts under different APP and HW layer configurations, is not globally optimal.

This is because, “the configuration selected for each frame affects all future frames” [6],

however, the oracle only myopically chooses the cross-layer configuration to optimize its

immediate reward. This motivates the use of foresighted (i.e. long-term) optimization techniques

based on dynamic programming. With foresighted decisions, the layers no longer reactively

adapt to their experienced dynamics (e.g. time-varying multimedia source characteristics at the

APP layer or time-varying resource availability at the OS layer due to resource-sharing with

other applications); instead, layers actively select actions to influence and provision for the

system’s future dynamics in order to achieve optimal performance over time, even if this

 3/36

requires sacrificing immediate rewards.

In this paper, we take inspiration from work on dynamic power management at the HW layer

[9] [14] and formulate the cross-layer optimization problem within the framework of discrete-

time Markov decision processes (MDP) in order to optimize the system’s long-term

performance. We believe that this paper can be viewed as a nontrivial extension of the

aforementioned work because we investigate previously unaddressed problems associated with

cross-layer system optimization.

A trivial and ill-advised solution to the cross-layer system optimization using MDP is to glue

the decision making processes of the layers together by performing a centralized optimization in

which a single layer (e.g. the OS), a centralized optimizer, or middleware layer must know the

states, actions, rewards, and dynamics at every layer. Such a centralized solution violates the

layered system architecture, thereby complicating the system’s design, increasing

implementation costs, and decreasing interoperability of different applications, operating

systems, and hardware architectures. Respecting the layered architecture is especially important

in situations where system layers are designed by different companies, which (i) may not want

for their layer to relinquish its decision making process to a centralized optimizer or middleware

layer, or (ii) may not allow access to the underlying implementation of their layer. Under these

constraints, centralized solutions such as those proposed in [5] [7] [8] [12] are infeasible because

they require that the designer can augment the implementation of every layer.

In this paper, we propose an alternative solution to the cross-layer optimization in which we

optimize the system’s performance without a centralized optimizer. To do this, we identify the

dependencies among the dynamics and decision processes at the various layers of the multimedia

system (i.e. APP, OS, and HW) and then factor these dependencies in order to decompose the

 4/36

centralized optimization into separate optimizations at each layer.

The remainder of this paper is organized as follows. In Section II, we define all of the

parameters and concepts in our framework and present the objective of the foresighted cross-

layer optimization problem. In Section III, we provide concrete examples of the abstract

concepts introduced in Section II for an illustrative cross-layer video encoding problem similar

to those explored in [5]-[8]. In Section IV, we describe a centralized cross-layer optimization

framework for maximizing the objective function introduced in Section II, and we discuss the

framework’s limitations. In Section V, we propose a layered optimization framework for

maximizing the same objective. In Section VI, we present our experimental results based on the

example system described in Section III. Finally, we conclude in Section VII.

II. CROSS-LAYER PROBLEM STATEMENT
In this section, we present the considered system model and formulate the cross-layer system

optimization problem.

A. Layered System Model

The considered system architecture comprises three layers: the application (APP), operating

system (OS), and hardware (HW) layers. For generality, however, we assume that there are L

layers participating in the cross-layer optimization. Each layer is indexed { }1,...,l L∈ with layer

1 corresponding to the lowest participating layer (e.g. HW layer) and layer L corresponding to

the highest participating layer (e.g. APP layer). We note that for a layer to “participate” in the

cross-layer optimization it must be able to adapt one or more of its parameters, configurations, or

algorithms (e.g. the HW layer can adapt its processor frequency); alternatively, if a layer does

not “participate”, then it is omitted. In all of the illustrative examples in this paper, we assume

that 3L = and that the HW, OS, and APP layers correspond to layers 1, 2, and 3, respectively.

 5/36

The layered optimization framework proposed in this paper deals with three types of time-

varying dynamics, which impact multimedia system performance, but are not simultaneously

considered in most existing research. In particular, our framework considers the multimedia

application’s time-varying (probabilistic) rate-distortion behavior, its time-varying resource

requirements, and the system’s time-varying resource availability due to contention with other

applications, each with their own time-varying requirements. Cross-layer optimization

frameworks that do not explicitly consider these dynamics are inherently suboptimal.

APP Layer

OS Layer

HW Layer

State External Action Internal Action

State External Action Internal Action

State External Action Internal Action

Buffer
Occupancy (ρ)

Encoding Param.
(APPa)

Non-adaptive

Resource
Allocation (ε)

Non-adaptive Resource Alloc.
Weight (φ)

Constant Non-adaptive Processor
Frequency (f)

HW QoS
Resource: f

Cost: 3Power f∼

OS QoS
Resource: fε

Cost: 3Power f∼

APP QoS
Resource: fε

Cost: 3Power f∼

 Dynamics of
competing

applications

Source
dynamics

Environment

Multimedia System

Fig. 1. Layered decision making process illustrating the intra- and inter-layer dependencies in the system.
System layers adapt to different components of the dynamic environment by deploying different “actions” at
each layer.

Fig. 1 illustrates how each system layer can make autonomous decisions in a layered manner

based on their own local information about different components of the dynamic environment

and based on limited information forwarded from other layers. In our setting, environment refers

to anything that affects the system’s performance but is not controllable by the system (e.g. the

video source characteristics). We will frequently refer back to Fig. 1 in order to make the

abstract concepts discussed throughout this section more concrete.

 6/36

B. States

In this paper, the state encapsulates all of the information relevant to making processing

decisions. Illustrative examples of layer states are provided in Section III and are included in Fig.

1. We assume that the states are Markovian such that, given the present state, the past and future

states are independent1. Since each system layer interacts with a different component of the

dynamic environment (see Fig. 1), we define a state l ls ∈ S for each layer l . We denote the state

of the entire system by ∈ Ss , with 1
L
l l== ×S S (where 1 1

L
l l L=× = × ×�S S S is the L -ary

Cartesian product). If the l th layer’s state is constant, then we write 1l =S , where S denotes

the cardinality of set S .

C. Actions

The multimedia system takes different processing actions depending on the state of each

layer. The actions at each layer can be classified into two types [3]:

1. External actions impact the state transition of the layer that takes the external action. (See

Sections III.B and III.C for examples of external actions at the OS and APP layers, which are

also illustrated in Fig. 1.) The external actions at layer l are denoted by l la ∈ A , where lA is

a finite set of the possible external actions at layer l . The aggregation of the external actions

across all of the layers is denoted by 1[, ,]La a∈ ∈ A…a , where 1
L
l l== × AA .

2. Internal actions determine the Quality of Service (QoS) provided to the upper layers and the

state transition at layer L . (See Section II.F for our definition of QoS, and Section III.A and

Fig. 1 for an example of internal actions at the HW layer.) The internal actions at layer l are

denoted by l lb ∈ B , where lB is a finite set of the possible external actions at layer l . The

aggregation of the internal actions across all of the layers is denoted by 1[, ,]Lb b∈ ∈ B…b ,

where 1
L
l l== × BB .

 7/36

The action at layer l is the aggregation of the external and internal actions, denoted by

,l l l la bξ = ∈
X , where l l l= ×X A B . Finally, the joint action of the system is denoted by

[]1 1,..., L
L l lξ ξ == ∈ = × XXξ .

We note that some layers may have non-adaptive (i.e. fixed) external and internal actions. If

the l th layer’s external or internal action is non-adaptive, then 1l =A or 1l =B , respectively.

Illustrative examples of external and internal actions are provided in Section III and in Fig. 1.

D. State Transition Probabilities

We assume that the state transition in each layer is synchronized and operates at the same

time scale, such that the transition can be discretized into stages during which the multimedia

system has constant state and performs a single joint-action. The length of each stage does not

need to be constant. For instance, in our H.264/AVC video encoding example, the length of each

stage is the duration of time between encoding successive data-units (DUs) such as video

macroblocks or frames. We use a superscript n to denote stage n (i.e. the stage in which we

make the encoding decision for DU n). For notational simplicity, we omit the superscript n

when no confusion will arise.

In general, because states are Markovian, the state transition of the system only depends on

the current state s , the current joint action, and the environmental dynamics. The corresponding

transition probability is denoted by ()| ,p ′s s ξ , where ns = s and 1n+′s = s (n ∈ �).

 The state transition probability can be factored to reflect the dependencies in the layered

system architecture. First, using Bayes’ rule, the transition probability can be factored as

 () ()1 -1
1

| , | , ,
L

l l

l

p p s →
=

′ ′ ′= ∏s s s sξ ξ , (1)

where []1 1,...,l ls s→′ ′ ′=s and 1 0→′ = 0s is an empty state. In this paper, we assume that the next state

1 We investigate the validity of this assumption for a realistic multimedia system in Section VI.C.

 8/36

of layer l , ls ′ , is statistically independent of the next state of the lower layers, 1 -1l→′s , conditioned

on the current state. Hence, we can rewrite (1) as

 () ()
1

| , | ,
L

l

l

p p s
=

′ ′= ∏s s sξ ξ (2)

Second, due to the layered architecture and the definitions of the internal and external actions as

illustrated in Fig. 1, (2) can be factored further as follows:

 () () ()
1

1

| , | , , | ,
L

L L l l l

l

p p s a p s s a

−

=

′ ′ ′= ∏s s s bξ . (3)

We would like to make the following remarks about (3):

• The term ()
1

1

| ,
L

l l l

l

p s s a

−

=

′∏ in (3) is taken from the first 1L − layers in (2). Since the state-

transition at layer {1, , 1}l L∈ −… only depends on its own external action la and state ls ,

these replace the joint state s and joint mixed action ξ in (2). The state transitions at the HW

and OS layers illustrated in Fig. 1 reflect this model.

• The term ()| , ,L Lp s a′ s b in (3) is taken from layer L in (2). The state transition at layer L

depends on the joint state s , its own external action La , and the joint internal action b . In

other words, the state transition at the application layer depends on the states and internal

actions of all of the layers, which serve the application at layer L . This is illustrated in Fig.

1, except that the states and internal actions at the lower layers are abstracted by the QoS

values, which we discuss in Section II.F.

• If the l th layer’s state is constant (i.e. 1l =S), then its state transition probability

(| ,) 1l l lp s s a′ = . On the other hand, if the l th layer’s external action is non-adaptive (i.e.

1l =A), then its state transition probability (| ,) (|)l l l l lp s s a p s s′ ′= . This means that the state

transition is governed solely by the environment.

Illustrative examples of state transition probabilities are provided in Section III.

 9/36

E. Reward Function and Layer Costs

Performing the external and internal actions at layer l incurs the costs (),l l ls aα and

(),l l ls bβ , respectively. We define example cost functions for each layer in Section III (e.g. the

power consumed at the HW layer and mean squared error at the APP layer).

We assume that the expected reward for taking joint action ξ in state s is a weighted sum of

the costs at each layer plus an additional gain (we define an example gain function in Section

III), i.e.

 () () () ()
1 1

, , , ,
L L

a b
l l l l l l l l

l l

R g s a s bω α ω β
= =

= − −∑ ∑s s bξ (4)

where (),g s b is the expected gain, and a
lω and b

lω weight the external and internal costs at layer

l , respectively. We assume that the weights a
lω and b

lω are known and have been determined

based on the desired tradeoff among the various layer costs. The reward in Eq. (4) can be

separated into two parts: one is the internal reward, which depends on the internal actions, and

the other is the external reward, which depends on the external actions. The internal reward is

 () () ()in
1

, , ,
L

b
l l l l

l

R g s bω β
=

= − ∑s b s b , (5)

and the external reward is

 () ()ex
1

, ,
L

a
l l l l

l

R s aω α
=

= −∑s a . (6)

Hence, the total reward is () () ()in ex, , ,R R R= +s s b s aξ .

F. Quality of Service

Definition: Quality of Service (QoS). The QoS at layer l is defined as a pair (,)l l lQ ν η=

comprised of (i) the amount of reserved resources for the application layer, denoted by lν , and

(ii) the immediate cost for reserving those resources, denoted by lη .

The QoS serves as an abstraction of the states and internal actions at the lower layers such

that they do not have to directly reveal their parameters and available configurations to the upper

 10/36

layers. In this paper, lν is the effective service rate in cycles per second reserved for the

application layer (i.e. layer L) and (),l l l ll l
s bη β ′ ′ ′′≤

= ∑ is the cumulative internal action cost2

incurred by layers {1, , }l l′ ∈ … . Importantly, the QoS at layer l can be recursively computed

given the QoS at layer 1l − :

()

()

1 1(, ,), (, ,) , 2, ,

(,), (,) , 1

ll

ll

l l l l l ll l

l

l l l ll l

F s b Q F s b Q l L
Q

F s b F s b l

ην

ην

− − ==
 =

…

where l

lF ν and l

lF
η are functions, which map the state ls , internal action lb , and QoS 1lQ − to the

service rate lν and cost lη , respectively. Because the QoS can be recursively computed, at no

point do the upper layers require specific information about the state sets and internal action sets

at the lower layers. For notational simplicity, we will write the recursive QoS function compactly

as 1(, ,)l l l l lQ F s b Q −=
�

. In Sections III.A, III.B, and III.C we define illustrative QoS pairs for the

HW, OS, and APP layers, respectively. These are also illustrated in Fig. 1.

Given the QoS provided by the lower layers, we can rewrite the L th layer’s transition

probability function ()| , ,L Lp s a′ s b in (3) as

 () ()| , , | , ,L L L L L Lp s a p s s a Q′ ′=s b , (7)

and its internal reward function ()in ,R s b in (5) as

 () ()in in, ,L LR R s Q=s b . (8)
In other words, there is a one-to-one correspondence between the L th layer’s QoS and the states

1 1 1 1(, ,)L Ls s→ − −= …s and internal actions 1 1(, ,)L Lb b→ = …b . Hence, the L th layer’s QoS provides

all of the information required for the L th layer to determine its transition probability function

and internal reward. The relationships in (7) and (8) are required for the layered optimization

solution proposed in Section V.

2 We include the internal cost in the QoS because the APP layer’s immediate reward and state transition depend on the internal actions at the

lower layers. Hence, when the application selects the optimal QoS level, it must consider the costs incurred by these layers to ensure optimal

 11/36

G. Foresighted decision making

Unlike traditional cross-layer optimization, which focuses on the myopic (i.e. immediate)

utility, the goal in the proposed cross-layer framework is to find the optimal actions at each stage

that maximize the expected discounted sum of future rewards, i.e.

 () ()0 0

0

, |n n n n n

n n

E Rγ

∞
−

=

∑ s sξ , (9)

where the parameter γ (0 1γ≤ <) is the “discount factor,” which defines the relative

importance of present and future rewards, ()0, |n n nR s sξ is the reward at stage n conditioned on

the state at stage 0n being 0ns , and the expectation is taken over the states

0 0{ : 1, 2, }n n n n= + + …s . We refer to decisions that maximize (9) as foresighted cross-layer

decisions because, by maximizing the cumulative discounted reward, the multimedia system is

able to take into account the impact of the current actions on the future reward. In Section VI.B,

we discuss the impact of the discount factor on system’s performance. In Section IV, we describe

how to maximize (9) using a centralized MDP. Then, in Section V, we present an alternative

solution to the same problem based on a layered MDP.

III. ILLUSTRATIVE EXAMPLE
In this section, we provide concrete examples of states, internal and external actions, state

transition probabilities, cost functions, and QoS pairs. Our examples are organized by layer,

starting with the HW layer and working up to the APP layer. Throughout the illustrative

examples in this paper, we assume that 3L = and that the HW, OS, and APP layers correspond

to layers 1, 2, and 3, respectively. To facilitate understanding of our examples, we will use the

subscripts HW , OS , and APP , instead of only specifying the layers by their indices.

We note that if a layer’s state is constant, then it has a non-adaptive external action because

performance across all layers. In contrast, the external cost is determined by each individual layer when it selects its external action, which does

 12/36

there is nothing it can to do adapt its constant state. We also assume that there is no cost

associated with a non-adaptive external action or a non-adaptive internal action.

A. HW Layer Examples

We assume that the HW layer’s processor can be operated at different frequency-voltage

pairs to make energy-delay tradeoffs [4].

HW state: In this example, the HW layer has a constant state (i.e. HW 1=S).

HW actions: We let the HW layer’s internal action, HW HWb ∈ B , set the processor to one of

X frequencies, i.e. HW 1{ , , }Xf f=B … . We denote the frequency used for processing the n th DU

as HW() nf n b= . This is an internal action because it determines the HW layer’s QoS, which is

defined below.

HW state transition: Since the HW layer has only one state, it has a deterministic state

transition, i.e. ()HW HW HW| , 1p s s a′ = .

HW costs: The HW layer’s internal cost is the amount of power required for it to run at

frequency HWf b= . We define the HW layer’s internal cost as [5]:

 () 3
HW APP APP,s a fβ = . (10)

HW QoS: We define the quality of service (QoS) that the HW layer provides to the OS layer

as the pair HW HW HW(,)Q ν η= , where HW fν = is the CPU frequency and ()HW HW APP APP,s aη β=

is the HW layer’s internal cost. The HW layer’s QoS is shown on the right hand side of Fig. 1.

B. OS Layer Examples

OS state: We denote the OS state by OS OSs ∈ S . We let OS ()ns nε= , where () (0,1]nε ∈ is the

CPU time fraction that the OS reserves for encoding the n th DU (hence, 1 ()nε− is reserved for

other applications). We assume that the OS can be in any one of M states such that

not impact the immediate reward at the APP layer. Therefore, the external costs do not need to be included in the QoS.

 13/36

OS OS 1{ , , }Ms ε ε∈ =S … .

OS actions: In this example, the OS has a non-adaptive internal action (i.e. OS 1=B)

because we assume that the OS has no actions that impact the immediate reward (or, by

extension, the immediate QoS) at the APP layer. The OS layer’s external action at stage n ,

however, impacts the amount of resources reserved for the application in stage 1n + . We

assume that the weighted max-min fairness (WMM) [7] resource allocation strategy is used to

divide processor time among the competing applications. Hence, the OS layer’s external action

is a declaration of the application’s weight φ . We assume that there are W possible external

actions: i.e., OS OS 1{ , , }Wa φ φ∈ =A … .

OS state transition: We model the OS state transition as a finite-state Markov chain with

transition probabilities OS OS OS(| ,)p s s a′ , with OS OS OS,s s ′ ∈ S and OS OSa ∈ A . This is similar to the

Markov model of the service provider in [9]. If we assume that the weights of other applications

are unknown when the OS layer’s external action is selected, then its state transition is non-

deterministic; On the other hand, if the weights of other tasks are known when the OS layer’s

external action is selected, then its state transition is deterministic, because it can directly

calculate its resource allocation for each weight.

OS costs: We define the external cost associated with the OS layer as the application’s

weight, hence

 ()OS OS OS OS,s b bα φ= = .
This cost prevents the application from requesting excessive resources when it stands to gain

very little additional reward from them.

OS QoS: We define the QoS that the OS layer provides to the APP layer as the pair

OS OS OS(,)Q ν η= , where OS fν ε= , ε is the CPU time fraction allocated to the application, f is

 14/36

the CPU frequency, and OS HWη η= because there are no internal costs incurred at the OS layer.

The OS layer’s QoS is illustrated on the right hand side of Fig. 1.

C. APP Layer Examples

APP state: The APP layer’s state at time index n , APP
ns , is equivalent to the number of DUs

max() [0,]nρ ρ∈ , maxρ ∈ � in its post-encoding buffer. The post-encoding buffer is placed between

the encoder and the network (if the encoded video is to be streamed), or between the encoder and

a storage device (if the encoded video is to be stored for later use). The buffer allows us to

mitigate hard real-time deadlines by introducing a maximum allowable latency, which is

proportional to the maximum buffer size maxρ . In [10], a similar buffer is used at the decoder for

decoding video frames with high peak complexity requirements in real-time.

Although one goal of our illustrative cross-layer optimization problem is to minimize costs

(e.g. power consumption at the HW layer), a competing goal is to avoid buffer underflow (caused

by DUs missing their delay deadlines) and to avoid buffer overflow (caused by DUs being

encoded too quickly) [10] [11]. Hence, the goal of the cross-layer optimization is for all layers to

cooperatively adapt in order to achieve the optimal balance between the costs incurred at each

layer and the buffer occupancy. We note that an alternative buffer model (referred to as a service

queue model) is presented in [9].

APP actions: We assume that the APP layer has a non-adaptive internal action (i.e.

APP 1=B) but that it has external actions APP APPa ∈ A
3. In a typical video encoder, for example,

application configurations can include the choice of quantization parameter, the motion-vector

search range, etc. The application’s configuration affects the n th DU’s encoding complexity

APP(,)c n a , which is an instance of the random variable C with distribution.

 15/36

APP APP() (|)aC p c p c a=∼ (11)

APP state transition: We define the actual post-encoding buffer occupancy recursively as

 { }{ }max

OS APP

initial

(1) min max () 1 (, , ,) , 0 ,

(0) ,

n n t n s a vρ ρ ρ

ρ ρ

+ = + − ⋅

=

b
 (12)

where

 APP
OS APP

(,)
(, , ,) (seconds)

() ()

c n a
t n s a

n f nε
=b (13)

is the n th DU’s processing delay, which depends on the processor frequency ()f n and the

fraction of time, OS ()ns nε= , allocated to the application at stage n . In (12), the 1 indicates that

DU()n is added into the post-encoding buffer after the processing delay OS APP(, , ,)t n s a b ; X takes

the integer part of X ; v is the average number of DUs that must be processed per second (for

example, if DUs are frames, then the service rate required for real-time encoding is typically

30v = frames per second); and, initialρ is the initial post-encoding buffer occupancy, which we

set to initial max 2ρ ρ= so that we do not initially bias the buffer toward overflow or underflow.

As described before, the DU’s encoding complexity is a random variable, which depends on

the application’s external action (i.e. encoding parameter selection). This causes uncertainty in

the buffer state transition. This state transition also depends on the states and internal actions at

the lower layers (since they affect the CPU frequency f and the CPU time fraction ε reserved

for the application). Hence, the APP state transition probability is given by ()APP APP| , ,p s a′ s b ,

which is congruent with the first term on the right hand side of (3).

Given the processor frequency f from the HW layer and the time fraction ε from the OS

layer, the n th DU’s processing delay t is an instance of the random variable C
T

fε
= (seconds)

with distribution ()
APP APP

()a aT p t f p f cε ε= ⋅ ⋅∼ . Finally, we let T v T= ⋅� with distribution

3 We know from (3) that, unlike the other layers, the APP layer’s state transition depends on its external and internal actions. For our

 16/36

()APP APP

1
()a a

t
T p t p

v v
= ⋅� �∼ . Using T� , the APP state transition probability can be written as

{ }

{ }

{ }

APP

APP

APP

APP APP

max

max

(= | , ,)

1 , {0, , }, 0

0 2 ,

1 2 , otherwise

a

a

a

p s a

p t

p t

p t

ρ

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

′ ′

 ′ ≥ + ∈ = ′= ≤ < = =
 ′ ′− + ≤ < − +

� …

�

�

s b

 (14)

APP costs: We penalize the APP’s external action by employing the Lagrangian cost

measure used in the H.264/AVC reference encoder for making rate-distortion optimal mode

decisions. Formally, we define this cost as

 ()APP APP APP APP rd APP, () ()s a d a r aα λ= + , (15)
where APP()d a and APP()r a are the distortion (mean squared error) and compression rate

(bits/DU), respectively, incurred by the application’s external action, and rd [0,)λ ∈ ∞ is used to

weight the relative importance of the distortion d and the rate r in the overall cost.

APP QoS: We define the QoS at the APP layer as the pair APP APP APP(,)Q ν η= , where

APP OSν ν= and APP OSη η= because there are no internal costs incurred at the APP layer. Hence,

in this example, APP OSQ Q= . The APP layer’s QoS is illustrated on the right hand side of Fig. 1.

D. The System Reward

Recall that the reward defined in (4) can be expressed as () () ()in ex, , ,R R R= +s s b s aξ . Given

the system state HW OS APP(, ,)s s s=s and the joint action (,)= a bξ , where HW OS APP(, ,)a a a=a and

HW OS APP(, ,)b b b=b , the internal reward defined in (5) can be written as

 () () ()
3

in HW HW HW HW, , ,b

f

R g s aω β= −
��������	�������

s b s b . (16)

In this paper, we define the expected gain (),g s b as a penalty for buffer underflow and buffer

overflow. The gain is a component of the reward that is designed to keep the buffer state away

from overflow and underflow. Formally, we define the expected gain as

application, this makes the distinction between the two types of actions at the APP layer largely inconsequential.

 17/36

 () ()
APP

APP APP APP APP, , , (| , ,)
s

g g s s p s a
′ ∈

′ ′= ∑
S

s b b s b , (17)

where we let

 ()

max
APP

APP
APP APP APP

max
APP

, if -

, , , if

, otherwise

s

s
g s s s

s

ρ

ρ

 ′Ω Λ ≤ ≤ Λ ′′ ′= Ω < Λ
 Λ ′ − Ω Λ

b (18)

with 0Ω > and max0 2ρ≤ Λ < . This is a good metric to include in the reward because it is

indicative of the quality degradation experienced by the application when encoded DUs are lost

(due to buffer overflow) or when they miss their deadlines (due to buffer underflow).

Lastly, the external reward defined in (6) can be written as

 () () ()

rd

ex APP APP APP APP OS OS OS OS, , ,a a

d r

R s a s a

λ φ

ω α ω α

+

= − −
��������	�������
 ������	�����

s a . (19)

IV. CENTRALIZED CROSS-LAYER OPTIMIZATION
Some existing cross-layer optimization frameworks for systems [7] [8] [12]assume that there

is a centralized coordinator to determine the actions taken by each layer. This coordinator

usually resides at the OS layer or a middleware layer.

In this section, we describe how to maximize (9) using a centralized MDP. Then, in Section

V, we present an alternative solution to the same problem based on a layered MDP.

A. Centralized Foresighted Decision Making Using a Markov Decision Process

We model the foresighted centralized cross-layer optimization problem as a Markov decision

process (MDP) with the objective of maximizing the discounted sum of future rewards defined

in (9). In this way, we are able to consider the impact of the current actions on the future rewards

in a rigorous and systematic manner. An MDP is defined as follows:

Definition: Markov decision process (MDP). An MDP is a tuple (, , , ,)p R γS X where S is

the joint state-space, X is the joint action-space, p is a transition probability function

 18/36

: [0,1]p × ×S X S � , R is a reward function :R ×S X � � , and γ is a discount factor.

In the context of our layered system architecture, 1
L
l l== × SS , 1

L
l l== × XX , the transition

probability is given by (3), and the reward is given by (4). The solutions to the centralized MDP

described below and the layered solution described in Section V are implemented offline, prior

to the execution of the application. Additionally, the two solutions assume that S , X , p and R

are all known a priori and that they do not change during the execution of the application. In

Section VI.C, we discuss the impact of an inaccurate probability transition model p on the

system’s performance.

In this paper, the goal of the MDP is to find a Markov policy π , which maximizes the

discounted sum of future rewards. A Markov policy π ∈ Π is a mapping from a state to an

action, i.e. :π S X� . Π is the Markov policy space. The policy can be decomposed into

external and internal policies, i.e. :aπ S A� and :bπ S B� , respectively; and, further

decomposed into layered external and internal policies, i.e. :a
l lπ AS � and :b

l lπ BS � ,

respectively. We assume that the Markov policy is stationary, hence the mapping of state to

action does not depend on the stage index n .

A commonly used metric for evaluating a policy π is the state-value function V π [2], where

 ()
current expected reward

expected future rewards

() (, ()) | , () ()V R p Vπ ππ γ π
′∈

′ ′= + ∑
S

����	���

������������	�����������
s

s s s s s s s . (20)

In words, ()V π s is equal to the current expected reward plus the expected future rewards, which

is calculated by assuming that the policy π is followed until stage n → ∞ .

Our objective is to determine the optimal policy π∗ , which maximizes (20) for all s (or,

equivalently, maximizes (9) for all 0ns). The optimal state-value function is defined as

 { }() max ()V V π
π

∗

∈Π
=s s , ∀ ∈ Ss , (21)

 19/36

and the optimal policy π∗ is defined as

 { }() argmax () ,V π

π

π∗

∈Π
=s s ∀ ∈ Ss . (22)

The optimal value function V ∗ and the corresponding optimal policy π∗ can be iteratively

computed using a technique called value iteration (VI) [2] as follows:

 () 1() max (,) | , () ,k kV R p Vγ∗ ∗
−

∈ ′∈

 ′ ′= +

∑
S

Xξ
ξ ξ

s

s s s s s (23)

where k is the iteration number and 0 ()V ∗ s is an arbitrary initial estimate of the state-value

function. The optimal stationary policy π∗ defined in (22) is obtained by iterating until k → ∞ .

In practice, VI requires only a few iterations before converging to a near optimal state-value

function and policy. Importantly, V ∗ and π∗ are computed offline; then, at run-time, all that is

required to perform optimally is to follow the optimal state-to-action mappings π∗ stored in a

simple look-up table of size S .

B. Centralized Cross-Layer System

Dynamic environment
(Layer L)

State transition

()| ,l l lp s s a′

State transition
()| , ,L Lp s a′ s b

 . . .

 . . .

Dynamic environment
(Layer l)

State
monitor

External
policy a

lπ

Internal
policy b

lπ

la

 . . .

ls ls lI

LI
State

monitor

External
policy a

Lπ

Internal
policy b

Lπ

La

Ls Ls

C

entralized foresighted o
ptim

izer

Lb

lb

Optimal
policies

b

1

1

4

2

3

3

4

4

2
4

5
Layer L

Layer l

To layers1, , 1l −…

Optimal
policies

5

5

Fig. 2. Centralized cross-layer system optimization framework. The portions of the figure that are in bold
comprise the centralized information exchange process. If the dynamics are stationary, then steps 1 and 2
only need to happen once.

The centralized foresighted framework introduced in the previous subsection requires each

layer to convey the following information tuples to the centralized optimizer:

 20/36

() () ()

() () ()

, , |, , , , , , , , for layer

, , |, , , , , , , for layers .

L L L L L L L L L L

l

l l l l l l l l l l l

p s a s a s b L

p s s a s a s b l L

α β

α β

′=
 ′ <

S X

S X
I

s b

Fig. 2 summarizes the centralized foresighted cross-layer framework.

There are several limitations to this centralized framework, which we have already described

in the introduction (Section I). In summary, these limitations stem from steps 1 and 2 of the

procedure described above because these steps require the layers to expose their parameters and

algorithms, and to relinquish their decision making processes, to a centralized entity, thereby

violating the layered system architecture.

V. LAYERED OPTIMIZATION
To overcome the shortcomings of the centralized solution, we propose a layered optimization

framework for maximizing the same objective function (i.e. the discounted sum of future

rewards in (9)). The proposed layered framework allows layers to make optimal autonomous

decisions with only a small overhead for exchanging messages between them. Importantly, the

format of these messages is independent of the parameters, configurations, and algorithms at

each layer, which makes the framework adaptable to different applications, operating systems,

and hardware architectures. Fig. 3 illustrates the layered framework. The flow of information in

Fig. 3 is the same as in Fig. 2 except that steps 1 and 2 are replaced by the layered optimizer,

which we describe in detail in Section V.B, and the states and internal actions at the lower layers

determine the QoS to the upper layers as we described in Section II.F.

 21/36

Dynamic environment
(Layer L)

State transition
()| ,l l lp s s a′

State transition
()| , ,L L L Lp s s a′ Q

 . . .

Dynamic environment
(Layer l)

State
monitor

External
policy a

lπ

Internal
policy b

lπ

la

 . . .

ls ls

State
monitor

External
policy a

Lπ

Internal
policy b

Lπ

La

Ls Ls Lb

lb

Optimal policies

LQ Layer L

Layer l

To layers 1, , 1l −…

Optimal policies

Layer
optimizer

Layer
optimizer

 . . .
 . . .

1,L Lθ −

, 1l lθ + 1,l lθ +
, 1L Lθ −

1,l lθ − , 1l lθ −

QoS

QoS

 . . .

messages

Fig. 3. Layered cross-layer system optimization framework with message exchanges.

A. Layered MDP for Cross-layer Decision Making

Definition: Layered MDP [3]. The layered MDP model is defined by the tuple

1
, 1 1 , 1 2, , , { } , { } , , , L L
l l l l l l p R γ−

+ = − =Θ ΘL S X , where {1, , }L=L … is a set of L layers; S is a finite

set of states with elements 1(, ,)Ls s= ∈ S…s ; X is a finite action space with elements

1(, ,)Lξ ξ= ∈ X…ξ , where (,)l l la bξ = contains the l th layer’s external action la and internal

action lb ; , 1l l+Θ is a set of “upward messages,” which layer l can send to layer 1l +

({1, , 1}l L∈ −…), and , 1 , 1l l l lθ + +∈ Θ is one such message; , 1l l−Θ is a set of “downward messages,”

which layer l can send to layer 1l − ({2, , }l L∈ …), and , 1 , 1l l l lθ − −∈ Θ is one such message; p is a

transition probability function : [0,1]p × ×S X S � ; R is a reward function :R ×S X � � ;

and, γ is the discount factor.

B. Layered Value Iteration

In this subsection, we describe the proposed offline algorithm for evaluating the optimal

state-value function V ∗ (see (21)) and the corresponding optimal policy π∗ (see (22)) without a

centralized optimizer. This is done using an algorithm called layered value iteration (layered VI)

[3], which is illustrated in Fig. 4.

 22/36

{ }1, , 1()l l k l lVθ ∗
+ →′= s

{ }, 1 , 1 1 1()L L k L LVθ ∗
− − → −′= s

. . .
{ }2,1 ,1 1()kV sθ ∗ ′=

{ }, 1 , 1 1 1()l l k l lVθ ∗
− − → −′= s

Sub-value Iter. (layer L)

{ }()kV ∗ s

1{ ()}kV ∗
− s

Sub-value Iter. (layer l)

Sub-value Iter. (layer 1)

. . .

,L LS B

Ite

ra
tio

n

Ite
ra

tio
n

Ite

ra
tio

n

. . .

 .. .

{ }, 1 ()l l lθ + = Q s

{ }1, 1()L L Lθ − −= Q s

. . .
1,2 1{ ()}θ = Q s

{ }1, 1()l l lθ − −= Q s

QoS Generation (layer L)

QoS Generation (layer l)

QoS Generation (layer 1)

. . .

∀ ∈ Ss

,l lS B

1 1,S B

 { }()LQ s

(b) Layered value iteration (a) QoS Generation

Fig. 4. Layered VI with upward and downward messages. (a) During an initial QoS generation period,
upward messages are used to tell the application layer which QoS levels are supported in each system state.
The set of QoS levels at layer L is required to perform layered VI. (b) Downward messages are generated in
every iteration of the layered VI algorithm.

Before layered VI can be performed, layer L needs to know which QoS levels are supported

by the lower layers for all system states ∈ Ss . This is achieved through a message exchange

process in which upward messages , 1 , 1l l l lθ + +∈ Θ are sent from layer l to layer 1l + for all

{1, , 1}l L∈ −… . The contents of these upward messages are QoS sets defined as

 { }1 1 1 1 1 1 1() (, ,), , (,), l l l l l l l l lQ Q F s b Q Q F s b b ,…, b−= = = ∀ ∈ ∀ ∈B BQ
� �

…s , ∀ ∈ Ss ,

where the QoS lQ and the QoS mapping function 1(, ,)l l l lF s b Q −

�
 are defined in Section II.F. Fig.

4(a) illustrates the QoS generation period that immediately precedes layered VI. During this

period, each layer {1, , 1}l L∈ −… , starting from layer 1l = , generates its QoS set for all ∈ Ss

and sends its upward messages { }, 1 ()l l lθ + = Q s to layer 1l + (e.g. the HW layer tells the OS layer

its available frequency and power combinations). We let the notation { }()lQ s denote the set of

QoS values for all ∈ Ss . After the L th layer’s set of QoS levels ()LQ s is generated, the layered

VI algorithm illustrated in Fig. 4(b) begins.

We derive the layered VI algorithm by substituting the factored transition probability

function and the factored reward function defined in (3) and (4), respectively, into the centralized

 23/36

VI algorithm defined in (23): i.e.,

() () ()

() ()

1 1

1

1
1

, , ,

() max .

| , , | , ()

L L
a b
l l l l l l l l

l l
k L

L L l l l k

l

g s a s b

V

p s a p s s a V

ω α ω β

γ

= =∗
−∈

∗
−

′ =∈

 − − + =
 ′ ′ ′

∑ ∑

∑ ∏
S

X

s

s b

s

s b s
ξ

 (24)

Recall from (7) and (8) in Section II.F that the internal reward and the transition probability

function at layer L can be expressed using the QoS from the lower layers, which is known by

layer L because of the upward messages. The QoS based expressions allow us to change the

optimization variables in (24) from the joint actions ∈ Xξ to ∈ Aa and ()L LQ ∈Q s . Hence, we

can rewrite (24) as:

()

() ()
1 1

1 1

in
1

1,

() 1
1

(,) ,

() max ,

| , | , , ()
L L

L L

L L

L
a

L L l l l l

l
k L

Q l l l L L L L k

l

R s Q s a

V

p s s a p s s a Q V

ω α

γ
→ →

→ →

=∗
−∈

∗∈ −
′ =∈

 − + =
 ′ ′ ′

∑

∑ ∏
A

Q

S

a

s

s

s

s

 (25)

where we have written the next-state vector ′ ∈ Ss as 1 1 1=(, ,)L L L→ →′ ′ ′ ∈ S…s s s and the joint

external action vector ∈ Aa as 1 1 1=(, ,)L L La a→ →∈ A…a .

We observe that ()in(,) ,a
L L L L L LR s Q s aω α− is independent of the next-states 1 1 1 1L L→ − → −′ ∈ Ss

and that ()
1 1 1 1

1

1

| , 1
L- L-

L

l l l

l

p s s a

→ →

−

′ =∈

′ =∑ ∏
Ss

, therefore, we can move ()in(,) ,a
L L L L L LR s Q s aω α− into

the product term as follows:

()

()
()

()
1 1 1 1

1

1

in1

, 11

Sub-value iteration at layer

,

(,) ,() max
| , max | , , ()

L L

L L

L L L L

L
a
l l l l

l

a
L L L L L LL

k

l l l
L L L L kl

Q

L

s a

R s Q s a
V

p s s a
p s s a Q V

ω α

ω α

γ
→ − → −

−

=

∗ −

∈
∗

∈ −=
′∈ ∈

− +

 − + = ′ ′ ′

∑

∏ ∑A

S

A

Q
�������������������	������

a

a

s

s

s
1 1 1 1

,

L L→ − → −′ ∈

∑
S

������������
s

(26)

where we have also moved the maximization over the external action set and QoS set at layer L

inside the product term because the other terms are independent of these parameters. The right-

hand term of (26) is the sub-value iteration (sub-VI) at layer L , the result of which we denote by

 24/36

1 1 1()k L-V ∗
− →′s for all 1 1 1 1L L→ − → −′ ∈ Ss :

Sub-value iteration at layer L :

()

()

in

1 1 1
, 1

(,) ,

() max | , , ()
L L

L L L L

a
L L L L L L

k L-
L L L L k

Q

R s Q s a

V
p s s a Q V

ω α

γ
∗

∗− →
∈ −

′∈ ∈

 − + ′ = ′ ′
∑A

SQ

a

s

s
s

. (27)

The sub-VI at layer L determines the optimal internal actions at every layer (by selecting the

optimal QoS). The external actions, however, are determined by each individual layer based on

local models of their dynamics (i.e. transition probability functions and reward functions).

We observe that (),a
l l l ls aω α− is independent of the next-states 1 1 1 1l l→ − → −′ ∈ Ss and that

()
1 1 1 1

1

1()

| , 1
l - l -

l

l l l

l

p s s a

→ →

−

′ =∈

′ =∑ ∏
Ss

. Hence, similar to how we obtained (27) from (25), the sub-VI at

layers 2, , 1l L= −… for all 1 1 1 1l l→ − → −′ ∈ Ss can be performed as follows:

Sub-value iteration at layer 2, , 1l L= −… :

 () ()1 1 1 1 1

() max , | , ()
l l

l l

a
k l - l l l l l l l k lV s a p s s a Vω α γ∗ ∗

− → − →
∈ ′∈

 ′ ′ ′= − +

∑
A

S
a

s

s s , (28)

where 1 1()k lV ∗
− →′s (on the right hand side) is the result of the sub-VI at layer 1l + for all

1 1l l→ →′ ∈ Ss , which is sent as a downward message from layer 1l + to layer l , i.e.

{ }1, 1 1()l l k lVθ ∗
+ − →′= s .

Finally, the sub-VI at layer 1l = is performed as follows:

Sub-value iteration at layer 1 :

 () ()
1 1

1 1

1 1 1 1 1 1 1 1 1

() max , | , ()a
k kV s a p s s a V sω α γ∗ ∗

−
∈ ′∈

 ′ ′= − +

∑
A

S
a

s

s , (29)

where { }2,1 1 1()kV sθ ∗
− ′= and ()kV ∗ s becomes the input to the sub-VI at layer L during iteration

1k + .

We note that performing L sub-VIs (i.e. one for each layer) during one iteration of layered

 25/36

VI is equivalent to one iteration of centralized VI. After performing layered VI, we obtain the

state-value function, kV ∗ , which will converge to the optimal state-value function V ∗ as k → ∞ .

Subsequently, the optimal layered external and internal policies (i.e. a
lπ

∗ and b
lπ

∗ , respectively)

can be found using (22), and can be stored in a look-up table at each layer to determine the

optimal state-to-action mappings at run-time.

C. Complexity of Layered Value Iteration

It is well known that one iteration of the centralized VI algorithm has complexity

2()O S X . In our layered setting, 1
L
l l== × SS� is the state set and ()1 1

L L
l l l l l= == × = × ×X A BX

is the action set, which is comprised of external and internal action sets at each layer. Based on

these definitions,
1

L

l

l =

= ∏ SS � and ()
1 1

L L

l l l

l l= =

= = ×∏ ∏X A BX .

In order to evaluate the complexity of the layered value iteration procedure, we must first

look at the complexity of each sub-VI.

The sub-VI at layer L defined in (27) has complexity

1 1

2

1 1

L

L L

L L L L Ll l
l l

Comp O O

− −

′ ′
′ ′= =

 = =

∏ ∏S S A A B

Q

S Q S

������

. (30)

The sub-VIs at layers {2, , 1}l L∈ −… defined in (28) have complexity

1

1

l

l l ll
l

Comp O

−

′
′=

 =
∏S S AS . (31)

Finally, the sub-VI at layer 1 defined in (29) has complexity

 ()1 1 1Comp O= S AS . (32)
Hence, the total complexity of one iteration of the layered VI algorithm can be expressed as

1

L

l

l

Comp Comp
=

= ∑ . (33)

We compare the centralized VI and layered VI complexities in Table I assuming that states and

 26/36

actions are as defined in Table II.

Table I. Complexity of centralized value iteration and layered value iteration.
Layer No. States No. External Actions No. Internal Actions

1 (Hardware) 1 1 3
2 (Operating System) 3 2 1

3 (Application) 29 3 1

Centralized VI
Complexity 2

2

(29 3) (3 3 2)

() 136242O

⋅ ⋅ ⋅ ⋅

=S X
����	���

Layered VI
Complexity

3

2

2
2

1 1 2 1 2 3
1(29 3) 1 1 (29 3) 3 1 2

(29 3) 3 3 1

87 522 68121

68730

l
l

O O O ′
′=⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

 + + = + +

=

∏S A S S A A B

Q

S S S

������

�����	����
 �������	������

��������	�������

VI. RESULTS
In this section, we test the performance of the proposed framework using the illustrative

cross-layer system described in Section III. Table II details the parameters used at each layer in

our simulator, which we implemented in MATLAB. In our simulations, we use actual video

encoder trace data, which we obtained by profiling the H.264 JM Reference Encoder (version

13.2) on a Dell Pentium IV computer. Our traces comprise measurements of the encoded bit-rate

(bits/MB), reconstructed distortion (MSE), and encoding complexity (cycles) for each video MB

of the Foreman sequence (30 Hz, CIF resolution, quantization parameter 24) under three

different encoding configurations. The chosen encoding parameters are listed in Table II. We let

one DU comprise 11 aggregated MBs, and we let each simulation comprise encoding 20000 such

DUs. Since real-time encoding is not possible with the selected encoding parameters, we set the

buffer drain rate to 32/11v = (DUs/sec).

We note that the illustrative results presented here depend heavily on the simulation

parameters defined in Table II. Nevertheless, our most important observations are about the

fundamental properties of the proposed framework, which are independent of the chosen

example.

 27/36

Table II. Simulation parameters used for each layer.
Layer Parameter Value

Buffer State max
APP {0, , }ρ=S … , max 28ρ = (DUs)

Parameter Configuration

APP {1,2, 3}=A

APP 1a = : Quarter-pel MV, 8x8 block ME

APP 2a = : Full-pel MV, 8x8 block ME

APP 3a = : Full-pel MV, 16x16 block ME

Gain parameters 40Ω = , 4Λ =

External Cost Weight APP 1aω =

Rate-distortion Lagrangian rd 1/128λ =

Buffer drain rate 32/11v = (DUs/sec)

Application
Layer

(APP)

DU size 11 Macroblocks

Resource Allocation State OS {0.80,0.55, 0.35}=S

Resource Allocation Weight OS {1, 3}=A
Operating

System Layer
(OS) External Cost Weight OS 1aω =

State Constant

Processor Frequency Actions HW {200,600,1000}=A Mhz
Hardware

Layer
(HW) Internal Cost Weight 27

HW 9 10bω −= ×

A. Equivalence of Centralized and Layered Value Iteration

Fig. 5 illustrates the state-value function obtained using layered and centralized VI with a

discount factor of 0.9γ = . Both VI algorithms yield the same state-value function, so we only

show one state-value function here.

0

20

40

1

2

3
0

100

200

300

APP State

Centralized State-Value Function

OS State

S
ta

te
-V

al
ue

S
ta

te
-V

al
ue

(a)

Centralized/Layered State-Value Function

Fig. 5. State-value function obtained from centralized VI and layered VI (0.9)γ = .

B. Impact of the Discount Factor

The discount factor γ impacts the average system performance and also the number of

iterations required for the centralized and layered VI algorithms to converge. Table III illustrates

the impact of the discount factor on the average reward (defined as the sum of (16) and (19))

 28/36

achieved over five simulations of the centralized system and five simulations of the layered

system. (Because the reward is very abstract, in Section VI.E we provide more detailed

simulation results in a variety of simulation scenarios.) As expected, the results in Table III show

that the centralized system and the layered system perform nearly identically. The small

differences in the actual measured performance are due to random dynamics over the finite

simulations (i.e. random resource allocations at the OS layer). We also observe that larger values

of the discount factor improve the system’s performance; however, larger values also increase

the number of iterations (centralized or layered) required to find the optimal foresighted decision

policy.

Table III. Impact of the discount factor on the average system reward.
Discount
Factor
(γ)

Number
of

Iterations

Avg.
Reward

(Centralized)

Avg.
Reward

(Layered)

0.00 2 1.67 1.35
0.15 15 1.66 1.76
0.30 23 6.24 6.50
0.45 33 16.95 16.97
0.60 51 17.63 17.60
0.75 87 17.83 17.78
0.90 227 17.93 17.92

C. Impact of Model Inaccuracy on the System’s Performance

Using the centralized MDP or the layered MDP requires good prediction of future events in

order to predict the future performance of the system. In this paper, we have assumed: (i) we

know the expected reward for every possible state and action, (ii) the probability transition

functions can be characterized by stationary controlled Markov chains, and (iii) the stochastic

matrices describing the probability transitions are known perfectly such that the optimal policy

to the MDP can be computed offline. If we relax these assumptions, it becomes necessary to

analyze the affect of model inaccuracy on the overall performance. In the following analysis, we

assume that model inaccuracy is due to the fact that the system’s dynamics are not actually

stationary and Markov.

 29/36

If the state-transitions in the system are not truly stationary and Markov, then the expected

reward predicted by the stationary Markov model will differ from the average reward that is

actually achieved. We can quantify this model error as follows. We let ()πµ s denote the steady-

state probability of being in state s when following policy π . Using ()πµ s , we can compute the

expected rewards that should be achieved if the system’s dynamics are truly stationary and

Markov:

 () (, ())R Rπ πµ π
∈

= ∑
Ss

s s s . (34)

Now, consider an N -stage simulation of the system (0N �), which traverses the sequence

of states 0 1, , , N…s s s when following policy π . The average reward obtained over this

simulation can be written as:

1

0

1
() (, ())

N
n n

n

R N R
N

π π

−

=

= ∑ s s . (35)

The absolute difference between the expected rewards and the N -stage average reward,

()R R Nπ π− , indicates how accurate the stationary Markov model is for the actual system.

Large values of ()R R Nπ π− indicate that the stationary Markov model is inaccurate.

Consider the following example in which we measure the impact of the model’s inaccuracy

on the system’s performance. Fig. 6 illustrates the actual encoding complexity trace (for a fixed

action) and the corresponding trace generated by a stationary model of the complexity trace.

Clearly, the actual encoding complexity is not perfectly represented by the stationary model

defined in (11). Because the actual complexity traffic is not stationary, the buffer transition

model in (14) is not accurately represented as a stationary Markov chain. Nevertheless, the data

in Table IV shows us that the predicted reward (based on the stationary Markov model of the

buffer) does not differ significantly from the actual reward that is achieved when simulating the

 30/36

system over 20, 000N = stages.

Table IV. Simulated (20, 000N = stages) vs. predicted reward, PSNR, power, and resource allocation cost.

Avg.

Reward

Avg.
PSNR
(dB)

Avg.
Power
(W)

Avg.
Rsrc. Alloc.

Cost
Simulated 17.93 38.35 2.90 2.69
Predicted 18.91 38.40 2.44 2.98
Prediction

error 0.98 0.05 0.46 0.29

0 200 400 600 800 1000
0

1

2

3

4
x 10

8

Stage (n)A
ct

ua
l c

om
pl

ex
ity

 tr
ac

e
(c

yc
le

s)

0 50 100 150 200 250 300 350 400
0

1

2

3

4
x 10

8

Stage (n)

M
ar

ko
v

m
od

el
 tr

ac
e

(c
yc

le
s)

Fig. 6. Actual complexity trace (top) vs. trace generated by a stationary model (bottom). The stationary
model’s parameters are trained based on the actual complexity trace.

D. Myopic and Foresighted Simulation Trace Comparison

Fig. 7 shows detailed simulation traces of the APP actions, OS actions, HW actions, APP

states, and OS states over time when a myopic decision policy is used (0γ =) and when a

foresighted decision policy is used (0.9γ =). From these traces, it is clear why the myopic

decision policy performs worse than the foresighted policy. We note that these traces are

representative of the simulations with rewards shown in the first and last row of Table III.

First, under the myopic policy, the application receives a smaller CPU time fraction on

average. This is because the immediate reward is always maximized when the OS selects the

lower resource allocation weight (i.e. 1φ =); therefore, the OS layer will never use a higher

weight to reserve increased CPU time in the future. Meanwhile, the foresighted policy is able to

 31/36

see that it is less costly to request a higher future CPU time fraction than it is to immediately

increase the processor frequency.

Second, because the application receives a low fraction of the CPU time on average, the

myopic policy selects the least complex, lowest quality, action (i.e. APP 3a =) and the highest

processor speed (i.e. 1000f = Mhz) much more frequently than in the foresighted case. In

addition, despite reducing the encoding complexity and boosting the processor speed, the APP

buffer repeatedly underflows. All of these factors result in the myopic policy incurring excessive

costs compared to the foresighted policy.

1200 1300 1400
0

10
20
30

1400 1200 1300 1400

0.4
0.6
0.8

1200 1300 1400

1
2
3

1200 1300 1400

1
2
3

1200 1300 1400

1200 1300 1400

1200 1300 1400

1200 1300 1400

1200 1300 1400
Stage (n)

1200 1300 1400
Stage (n)

2
4
6
8

10
x 10

8

Myopic
(0γ =)

Foresighted
(0.9γ =)

Stage (n) Stage (n)

A

P
P

co
nf

ig
.

(
)

H

W
 fr

e
q.

 (

)

A

P
P

 b
uf

fe
r

o
cc

up
.

(
)

O

S
 re

so
ur

ce
a

llo
c.

 (
)

O

S
w

ei
g

ht

 (
)

(a) (b)

Fig. 7. Simulation traces from stage 1200 to 1400. (a) Simulation with myopic cross-layer optimization
(0γ =). (b) Simulation with foresighted cross-layer optimization (0.9γ =).

E. Performance of Simplifications of the Proposed Framework

In Fig. 8, we illustrate the scalability of the proposed cross-layer framework by comparing

the performance of the full cross-layer design to several simplified system configurations, which

are similar to those that have been proposed in prior research. In this way, we also show that our

 32/36

proposed framework is a superset of existing work. Detailed information about the average peak-

signal-to-noise ratio (PSNR in dB), average power consumption, average resource allocation

cost, and the average number of buffer overflows and underflows for each bar in Fig. 8 is shown

in Table V.

-10

0

10

20

System configuration number

A
ve

ra
ge

 r
ew

ar
d

ALL-adapt

OS-APP-adapt

HW-APP-adapt

HW-OS-adapt

APP-adapt

OS-adapt

HW-adapt

Foresighted
Myopic

Fig. 8. Comparison of the performance of different system configurations.

Table V. Detailed simulation results for each configuration. In each column of the table, the value obtained
in the foresighted case is on the left and the value obtained in the myopic case is on the right.

Configuration
Avg.

PSNR (dB)
Avg.

Power (W)
Avg. Resource
Allocation Cost

Avg.
No. Underflows

Avg.
No. Overflows

ALL-adapt 38.35 31.27 2.90 3.67 2.69 1.00 0 5516 0 0
OS-APP-adapt 36.30 36.29 9.00 9.00 1.07 1.00 0 0 810 813
HW-APP-adapt 38.16 31.13 5.36 3.60 1.00 1.00 4 5467 0 0
HW-OS-adapt 38.10 28.14 3.95 2.00 2.42 1.00 6 12874 0 0

APP-adapt 36.31 36.29 9.00 9.00 1.00 1.00 0 0 800 803
OS-adapt 34.05 32.85 9.00 9.00 1.09 1.00 2 1323 2201 2069
HW-adapt 31.40 28.15 6.52 1.99 1.00 1.00 5359 12848 0 0

 In the following paragraphs we describe each system configuration used to obtain the results in

Fig. 8 and Table V. For each of these configurations, the cross-layer system’s parameters are

defined as in Table II except where specified.

Configuration 1: ALL-adapt. Similar to [7] [8], every layer can adapt its action. As

expected, this configuration achieves the highest reward out of all configurations when using a

foresighted decision policy. Its myopic performance, however, is worse than several of the other

configurations, which have the HW action fixed at 1000f = Mhz. This initially seems

counterintuitive because we would expect it to perform better given that it has more options

available; however, this is only true if the best decisions are made given the additional options,

 33/36

which is not the case with the myopic policy. Instead, the myopic policy frequently selects the

lowest processor frequency in order to save on the immediate power costs; consequently, it is

forced to aggressively encode at the highest processor frequency to avoid continually

underflowing the application buffer. Due to the convexity of the power-frequency function (i.e.

the HW internal cost), the average power consumed is higher than if it had just used the middle

processor frequency more frequently (like the foresighted policy chooses to do).

Configuration 2: OS-APP-adapt. Under this configuration, the OS and APP layers can adapt

their actions, but the HW layer’s action is fixed at 1000f = Mhz. We observe from Fig. 8 that

this configuration’s myopic policy performs nearly as good as its foresighted policy. This is

because the fixed high processor frequency provides the application with enough resources to

meet most of its delay constraints (i.e. avoid buffer underflows). This configuration’s foresighted

performance, however, is worse than that of the ALL-adapt configuration because a lot of power

is wasted by using the high processor frequency throughout the duration of the simulation.

Configuration 3: HW-APP-adapt. Similar to [5] [6], the HW and APP layers can adapt their

actions, but the OS layer’s action is fixed at 1φ = . The foresighted performance of this

configuration is better than the myopic performance of the ALL-adapt configuration, even

though both configurations have a static resource allocation weight at the OS layer (i.e. 1φ =).

This is because the foresighted policies modestly increase the processor’s frequency and reduce

the APP complexity before the buffer underflows. Meanwhile, the foresighted performance of

this configuration is worse than that of the ALL-adapt configuration because it must use higher

processor speeds (and therefore more power) to compensate for having a lower fraction of the

CPU time on average.

Configuration 4: HW-OS-adapt. Under this configuration, the HW and OS layers can adapt

 34/36

their actions, but the APP layer’s action is fixed at APP 2a = . This configuration’s myopic

policy frequently selects the lowest processor frequency in order to save on the immediate power

costs. This causes a huge number of buffer overflows, which severely degrade its performance.

We note that this configuration’s foresighted performance is better than that of the HW-APP-

adapt and OS-APP-adapt configurations only because of the particular cost-weights chosen for

our simulations (i.e. alω and b
lω , {1, , }l L∀ ∈ …), which heavily penalize high CPU frequencies. In

other words, different cost-weights would change the relative performance of the various

configurations with two adaptive layers.

Configuration 5: APP-adapt. The APP layer can adapt its action, but the HW layer’s action

is fixed at 1000f = Mhz and the OS layer’s action is fixed at 1φ = . For the same reason as in

the OS-APP-adapt configuration, this configuration’s myopic performance is nearly the same as

its foresighted performance.

Configuration 6: OS-adapt. Similar to [1], the OS layer can adapt its action, but the HW

layer’s action is fixed at 1000f = Mhz and the APP layer’s action is fixed at APP 2a = . There

are many overflows in this case because there are more resources allocated to the encoder than it

requires, which results in DUs being encoded too quickly.

Configuration 7: HW-adapt. Similar to [9], the HW layer can adapt its action, but the OS

layer’s action is fixed at 1φ = and the APP layer’s action is fixed at APP 2a = .

We make two final observations regarding the above results. First, we note the HW-adapt

and HW-OS-adapt, APP-adapt and OS-APP-adapt, and the HW-APP-adapt and ALL-adapt

configuration pairs perform nearly the same under their respective myopic policies. This is

because the OS action is fixed under all myopic configurations (as we first illustrated in Fig. 7).

Second, we note that buffer overflows can be avoided by increasing the size of the post encoding

 35/36

buffer or by increasing the range of actions available at each layer.

VII. CONCLUSION
We have proposed a novel and general formulation of the cross-layer decision making

problem in real-time multimedia systems. In particular, we modeled the problem as a layered

Markov decision process, which enabled us to jointly optimize each layer’s parameters,

configurations, and algorithms while maintaining a separation between the decision processes

and the design of each layer. Unlike existing work, which focuses on myopically maximizing the

immediate rewards, we focus on foresighted cross-layer decisions. In our experimental results,

we verified that our layered solution achieves the same performance as the centralized solution,

which violates the layered architecture. Additionally, we demonstrated that our proposed

framework can be interpreted as a superset of existing suboptimal multimedia system designs

with one or more adaptive layers. Finally, we showed that dramatic performance gains are

achievable when using foresighted optimization compared to myopic optimization.

REFERENCES
[1] J. Nieh, M.S. Lam, “The design, implementation and evaluation of SMART: a scheduler for multimedia

applications,” Proc. of the Sixteenth ACM Symposium on Operating Systems Principles, pp. 184-197, Oct.
1997.

[2] R. S. Sutton, and A. G. Barto, “Reinforcement learning: an introduction,” Cambridge, MA:MIT press, 1998.
[3] F. Fu, M. van der Schaar, “A new theoretic framework for cross-layer optimization with message

exchanges,” Infocom student workshop, 2008, to appear.
[4] P. Pillai, K. G. Shin, “Real-time dynamic voltage scaling for low-power embedded operating systems,” Proc.

of the 18th ACM Symposium on Operating Systems Principles, pp. 89-102, 2001.
[5] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, “Power-rate-distortion analysis for wireless video

communication under energy constraints,” IEEE Trans. on Circuits and Systems for Video Technology, vol.
15, no. 5, pp. 645-658, May 2005.

[6] D. G. Sachs, S. Adve, D. L. Jones, “Cross-layer adaptive video coding to reduce energy on general-purpose
processors,” in Proc. International Conference on Image Processing, vol. 3, pp. III-109-112 vol. 2, Sept.
2003.

[7] W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, R. H. Kravets, “GRACE-1: cross-layer adaptation for
multimedia quality and battery energy,” IEEE Trans. on Mobile Computing, vol. 5, no. 7, pp. 799-815, July
2006.

[8] W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, R. H. Kravets, “Design and evaluation of a cross-layer
adaptation framework for mobile multimedia systems,” Proc. of SPIE Multimedia Computing and
Networking Conference, vol. 5019, pp. 1-13, Jan. 2003.

 36/36

[9] L. Benini, A. Bogliolo, G. A. Paleologo, G. D. Micheli, “Policy optimization for dynamic power
management,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 6,
pp. 813-833, June 1999.

[10] S. L. Regunathan, P. A. Chou, J. Ribas-Corbera, “A generalized video complexity verifier for flexible
decoding,” Proc. of the International Conference on Image Processing (ICIP 2003), vol. 3, pp. III-289-92
vol. 2, Sept. 2003.

[11] A. Ortega, K. Ramchandran, M. Vetterli, “Optimal trellis-based buffered compression and fast
approximations,” IEEE Trans. on Image Processing, vol. 3, no. 1, pp. 26-40, Jan. 1994.

[12] S. Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim, N. Dutt, R. Gupta, A. Nicolau, S. Shukla, N.
Venkatasubramanian, “A cross-layer approach for power-performance optimization in distributed mobile
systems,” 19th IEEE International Parallel and Distributed Processing Symposium, 2005.

[13] P. Pillai, H. Huang, and K.G. Shin, “Energy-Aware Quality of Service Adaptation,” Technical Report CSE-
TR-479-03, Univ. of Michigan, 2003.

[14] Z. Ren, B. H. Krogh, R. Marculescu, “Hierarchical adaptive dynamic power management,” IEEE Trans. on
Computers, vol. 54, no. 4, Apr. 2005.

