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Abstract—In recent years, cross-layer multimedia system design and optimization has 

garnered significant attention; however, there is no existing rigorous methodology for 

optimizing two or more system layers (e.g. the application, operating system, and hardware 

layers) jointly while maintaining a separation among the decision processes, designs, and 

implementations of each layer. Moreover, existing work often relies on myopic 

optimizations, which ignore the impact of decisions made at the current time on the 

system’s future performance. In this paper, we propose a novel systematic framework for 

jointly optimizing the different system layers to improve the performance of one 

multimedia application. In particular, we model the system as a layered Markov Decision 

Process (MDP). The proposed layered MDP framework enables each layer to make 

autonomous and foresighted decisions, which optimize the system’s long-term performance. 

 
Index Terms—Cross-layer multimedia system design, Foresighted decision making, 

Layered Markov decision process. 

I. INTRODUCTION 
Cross-layer adaptation is an increasingly popular solution for optimizing the performance of 

complex real-time multimedia applications implemented on resource constrained systems [5]-[8] 

[12] [13]. This is because system performance can be significantly improved by jointly 

optimizing parameters, configurations, and algorithms across two or more system layers, rather 
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than optimizing them in isolation. The system layers that are most frequently included in the 

cross-layer optimization are the application (APP), operating system (OS), and hardware (HW) 

layers. For example, in [5] [6] [13], the APP layer’s configuration (e.g. encoding parameters) and 

the HW layer’s operating frequency are adapted; meanwhile, in [7] [8] [12], the resource 

allocation and scheduling strategies at the OS layer are also adapted. 

The abovementioned cross-layer solutions share two important shortcomings. First, the 

formulations and the presented solutions are all highly dependent on a specific cross-layer 

problem, and therefore cannot be easily extended to other joint APP-OS-HW optimizations. This 

exposes the need for a rigorous and systematic methodology for performing cross-layer 

multimedia system optimization. Second, the abovementioned cross-layer solutions result in sub-

optimal performance for dynamic multimedia tasks because they are myopic. In other words, 

cross-layer decisions are made reactively in order to optimize the immediate reward (utility) 

without considering the impact of these decisions on the future reward. For example, even the 

“oracle” solution in [6], which has exact knowledge about the consumed energy and required 

instruction counts under different APP and HW layer configurations, is not globally optimal. 

This is because, “the configuration selected for each frame affects all future frames” [6], 

however, the oracle only myopically chooses the cross-layer configuration to optimize its 

immediate reward. This motivates the use of foresighted (i.e. long-term) optimization techniques 

based on dynamic programming. With foresighted decisions, the layers no longer reactively 

adapt to their experienced dynamics (e.g. time-varying multimedia source characteristics at the 

APP layer or time-varying resource availability at the OS layer due to resource-sharing with 

other applications); instead, layers actively select actions to influence and provision for the 

system’s future dynamics in order to achieve optimal performance over time, even if this 
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requires sacrificing immediate rewards.  

In this paper, we take inspiration from work on dynamic power management at the HW layer 

[9] [14] and formulate the cross-layer optimization problem within the framework of discrete-

time Markov decision processes (MDP) in order to optimize the system’s long-term 

performance. We believe that this paper can be viewed as a nontrivial extension of the 

aforementioned work because we investigate previously unaddressed problems associated with 

cross-layer system optimization. 

A trivial and ill-advised solution to the cross-layer system optimization using MDP is to glue 

the decision making processes of the layers together by performing a centralized optimization in 

which a single layer (e.g. the OS), a centralized optimizer, or middleware layer must know the 

states, actions, rewards, and dynamics at every layer. Such a centralized solution violates the 

layered system architecture, thereby complicating the system’s design, increasing 

implementation costs, and decreasing interoperability of different applications, operating 

systems, and hardware architectures. Respecting the layered architecture is especially important 

in situations where system layers are designed by different companies, which (i) may not want 

for their layer to relinquish its decision making process to a centralized optimizer or middleware 

layer, or (ii) may not allow access to the underlying implementation of their layer. Under these 

constraints, centralized solutions such as those proposed in [5] [7] [8] [12] are infeasible because 

they require that the designer can augment the implementation of every layer. 

In this paper, we propose an alternative solution to the cross-layer optimization in which we 

optimize the system’s performance without a centralized optimizer. To do this, we identify the 

dependencies among the dynamics and decision processes at the various layers of the multimedia 

system (i.e. APP, OS, and HW) and then factor these dependencies in order to decompose the 
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centralized optimization into separate optimizations at each layer. 

The remainder of this paper is organized as follows. In Section II, we define all of the 

parameters and concepts in our framework and present the objective of the foresighted cross-

layer optimization problem. In Section III, we provide concrete examples of the abstract 

concepts introduced in Section II for an illustrative cross-layer video encoding problem similar 

to those explored in [5]-[8]. In Section IV, we describe a centralized cross-layer optimization 

framework for maximizing the objective function introduced in Section II, and we discuss the 

framework’s limitations. In Section V, we propose a layered optimization framework for 

maximizing the same objective. In Section VI, we present our experimental results based on the 

example system described in Section III. Finally, we conclude in Section VII. 

II.  CROSS-LAYER PROBLEM STATEMENT 
In this section, we present the considered system model and formulate the cross-layer system 

optimization problem.  

A. Layered System Model 

The considered system architecture comprises three layers: the application (APP), operating 

system (OS), and hardware (HW) layers. For generality, however, we assume that there are L  

layers participating in the cross-layer optimization. Each layer is indexed { }1,...,l L∈  with layer 

1 corresponding to the lowest participating layer (e.g. HW layer) and layer L  corresponding to 

the highest participating layer (e.g. APP layer). We note that for a layer to “participate” in the 

cross-layer optimization it must be able to adapt one or more of its parameters, configurations, or 

algorithms (e.g. the HW layer can adapt its processor frequency); alternatively, if a layer does 

not “participate”, then it is omitted. In all of the illustrative examples in this paper, we assume 

that 3L =  and that the HW, OS, and APP layers correspond to layers 1, 2, and 3, respectively. 
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The layered optimization framework proposed in this paper deals with three types of time-

varying dynamics, which impact multimedia system performance, but are not simultaneously 

considered in most existing research. In particular, our framework considers the multimedia 

application’s time-varying (probabilistic) rate-distortion behavior, its time-varying resource 

requirements, and the system’s time-varying resource availability due to contention with other 

applications, each with their own time-varying requirements. Cross-layer optimization 

frameworks that do not explicitly consider these dynamics are inherently suboptimal.  
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Fig. 1. Layered decision making process illustrating the intra- and inter-layer dependencies in the system. 
System layers adapt to different components of the dynamic environment by deploying different “actions” at 
each layer. 

Fig. 1 illustrates how each system layer can make autonomous decisions in a layered manner 

based on their own local information about different components of the dynamic environment 

and based on limited information forwarded from other layers. In our setting, environment refers 

to anything that affects the system’s performance but is not controllable by the system (e.g. the 

video source characteristics). We will frequently refer back to Fig. 1 in order to make the 

abstract concepts discussed throughout this section more concrete. 
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B. States 

In this paper, the state encapsulates all of the information relevant to making processing 

decisions. Illustrative examples of layer states are provided in Section III and are included in Fig. 

1. We assume that the states are Markovian such that, given the present state, the past and future 

states are independent1. Since each system layer interacts with a different component of the 

dynamic environment (see Fig. 1), we define a state l ls ∈ S  for each layer l . We denote the state 

of the entire system by ∈ Ss , with 1
L
l l== ×S S  (where 1 1

L
l l L=× = × ×�S S S  is the L -ary 

Cartesian product). If the l th layer’s state is constant, then we write 1l =S , where S  denotes 

the cardinality of set S .  

C. Actions 

The multimedia system takes different processing actions depending on the state of each 

layer. The actions at each layer can be classified into two types [3]: 

1. External actions impact the state transition of the layer that takes the external action. (See 

Sections III.B and III.C for examples of external actions at the OS and APP layers, which are 

also illustrated in Fig. 1.) The external actions at layer l  are denoted by l la ∈ A , where lA  is 

a finite set of the possible external actions at layer l . The aggregation of the external actions 

across all of the layers is denoted by 1[ , , ]La a∈ ∈ A…a , where 1
L
l l== × AA . 

2. Internal actions determine the Quality of Service (QoS) provided to the upper layers and the 

state transition at layer L . (See Section II.F for our definition of QoS, and Section III.A and 

Fig. 1 for an example of internal actions at the HW layer.) The internal actions at layer l  are 

denoted by l lb ∈ B , where lB  is a finite set of the possible external actions at layer l . The 

aggregation of the internal actions across all of the layers is denoted by 1[ , , ]Lb b∈ ∈ B…b , 

where 1
L
l l== × BB . 
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The action at layer l  is the aggregation of the external and internal actions, denoted by 

,l l l la bξ  = ∈  
X , where l l l= ×X A B . Finally, the joint action of the system is denoted by 

[ ]1 1,..., L
L l lξ ξ == ∈ = × XXξ . 

We note that some layers may have non-adaptive (i.e. fixed) external and internal actions. If 

the l th layer’s external or internal action is non-adaptive, then 1l =A  or 1l =B , respectively. 

Illustrative examples of external and internal actions are provided in Section III and in Fig. 1. 

D. State Transition Probabilities 

We assume that the state transition in each layer is synchronized and operates at the same 

time scale, such that the transition can be discretized into stages during which the multimedia 

system has constant state and performs a single joint-action. The length of each stage does not 

need to be constant. For instance, in our H.264/AVC video encoding example, the length of each 

stage is the duration of time between encoding successive data-units (DUs) such as video 

macroblocks or frames. We use a superscript n  to denote stage n  (i.e. the stage in which we 

make the encoding decision for DU n ). For notational simplicity, we omit the superscript n  

when no confusion will arise. 

In general, because states are Markovian, the state transition of the system only depends on 

the current state s , the current joint action, and the environmental dynamics. The corresponding 

transition probability is denoted by ( )| ,p ′s s ξ , where ns = s  and 1n+′s = s  (n ∈ � ). 

 The state transition probability can be factored to reflect the dependencies in the layered 

system architecture. First, using Bayes’ rule, the transition probability can be factored as  

 ( ) ( )1 -1
1

| , | , ,
L

l l

l

p p s →
=

′ ′ ′= ∏s s s sξ ξ , (1) 

where [ ]1 1,...,l ls s→′ ′ ′=s  and 1 0→′ = 0s  is an empty state. In this paper, we assume that the next state 

                                                                                                                                                                                           
1 We investigate the validity of this assumption for a realistic multimedia system in Section VI.C. 
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of layer l , ls ′ , is statistically independent of the next state of the lower layers, 1 -1l→′s , conditioned 

on the current state. Hence, we can rewrite (1) as 

 ( ) ( )
1

| , | ,
L

l

l

p p s
=

′ ′= ∏s s sξ ξ  (2) 

Second, due to the layered architecture and the definitions of the internal and external actions as 

illustrated in Fig. 1, (2) can be factored further as follows: 

 ( ) ( ) ( )
1

1

| , | , , | ,
L

L L l l l

l

p p s a p s s a

−

=

′ ′ ′= ∏s s s bξ . (3) 

We would like to make the following remarks about (3): 

• The term ( )
1

1

| ,
L

l l l

l

p s s a

−

=

′∏  in (3) is taken from the first 1L −  layers in (2). Since the state-

transition at layer {1, , 1}l L∈ −…  only depends on its own external action la  and state ls , 

these replace the joint state s  and joint mixed action ξ  in (2). The state transitions at the HW 

and OS layers illustrated in Fig. 1 reflect this model. 

• The term ( )| , ,L Lp s a′ s b  in (3) is taken from layer L  in (2). The state transition at layer L  

depends on the joint state s , its own external action La , and the joint internal action b . In 

other words, the state transition at the application layer depends on the states and internal 

actions of all of the layers, which serve the application at layer L . This is illustrated in Fig. 

1, except that the states and internal actions at the lower layers are abstracted by the QoS 

values, which we discuss in Section II.F. 

• If the l th layer’s state is constant (i.e. 1l =S ), then its state transition probability 

( | , ) 1l l lp s s a′ = . On the other hand, if the l th layer’s external action is non-adaptive (i.e. 

1l =A ), then its state transition probability ( | , ) ( | )l l l l lp s s a p s s′ ′= . This means that the state 

transition is governed solely by the environment. 

Illustrative examples of state transition probabilities are provided in Section III. 
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E. Reward Function and Layer Costs 

Performing the external and internal actions at layer l  incurs the costs ( ),l l ls aα  and 

( ),l l ls bβ , respectively. We define example cost functions for each layer in Section III (e.g. the 

power consumed at the HW layer and mean squared error at the APP layer). 

We assume that the expected reward for taking joint action ξ  in state s  is a weighted sum of 

the costs at each layer plus an additional gain (we define an example gain function in Section 

III), i.e. 

 ( ) ( ) ( ) ( )
1 1

, , , ,
L L

a b
l l l l l l l l

l l

R g s a s bω α ω β
= =

= − −∑ ∑s s bξ  (4) 

where ( ),g s b  is the expected gain, and a
lω  and b

lω  weight the external and internal costs at layer 

l , respectively. We assume that the weights a
lω  and b

lω  are known and have been determined 

based on the desired tradeoff among the various layer costs. The reward in Eq. (4) can be 

separated into two parts: one is the internal reward, which depends on the internal actions, and 

the other is the external reward, which depends on the external actions. The internal reward is  

 ( ) ( ) ( )in
1

, , ,
L

b
l l l l

l

R g s bω β
=

= − ∑s b s b , (5) 

and the external reward is  

 ( ) ( )ex
1

, ,
L

a
l l l l

l

R s aω α
=

= −∑s a . (6) 

Hence, the total reward is ( ) ( ) ( )in ex, , ,R R R= +s s b s aξ . 

F. Quality of Service 

Definition: Quality of Service (QoS). The QoS at layer l  is defined as a pair ( , )l l lQ ν η=  

comprised of (i) the amount of reserved resources for the application layer, denoted by lν , and 

(ii) the immediate cost for reserving those resources, denoted by lη . 

The QoS serves as an abstraction of the states and internal actions at the lower layers such 

that they do not have to directly reveal their parameters and available configurations to the upper 
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layers. In this paper, lν  is the effective service rate in cycles per second reserved for the 

application layer (i.e. layer L ) and ( ),l l l ll l
s bη β ′ ′ ′′≤

= ∑  is the cumulative internal action cost2 

incurred by layers {1, , }l l′ ∈ … . Importantly, the QoS at layer l  can be recursively computed 

given the QoS at layer 1l − : 

 
( )

( )

1 1( , , ), ( , , ) , 2, ,

( , ), ( , ) , 1

ll

ll

l l l l l ll l

l

l l l ll l

F s b Q F s b Q l L
Q

F s b F s b l

ην

ην

− − == 
 =

…
 

where l

lF ν  and l

lF
η  are functions, which map the state ls , internal action lb , and QoS 1lQ −  to the 

service rate lν  and cost lη , respectively. Because the QoS can be recursively computed, at no 

point do the upper layers require specific information about the state sets and internal action sets 

at the lower layers. For notational simplicity, we will write the recursive QoS function compactly 

as 1( , , )l l l l lQ F s b Q −=
�

. In Sections III.A, III.B, and III.C we define illustrative QoS pairs for the 

HW, OS, and APP layers, respectively. These are also illustrated in Fig. 1. 

Given the QoS provided by the lower layers, we can rewrite the L th layer’s transition 

probability function ( )| , ,L Lp s a′ s b  in (3) as 

 ( ) ( )| , , | , ,L L L L L Lp s a p s s a Q′ ′=s b , (7) 

and its internal reward function ( )in ,R s b  in (5) as 

 ( ) ( )in in, ,L LR R s Q=s b . (8) 
In other words, there is a one-to-one correspondence between the L th layer’s QoS and the states 

1 1 1 1( , , )L Ls s→ − −= …s  and internal actions 1 1( , , )L Lb b→ = …b . Hence, the L th layer’s QoS provides 

all of the information required for the L th layer to determine its transition probability function 

and internal reward. The relationships in (7) and (8) are required for the layered optimization 

solution proposed in Section V.  

 
2 We include the internal cost in the QoS because the APP layer’s immediate reward and state transition depend on the internal actions at the 

lower layers. Hence, when the application selects the optimal QoS level, it must consider the costs incurred by these layers to ensure optimal 
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G. Foresighted decision making 

Unlike traditional cross-layer optimization, which focuses on the myopic (i.e. immediate) 

utility, the goal in the proposed cross-layer framework is to find the optimal actions at each stage 

that maximize the expected discounted sum of future rewards, i.e. 

 ( ) ( )0 0

0

, |n n n n n

n n

E Rγ

∞
−

=

    
   
∑ s sξ , (9) 

where the parameter γ  (0 1γ≤ < ) is the “discount factor,” which defines the relative 

importance of present and future rewards, ( )0, |n n nR s sξ  is the reward at stage n  conditioned on 

the state at stage 0n  being 0ns , and the expectation is taken over the states 

0 0{ : 1, 2, }n n n n= + + …s . We refer to decisions that maximize (9) as foresighted cross-layer 

decisions because, by maximizing the cumulative discounted reward, the multimedia system is 

able to take into account the impact of the current actions on the future reward. In Section VI.B, 

we discuss the impact of the discount factor on system’s performance. In Section IV, we describe 

how to maximize (9) using a centralized MDP. Then, in Section V, we present an alternative 

solution to the same problem based on a layered MDP. 

III.  ILLUSTRATIVE EXAMPLE 
In this section, we provide concrete examples of states, internal and external actions, state 

transition probabilities, cost functions, and QoS pairs. Our examples are organized by layer, 

starting with the HW layer and working up to the APP layer. Throughout the illustrative 

examples in this paper, we assume that 3L =  and that the HW, OS, and APP layers correspond 

to layers 1, 2, and 3, respectively. To facilitate understanding of our examples, we will use the 

subscripts HW , OS , and APP , instead of only specifying the layers by their indices. 

We note that if a layer’s state is constant, then it has a non-adaptive external action because 

                                                                                                                                                                                           
performance across all layers. In contrast, the external cost is determined by each individual layer when it selects its external action, which does 
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there is nothing it can to do adapt its constant state. We also assume that there is no cost 

associated with a non-adaptive external action or a non-adaptive internal action. 

A. HW Layer Examples 

We assume that the HW layer’s processor can be operated at different frequency-voltage 

pairs to make energy-delay tradeoffs [4].  

HW state: In this example, the HW layer has a constant state (i.e. HW 1=S ).  

HW actions: We let the HW layer’s internal action, HW HWb ∈ B , set the processor to one of 

X  frequencies, i.e. HW 1{ , , }Xf f=B … . We denote the frequency used for processing the n th DU 

as HW( ) nf n b= . This is an internal action because it determines the HW layer’s QoS, which is 

defined below.  

HW state transition: Since the HW layer has only one state, it has a deterministic state 

transition, i.e. ( )HW HW HW| , 1p s s a′ = . 

HW costs: The HW layer’s internal cost is the amount of power required for it to run at 

frequency HWf b= . We define the HW layer’s internal cost as [5]: 

 ( ) 3
HW APP APP,s a fβ = . (10) 

HW QoS: We define the quality of service (QoS) that the HW layer provides to the OS layer 

as the pair HW HW HW( , )Q ν η= , where HW fν =  is the CPU frequency and ( )HW HW APP APP,s aη β=  

is the HW layer’s internal cost. The HW layer’s QoS is shown on the right hand side of Fig. 1. 

B. OS Layer Examples 

OS state: We denote the OS state by OS OSs ∈ S . We let OS ( )ns nε= , where ( ) (0,1]nε ∈  is the 

CPU time fraction that the OS reserves for encoding the n th DU (hence, 1 ( )nε−  is reserved for 

other applications). We assume that the OS can be in any one of M  states such that 

                                                                                                                                                                                           
not impact the immediate reward at the APP layer. Therefore, the external costs do not need to be included in the QoS.  
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OS OS 1{ , , }Ms ε ε∈ =S … . 

OS actions: In this example, the OS has a non-adaptive internal action (i.e. OS 1=B ) 

because we assume that the OS has no actions that impact the immediate reward (or, by 

extension, the immediate QoS) at the APP layer. The OS layer’s external action at stage n , 

however, impacts the amount of resources reserved for the application in stage 1n + . We 

assume that the weighted max-min fairness (WMM) [7] resource allocation strategy is used to 

divide processor time among the competing applications. Hence, the OS layer’s external action 

is a declaration of the application’s weight φ . We assume that there are W  possible external 

actions: i.e., OS OS 1{ , , }Wa φ φ∈ =A … . 

OS state transition: We model the OS state transition as a finite-state Markov chain with 

transition probabilities OS OS OS( | , )p s s a′ , with  OS OS OS,s s ′ ∈ S  and OS OSa ∈ A . This is similar to the 

Markov model of the service provider in [9]. If we assume that the weights of other applications 

are unknown when the OS layer’s external action is selected, then its state transition is non-

deterministic; On the other hand, if the weights of other tasks are known when the OS layer’s 

external action is selected, then its state transition is deterministic, because it can directly 

calculate its resource allocation for each weight. 

OS costs: We define the external cost associated with the OS layer as the application’s 

weight, hence 

 ( )OS OS OS OS,s b bα φ= = . 
This cost prevents the application from requesting excessive resources when it stands to gain 

very little additional reward from them. 

OS QoS: We define the QoS that the OS layer provides to the APP layer as the pair 

OS OS OS( , )Q ν η= , where OS fν ε= , ε  is the CPU time fraction allocated to the application, f  is 
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the CPU frequency, and OS HWη η=  because there are no internal costs incurred at the OS layer. 

The OS layer’s QoS is illustrated on the right hand side of Fig. 1. 

C. APP Layer Examples 

APP state: The APP layer’s state at time index n , APP
ns , is equivalent to the number of DUs 

max( ) [0, ]nρ ρ∈ , maxρ ∈ �  in its post-encoding buffer. The post-encoding buffer is placed between 

the encoder and the network (if the encoded video is to be streamed), or between the encoder and 

a storage device (if the encoded video is to be stored for later use). The buffer allows us to 

mitigate hard real-time deadlines by introducing a maximum allowable latency, which is 

proportional to the maximum buffer size maxρ . In [10], a similar buffer is used at the decoder for 

decoding video frames with high peak complexity requirements in real-time. 

Although one goal of our illustrative cross-layer optimization problem is to minimize costs 

(e.g. power consumption at the HW layer), a competing goal is to avoid buffer underflow (caused 

by DUs missing their delay deadlines) and to avoid buffer overflow (caused by DUs being 

encoded too quickly) [10] [11]. Hence, the goal of the cross-layer optimization is for all layers to 

cooperatively adapt in order to achieve the optimal balance between the costs incurred at each 

layer and the buffer occupancy. We note that an alternative buffer model (referred to as a service 

queue model) is presented in [9]. 

APP actions: We assume that the APP layer has a non-adaptive internal action (i.e. 

APP 1=B ) but that it has external actions APP APPa ∈ A
3. In a typical video encoder, for example, 

application configurations can include the choice of quantization parameter, the motion-vector 

search range, etc. The application’s configuration affects the n th DU’s encoding complexity 

APP( , )c n a , which is an instance of the random variable C  with distribution.  
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APP APP( ) ( | )aC p c p c a=∼  (11) 

APP state transition: We define the actual post-encoding buffer occupancy recursively as 

 
 { }{ }max

OS APP

initial

( 1) min max ( ) 1 ( , , , ) , 0 ,

(0) ,

n n t n s a vρ ρ ρ

ρ ρ

+ = + − ⋅

=

b
 (12) 

where 

 APP
OS APP

( , )
( , , , )  (seconds)

( ) ( )

c n a
t n s a

n f nε
=b  (13) 

is the n th DU’s processing delay, which depends on the processor frequency ( )f n  and the 

fraction of time, OS ( )ns nε= , allocated to the application at stage n . In (12), the 1  indicates that 

DU( )n  is added into the post-encoding buffer after the processing delay OS APP( , , , )t n s a b ;  X  takes 

the integer part of X ; v  is the average number of DUs that must be processed per second (for 

example, if DUs are frames, then the service rate required for real-time encoding is typically 

30v =  frames per second); and, initialρ  is the initial post-encoding buffer occupancy, which we 

set to initial max 2ρ ρ=  so that we do not initially bias the buffer toward overflow or underflow. 

As described before, the DU’s encoding complexity is a random variable, which depends on 

the application’s external action (i.e. encoding parameter selection). This causes uncertainty in 

the buffer state transition. This state transition also depends on the states and internal actions at 

the lower layers (since they affect the CPU frequency f  and the CPU time fraction ε  reserved 

for the application). Hence, the APP state transition probability is given by ( )APP APP| , ,p s a′ s b , 

which is congruent with the first term on the right hand side of (3).  

Given the processor frequency f  from the HW layer and the time fraction ε  from the OS 

layer, the n th DU’s processing delay t  is an instance of the random variable C
T

fε
=  (seconds) 

with distribution ( )
APP APP

( )a aT p t f p f cε ε= ⋅ ⋅∼ .  Finally, we let T v T= ⋅�  with distribution 

                                                                                                                                                                                           
3 We know from (3) that, unlike the other layers, the APP layer’s state transition depends on its external and internal actions. For our 
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( )APP APP

1
( )a a

t
T p t p

v v
= ⋅� �∼ . Using T� , the APP state transition probability can be written as  

 
{ }

{ }

{ }

APP

APP

APP

APP APP

max

max

( = | , , )

1 ,                          {0, , },  0

0 2 ,                         

1 2 ,  otherwise 

a

a

a

p s a

p t

p t

p t

ρ

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

′ ′

 ′ ≥ + ∈ = ′= ≤ < = =
 ′ ′− + ≤ < − +

� …

�

�

s b

 (14) 

APP costs: We penalize the APP’s external action by employing the Lagrangian cost 

measure used in the H.264/AVC reference encoder for making rate-distortion optimal mode 

decisions. Formally, we define this cost as 

 ( )APP APP APP APP rd APP, ( ) ( )s a d a r aα λ= + , (15) 
where APP( )d a  and APP( )r a  are the distortion (mean squared error) and compression rate 

(bits/DU), respectively, incurred by the application’s external action, and rd [0, )λ ∈ ∞  is used to 

weight the relative importance of the distortion d  and the rate r  in the overall cost. 

APP QoS: We define the QoS at the APP layer as the pair APP APP APP( , )Q ν η= , where 

APP OSν ν=  and APP OSη η=  because there are no internal costs incurred at the APP layer. Hence, 

in this example, APP OSQ Q= . The APP layer’s QoS is illustrated on the right hand side of Fig. 1. 

D. The System Reward 

Recall that the reward defined in (4) can be expressed as ( ) ( ) ( )in ex, , ,R R R= +s s b s aξ . Given 

the system state HW OS APP( , , )s s s=s  and the joint action ( , )= a bξ , where HW OS APP( , , )a a a=a  and 

HW OS APP( , , )b b b=b , the internal reward defined in (5) can be written as  

 ( ) ( ) ( )
3

in HW HW HW HW, , ,b

f

R g s aω β= −
��������	�������


s b s b . (16) 

In this paper, we define the expected gain ( ),g s b  as a penalty for buffer underflow and buffer 

overflow.  The gain is a component of the reward that is designed to keep the buffer state away 

from overflow and underflow. Formally, we define the expected gain as 

                                                                                                                                                                                           
application, this makes the distinction between the two types of actions at the APP layer largely inconsequential. 
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 ( ) ( )
APP

APP APP APP APP, , , ( | , , )
s

g g s s p s a
′ ∈

′ ′= ∑
S

s b b s b , (17) 

where we let 

 ( )

max
APP

APP
APP APP APP

max
APP

,                   if -

, , ,            if  

,   otherwise

s

s
g s s s

s

ρ

ρ

 ′Ω Λ ≤ ≤ Λ ′′ ′= Ω < Λ
 Λ ′ − Ω Λ

b  (18) 

with 0Ω >  and max0 2ρ≤ Λ < . This is a good metric to include in the  reward because it is 

indicative of  the quality degradation experienced by the application when encoded DUs are lost 

(due to buffer overflow) or when they miss their deadlines (due to buffer underflow). 

Lastly, the external reward defined in (6) can be written as 

 ( ) ( ) ( )

rd

ex APP APP APP APP OS OS OS OS, , ,a a

d r

R s a s a

λ φ

ω α ω α

+

= − −
��������	�������
 ������	�����


s a . (19)  

IV.  CENTRALIZED CROSS-LAYER OPTIMIZATION  
Some existing cross-layer optimization frameworks for systems [7] [8] [12]assume that there 

is a centralized coordinator to determine the actions taken by each layer. This coordinator 

usually resides at the OS layer or a middleware layer.  

In this section, we describe how to maximize (9) using a centralized MDP. Then, in Section 

V, we present an alternative solution to the same problem based on a layered MDP. 

A. Centralized Foresighted Decision Making Using a Markov Decision Process 

We model the foresighted centralized cross-layer optimization problem as a Markov decision 

process (MDP) with the objective of maximizing the discounted sum of future rewards defined 

in (9). In this way, we are able to consider the impact of the current actions on the future rewards 

in a rigorous and systematic manner. An MDP is defined as follows: 

Definition: Markov decision process (MDP). An MDP is a tuple ( , , , , )p R γS X  where S  is 

the joint state-space, X  is the joint action-space, p  is a transition probability function 
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: [0,1]p × ×S X S � , R  is a reward function :R ×S X � � , and γ  is a discount factor. 

In the context of our layered system architecture, 1
L
l l== × SS , 1

L
l l== × XX , the transition 

probability is given by (3), and the reward is given by (4). The solutions to the centralized MDP 

described below and the layered solution described in Section V are implemented offline, prior 

to the execution of the application. Additionally, the two solutions assume that S , X , p  and R  

are all known a priori and that they do not change during the execution of the application. In 

Section VI.C, we discuss the impact of an inaccurate probability transition model p  on the 

system’s performance.  

In this paper, the goal of the MDP is to find a Markov policy π , which maximizes the 

discounted sum of future rewards. A Markov policy π ∈ Π  is a mapping from a state to an 

action, i.e. :π S X� . Π  is the Markov policy space. The policy can be decomposed into 

external and internal policies, i.e. :aπ S A�  and :bπ S B� , respectively; and, further 

decomposed into layered external and internal policies, i.e. :a
l lπ AS �  and :b

l lπ BS � , 

respectively. We assume that the Markov policy is stationary, hence the mapping of state to 

action does not depend on the stage index n . 

A commonly used metric for evaluating a policy π  is the state-value function V π  [2], where 

 ( )
current expected reward

expected future rewards

( ) ( , ( )) | , ( ) ( )V R p Vπ ππ γ π
′∈

′ ′= + ∑
S

����	���

������������	�����������
s

s s s s s s s . (20) 

In words, ( )V π s  is equal to the current expected reward plus the expected future rewards, which 

is calculated by assuming that the policy π  is followed until stage n → ∞ .  

Our objective is to determine the optimal policy π∗ , which maximizes (20) for all s  (or, 

equivalently, maximizes (9) for all 0ns ). The optimal state-value function is defined as 

 { }( ) max ( )V V π
π

∗

∈Π
=s s , ∀ ∈ Ss , (21) 
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and the optimal policy π∗  is defined as 

 { }( ) argmax ( ) ,V π

π

π∗

∈Π
=s s  ∀ ∈ Ss . (22) 

The optimal value function V ∗  and the corresponding optimal policy π∗  can be iteratively 

computed using a technique called value iteration (VI) [2] as follows: 

 ( ) 1( ) max ( , ) | , ( ) ,k kV R p Vγ∗ ∗
−

∈ ′∈

   ′ ′= + 
   

∑
S

Xξ
ξ ξ

s

s s s s s  (23) 

where k  is the iteration number and 0 ( )V ∗ s  is an arbitrary initial estimate of the state-value 

function. The optimal stationary policy π∗  defined in (22) is obtained by iterating until k → ∞ . 

In practice, VI requires only a few iterations before converging to a near optimal state-value 

function and policy. Importantly, V ∗  and π∗  are computed offline; then, at run-time, all that is 

required to perform optimally is to follow the optimal state-to-action mappings π∗  stored in a 

simple look-up table of size S . 

B. Centralized Cross-Layer System 
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Fig. 2. Centralized cross-layer system optimization framework. The portions of the figure that are in bold 
comprise the centralized information exchange process. If the dynamics are stationary, then steps 1 and 2 
only need to happen once. 

The centralized foresighted framework introduced in the previous subsection requires each 

layer to convey the following information tuples to the centralized optimizer: 
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( ) ( ) ( )

( ) ( ) ( )

,  ,  |, , , ,  , ,  , ,  for layer 

,  ,  |, , ,  , ,  , ,  for layers .

L L L L L L L L L L

l

l l l l l l l l l l l

p s a s a s b L

p s s a s a s b l L

α β

α β

′= 
 ′ <

S X

S X
I

s b
 

Fig. 2 summarizes the centralized foresighted cross-layer framework.  

There are several limitations to this centralized framework, which we have already described 

in the introduction (Section I). In summary, these limitations stem from steps 1 and 2 of the 

procedure described above because these steps require the layers to expose their parameters and 

algorithms, and to relinquish their decision making processes, to a centralized entity, thereby 

violating the layered system architecture. 

V. LAYERED OPTIMIZATION  
To overcome the shortcomings of the centralized solution, we propose a layered optimization 

framework for maximizing the same objective function (i.e. the discounted sum of future 

rewards in (9)). The proposed layered framework allows layers to make optimal autonomous 

decisions with only a small overhead for exchanging messages between them. Importantly, the 

format of these messages is independent of the parameters, configurations, and algorithms at 

each layer, which makes the framework adaptable to different applications, operating systems, 

and hardware architectures. Fig. 3 illustrates the layered framework. The flow of information in 

Fig. 3 is the same as in Fig. 2 except that steps 1 and 2 are replaced by the layered optimizer, 

which we describe in detail in Section V.B, and the states and internal actions at the lower layers 

determine the QoS to the upper layers as we described in Section II.F. 
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Fig. 3. Layered cross-layer system optimization framework with message exchanges. 

A. Layered MDP for Cross-layer Decision Making 

Definition: Layered MDP [3]. The layered MDP model is defined by the tuple 

1
, 1 1 , 1 2,  ,  ,  { } ,  { } ,  ,  ,  L L
l l l l l l p R γ−

+ = − =Θ ΘL S X , where {1, , }L=L …  is a set of L  layers; S  is a finite 

set of states with elements 1( , , )Ls s= ∈ S…s ; X  is a finite action space with elements 

1( , , )Lξ ξ= ∈ X…ξ , where ( , )l l la bξ =  contains the l th layer’s external action la  and internal 

action lb ; , 1l l+Θ  is a set of “upward messages,” which layer l  can send to layer 1l +  

( {1, , 1}l L∈ −… ), and , 1 , 1l l l lθ + +∈ Θ  is one such message; , 1l l−Θ  is a set of “downward messages,” 

which layer l  can send to layer 1l −  ( {2, , }l L∈ … ), and , 1 , 1l l l lθ − −∈ Θ  is one such message; p  is a 

transition probability function : [0,1]p × ×S X S � ; R  is a reward function :R ×S X � � ; 

and, γ  is the discount factor. 

B. Layered Value Iteration 

In this subsection, we describe the proposed offline algorithm for evaluating the optimal 

state-value function V ∗  (see (21)) and the corresponding optimal policy π∗  (see (22)) without a 

centralized optimizer. This is done using an algorithm called layered value iteration (layered VI) 

[3], which is illustrated in Fig. 4. 
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{ }1, , 1( )l l k l lVθ ∗
+ →′= s  

{ }, 1 , 1 1 1( )L L k L LVθ ∗
− − → −′= s  

. . . 
{ }2,1 ,1 1( )kV sθ ∗ ′=  
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− − → −′= s  

Sub-value Iter. (layer L ) 

{ }( )kV ∗ s  
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(b) Layered value iteration (a) QoS Generation 
 

 
Fig. 4. Layered VI with upward and downward messages. (a) During an initial QoS generation period, 
upward messages are used to tell the application layer which QoS levels are supported in each system state. 
The set of QoS levels at layer L  is required to perform layered VI. (b) Downward messages are generated in 
every iteration of the layered VI algorithm. 

Before layered VI can be performed, layer L  needs to know which QoS levels are supported 

by the lower layers for all system states ∈ Ss . This is achieved through a message exchange 

process in which upward messages , 1 , 1l l l lθ + +∈ Θ  are sent from layer l  to layer 1l +  for all 

{1, , 1}l L∈ −… . The contents of these upward messages are QoS sets defined as  

 { }1 1 1 1 1 1 1( ) ( , , ), , ( , ),  l l l l l l l l lQ Q F s b Q Q F s b b ,…, b−= = = ∀ ∈ ∀ ∈B BQ
� �

…s , ∀ ∈ Ss , 

where the QoS lQ  and the QoS mapping function 1( , , )l l l lF s b Q −

�
 are defined in Section II.F. Fig. 

4(a) illustrates the QoS generation period that immediately precedes layered VI. During this 

period, each layer {1, , 1}l L∈ −… , starting from layer 1l = , generates its QoS set for all ∈ Ss  

and sends its upward messages { }, 1 ( )l l lθ + = Q s  to layer 1l +  (e.g. the HW layer tells the OS layer 

its available frequency and power combinations). We let the notation { }( )lQ s  denote the set of 

QoS values for all ∈ Ss . After the L th layer’s set of QoS levels ( )LQ s  is generated, the layered 

VI algorithm illustrated in Fig. 4(b) begins. 

We derive the layered VI algorithm by substituting the factored transition probability 

function and the factored reward function defined in (3) and (4), respectively, into the centralized 
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VI algorithm defined in (23): i.e.,  

 

( ) ( ) ( )

( ) ( )

1 1

1

1
1

, , ,

( ) max .

| , , | , ( )

L L
a b
l l l l l l l l

l l
k L

L L l l l k

l

g s a s b

V

p s a p s s a V

ω α ω β

γ

= =∗
−∈

∗
−

′ =∈

   − − +    =  
  ′ ′ ′     

∑ ∑

∑ ∏
S

X

s

s b

s

s b s
ξ

 (24) 

Recall from (7) and (8) in Section II.F that the internal reward and the transition probability 

function at layer L  can be expressed using the QoS from the lower layers, which is known by 

layer L  because of the upward messages. The QoS based expressions allow us to change the 

optimization variables in (24) from the joint actions ∈ Xξ  to ∈ Aa  and ( )L LQ ∈Q s . Hence, we 

can rewrite (24) as: 

 

( )

( ) ( )
1 1

1 1

in
1

1,

( ) 1
1

( , ) ,

( ) max ,

| , | , , ( )
L L

L L

L L

L
a

L L l l l l

l
k L

Q l l l L L L L k

l

R s Q s a

V

p s s a p s s a Q V

ω α

γ
→ →

→ →

=∗
−∈

∗∈ −
′ =∈

   − +    =  
  ′ ′ ′     

∑

∑ ∏
A

Q

S

a

s

s

s

s

 (25) 

where we have written the next-state vector ′ ∈ Ss  as 1 1 1=( , , )L L L→ →′ ′ ′ ∈ S…s s s  and the joint 

external action vector ∈ Aa  as 1 1 1=( , , )L L La a→ →∈ A…a .  

We observe that ( )in( , ) ,a
L L L L L LR s Q s aω α−  is independent of the next-states 1 1 1 1L L→ − → −′ ∈ Ss  

and that  ( )
1 1 1 1

1

1

| , 1
L- L-

L

l l l

l

p s s a

→ →

−

′ =∈

′ =∑ ∏
Ss

, therefore, we can move ( )in( , ) ,a
L L L L L LR s Q s aω α−  into 

the product term as follows: 

( )

( )
( )

( )
1 1 1 1

1

1

in1

, 11

Sub-value iteration at layer 

,

( , ) ,( ) max
| , max | , , ( )

L L

L L

L L L L

L
a
l l l l

l

a
L L L L L LL

k

l l l
L L L L kl

Q

L

s a

R s Q s a
V

p s s a
p s s a Q V

ω α

ω α

γ
→ − → −

−

=

∗ −

∈
∗

∈ −=
′∈ ∈

− +

 − + =   ′  ′ ′    

∑

∏ ∑A

S

A

Q
�������������������	������ 


a

a

s

s

s
1 1 1 1

,

L L→ − → −′ ∈

         
 
         

∑
S

������������
s

(26) 

where we have also moved the maximization over the external action set and QoS set at layer L  

inside the product term because the other terms are independent of these parameters. The right-

hand term of (26) is the sub-value iteration (sub-VI) at layer L , the result of which we denote by 
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1 1 1( )k L-V ∗
− →′s  for all 1 1 1 1L L→ − → −′ ∈ Ss :  

Sub-value iteration at layer L : 

 
( )

( )

in

1 1 1
, 1

( , ) ,

( ) max | , , ( )
L L

L L L L

a
L L L L L L

k L-
L L L L k

Q

R s Q s a

V
p s s a Q V

ω α

γ
∗

∗− →
∈ −

′∈ ∈

 − +   ′ =  ′ ′    
∑A

SQ

a

s

s
s

. (27)  

The sub-VI at layer L  determines the optimal internal actions at every layer (by selecting the 

optimal QoS). The external actions, however, are determined by each individual layer based on 

local models of their dynamics (i.e. transition probability functions and reward functions). 

We observe that ( ),a
l l l ls aω α−  is independent of the next-states 1 1 1 1l l→ − → −′ ∈ Ss  and that 

( )
1 1 1 1

1

1( )

| , 1
l - l -

l

l l l

l

p s s a

→ →

−

′ =∈

′ =∑ ∏
Ss

. Hence, similar to how we obtained (27) from (25), the sub-VI at 

layers 2, , 1l L= −…  for all 1 1 1 1l l→ − → −′ ∈ Ss  can be performed as follows: 

Sub-value iteration at layer 2, , 1l L= −… : 

 ( ) ( )1 1 1 1 1
 

( ) max , | , ( )
l l

l l

a
k l - l l l l l l l k lV s a p s s a Vω α γ∗ ∗

− → − →
∈ ′∈

   ′ ′ ′= − + 
   

∑
A

S
a

s

s s , (28) 

where 1 1( )k lV ∗
− →′s  (on the right hand side) is the result of the sub-VI at layer 1l +  for all 

1 1l l→ →′ ∈ Ss , which is sent as a downward message from layer 1l +  to layer l , i.e. 

{ }1, 1 1( )l l k lVθ ∗
+ − →′= s . 

Finally, the sub-VI at layer 1l =  is performed as follows: 

Sub-value iteration at layer 1 : 

 ( ) ( )
1 1

1 1

1 1 1 1 1 1 1 1 1
 

( ) max , | , ( )a
k kV s a p s s a V sω α γ∗ ∗

−
∈ ′∈

   ′ ′= − + 
   

∑
A

S
a

s

s , (29) 

where { }2,1 1 1( )kV sθ ∗
− ′=  and ( )kV ∗ s  becomes the input to the sub-VI at layer L  during iteration 

1k + . 

We note that performing L  sub-VIs (i.e. one for each layer) during one iteration of layered 
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VI is equivalent to one iteration of centralized VI. After performing layered VI, we obtain the 

state-value function, kV ∗ , which will converge to the optimal state-value function V ∗  as k → ∞ . 

Subsequently, the optimal layered external and internal policies (i.e. a
lπ

∗  and b
lπ

∗ , respectively) 

can be found using (22), and can be stored in a look-up table at each layer to determine the 

optimal state-to-action mappings at run-time. 

C. Complexity of Layered Value Iteration 

It is well known that one iteration of the centralized VI algorithm has complexity 

2( )O S X . In our layered setting, 1
L
l l== × SS�  is the state set and ( )1 1

L L
l l l l l= == × = × ×X A BX  

is the action set, which is comprised of external and internal action sets at each layer. Based on 

these definitions, 
1

L

l

l =

= ∏ SS �  and ( )
1 1

L L

l l l

l l= =

= = ×∏ ∏X A BX . 

In order to evaluate the complexity of the layered value iteration procedure, we must first 

look at the complexity of each sub-VI.  

The sub-VI at layer L  defined in (27) has complexity 

 
1 1

2

1 1

L

L L

L L L L Ll l
l l

Comp O O

− −

′ ′
′ ′= =

       = =          

∏ ∏S S A A B

Q

S Q S

������

. (30) 

The sub-VIs at layers {2, , 1}l L∈ −…  defined in (28) have complexity 

 
1

1

l

l l ll
l

Comp O

−

′
′=

  =    
∏S S AS . (31) 

Finally, the sub-VI at layer 1 defined in (29) has complexity 

 ( )1 1 1Comp O= S AS . (32) 
Hence, the total complexity of one iteration of the layered VI algorithm can be expressed as 

 
1

L

l

l

Comp Comp
=

= ∑ . (33) 

We compare the centralized VI and layered VI complexities in Table I assuming that states and 
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actions are as defined in Table II.  

Table  I. Complexity of centralized value iteration and layered value iteration. 
Layer No. States No. External Actions No. Internal Actions 

1 (Hardware) 1 1 3 
2 (Operating System) 3 2 1 

3 (Application) 29 3 1 

Centralized VI 
Complexity 2

2

(29 3) (3 3 2)

( ) 136242O

⋅ ⋅ ⋅ ⋅

=S X
����	���


  

Layered VI 
Complexity 

3

2

2
2

1 1 2 1 2 3
1(29 3) 1 1 (29 3) 3 1 2

(29 3) 3 3 1

87 522 68121

68730

l
l

O O O ′
′=⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

                + + = + +                 

=

∏S A S S A A B

Q

S S S

������

�����	����
 �������	������

��������	�������


 

VI.  RESULTS 
In this section, we test the performance of the proposed framework using the illustrative 

cross-layer system described in Section III. Table II details the parameters used at each layer in 

our simulator, which we implemented in MATLAB. In our simulations, we use actual video 

encoder trace data, which we obtained by profiling the H.264 JM Reference Encoder (version 

13.2) on a Dell Pentium IV computer. Our traces comprise measurements of the encoded bit-rate 

(bits/MB), reconstructed distortion (MSE), and encoding complexity (cycles) for each video MB 

of the Foreman sequence (30 Hz, CIF resolution, quantization parameter 24) under three 

different encoding configurations. The chosen encoding parameters are listed in Table II. We let 

one DU comprise 11 aggregated MBs, and we let each simulation comprise encoding 20000 such 

DUs. Since real-time encoding is not possible with the selected encoding parameters, we set the 

buffer drain rate to 32/11v =  (DUs/sec).  

We note that the illustrative results presented here depend heavily on the simulation 

parameters defined in Table II. Nevertheless, our most important observations are about the 

fundamental properties of the proposed framework, which are independent of the chosen 

example. 
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Table II. Simulation parameters used for each layer. 
Layer Parameter Value 

Buffer State max
APP {0, , }ρ=S … , max 28ρ =  (DUs) 

Parameter Configuration 

APP {1,2, 3}=A  

APP 1a = : Quarter-pel MV, 8x8 block ME 

APP 2a = : Full-pel MV, 8x8 block ME 

APP 3a = : Full-pel MV, 16x16 block ME 

Gain parameters 40Ω = , 4Λ =  

External Cost Weight APP 1aω =  

Rate-distortion Lagrangian rd 1/128λ =  

Buffer drain rate 32/11v =  (DUs/sec) 

Application 
Layer 

 
(APP) 

DU size 11 Macroblocks 

Resource Allocation State OS {0.80,0.55, 0.35}=S  

Resource Allocation Weight OS {1, 3}=A  
Operating 

System Layer 
(OS) External Cost Weight OS 1aω =  

State Constant 

Processor Frequency Actions HW {200,600,1000}=A  Mhz 
Hardware 

Layer 
(HW) Internal Cost Weight 27

HW 9 10bω −= ×  

A. Equivalence of Centralized and Layered Value Iteration 

Fig. 5 illustrates the state-value function obtained using layered and centralized VI with a 

discount factor of 0.9γ = . Both VI algorithms yield the same state-value function, so we only 

show one state-value function here. 
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Fig. 5. State-value function obtained from centralized VI and layered VI ( 0.9)γ = . 

B. Impact of the Discount Factor 

The discount factor γ  impacts the average system performance and also the number of 

iterations required for the centralized and layered VI algorithms to converge. Table III illustrates 

the impact of the discount factor on the average reward (defined as the sum of (16) and (19)) 
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achieved over five simulations of the centralized system and five simulations of the layered 

system. (Because the reward is very abstract, in Section VI.E we provide more detailed 

simulation results in a variety of simulation scenarios.) As expected, the results in Table III show 

that the centralized system and the layered system perform nearly identically. The small 

differences in the actual measured performance are due to random dynamics over the finite 

simulations (i.e. random resource allocations at the OS layer). We also observe that larger values 

of the discount factor improve the system’s performance; however, larger values also increase 

the number of iterations (centralized or layered) required to find the optimal foresighted decision 

policy. 

Table III. Impact of the discount factor on the average system reward. 
Discount 
Factor 
( γ ) 

Number 
of 

Iterations 

Avg. 
Reward 

(Centralized) 

Avg. 
Reward 

(Layered) 

0.00 2 1.67 1.35 
0.15 15 1.66 1.76 
0.30 23 6.24 6.50 
0.45 33 16.95 16.97 
0.60 51 17.63 17.60 
0.75 87 17.83 17.78 
0.90 227 17.93 17.92 

C. Impact of Model Inaccuracy on the System’s Performance 

Using the centralized MDP or the layered MDP requires good prediction of future events in 

order to predict the future performance of the system. In this paper, we have assumed: (i) we 

know the expected reward for every possible state and action, (ii) the probability transition 

functions can be characterized by stationary controlled Markov chains, and (iii) the stochastic 

matrices describing the probability transitions are known perfectly such that the optimal policy 

to the MDP can be computed offline. If we relax these assumptions, it becomes necessary to 

analyze the affect of model inaccuracy on the overall performance. In the following analysis, we 

assume that model inaccuracy is due to the fact that the system’s dynamics are not actually 

stationary and Markov. 
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If the state-transitions in the system are not truly stationary and Markov, then the expected 

reward predicted by the stationary Markov model will differ from the average reward that is 

actually achieved. We can quantify this model error as follows. We let ( )πµ s  denote the steady-

state probability of being in state s  when following policy π . Using ( )πµ s , we can compute the 

expected rewards that should be achieved if the system’s dynamics are truly stationary and 

Markov: 

 ( ) ( , ( ))R Rπ πµ π
∈

= ∑
Ss

s s s . (34) 

Now, consider an N -stage simulation of the system ( 0N � ), which traverses the sequence 

of states 0 1, , , N…s s s  when following policy π . The average reward obtained over this 

simulation can be written as: 

 
1

0

1
( ) ( , ( ))

N
n n

n

R N R
N

π π

−

=

= ∑ s s . (35) 

The absolute difference between the expected rewards and the N -stage average reward, 

( )R R Nπ π− , indicates how accurate the stationary Markov model is for the actual system. 

Large values of ( )R R Nπ π−  indicate that the stationary Markov model is inaccurate. 

Consider the following example in which we measure the impact of the model’s inaccuracy 

on the system’s performance. Fig. 6 illustrates the actual encoding complexity trace (for a fixed 

action) and the corresponding trace generated by a stationary model of the complexity trace. 

Clearly, the actual encoding complexity is not perfectly represented by the stationary model 

defined in (11). Because the actual complexity traffic is not stationary, the buffer transition 

model in (14) is not accurately represented as a stationary Markov chain. Nevertheless, the data 

in Table  IV shows us that the predicted reward (based on the stationary Markov model of the 

buffer) does not differ significantly from the actual reward that is achieved when simulating the 
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system over 20, 000N =  stages. 

Table  IV. Simulated ( 20, 000N =  stages) vs. predicted reward, PSNR, power, and resource allocation cost. 

 
Avg. 

Reward 

Avg. 
PSNR 
(dB) 

Avg. 
Power 
(W) 

Avg.  
Rsrc. Alloc. 

Cost 
Simulated 17.93 38.35 2.90 2.69 
Predicted  18.91 38.40 2.44 2.98 
Prediction 

error 0.98 0.05 0.46 0.29 
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Fig. 6. Actual complexity trace (top) vs. trace generated by a stationary model (bottom). The stationary 
model’s parameters are trained based on the actual complexity trace. 

D. Myopic and Foresighted Simulation Trace Comparison 

Fig. 7 shows detailed simulation traces of the APP actions, OS actions, HW actions, APP 

states, and OS states over time when a myopic decision policy is used ( 0γ = ) and when a 

foresighted decision policy is used ( 0.9γ = ). From these traces, it is clear why the myopic 

decision policy performs worse than the foresighted policy. We note that these traces are 

representative of the simulations with rewards shown in the first and last row of Table III. 

First, under the myopic policy, the application receives a smaller CPU time fraction on 

average. This is because the immediate reward is always maximized when the OS selects the 

lower resource allocation weight (i.e. 1φ = ); therefore, the OS layer will never use a higher 

weight to reserve increased CPU time in the future. Meanwhile, the foresighted policy is able to 
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see that it is less costly to request a higher future CPU time fraction than it is to immediately 

increase the processor frequency.  

Second, because the application receives a low fraction of the CPU time on average, the 

myopic policy selects the least complex, lowest quality, action (i.e. APP 3a = ) and the highest 

processor speed (i.e. 1000f =  Mhz) much more frequently than in the foresighted case. In 

addition, despite reducing the encoding complexity and boosting the processor speed, the APP 

buffer repeatedly underflows. All of these factors result in the myopic policy incurring excessive 

costs compared to the foresighted policy. 
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Fig. 7. Simulation traces from stage 1200 to 1400. (a) Simulation with myopic cross-layer optimization 
( 0γ = ). (b) Simulation with foresighted cross-layer optimization ( 0.9γ = ). 

E. Performance of Simplifications of the Proposed Framework 

In Fig. 8, we illustrate the scalability of the proposed cross-layer framework by comparing 

the performance of the full cross-layer design to several simplified system configurations, which 

are similar to those that have been proposed in prior research. In this way, we also show that our 
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proposed framework is a superset of existing work. Detailed information about the average peak-

signal-to-noise ratio (PSNR in dB), average power consumption, average resource allocation 

cost, and the average number of buffer overflows and underflows for each bar in Fig. 8 is shown 

in Table  V.  
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Fig. 8.  Comparison of the performance of different system configurations. 

 
Table  V. Detailed simulation results for each configuration. In each column of the table, the value obtained 
in the foresighted case is on the left and the value obtained in the myopic case is on the right. 

Configuration 
Avg. 

PSNR (dB) 
Avg. 

Power (W) 
Avg. Resource 
Allocation Cost 

Avg. 
No. Underflows 

Avg. 
No. Overflows 

ALL-adapt 38.35 31.27 2.90 3.67 2.69 1.00 0 5516 0 0 
OS-APP-adapt 36.30 36.29 9.00 9.00 1.07 1.00 0 0 810 813 
HW-APP-adapt 38.16 31.13 5.36 3.60 1.00 1.00 4 5467 0 0 
HW-OS-adapt 38.10 28.14 3.95 2.00 2.42 1.00 6 12874 0 0 

APP-adapt 36.31 36.29 9.00 9.00 1.00 1.00 0 0 800 803 
OS-adapt 34.05 32.85 9.00 9.00 1.09 1.00 2 1323 2201 2069 
HW-adapt 31.40 28.15 6.52 1.99 1.00 1.00 5359 12848 0 0 

 In the following paragraphs we describe each system configuration used to obtain the results in 

Fig. 8 and Table  V. For each of these configurations, the cross-layer system’s parameters are 

defined as in Table II except where specified.  

Configuration 1: ALL-adapt. Similar to [7] [8], every layer can adapt its action. As 

expected, this configuration achieves the highest reward out of all configurations when using a 

foresighted decision policy. Its myopic performance, however, is worse than several of the other 

configurations, which have the HW action fixed at 1000f =  Mhz. This initially seems 

counterintuitive because we would expect it to perform better given that it has more options 

available; however, this is only true if the best decisions are made given the additional options, 
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which is not the case with the myopic policy. Instead, the myopic policy frequently selects the 

lowest processor frequency in order to save on the immediate power costs; consequently, it is 

forced to aggressively encode at the highest processor frequency to avoid continually 

underflowing the application buffer. Due to the convexity of the power-frequency function (i.e. 

the HW internal cost), the average power consumed is higher than if it had just used the middle 

processor frequency more frequently (like the foresighted policy chooses to do). 

Configuration 2: OS-APP-adapt. Under this configuration, the OS and APP layers can adapt 

their actions, but the HW layer’s action is fixed at 1000f =  Mhz. We observe from Fig. 8 that 

this configuration’s myopic policy performs nearly as good as its foresighted policy. This is 

because the fixed high processor frequency provides the application with enough resources to 

meet most of its delay constraints (i.e. avoid buffer underflows). This configuration’s foresighted 

performance, however, is worse than that of the ALL-adapt configuration because a lot of power 

is wasted by using the high processor frequency throughout the duration of the simulation. 

Configuration 3: HW-APP-adapt. Similar to [5] [6], the HW and APP layers can adapt their 

actions, but the OS layer’s action is fixed at 1φ = . The foresighted performance of this 

configuration is better than the myopic performance of the ALL-adapt configuration, even 

though both configurations have a static resource allocation weight at the OS layer (i.e. 1φ = ). 

This is because the foresighted policies modestly increase the processor’s frequency and reduce 

the APP complexity before the buffer underflows. Meanwhile, the foresighted performance of 

this configuration is worse than that of the ALL-adapt configuration because it must use higher 

processor speeds (and therefore more power) to compensate for having a lower fraction of the 

CPU time on average. 

Configuration 4: HW-OS-adapt. Under this configuration, the HW and OS layers can adapt 
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their actions, but the APP layer’s action is fixed at APP 2a = . This configuration’s myopic 

policy frequently selects the lowest processor frequency in order to save on the immediate power 

costs. This causes a huge number of buffer overflows, which severely degrade its performance. 

We note that this configuration’s foresighted performance is better than that of the HW-APP-

adapt and OS-APP-adapt configurations only because of the particular cost-weights chosen for 

our simulations (i.e. alω  and b
lω , {1, , }l L∀ ∈ … ), which heavily penalize high CPU frequencies. In 

other words, different cost-weights would change the relative performance of the various 

configurations with two adaptive layers. 

Configuration 5: APP-adapt. The APP layer can adapt its action, but the HW layer’s action 

is fixed at 1000f =  Mhz and the OS layer’s action is fixed at 1φ = . For the same reason as in 

the OS-APP-adapt configuration, this configuration’s myopic performance is nearly the same as 

its foresighted performance. 

Configuration 6: OS-adapt. Similar to [1], the OS layer can adapt its action, but the HW 

layer’s action is fixed at 1000f =  Mhz and the APP layer’s action is fixed at APP 2a = . There 

are many overflows in this case because there are more resources allocated to the encoder than it 

requires, which results in DUs being encoded too quickly. 

Configuration 7: HW-adapt. Similar to [9], the HW layer can adapt its action, but the OS 

layer’s action is fixed at 1φ =  and the APP layer’s action is fixed at APP 2a = . 

We make two final observations regarding the above results. First, we note the HW-adapt 

and HW-OS-adapt, APP-adapt and OS-APP-adapt, and the HW-APP-adapt and ALL-adapt 

configuration pairs perform nearly the same under their respective myopic policies. This is 

because the OS action is fixed under all myopic configurations (as we first illustrated in Fig. 7). 

Second, we note that buffer overflows can be avoided by increasing the size of the post encoding 
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buffer or by increasing the range of actions available at each layer. 

VII.  CONCLUSION 
We have proposed a novel and general formulation of the cross-layer decision making 

problem in real-time multimedia systems. In particular, we modeled the problem as a layered 

Markov decision process, which enabled us to jointly optimize each layer’s parameters, 

configurations, and algorithms while maintaining a separation between the decision processes 

and the design of each layer. Unlike existing work, which focuses on myopically maximizing the 

immediate rewards, we focus on foresighted cross-layer decisions. In our experimental results, 

we verified that our layered solution achieves the same performance as the centralized solution, 

which violates the layered architecture. Additionally, we demonstrated that our proposed 

framework can be interpreted as a superset of existing suboptimal multimedia system designs 

with one or more adaptive layers. Finally, we showed that dramatic performance gains are 

achievable when using foresighted optimization compared to myopic optimization. 
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