
 1/37

ABSTRACT
In our previous paper, we proposed a systematic cross-layer framework for dynamic

multimedia systems, which allows each layer (i.e. application, operating system, and hardware)

to make autonomous and foresighted decisions that maximize the system’s long-term

performance. The proposed solution solves the cross-layer optimization offline, under the

assumption that the multimedia system’s probabilistic dynamics (e.g. the application’s rate-

distortion-complexity behavior) are known a priori, by modeling the system as a layered Markov

decision process (MDP). In practice, however, these dynamics are unknown a priori and

therefore must be learned online, at run-time. In this paper, we extend our previous paper to

address this problem. In particular, we allow the multimedia system layers to learn, through

repeated interactions with each other, to autonomously optimize the system’s long-term

performance at run-time. We propose several novel decentralized (layered) reinforcement

learning algorithms and analyze their required computation, memory, and communication

overheads. In our experiments, we demonstrate that decentralized learning can perform as well

as centralized learning.

I. INTRODUCTION
State-of-the-art multimedia technology is poised to enable widespread proliferation of a

variety of life-enhancing applications, such as video conferencing, emergency services,

surveillance, telemedicine, remote teaching and training, augmented reality, and distributed

gaming. However, efficiently designing and implementing such delay-sensitive multimedia

applications on resource-constrained, heterogeneous devices and systems is challenging due to

the real-time constraints, high workload complexity, and the time-varying environmental

dynamics experienced by the system (e.g. video source characteristics, user requirements,

workload characteristics, number of running applications, memory/cache behavior etc.).

Cross-layer adaptation is an increasingly popular solution for addressing these challenges in

Online Autonomous Layered Learning in
Dynamic Multimedia Systems

Nicholas Mastronarde*, Mihaela van der Schaar

 2/37

dynamic multimedia systems (DMSs) [1]-[8]. This is because the performance of DMSs (e.g.

video rate-distortion costs, delay, and power consumption) can be significantly improved by

jointly optimizing parameters, configurations, and algorithms across two or more system layers

(i.e. the application, operating system, and hardware layers), rather than optimizing and adapting

them in isolation. However, existing cross-layer solutions have several important limitations.

Centralized cross-layer solutions: The majority of these solutions require a central optimizer

to coordinate the application, operating system, and hardware adaptations to optimize the

performance of one or multiple multimedia applications sharing the DMS’s limited resources. To

this end, a new interface between the central optimizer and all of the layers is created, requiring

extensive modifications to the operating system [4] [5] or the introduction of an entirely new

middleware layer [1] [2] [3] [24] [25]. However, these approaches violate the layered system ar-

chitecture because individual layers no longer have control of their actions; and, they complicate

the system’s design and increase implementation costs, because individual layers cannot be

upgraded without requiring a significant system redesign [8] [18] [19].

Myopic cross-layer solutions: Another limitation of many existing cross-layer solutions for

DMSs is that they are myopic. In other words, cross-layer decisions are made reactively in order

to optimize the immediate utility, without considering the impact of these decisions on the future

utility. However, in DMSs, it is essential to predict the impact of the current decisions on the

long-term utility because the multimedia source characteristics, workload characteristics, OS and

hardware dynamics are often correlated across time. Moreover, in DMSs, utility fluctuations

across time lead to poor user experience and bad resource planning leads to inefficient resource

usage and wasted power [26] [27]. In contrast, foresighted (i.e. long-term) optimization

techniques take into account the impact of immediate cross-layer decisions on the DMS’s

expected future utility. Importantly, foresighted policy optimizations have been successfully

deployed at the hardware layer to solve the dynamic power management problem [11]-[13];

however, with the exception of our prior paper [9], they have never been used for cross-layer

DMS optimization, where all the layers make foresighted decisions.

Single-layer learning solutions: The various multimedia system layers must be able to adapt

at run-time to their experienced dynamics. Most existing learning solutions for multimedia

systems are concerned with modeling the unknown and potentially time-varying environment

experienced by a single layer. We refer to these as single-agent learning solutions (in our setting,

 3/37

an agent corresponds to a layer). A broad range of single-agent techniques have been deployed in

multimedia (and general purpose) systems in recent years, which include estimation techniques

such as maximum likelihood estimation (MLE) [4] [5] [10] [12] [13], statistical fitting [7],

regression methods [28], adaptive linear prediction [29], and ad-hoc estimation heuristics [3].

However, these solutions ignore the fact that DMSs do not only experience dynamics at a single

layer (e.g. time-varying workload), but at multiple (possibly all) layers, which interact with each

other. Hence, it is necessary to enable the layers to learn at run-time how to autonomously and

asynchronously adapt their processing strategies based on forecasts about (i) their future

dynamics and, importantly, (ii) how they impact and are impacted by the other layers. For this

reason, we will model the run-time cross-layer optimization as a cooperative multi-agent

learning problem [30] (where the layers are the agents). The key challenge in this multi-agent

learning setting is that each layer’s learning performance is directly impacted by not only the

environment dynamics, but also by the learning processes of the other layers with which it

interacts.

In summary, while significant contributions have been made to enhance the performance of

DMSs using cross-layer design techniques, no systematic cross-layer framework exists that

explicitly considers: (i) the design and information constraints imposed by a layered DMS

architecture; (ii) the ability of the various layers to autonomously make foresighted decisions in

order to jointly maximize the DMS’s utility; and, most importantly, (iii) the need for layers to

learn on-line their unknown environmental dynamics and how they impact and are impacted by

the other layers.

In this paper, similar to [6] [7] [8], we consider a multimedia system in which (i) a video

encoder at the application layer makes rate-distortion-complexity tradeoffs by adapting its

configuration and (ii) the operating system layer makes energy-delay tradeoffs by adapting the

hardware layer’s operating frequency. Our contributions are as follows:

• We propose two novel multi-agent (layered) reinforcement learning algorithms, which

allow the multimedia system layers to autonomously learn their optimal foresighted

policies online, through repeated interactions with each other. We show experimentally

that one of the proposed algorithms, which adheres to the layered system architecture,

performs as well as a traditional centralized learning algorithm, which does not.

• We propose a reinforcement learning technique that exploits partial a priori knowledge

 4/37

about the system in order to accelerate the rate of learning and improve overall learning

performance. Unlike existing reinforcement learning techniques [14], [15], which can

only learn about previously visited state-action pairs, the proposed algorithm exploits our

partial knowledge about the system’s dynamics in order to learn about multiple state-

action pairs even before they have been visited.

The remainder of this paper is organized as follows. In Section II, we present the cross-layer

problem formulation. In Section III, we describe the two layer multimedia system model. In

Section IV, we summarize a well-known reinforcement learning algorithm called Q-learning and

we show how it can be used to optimize the system’s performance using a centralized optimizer,

and how it can be used to optimize the performance of a single layer under the assumption that

the other layers deploy static policies. In Section V, we propose two layered (decentralized) Q-

learning algorithms for run-time cross-layer optimization. In Section VI, we propose a technique

to accelerate the rate of learning by exploiting partial knowledge that we have about the system’s

structure. In Section VII, we present our experimental results. Finally, we conclude the paper in

Section VIII.

II. CROSS-LAYER PROBLEM FORMULATION
In this section, we define the layered structure of the system under study and formulate the

cross-layer system optimization problem.

A. Layered system model

A typical multimedia system comprises three layers: the application layer (APP), the

operating system layer (OS), and the hardware layer (HW). These layers have their own

parameters, configurations, and algorithms, which can be adapted at run-time in order to

optimize the system’s performance (e.g. application quality, power consumption, and delay). We

model the layered system as a tuple , , ,,p RΩ = L A S � , where

• { }1,...,L=L is a set of L autonomous layers, which participate1 in the cross-layer

optimization. Each layer is indexed { }1,...,l L∈ with layer 1 corresponding to the

lowest participating layer (e.g. the HW layer) and layer L corresponding to the

highest participating layer (e.g. the APP layer).

1 We note that for a layer to “participate” in the cross-layer optimization it must be able to adapt one or more of its parameters, configurations,

or algorithms (e.g. the APP layer can adapt its source coding parameters); alternatively, if a layer does not “participate”, then it is omitted.

 5/37

• A is the global action set l l∈= × ALA
2, where lA is the l th layer’s local action set

(e.g. the APP layer’s available source-coding parameter configurations and the OS

layer’s available commands for switching the CPU’s operating frequency).

• S is the global state set l l∈= × SLS , where lS is the l th layer’s local state set (e.g.

the set of buffer states at the APP layer).

• p is the joint transition probability function mapping the global state, global action,

and global next-state to a value in []0,1 , i.e. []: 0,1p × ×S A S � .

• R is the expected reward function, which maps the global state and global action to a

real number representing the system’s expected reward, i.e. +:R ×S A � � .

We assume that the reward function is of the form [9]:

 (,) (,) (,)L l l l l
l

R g J s aω
∈

= − ∑
L

s a s a , (1)

where lJ is the local cost at layer l , which is independent of the states and actions at the other

layers (e.g. the application’s rate-distortion cost and hardware’s power consumption); the utility

gain (,)Lg s a measures how well the application at layer L performed given its own state and

action, and the states and actions of the other system layers, which support it; and, lω weights

the relative importance of the cost at layer l with the utility gain. In this paper, we define the

utility gain to be closely related to the application’s experienced delay (for more details, see

Section III).

B. System optimization objective

Unlike existing cross-layer optimization solutions, which focus on the myopic (i.e.

immediate) utility, the goal in the proposed cross-layer framework is to find the optimal actions

at each stage n ∈ � that maximize the discounted sum of future rewards [9] [11] [14] [15], i.e.

 () ()0
0

, |n n n

n

Rγ
∞

=
∑ s a s (2)

where the parameter γ (0 1γ≤ <) is the “discount factor,” which defines the relative

importance of present and future rewards, and 0s is the initial state. We refer to the Markov

decision policy :π∗
S A� , which maximizes the discounted sum of future rewards from each

initial state 0 ∈ Ss , as the optimal foresighted policy. We use a discounted sum of rewards

2 1l l L∈× = × ×LA A A� is the L -ary Cartesian product.

 6/37

instead of, for example, the average reward, because: (i) typical video sources have temporally

correlated statistics over short time intervals such that the future environmental dynamics cannot

be easily predicted without error [7], and therefore the system may benefit by weighting its

immediate reward more heavily than future rewards; and, (ii) The multimedia session’s lifetime

is not known a priori (i.e. the session may end unexpectedly) and therefore rewards should be

maximized sooner rather than later.

Throughout this paper, we will find it useful to work with the optimal action-value function

:Q∗ ×S A � � [15]:

 ()(,) (,) ()Q R p | , Vγ∗ ∗

′∈

′ ′= + ∑
Ss

s a s a s s a s , (3)

where () ()max ,V Q∗ ∗=
a

s s a , ∀ ∈ Ss , is the optimal state-value function [15]. In words,

(,)Q∗ s a is the expected sum of discounted rewards achieved by taking action a in state s and

then following the optimal policy :π∗
S A� thereafter, where

 () argmax (,), Qπ∗ ∗= ∀ ∈ S
a

s s a s . (4)

III. SYSTEM MODEL
In this section, using the framework introduced above, we model a system in which two

layers participate in the cross-layer optimization (i.e. { }1,2=L). In particular, the APP layer

makes rate-distortion-complexity tradeoffs by adapting its configuration and the OS layer makes

energy-delay tradeoffs by adapting the HW layer’s operating frequency. Due to the fact that the

OS layer controls the HW layer, we combine them into a single decision making layer, which we

call the joint OS/HW layer. For clarity, instead of specifying the layers by their indices, in this

section we use the subscripts APP to represent quantities related to the APP layer (2l =) and

OS to represent quantities related to the joint OS/HW layer’s parameters (1l =).

A. Layer Definitions

Similar to [21], we model the video source as a sequence of video data units (for example,

video macroblocks, groups of macroblocks, or pictures), which arrive at a constant rate into the

application’s pre-encoding buffer. We assume that the system operates synchronously over

discrete time slots of variable length, such that one data unit is encoded in each time slot. We

interchangeably refer to the time slot during which the n th data unit is encoded as the n th “time

 7/37

slot” or “stage.”

We classify each data unit as being one of Z types in the state set ()

{ }APP : 1, ,z
iz i Z= =S … .

The set of states ()

APP
z
S depends on the specific video coder being used at the APP layer. In this

paper, we assume that 3Z = because video streams are typically compressed into group of

pictures structures containing intra-predicted (I), inter-predicted (P), and bi-directionally

predicted (B) data units (e.g. MPEG-2, MPEG-4, and H.264/AVC); however, the set of data unit

types can be further refined based on, for example, each frame’s activity level [7] [20]. It has

been shown that transitions among data unit types in an adaptive group of pictures structure can

be modeled as a stationary Markov process [20]: i.e.,

 () (){ }APP APP(|) Pr(|) : ,z zp z z z z z z′ ′ ′= ∈ S (5)

where z and z ′ are the types of the data units that are encoded in time slot n and 1n + ,

respectively; and, the probabilities Pr(|)z z′ depend on the ratio of I, P, and B data units, the

source characteristics, and the condition used to decide when to code an I frame [20].

Each data unit can be coded using any one of H source coding parameter configurations3 in

the APP layer’s action set APP { : 1, , }ih i H= =A … . Given the data unit type ()

APP
zz ∈ S , each

configuration APPh ∈ A achieves different operating points in the rate-distortion-complexity

space [6]. We let (,)b z h , (,)d z h , and (,)c z h represent the encoded bit-rate (bits per data unit),

incurred distortion (mean square error), and encoding complexity (cycles), respectively. We

assume that (,)b z h , (,)d z h , and (,)c z h are instances of independent and identically distributed

random variables.

We penalize the APP layer’s actions by employing the Lagrangian cost measure used in the

H.264/AVC reference encoder for making rate-distortion optimal mode decisions: i.e. we define

the APP layer’s cost as

 APP(,) (,) (,)rdJ z h d z h b z hλ= + , (6)

where (,)d z h is the encoded distortion; (,)b z h is the encoded bit-rate; and [)0,rdλ ∈ ∞ is a

Lagrangian multiplier, which can be set based on the rate-constraints.

Each data unit is processed at the HW layer’s current operating frequency, which is a

member of the state set OS { : 1, , }if i F= =S … . We let the joint OS/HW layer’s cost represent

3 For example, a video encoder can adapt, at run-time, its choice of quantization parameter, its motion-vector search range, and its choice of

motion estimation algorithm.

 8/37

the power dissipated at operating frequency OSf ∈ S , i.e.

 OS() ()J f P f= (watts), (7)

where ()P f is the system’s power-frequency function. We assume that the OS layer can issue a

command in its action set OS OS{ : }u u= ∈A S to change the HW layer’s operating frequency;

however, similar to [11], we assume that there is a delay associated with the operating frequency

transition. Although this delay can be non-deterministic as described in [11], for simplicity, we

assume that there is a deterministic one stage transition delay such that

 () ()OS

1, if
|

0, otherwise,
f

f u
p f u

′ =′ =

 (8)

where f ′ is the operating frequency in the next time slot. Note that, regardless of the OS layer’s

action, the current data unit is processed at the current operating frequency OSf ∈ S at the cost

specified in (7).

The APP layer includes a pre-encoding buffer with state set () { }APP : 0, ,q q i Q= =S … , where

Q is the maximum number of data units that can be stored in the buffer4. The maximum latency

for encoding a single data unit without a delay violation is,

 max delay
Q

η
= (seconds), (9)

where η is the rate (data units per second) at which data units arrive in the pre-encoding buffer.

For example, if data units are frames, then η will typically be 15, 24, or 30 frames per second.

The pre-encoding buffer’s state at stage 1n + can be expressed recursively based on its state

at stage n : i.e.,

 []{ }1

0
init

min (, ,) 1 ,

,

n n n n nq q t z h f Q

q q

η
++ = + ⋅ −

=
 (10)

where

(,)

(, ,)
n n n

n n n
n

c z h
t z h f

f
= (seconds) (11)

is the n th data unit’s processing delay, which depends on its complexity (,)n n nc z h and the

processor’s operating frequency nf ; x is the integer part of x ; and [] max{ ,0}x x+ = . In (10),

4 In this paper, we assume that Q is not limited by hardware constraints (i.e. available memory); instead, it is determined by the specific

application’s delay-constraints [21].

 9/37

the 1− indicates that after the n th data unit is encoded, it departs the pre-encoding buffer. Note

that (,)n n nc z h is an instance of the random variable C with distribution ()| ,Cp c z h .

The number of data units that arrive in the pre-encoding buffer during the n th time slot is an

instance of the random variable T C
f

η
= ⋅� (data units) with distribution

 (| , ,) | ,CT

f f
T p t f z h p c z h

η η

 = ⋅ ⋅
�

� �∼ (12)

Based on (10) and (12), the pre-encoding buffer’s state transition can be modeled as a

controllable Markov chain with transition probabilities

 ()

{ }

{ }

{ }

APP

, 02 | , ,

(| , , ,) 1 ,| , ,

1 2 , otherwise,| , ,

T

q
T

T

p q qt f z h

p q q f z h p Q q q Qt f z h

p q q t q q f z h

 ′ = =<′ ′= ≥ − + =
 ′ ′− + ≤ < − +

�

�

�

�

�

�

 (13)

where ()
APP(| , , ,)qp q q f z h′ is the probability that the queue’s occupancy transitions from ()

APP
qq ∈ S

(at time slot n) to ()
APP
qq ′ ∈ S (at time slot 1n +) given the operating frequency OSf ∈ S , the

frame type ()

APP
zz ∈ S , and the APP layer’s configuration APPh ∈ A .

Given the independent transitions of the data unit’s type (see (5)) and the pre-encoding

buffer’s state (see (13)), the APP layer’s transition probability function can be expressed as

 () () ()

APP APP APP APP APP(,) | (,), , (| , , ,) (|)q zp z q z q f h p q q f z h p z z′ ′ ′ ′ ′= = = ⋅s s , (14)

where APP APP(,)z q= ∈ Ss is the APP layer’s state (at time slot n) and APP APP(,)z q′ ′ ′= ∈ Ss is

its next state (at time slot 1n +). Meanwhile, the joint OS/HW layer’s transition probability

function can be expressed as (see (8))

 () () ()OS OS OS| |fp s f u p f u′ ′ ′= = . (15)

Because the state transitions at the APP layer and joint OS/HW layer are independent, the global

transition probability function defined in Section II.A can be factored as

 () ()OS OS APP APP APP(,) | (,) | (,), ,p p s f u p z q z q f h′ ′ ′ ′ ′ ′= = = =s | s a s s . (16)

B. System Reward Details

Recall the definition of the reward function in (1). Thus far, we have defined the costs at

each layer, but we have not defined the utility gain APP(,)g s a . As mentioned in Section II.A, the

utility gain is closely related to the application’s experienced queuing delay in the pre-encoding

buffer. Conventionally, multimedia buffers are used to enforce a maximum tolerable processing

 10/37

[22] or transmission delay [21] (e.g. our buffer imposes a maximum processing delay of
Q

η

seconds, as defined in (9)) and as long as the buffer does not overflow (i.e. the overflow

constraint is not violated), there is no penalty. In our setting, however, the multimedia system’s

dynamics are unknown and non-stationary; therefore, we cannot guarantee that the buffer

overflow constraints will be satisfied. In light of this, we design the utility gain to non-linearly

reward the system for maintaining queuing delays less than the maximum tolerable delay,

thereby protecting against overflows that may result from a sudden increase in encoding delay.

Formally, we define the utility gain as

2

APP

1
(,) 1

q t
g

Q

 + − = −

�
s a , (17)

which is near its maximum when the buffer is empty (corresponding to zero queuing delay) and

is minimized when the buffer is full (corresponding to the maximum tolerable queuing delay

Q

η
). In Appendix A, we experimentally show that (17) is a good definition for the utility gain.

Given the utility gain defined in (17), the APP layer’s cost defined in (6), and the joint

OS/HW layer’s cost defined in (7), the stage reward defined in (1) can be rewritten as

 []

2

OS APP

1
(,) 1 () (,) (,)rd

q t
R P f d z h b z h

Q
ω ω λ

 + − = − − − +

�
s a (18)

IV. LEARNING THE OPTIMAL DECISION POLICY

A. Why Model-Free Learning?

As we mentioned before, the multimedia system’s dynamics (i.e. (,)R s a and (,)p ′s | s a) are

unknown and therefore the optimal action-value function Q∗ and the optimal policy π∗ must be

learned online, based on experience. However, it remains to explain how we can learn the

optimal policy online despite these unknown quantities. Let us consider the following two

options:

• Direct estimation and policy computation: One option is to directly estimate the reward

and transition probability function using, for example, maximum likelihood estimation,

and then to perform value iteration [15] to determine the optimal policy; however, this

 11/37

solution far too complex.

• Offline policy computation and online policy interpolation: To avoid using the complex

value iteration algorithm online, in [12] the authors propose a two step procedure

involving an offline stage and an online stage. Offline, they quantize every unknown

probability into NS samples (more samples yield more accurate results). For each

quantized probability bin, they compute a corresponding policy. Then, online, they

directly estimate the transition probability function and, based on this, interpolate the

offline computed policies to determine the current policy. For M parameters, this

learning algorithm requires
1

M
mm

NS
=∏ policy look-up tables of size ×S A as defined

in [11]. However, if there are many unknown parameters, this requires a huge amount of

memory.

Because neither of the above solutions are practical in our resource-constrained cross-layer

setting with many states and actions (and many unknown parameters), we adopt a model-free

reinforcement learning solution, which can be used to learn the optimal action-value function Q∗

and the corresponding optimal policy π∗ online without directly estimating the reward and

transition probability functions. Specifically, we adopt a low complexity algorithm called Q-

learning, which is also light on memory. In our cross-layer setting, Q-learning can be

implemented by a central optimizer -- located at either the APP layer, the joint OS/HW layer, or

a separate middleware layer -- to learn the globally optimal policy online. Alternatively, a single

layer can use Q-learning to learn its local best-response policy online, under the constraint that

the other system layers deploy a stationary (static) policy. We discuss the former case in

Subsection IV.B and the latter case in Subsection IV.C.

B. Globally Optimal Centralized Q-learning

Central to the globally optimal centralized Q-learning algorithm is a simple update step

performed at the end of each time slot based on the experience tuple (ET) ()1, , ,n n n nr +s a s :

 1max (,) (,)n n n n n n nr Q Qδ γ +

′∈

 ′= + − Aa
s a s a , (19)

 1(,) (,)n n n n n n n nQ Q α δ+ ← +s a s a , (20)

where ns , na , and n n n
L l l

l

r g Jω
∈

= − ∑
L

 are the state, performed action, and corresponding reward

in time slot n , respectively; 1n+s is the resulting state in time slot 1n + ; ′a is the greedy

 12/37

action5 in state 1n+s ; nδ is the so-called temporal-difference (TD) error [14]; and, []0,1nα ∈ is

a time-varying learning rate parameter. We note that the action-value function is conventionally

initialized arbitrarily at time 0n = .

It is well known that if (i) the rewards and transition probability functions are stationary, (ii)

all of the state-action pairs are visited infinitely often, and (iii) nα satisfies the stochastic

approximation conditions6 ()
0

n

n

α

∞

=

= ∞∑ and ()2

0

n

n

α

∞

=

< ∞∑ , then Q converges with

probability 1 to Q∗ [16]. Subsequently, the optimal policy can be found using (4). In the

considered multimedia system, however, the dynamics are unknown and non-stationary (e.g. due

to changes in the source characteristics). Therefore, convergence cannot be guaranteed. Under

non-stationary conditions, it is prudent to set nα to a small constant in order to track the

experienced dynamics.

During the learning process, it is not entirely obvious what the best action is to take in each

state. On the one hand, the optimal action-value function can be learned by randomly exploring

the available actions in each state. Unfortunately, unguided randomized exploration cannot

guarantee acceptable performance during the learning process. On the other hand, taking greedy

actions, which exploit the available information in the action-value function (,)Q s a , can

guarantee a certain level of performance. Unfortunately, exploiting what is already known about

the system prevents the discovery of new, better, actions. To judiciously trade off exploration

and exploitation, we use the so-called ε -greedy action selection method [14]:

ε -greedy action selection: With probability 1 ε− , take the greedy action that maximizes the

action-value function, i.e. (){ }argmax ,Q∗ =
a

a s a ; and, with probability ε , take an action

randomly and uniformly over the action set.

We write (),Qε= Φa s to show that a is an ε -greedy joint-action and ()[],l la Qε= Φ s to

represent the component of the ε -greedy action at layer l , where ()1, , La a= …a . If the

dynamics are stationary, then ε must satisfy the same stochastic approximation conditions as the

learning rate α to ensure that the learned decision policy converges to the optimal policy.

5 A greedy action is one that maximizes the current estimate of the action-value function, i.e. (){ }argmax ,Q∗ =

a
a s a .

6 For example, 1/(1)n nα = + satisfies the stochastic approximation conditions.

 13/37

Fig. 1 illustrates the information exchanges required to deploy the centralized Q-learning

algorithm in a two layer multimedia system during one time slot. In Fig. 1, the top and bottom

blocks represent the APP layer and joint OS/HW layer, respectively. The center block represents

the centralized optimizer, which selects both layers’ actions and updates the system’s global

action-value function Q . As we mentioned before, the centralized optimizer may be located at

either the APP layer, the joint OS/HW layer, or a separate middleware layer. To best highlight

the information exchanges, we illustrate the centralized optimizer as a separate middleware

layer. Although we do not explicitly indicate this in Fig. 1, the ET (), , ,r ′s a s is used by the

block labeled “Update (,)Q s a ,” which performs the update step defined in (20).

2s

1s

Stage
1n −

2a

1a

s (),QεΦ s

2 2g Jω−

1 1Jω−

Perform 2a

Perform 1a

Stage
n

Stage
1n +

2
ns

1
ns

1
2
ns +

1
1
ns +

2
ns

1
ns

a r ′s

2s ′

1s ′

Update (),Q s a

APP
Layer

OS/HW
Layer

Information exchanges
Centralized decisions
and updates

Fig. 1. Information exchanges required to deploy the centralized Q-learning update step in one time slot.

C. Proposed Local Best-Response Q-learning

As we mentioned earlier, a single layer can use Q-learning to learn its local best-response

policy online, under the constraint that the other system layers deploy a fixed policy.

Let ()1, , Lπ π π= … , where lπ is a mapping from the global state to the l th layer’s local

action, i.e. :l lπ AS � . Let ()1, , 1, 1, ,l l l L− = − +L … … be the set of all layers excluding layer

l and let ()1 1 1, , , , ,l l l Lπ π π π π− − += … … be the joint decision policy of all the layers in l−L . If

lπ− is fixed, then the stage reward (,)R s a defined in (18) can be rewritten as

 () ()(), | (, ,)l l l lR a R aπ π− −=s s s , (21)

and the transition probability function defined in (16) can be rewritten as

 ()()(,) (,)l l l lp | ,a p | , aπ π− −′ ′=s s s s s , (22)

such that the only variable in both of these quantities is the action taken by layer l , i.e. la . Note

 14/37

that, although the local costs at layers -ll ′ ∈ L (i.e. ()(),l l l lJ s sπ′ ′ ′ ′) are independent of the l th

layer’s action la , layer l still needs to know them. This is because each layer needs to learn how

its actions impact the global system reward and not just its local costs [17]. For instance, if the

joint OS/HW layer is unaware of its impact on the application’s delay and quality it will always

selfishly minimize its own costs by operating at its lowest frequency and power. Based on this

observation, we define the best-response action-value function at layer l as

 ()(, |) (, |) (,)max , |
l l

l l l l l l l l l l
a

Q a R a p | ,a Q aπ π γ π π∗ ∗
− − − −

∈′∈

′ ′= + ∑
A

Ss

s s s s s , (23)

Then, the local best-response policy at layer l , which we denote by ()l lπ π∗
−s | , can be

computed as

 () argmax (, |)
l l

l l l l l
a

Q aπ π π∗ ∗
− −

∈
=

A

s | s . (24)

The l th layer’s locally optimal action-value function lQ∗ and the corresponding local best-

response policy ()l lπ π∗
−s | can be learned online using a straightforward adaptation of the

centralized Q-learning update step described in the previous subsection: i.e.,

 1max (, |) (, |)
l l

n n n n n n n
l l l l l l l

a
r Q a Q aδ γ π π+

− −
′∈

 ′= + −
 A

s s , (25)

 1(, |) (, |)n n n n n n n n
l l l l l l llQ a Q aπ π α δ+

− −← +s s , (26)

where
1

L
n n n

L l l
l

r g Jω
=

= − ∑ is a random sample of the reward with expected value (, |)n n
l lR a π−s .

Unlike the global Q-learning update defined in (20), which uses the experience tuple

()1, , ,n n n nr +s a s , the best response Q-learning update at layer l requires the experience tuple

()1, , ,n n n n
la r +s s , which only includes its local action nla instead of the global action na . Note

that, given the global state ns , layer l trades off exploitation and exploration by selecting the ε -

greedy action (),n n n
l la Qε= Φ s .

Fig. 2 illustrates the information exchanges required to deploy the local best-response Q-

learning algorithm in a two layer multimedia system during one time slot. Fig. 2(a) shows the

algorithm at the APP layer and Fig. 2(b) shows it at the joint OS/HW layer. Although we do not

explicitly indicate this in Fig. 2(a) or Fig. 2(b), the ETs (), , ,la r ′s s , {1,2}l ∈ , are used by the

blocks labeled “Update (, |)l l lQ a π−s ,” which perform the update step defined in (26). Note that

the update step is not performed at layer l− , because it deploys the static policy lπ− .

 15/37

 Information
exchanges

Static
decisions

Local decisions
and updates

2s

1s

2
ns

1
ns

Update
()1 1 2, |Q a πs

Perform
()1,QεΦ s

Perform
()2π s s

s
′s

2s′

2 2g Jω−

APP Layer

OS/HW Layer

r

(b)

2s

1s

2
ns

1
ns

Update
()2 2 1, |Q a πs

APP Layer

Perform
()2,QεΦ s

Perform
()1π s

s

s

′s

1s ′

OS/HW Layer

(a)

 r

1 1Jω−

Fig. 2. Information exchanges required to deploy the local best-response Q-learning update step in one time
slot. (a) APP layer deploys local best-response Q-learning while the joint OS/HW layer deploys a static
policy. (b) Joint OS/HW layer deploys local best-response Q-learning while the APP layer deploys a static
policy.

V. AUTONOMOUS LAYERED LEARNING
Thus far, we have discussed how Q-learning can be implemented by a centralized optimizer

or by a single layer in order to learn the optimal global policy or the local best-response policy

online. Unfortunately, the former Q-learning algorithm violates the layered system architecture

and the latter does not solve the cross-layer optimization (i.e. it is only a single-layer

optimization). In this section, we propose two autonomous layered learning algorithms that are

closely related to the two aforementioned learning solutions. First, in subsection V.A, we discuss

how the APP layer and the joint OS/HW layers can coordinate their local best-response learning

algorithms to improve the system’s performance over time. Second, in subsection V.B, we

describe how the global action-value function can be decomposed based on the structure of the

transition probability and reward functions, and how this decomposition leads to a layered Q-

learning algorithm. In subsection V.C, we compare the computation, communication, and

memory overheads associated with the centralized, coordinated best-response, and layered Q-

learning algorithms.

A. Proposed Coordinated Best-Response Q-Learning

Recall from subsection IV.C that ()l lπ π∗
−s | is the local best-response policy at layer l

given the static policy lπ− at layer l− . In this subsection, we propose a layered learning

technique that attempts to determine the globally optimal action-value function Q∗ and policy

π∗ by alternating between local best-response learning at the APP layer, while the joint OS/HW

layer maintains a static policy, and vice versa. In other words, we alternate between the local

 16/37

best-response learning algorithms illustrated in Fig. 2(a) and Fig. 2(b).

To coordinate the local best-response learning processes at the two layers, we define the

coordination function { }: 0,1,2,χ → L… : if ()n lχ = , then layer l can learn in time slot n

and layer l− must maintain a static policy. For illustration, in our experiments we restrict

ourselves to a class of policies that can be characterized by the pair ()1 2,N N , and are defined as

follows:

 ()

[]
1 2 11, if

2, otherwise,

N Nn N
nχ

+ <=

 (27)

where []NX denotes X modulo N . In other words, the class of ()1 2,N N -coordination policies

allows layer 1l = to learn for 1N time slots, and then for layer 2l = to learn for 2N time slots,

and then for layer 1l = to learn for 1N time slots again, etc. This class of coordination

policies is desirable due to its simplicity: prior to execution, each layer can initialize 1N and 2N ,

then, at run-time, they can autonomously coordinate themselves using (27) without any

additional synchronization overheads. In our experiments, we investigate the impact of different

()1 2,N N -coordination policies on the system’s learning performance.

An obvious drawback of this algorithm is that only one layer can learn in each time slot.

Consequently, the learning algorithm adapts slowly to the environment and it is not guaranteed

to converge to the optimal global policy (i.e. achieving the optimal policy may require both

layers to simultaneously adapt their actions). In the next subsection, we propose a layered Q-

learning algorithm that allows both layers to learn simultaneously, thereby improving the

system’s learning performance.

B. Proposed Layered Q-learning

In this subsection, we first show how the action-value function can be decomposed given the

structure of the cross-layer optimization. Subsequently, we show how this decomposition leads

to a layered learning algorithm, which solves the cross-layer optimization online, in a

decentralized manner, when the transition probability and reward functions are unknown a priori.

1) Action-Value Function Decomposition
Given the additive reward function defined in (18) and the factored transition probability

function defined in (16), we can rewrite the optimal action-value function defined in (3) as

follows:

 17/37

 ()
1 1 2 2

2 2 1 1 1 1 2 2 2 2

1 1 1 1 2 2 2
,

(,) (,) (,) (,)

() () ,
s s

Q g a J s a J s a

p s | s ,a p s | ,a V

ω ω

γ

∗

∗

′ ′∈ ∈

= − − +

′ ′ ′∑
S S

s a s

s s (28)

where, () max (,)V Q∗ ∗

′∈
′ ′ ′=

Aa
s s a is the optimal state-value for state ′s . In (28), the subscripts 1

and 2 represent the joint OS/HW layer and APP layer, respectively; ()1 2,s s=s is the global

state comprising the local states 1s f= (operating frequency) and ()2 ,s z q= (data unit type and

buffer state, respectively); ()1 2,a a=a is the global action comprising the local actions 1a u=

(frequency request) and 2a h= (application configuration); 1 1 1 1()p s | s ,a′ and 1 1 1 1(,)J s aω are the

joint OS/HW layer’s local transition probability function and local weighted reward function,

respectively; 2 2 2()p s | ,a′ s and 2 2 2 2(,)J s aω are the APP layer’s local transition probability

function and local weighted reward function, respectively; and, 2 2(,)g as is the utility gain

function.

Observing that 2 2 2 2 2 2(,) (,)g a J s aω−s is independent of 1s ′ and that
1 1

1 1 1 1() 1
s

p s | s ,a
′∈

′ =∑
S

, we

may rewrite (28) as follows:

()

1 1
2 2

1 2 1 1 1 1

2 2 2 2 2 2

1 1 1 1
2 2 2 1 2

(, ,) (,)

(,) (,)

() .() ,
s

s

Q a a J s a

g a J s a

p s | s ,a p s | ,a V s s

ω

ω

γ

∗

∗
′∈

′ ∈

= − +

 − + ′ ′ ′ ′

∑ ∑
S

S

s

s

s

 (29)

Given the global state ()1 2,s s=s and the optimal state-value function V ∗ , the APP layer can

perform the inner computation:

 () ()
2 2

2 2 2 2 2 2

1 2 1
2 2 2 1 2

(,) (,)

, , () ,
s

g a J s a

Q a s p s | ,a V s s

ω

γ
∗

∗

′ ∈

 − + ′ = ′ ′ ′
∑
S

s

s s , 2 2a∀ ∈ A and 1 1s ′∀ ∈ S (30)

which is independent of the immediate action at the joint OS/HW layer (i.e. 1a), but depends on

the joint OS/HW layer’s potential next-state 1s ′
7. ()1 2 1, ,Q a s∗ ′s can be interpreted as the APP

layer’s estimate of the expected discounted future rewards at the joint OS/HW layer. Hence, for

each global state ()1 2,s s=s the APP layer must compute the set

(){ }1 2 1 2 2 1 1, , : , Q a s a s∗ ′ ′∈ ∈A Ss using (30). Then, given this set from the APP layer, the joint

 18/37

OS/HW layer can perform the outer computation in (29): i.e.,

 () ()
1 1

1 1 1 1

1 2
1 1 1 1 1 2 1

(,)

, , ,() , ,
s

J s a

Q a a p s | s ,a Q a s

ω
∗

∗

′∈

 − + = ′ ′
∑
S

s s 1 1a∀ ∈ A and 2 2a∀ ∈ A (31)

Q∗ can be computed by repeating this procedure for all ∈ Ss .

For more information about this decomposition, we refer the interested reader to our prior

paper [9], in which we use a similar decomposition to solve the cross-layer optimization offline,

in a decentralized manner, under the assumption that the transition probability and reward

functions are known a priori.

2) Layered Q-learning
Recall that the centralized Q-learning algorithm described in Section IV.B violates the

layered system architecture because it requires a centralized manager to select actions for both of

the layers. In contrast, the layered Q-learning algorithm that we propose in this subsection –

made possible by the action-value function decomposition described above – adheres to the

layered architecture by enabling each layer to autonomously select its own actions and to update

its own action-value function. In the following, we discuss the local information requirements

for each layer, how each layer selects its local actions, and how each layer updates its local

action-value function.

Local information: The proposed layered Q-learning algorithm requires that the APP layer

maintains an estimate of the action-value function on the left-hand side of (30): i.e.,

 (){ }1 2 1 2 2 1 1, , : , , Q a s a s′ ′∈ ∈ ∈A SSs s ,

and that the joint OS/HW layer maintains an estimate of the action-value function on the left-

hand side of (31): i.e.,

 () (){ }1 2 1 2, , : , ,Q a a a a∈ ∈S As s .

Local action selection: At run-time, given the current global state ()1 2,s s=s , the APP layer

selects an ε -greedy action 2 2a ∈ A as described in Section IV.B, but with the greedy action

selected as follows:

 (){ }
1 12 2

2 1 2 1argmax max , ,
sa

a Q a s∗

′∈∈

′=
SA

s . (32)

7 Although the model in (8) assumes a deterministic relationship between the joint OS/HW layer’s action 1a and its next-state 1s ′ , this is not

required for the decomposition to work.

 19/37

Note that action 2a∗ is selected under the assumption that the joint OS/HW layer will select its

action to transition to the best next-state. Then, given action 2a∗ from the APP layer, the joint

OS/HW layer selects ε -greedy action 1 1a ∈ A , but with the greedy action selected as follows:

 (){ }
1 1

1 1 1 2argmax , ,
a

a Q a a∗ ∗

∈
=

A

s . (33)

Local learning updates: After executing the ε -greedy action ()1 2,n n na a=a in state

()1 2,n n ns s=s , the system obtains the reward 2 1 1 2 2
n n n nr g J Jω ω= − − and transitions to state

()1 1 1
1 2,n n ns s+ + +=s . Based on the experience tuple ()1, , ,n n n nr +s a s , each layer updates its

action-value function as follows. First, the joint OS/HW layer must forward the scalar

() ()
1 1 2 2

1 1 1 1
1 21 2 1 2

,
, max , , ,n n n n n n

a a
V s s Q s s a a+ + + +

′ ′∈ ∈
′ ′=

A A
 to the APP layer. Using this forwarded

information, the APP layer can perform its action-value function update based on the form of

(30): i.e.,

 ()[] ()1 1 1
2 2 2 2 1 21 2 1, , ,n n n n n n n n n ng J V s s Q a sδ ω γ + + += − + − s , (34)

 () ()1 1 1
2 1 2 2 21 1 1, , , ,n n n n n n n n n nQ a s Q a s α δ+ + +← +s s . (35)

Then, given the scalar ()1 1
21 1, ,n n n nQ a s+ +s from the APP layer and the APP layer’s selected action

2
na , the joint OS/HW layer can perform its action-value function update based on the form of

(31) as follows:

 ()[] ()1 1
1 1 1 2 1 21 1, , , ,n n n n n n n n n nJ Q a s Q a aδ ω + += − + −s s , (36)

 () ()1
1 2 1 2 1 1, , , ,n n n n n n n n n nQ a a Q a a α δ+ ← +s s . (37)

An added benefit of the decentralized Q-learning algorithm over the coordinated best-

response algorithm is that layers do not need to directly share their local rewards (i.e. the local

learning updates only require the APP layer to know its local reward 2 2 2
n ng Jω− and for the joint

OS/HW layer to know its local cost 1 1
nJω). This is important if the company designing a layer

wants this information to remain private in order to protect the underlying intellectual property.

Fig. 3 illustrates the information exchanges required to deploy the layered Q-learning

algorithm in a two layer multimedia system during one time slot. Although we do not explicitly

indicate this in Fig. 3, the ETs ()2 2 2 2 1, , ,a g J sω ′−s and ()1 1 1 1, , ,a J sω ′−s are used by the blocks

labeled “Update ()1 2 1, ,Q a s ′s ” at the APP layer and “Update ()1 2, ,Q a as ” at the joint OS/HW

layer, respectively.

 20/37

2s
1s

2
ns

1
ns

Update

()1 2 1, ,Q a s ′s

APP Layer

Perform
()1,QεΦ s s

s

2s ′

OS/HW Layer

Perform
(),QεΦ s

2a
∗

′s
Calculate

()1 22,V s s′ ′

()1 22,V s s′ ′
()1 2 1, ,Q a s ′s

Update
()1 2, ,Q a as

Information
exchanges

Decentralized decisions
and updates

Fig. 3. Information exchanges required to deploy the layered Q-learning update step in one time slot.

C. Computation, communication, and memory overheads

In this subsection, we compare the computation, communication, and memory overheads

associated with the centralized, coordinated best-response, and layered Q-learning algorithms.

Table I summarizes the greedy action selection procedure and update steps associated with each

algorithm; and, Table II lists the computation, communication, and memory overheads

associated with each algorithm.

From Table II, we observe that the coordinated best-response algorithm has the least

computation, communication, and memory overheads. This is because the layers do not learn at

the same time so they can ignore the other layer’s actions. Meanwhile, the layered Q-learning

algorithm is the most complex and requires the most memory. Note that, in our setting, 1 1=S A ;

hence, the decentralized Q-learning algorithm incurs over twice the computational overheads and

exactly twice the memory overheads as the centralized algorithm. The increased overheads can

be interpreted as the cost of optimal decentralized learning (optimal in the sense that it performs

as well as the centralized learning algorithm). We also observe that the communication

overheads in all cases are (1)O because they are independent of the size of the state sets and

action sets at each layer; however, the precise number of messages exchanged between the two

layers depends on the deployed learning algorithm as illustrated in Fig. 1, Fig. 2, and Fig. 3, and

noted in Table II.

Table I. Summary of greedy action selection and update steps for various Q-learning algorithms.
 Greedy Action Update Step

Centralized
Q-learning

Middleware Layer:
(){ }argmax ,Q∗

∈
=

Aa
a s a

Middleware Layer:
1max (,) (,)n n n n nr Q Qδ γ +

′∈

 ′= + − Aa
s a s a

(,) (,)n n n n n nQ Q α δ← +s a s a

 21/37

Coordinated
best-response

Q-learning

Layers { }1,2l ∈ :

argmax (, |)
l l

l l l l
a

a Q a π∗ ∗
−

∈
=

A

s

Layers { }1,2l ∈ :

1max (, |)

(, |)

l l

n n
l l ln a

l
n n

l l l

r Q a

Q a

γ π
δ

π

+
−

′∈

−

 ′+ =
 −

A
s

s

(, |) (, |)n n n n n n
l l l l l l l lQ a Q aπ π α δ− −← +s s

Layered
Q-learning

Layer 1l = :
(){ }

1 1

1 1 1 2argmax , ,
a

a Q a a∗ ∗

∈
=

A

s

Layer 2l = :

(){ }
1 12 2

2 1 2 1argmax max , ,
sa

a Q a s∗

′∈∈

′=
SA

s

Layer 1l = :

()[]

()

1 1
1 1 21 1

1
1 2

, ,

, ,

n n n n n

n
n n n n

J Q a s

Q a a

ω
δ

+ + − + =
 −

s

s

() ()1
1 2 1 2 1 1, , , ,n n n n n n n n n nQ a a Q a a α δ+ ← +s s

Layer 2l = :

()[]

()

1 1
2 2 2 1 2

2 1
1 2 1

,

, ,

n n n n n

n
n n n n

g J V s s

Q a s

ω γ
δ

+ +

+

 − + =
 −

s

() ()1 1 1
2 1 2 2 21 1 1, , , ,n n n n n n n n n nQ a s Q a s α δ+ + +← +s s

Table II. Comparison of computation, communication, and memory overheads.
 Centralized

Q-learning
Coordinated best-response

Q-learning
Layered

Q-learning
Computation

overheads
Action Selection:

()O A

Update:

 ()O A

Action Selection:

()1 2O +A A

Update (layer l):

()lO A

Action Selection:

()1 1 2O + ×A S A

Update:

()O A

Communication
overheads

()1O (8 messages) ()1O (4 messages) ()1O (6 messages)

Memory
overheads ()O ×S A () ()1 2O O× + ×A AS S ()2 1O × + × ×A SS A S

VI. ACCELERATED LEARNING USING PARTIAL KNOWLEDGE
In conventional reinforcement learning [14] [15], the actors (i.e. the system layers in our

setting) are assumed to have no a priori information about the form of the transition probability

and reward functions beyond possible high-level structural knowledge about the factored

transition and reward dynamics [17] [23]. In other words, in a conventional reinforcement

learning framework, the additive decomposition structure of the reward function defined in (1)

and the factored transition probability structure defined in (14) may be known a priori, but the

actual form of the utility gain defined in (17) and the actual form of the transition probability

function defined in (13) and (8) cannot be known a priori. As system designers, however, we

have knowledge about the form of these functions, which we can exploit when designing a

learning algorithm.

 22/37

There are two points in the Q-learning algorithm where we can exploit our partial knowledge

in order to dramatically improve the speed of learning. The first point is through the update step:

in subsection VI.A, we discuss how we can use the experience encapsulated in one ET in order

to update multiple statistically equivalent state-action pairs. The second point is during

initialization: in subsection VI.B, we show how we can initialize the action-value function in

time slot 0n = .

A. Accelerated Learning Using Virtual Experience Tuples

The Q-learning update step defined in (20) updates the action-value function for only one

state-action pair in each time slot. Consequently, in stationary environments, Q-learning takes a

large number of stages before Q converges to Q∗ ; and, in non-stationary environments, Q-

learning does not adapt quickly to changes. Several existing variants of Q-learning adapt the

action-value function for multiple state-action pairs in each time slot. These include temporal-

difference-λ updates, Dyna, and prioritized sweeping [14] [15]; however, these solutions are not

system specific and assume no a priori knowledge of the problem’s structure. Consequently,

these existing solutions can only update previously visited state-action pairs.

In this subsection, we propose a new Q-learning variant, which is complementary to the

abovementioned variants. The proposed algorithm exploits the form of the transition probability

and reward functions (defined in Section III) by updating the action-value function for multiple

statistically equivalent state-action pairs in each time slot, including those that have never been

visited. In stationary (non-stationary) environments, the proposed algorithm improves

convergence time (adaptation speed) at the expense of increased computational complexity. For

simplicity, we discuss the algorithm in terms of the centralized system; however, it can be easily

extended to work with the two layered learning algorithms proposed in Section V.

Let ()1, , ,n n n n nr += s a sσ represent the ET at stage n , where (), ,n n n nz q f=s ,

(),n n nu h=a , 2 1 1 2 2
n n n nr g J Jω ω= − − , and ()1 1 1 1, ,n n n nz q f+ + + +=s . If the buffer states nq

and 1nq + do not satisfy the boundary conditions defined in (13) (i.e. the boundary conditions

1 0n nq q += = or q Q′ =), then we can generate virtual experience tuples (virtual ETs), which

are statistically equivalent to the actual ET because of the form of the transition probability and

reward functions. This statistical equivalence allows us to perform the Q-learning update step for

the virtual ETs using information provided by the actual ET. However, if nq and 1nq + satisfy the

 23/37

boundary conditions defined in (13), then the statistical information provided by the actual ET is

ambiguous and cannot be extended to the non-boundary cases. This is because an ET that

satisfies the boundary conditions can be obtained from more than one value of t� (i.e. the number

of data unit arrivals), while ET’s that do not satisfy the boundary conditions correspond to a

unique t� .

We let () (), , ,n nr ′= ∈� � �� �s a s Σσ σ represent one virtual ET in the set of virtual ETs ()nΣ σ .

In order to be statistically equivalent to the actual ET, the virtual ETs in ()nΣ σ must satisfy the

following two conditions:

1. The data unit arrival distribution (| , ,)Tp t f z h�
� defined in (12) must be the same for

the virtual ETs as it is for the actual ET. In other words, the virtual operating

frequency f� , the virtual type z� , and the virtual configuration h� must be the same as

the actual operating frequency nf , the actual type nz , and the actual configuration

nh , respectively. This also means that the virtual costs at the APP and joint OS/HW

layers are the same as the actual costs at these layers, i.e. 1 1
nJ J=� and 2 2

nJ J=� .

2. The current virtual buffer state ()
APP
qq ∈ S� and next virtual buffer state ()

APP
qq ′ ∈ S� must

be related to the actual current and next buffer states as follows:

1

1

1

0, 0

,

, otherwise.

n n

n n

n n

q q q

q Q q q q Q

q q q

+

+

+

 + − <′ = + − >
 + −

�

� �

�

 (38)

Any virtual ET that satisfies the two above conditions can have its reward determined using

information embedded in the actual ET. Specifically, from the first condition, we know that the

virtual ET’s local costs are 1 1
nJ J=� and 2 2

nJ J=� . Then, based on the second condition, we can

compute the virtual ET’s utility gain as
2

2

1
1

q t
g

Q

 + − = −

��
� , where 1 1n nt q q+ = − +

� is

the number of data unit arrivals that occurred under the actual ET. Finally, the Q-learning update

step defined in (20) can be performed on every virtual ET () (), , ,n nr ′= ∈� � �� �s a s Σσ σ as if it is

the actual ET.

Performing the Q-learning update step on every virtual ET in ()nσΣ incurs a computational

 24/37

overhead of approximately ()()n ×O AσΣ in time slot n . Unfortunately, it may be impractical

to incur such large overheads in every time slot, especially if the data unit granularity is small

(e.g. one macroblock). Hence, in our experimental results in Section VII, we show how the

learning performance is impacted by updating ()nΨ ≤ Σ σ virtual ETs in each time slot by

selecting them randomly and uniformly from the virtual ET set ()nσΣ .

Table III describes the virtual ET based learning procedure in pseudo-code. Importantly,

because the virtual ETs are statistically equivalent to the actual ET, the virtual ET based learning

algorithm is not an approximation of the Q-learning algorithm; in fact, the proposed algorithm

accelerates Q-learning by exploiting our partial knowledge about the structure of the considered

problem.

Table III. Accelerated learning using virtual experience tuples.
1. Initialize (,)Q s a arbitrarily for all (,) ∈ ×S As a ;

2. Initialize state 0s ;
3. For 0,1,n = …

4. Take action na using ε -greedy action selection on (,)nQ ⋅s ;

5. Obtain experience tuple ()1, , ,n n n n nr += s a sσ ;

6. If NOT(1 0n nq q += = or 1nq Q+ =) % avoid boundary conditions

7. % Generate the virtual ET set ()nΣ σ

For all ()
APP
qq ∈ S� and all q ′� that satisfy (38)

8. () (), , , ,n nf z q f z q= =�� � � �s ; % virtual ET state

9. () (), ,n nu h u h= =�� �a ; % virtual ET action

10. 2

1 1 2 2

1
1 n nq t

r J J
Q

ω ω
 + − = − − −

��
� ; % virtual ET reward

11. () ()1 1, , , ,n nf z q f z q+ +′ ′ ′ ′ ′= =�� � � �s ; % virtual ET next state

12. () (), , , nr ′= ∈� � �� �s a s Σσ σ ; % store virtual ET

13. % Dynamically allocate update steps to the virtual ETs

For Ψ virtual ETs ()n∈� Σσ σ

14.
max (,) (,)r Q Qδ γ
′∈

 ′ ′= + − A

� � � ��
a

s a s a ; % TD error for virtual ET n�σ

15. (,) (,)Q Q αδ← + �� � � �s a s a ; % Q-learning update for virtual ET n�σ

B. Initializing the Action-Value Function

As we noted before, conventional Q-learning algorithms rely on arbitrary initialization of the

action-value function at time 0n = because information about the forms of the reward and

transition probability functions is not available a priori. In our setting, however, we are able to

 25/37

approximate the action-value function. In fact, given our partial knowledge of the reward

function, we can determine its upper bound:

 2

2

(,) (,) (,)

(,)

1
1

1
1 ,

l l l l
l

R g J s a

g

q t

Q

q

Q

ω
∈

= −

≤

 + − = −

− ≤ −

∑
L

�

s a s a

s a

 (39)

where the second line follows from the first because (,) 0l l l lJ s aω ≥ , for all l ∈ L , and the forth

line follows from the third because 0t ≥
� . Importantly, the derived upper bound only depends

on the state and size of the pre-encoding buffer and does not depend on the system’s unknown

dynamics; therefore, it can be known offline, prior to run-time.

Using the upper bound on the reward function, we can initialize the action-value function at

time 0n = with an approximation of the optimal action-value function (,)Q∗ s a . One option is

to initialize the action-value function with the optimal action-value function’s upper bound. This

upper bound occurs when a policy traverses the infinite sequence of buffer states

(), 1, 2, ,1,1,q q q− − … … from any initial q , or, equivalently, if the infinite sequence of data unit

arrivals t
� comprises q 0s followed by infinite 1s. Following such a policy, and using the

reward function’s upper bound defined in (39), it is easy to see that

()

()
�

()

()

2

1

1,1, , 1, 2, ,1

1
(,) 1

1

qq
q

q q q

Q
Q

ρ

ρ

γ ρ
γ

γ
−∗

=

− −

 − ≤ + − −
∑

… …

	

�

�

s a , (40)

for all (, ,)f z q= ∈ Ss and all (,)u h= ∈ Aa .

We show experimentally in Appendix B that initializing the action-value function using this

upper bound allows Q-learning to perform better than if we initialize (,)Q s a to 0, for all

(,) ∈ ×S As a . However, this upper bound is very optimistic (i.e. it ignores the high costs

required to keep the buffer empty), and we will show that better performance is obtained if we

approximate the action-value function at time 0n = as

21 1

(,) 1
1

q
Q

Qγ

 − = − −
s a , (41)

 26/37

for all (, ,)f z q= ∈ Ss and all (,)u h= ∈ Aa . This approximation corresponds to a policy that

results in a constant buffer state over time, or, equivalently, results in only one data unit arrival

in each time slot. Intuitively, this is a reasonable initial approximation because the true optimal

policy will have an average arrival rate of one data unit in each time slot to match the buffer

drain rate and avoid buffer overflows.

Suppose we also know the power-frequency function ()P f . Since OS() ()J f P f= is the

immediate cost at the joint OS/HW layer, we can further approximate the initial action-value

function as

2

OS
1 1

(,) 1 ()
1

q
Q P f

Q
ω

γ

 − = − − −
s a , (42)

for 1s f= , for all 2 2(,)s z q= ∈ S , and for all (,)u h= ∈ Aa . In Appendix B, we show

experimentally the impact on the learning performance if the power-frequency function is known

a priori.

VII. EXPERIMENTS
In this section, we test the performance of the proposed layered learning algorithms using the

cross-layer system described in Section III. Table IV details the parameters used in our DMS

simulator, which we implemented in Matlab. In our simulations, we use actual video encoder

trace data, which we obtained by profiling the H.264 JM Reference Encoder (version 13.2) on a

Dell Pentium IV computer. Our traces comprise measurements of the encoded bit-rate (bits/MB),

reconstructed distortion (MSE), and encoding complexity (cycles) for each video MB of the

Foreman sequence (30 Hz, CIF resolution, quantization parameter 24) under three different

encoding configurations. The chosen parameters are listed in Table IV. We use a data unit

granularity of one macroblock. As in [7], we assume that the power frequency function is of the

form ()P f f θκ= , where κ +∈ � and [1, 3]θ ∈ . Since real-time encoding is not possible with the

available encoder, we set the data unit arrival rate to 44η = DUs/sec, which corresponds to 1/9

frames per second.

Table IV. Simulation parameters.
Layer Parameter Value

Buffer State Set ()
APP {0, , }q Q=S … , 50Q = (DUs) Application

Layer

(APP)
Data Unit Type Set

()

APP 1 2 3{ , , }z z z z=S

1 2 3P, B, Iz z z= = =

 27/37

Parameter Configuration

APP 1 2 3{ , , }h h h=A

1h : Quarter-pel MV, 8x8 block ME

2h : Full-pel MV, 8x8 block ME

3h : Full-pel MV, 16x16 block ME

APP Cost Weight APP 22/1875ω =

Rate-Distortion Lagrangian rd 1/16λ =

Data Unit Granularity 1 Macroblock

Data Unit Arrival Rate 44η = (Data Units/Sec)

Power-Frequency Function
()P f f θκ=

271.5 10κ −∈ × and 3θ = .

Operating Frequency Set OS {200, 400,600,800,1000}=A Mhz

Operating System
/ Hardware Layer
(Joint OS/HW)

Joint OS/HW Cost Weight OS 22/125ω =

A. Single-layer Learning Results

In this subsection, we evaluate the learning performance when one layer (say layer l)

deploys the local best-response Q-learning algorithm proposed in Section IV.C and the other

layer (say layer l−) deploys a static policy. For illustration, we assume that the static layer

deploys its local optimal policy lπ∗
− corresponding to the global optimal policy (),l lπ π π∗ ∗ ∗

−= ;

hence, the l th layer’s best-response policy ()l lπ π∗ ∗
− is equivalent to lπ∗ . Fig. 4 illustrates the

optimal policies at the APP layer (2π∗) and the joint OS/HW layer (1π∗) for each data unit type

when the current operating frequency is 600f = MHz.

Fig. 5 compares the cumulative average reward obtained using single-layer learning to the

optimal achievable reward, and Table V shows the corresponding power, rate-distortion costs,

utility gain, and buffer overflows, for a simulation of duration 192, 000N = time slots

(approximately 485 frames drawn from the Foreman sequence, CIF resolution, by repeating the

sequence from the beginning after 300 frames). We observe that the global reward obtained

when the joint OS/HW layer learns is worse than when the APP layer learns. This is because

there are more actions to explore at the joint OS/HW layer (5 compared to 3), and the joint

OS/HW layer’s policy is more crucial to the system’s overall performance than the APP layer’s

policy. For instance, given the action sets defined in Table IV, the joint OS/HW layer can

significantly impact the application’s experienced delay (i.e. a factor of 5 change from 200 MHz

to 1000 Mhz), while the APP layer cannot (i.e. its actions impact the delay by less than a factor

of 2). Consequently, when the APP layer learns in response to the joint OS/HW layer’s optimal

policy illustrated in Fig. 4(b), the system is initially better off than when the joint OS/HW layer

 28/37

learns in response to the APP layer’s optimal policy illustrated in Fig. 4(a).

We note that, in Fig. 5, the saturation in the performance of the APP layer’s best-response

learning algorithm is due to the finite exploration probability (i.e. in the ε -greedy action

selection procedure 0ε >), which prevents the learning algorithm from ever converging to the

optimal policy.

(a) (b)

0 10 20 30 40 50

1

2

3

Buffer State

A
P

P
 C

on
fig

ur
at

io
n

P type
B type
I type

0 10 20 30 40 50
200

400

600

800

1000

Buffer State
O

S
/H

W
 F

re
q.

 C
om

m
an

d
(M

H
z)

P type
B type
I type

Fig. 4. Optimal policies for each data unit type. (a) The APP layer. (b) The joint OS/HW layer. The current

operating frequency is set to be 600f = Mhz.

0 5 10 15

x 10
4

0.3

0.4

0.5

0.6

0.7

Time slot

C
um

.
A

vg
.

R
ew

ar
d

Optimal
APP best-response
HW best-response

Fig. 5. Cumulative average reward when a single layer learns.

Table V. Single-layer learning performance statistics.

Best-response

APP Layer
Best-response

Joint OS/HW Layer
Optimal

Avg. Reward 0.7337 0.7172 0.7631
Avg. Power (W) 0.2835 0.4512 0.2435

Avg. Rate-Distortion 14.93 15.08 14.75
Avg. Utility Gain 0.9588 0.9736 0.9790
No. Overflows 0 61 0

B. Cross-layer Learning Results

In this subsection, we evaluate the learning performance when the layers deploy the

coordinated best-response and decentralized Q-learning algorithms proposed in Sections V.A

and V.B, respectively. Fig. 6 compares the cumulative average reward obtained using the two

decentralized learning algorithms to the performance of the centralized learning algorithm and

 29/37

the optimal achievable reward; and, Table VI shows the corresponding power, rate-distortion

costs, utility gain, and buffer overflows. In these results, the simulation duration is 192, 000N =

time slots and the coordinated best-response learning algorithm uses (20,20) -coordination.

We observe from Fig. 6 that, as expected, the coordinated best-response algorithm performs

worse than the centralized and decentralized Q-learning algorithms, because it only allows one

layer to learn in each time slot. Meanwhile, the decentralized Q-learning algorithm performs as

well as the centralized algorithm and adheres to the layered architecture because it allows the

layers to act autonomously through decentralized decisions and updates.

0 5 10 15

x 10
4

0

0.2

0.4

0.6

0.8

Time slot

C
um

.
A

vg
.

R
ew

ar
d

Optimal
Centralized
Decentralized
Coor. Best-response

Fig. 6. Cumulative average reward when two layers learn.

Table VI. Cross-layer learning performance statistics.

Centralized

learning
Decentralized

learning
Coordinated

best-response learning
Optimal

Avg. Reward 0.6829 0.6856 0.6055 0.7631
Avg. Power (W) 0.5441 0.5194 0.5811 0.2435

Avg. Rate-Distortion 15.07 15.08 14.98 14.75
Avg. Utility Gain 0.9555 0.9539 0.8836 0.9790
No. Overflows 339 382 328 0

Table VII shows additional performance statistics for the coordinated best-response learning

algorithm using several 1 2(,)N N -Coordination policies. We observe that the choice of 1N and 2N

significantly impacts the learning performance. In particular, if 1N and 2N are too small (e.g.

1 2(,) (2,2)N N =), then layer l has trouble improving its performance by learning its best-response

policy ()|l lπ π∗
−s because layer l− ’s policy lπ− changes too frequently. Alternatively, if 1N and

2N are too large (e.g. 1 2(,) (200,200)N N =), then layer l will spend a long time learning its best-

response policy ()|l lπ π∗
−s to layer l− ’s suboptimal policy lπ− , thereby wasting many learning

stages without significantly improving the system’s performance. Our results show that learning

performance is fairly insensitive to changes in 1N and 2N between these two extremes.

 30/37

Table VII. Coordinated best-response learning statistics for different 1 2(,)N N -Coordination policies.

 1 2(,)N N -Coordinated Best-Response Parameters

 (2,2) (5,5) (10,10) (20,20) (50,50) (200,200)

Avg. Reward 0.5709 0.6020 0.5995 0.6055 0.5952 0.5712

Avg. Power (W) 0.6296 0.6130 0.5991 0.5811 0.5678 0.5587

Avg. Rate-Distortion 14.99 15.04 15.01 14.98 15.06 15.07

Avg. Utility Gain 0.8576 0.8864 0.8810 0.8836 0.8718 0.8501

No. Overflows 697 343 269 328 764 1891

C. Accelerated Learning with Virtual ETs

In this subsection, we evaluate the learning performance when using virtual experience under

two different initial conditions. Specifically, we consider the case when (),Q s a is initialized to

0 (case “Zero”) and when (),Q s a is initialized with the approximation defined in (41) (case

“Approx.”). Fig. 7 illustrates the cumulative average reward achieved with a maximum of

{ }0,1,15, 30, 45Ψ ∈ virtual experience updates in each time slot (when 0Ψ = only the actual

experience tuple is updated). As expected, increasing the number of updates in each time slot

improves learning speed and the system’s average performance. What is unexpected is the

relative performance of the system under the two different initial conditions. In the upper left

plot of Fig. 7 (i.e. no virtual experience), we observe that the “Approx.” initial condition

drastically outperforms the “zero” initial condition (this is corroborated by the data in appendix

B, where we further explore the impact of various initial conditions when there is no virtual

experience). However, the other plots in Fig. 7 (i.e. { }1,15, 30, 45Ψ ∈ virtual updates) show that

the “zero” initial condition outperforms the “Approx.” initial condition! This is because the

“Approx.” initial condition approaches the optimal action-value function from above, while the

“Zero.” initial condition approaches it from below. To see why this matters, first note that taking

the greedy action (){ }, argmax ,n n n nQ∗ =
a

a s a induces an action-value update (e.g. (20)), which

brings the action-value function’s estimate closer to its true value. Now, suppose that this greedy

action corresponds to the true optimal action in state ns (i.e.

() (){ }, argmax ,n n n nQπ∗ ∗ ∗= =
a

a s s a). When approaching the optimal action-value function

from below, the action-value function update will result in a new action-value ()1 ,n n nQ + s a that

is greater than the old action-value (),n n nQ s a ; hence, the greedy action at time 1n + will still

 31/37

be the optimal action. However, when approaching the optimal action-value function from

above, the action-value function update will result in a new action-value ()1 ,n n nQ + s a that is

less than the old action-value (),n n nQ s a ; consequently, the greedy action at time 1n + may

become a sub-optimal action if ()1 ,n n nQ + s a drops below the second highest action-value in

state ns . For this reason, when using virtual experience updates to accelerate the learning

process, it is desirable to begin with an initial action-value function that is less than the optimal

action-value function for each state-action pair.

We note that, as with the APP layer’s best-response learning algorithm, the learning

performance with virtual experience saturates due to the finite exploration probability (i.e.

0ε >), which prevents the learning algorithm from converging to the optimal policy.

Table VIII illustrates detailed simulation results that correspond to the experiments in Fig. 7.

From this data, it is clear that the initial conditions result in a trade off between delay and power

consumption. Specifically, the “Approx.” initial condition enables the system to reduce delays

and avoid buffer overflows more effectively than the “Zero” initial condition (because the initial

conditions mirror the form of the gain function, which regulates delay). Meanwhile, the “Zero”

initial condition enables the system to learn the power costs more effectively, resulting in lower

power consumption but higher delays and more overflows.

In these experiments, we have assumed that the update complexity is negligible. This would

be true if the updates were performed infrequently (e.g. per video frame), however, it is not a

valid assumption for the very frequent updates deployed here (i.e. per video macroblock). Hence,

performing 15, 30, or 45 updates in each time slot is not reasonable, but performing 1 or 2 virtual

ET updates is. Despite this technicality, we have shown the relative performance improvements

that can be achieved by updating multiple virtual experience tuples in each time slot. Lastly, we

note that the learning performance could be further improved (for the same number of virtual ET

updates) by directing the virtual updates to states that are most likely to be visited in the near

future, instead of simply randomly updating the virtual experience tuples.

 32/37

0 2 4 6

x 10
4

0.2

0.4

0.6

0.8

Time slot

C
um

.
A

vg
. R

ew
ar

d

Ψ = 0 Virtual ETs

0 2 4 6

x 10
4

0.2

0.4

0.6

0.8

Time slot

C
um

.
A

vg
. R

ew
ar

d

Ψ = 1 Virtual ETs

0 2 4 6

x 10
4

0.2

0.4

0.6

0.8

Time slot

C
um

.
A

vg
. R

ew
ar

d

Ψ = 15 Virtual ETs

0 2 4 6

x 10
4

0.2

0.4

0.6

0.8

Time slot

C
um

.
A

vg
. R

ew
ar

d

Ψ = 30 Virtual ETs

0 2 4 6

x 10
4

0.2

0.4

0.6

0.8

Time slot

C
um

.
A

vg
. R

ew
ar

d

Ψ = 45 Virtual ETs

Offline Optimal
Online (Init. Zero)
Online (Init. Approx.)

Fig. 7. Cumulative average reward achieved with virtual experience updates under different initial

conditions.

Table VIII. Virtual experience learning statistics for different initial conditions. Quantities outside (inside) of

parentheses correspond to the “Zero” (“Approx.”) initial conditi on.
 Number of Virtual ET Updates

 0Ψ = 1Ψ = 15Ψ = 30Ψ = 45Ψ =

Avg. Reward 0.2785 (0.5341) 0.6414 (0.5819) 0.6893 (0.6631) 0.7076 (0.6937) 0.7200 (0.7111)

Avg. Power (W) 0.4212 (0.6836) 0.4164 (0.6576) 0.3817 (0.5250) 0.3432 (0.4380) 0.3108 (0.3898)

Avg. Rate-Distortion 15.00 (15.04) 14.92 (15.07) 15.06 (15.09) 14.93 (15.07) 14.87 (14.93)

Avg. Utility Gain 0.5287 (0.8309) 0.8898 (0.8745) 0.9332 (0.9326) 0.9432 (0.9476) 0.9492 (0.9549)

No. Overflows 1196 (484) 1035 (376) 502 (125) 226 (162) 103 (99)

VIII. CONCLUSION
We have proposed two novel reinforcement learning algorithms for coordinating the learning

processes of the layers in a multi-layer system. The first method coordinates the layers by

temporally separating their learning processes so that the learning layer has less “noise” in its

experience. The second method uses explicit message exchanges to coordinate the layers. In our

experimental results, we verified that the latter layered learning solution achieves the same

performance as the centralized solution, which violates the layered architecture. We also

exploited our partial knowledge of the system’s structure in order to drastically improve the

learning performance. Specifically, we found that virtual experience can be exploited to

accelerate the rate of learning and that setting good initial conditions greatly improves learning

 33/37

performance, but that the best choice of initial conditions depends on the deployed learning

strategy (e.g. how many virtual experience updates to deploy).

APPENDIX A

In this section of the appendix, we discuss the form of the utility gain function defined in

(17). Conventionally, if a multimedia buffer does not overflow (i.e. the buffer constraints are not

violated), then there is no penalty. Within the proposed MDP-based framework, where we

cannot explicitly impose constraints because the dynamics are not known a priori, the

conventional buffer model must be integrated into the system’s reward function. Specifically, it

can be integrated into the reward through a utility gain function of the form:

()

conv

1, 1
(,)

1 , otherwise,

q t Q
g

Q q t

 + − ≤ =
 − + −

�

�
s a

which provides a reward of 1 if the buffer does not overflow, and a penalty proportional to the

number of overflows otherwise.

In contrast to the proposed continuous utility gain function defined in (17), conv(,)g s a is

disjoint. As a result, the optimal foresighted policy obtained using conv(,)g s a will initially fill the

buffer rapidly in an attempt to minimize rate-distortion and power costs (because it is not

penalized for filling the buffer) as illustrated in Fig. 8(a). Subsequently, the policy will attempt to

keep the buffer nearly full in order to balance the cost of overflow with the rate-distortion and

power costs required to reduce the buffer’s occupancy. Unfortunately, with the buffer nearly full,

any sudden burst in the complexity of a data unit will immediately overflow the buffer as

illustrated in Fig. 8(b). In contrast, the proposed utility gain function is robust against bursts in

complexity because it encourages the buffer occupancy to remain low as illustrated in Fig.

8(c,d).

The data in Table IX shows that the proposed utility gain function not only prevents buffer

overflows, but it also achieves comparable power consumption as the conventional utility gain

function. Thus, we have verified that our choice of utility gain function is good. An added

benefit of the proposed utility gain function is that it aids in the learning process. This is because

actions are immediately rewarded (or penalized) based on how they impact the buffer state.

 34/37

0 500 1000 1500
0

10

20

30

40

50

Time slot

B
uf

fe
r

S
ta

te

Buffer fills slowly

Buffer State
Buffer Size

0 1 2

x 10
4

0

10

20

30

40

50

Time slot

B
uf

fe
r

S
ta

te

Buffer does not overflow

Buffer State
Buffer Size

0 500 1000 1500
0

10

20

30

40

50

Time slot
B

uf
fe

r
S

ta
te

Buffer fills rapidly

Buffer State
Buffer Size

0 1 2

x 10
4

30

40

50

60

Time slot

B
uf

fe
r

S
ta

te

Buffer overflows

Buffer State
Overflows
Buffer Size

(a) (b)

(c) (d)

Buffer State
Buffer Size

Fig. 8. Buffer evolution in 20, 000N = time slot simulation. (a) Conventional utility gain results in the

buffer filling rapidly; (b) Conventional utility gain l eads to overflows; (c) Proposed utility gain keeps the
buffer occupancy low; (d) Proposed utility gain prevents overflows.

Table IX. Performance statistics using the conventional utility gain function and the proposed utility gain

function.
 Form of the utility gain
 Conventional Proposed

Avg. Reward 0.7785 0.7620
Avg. Power (W) 0.2421 0.2427

Avg. Rate-Distortion 14.95 14.84
Avg. Utility Gain 0.9919 0.9788
No. Overflows 394 0

APPENDIX B

In this section of the appendix, we investigate the impact of the action-value function’s initial

conditions on the overall learning performance. Specifically, we consider four possible initial

conditions: first, (),Q s a is initialized to 0 (case “Zero”); second, (),Q s a is initialized with its

upper bound defined in (40) (case “Upper bound”); third, (),Q s a is initialized with the

approximation defined in (41) (case “Approx.”); and, forth, (),Q s a is initialized with the

approximation and the known power-frequency costs as defined in (42) (case “Approx. &

 35/37

power”). Fig. 9 illustrates the cumulative average reward over 128, 000N = time slots

(macroblock granularity) for all four cases and Table X shows the corresponding average

reward, average power, average rate-distortion, average utility gain, and the number of

overflows.

From Fig. 9 we observe that setting good initial conditions based on our partial knowledge of

the system does indeed improve performance. In all four cases, the reward initially drops

because the buffer fills rapidly as actions are explored in each state. In the cases with good initial

conditions, the system is able to quickly determine actions to reduce the buffer occupancy, avoid

buffer overflows, and improve performance. Interestingly, the optimal learning performance is

obtained under the “Approx.” initial conditions, and not the “Approx. & power” initial

conditions, which include more information. The “Approx. & power” case performs worse

because it initially biases the system toward taking low power (high delay) actions so it takes

longer to reduce its buffer occupancy after the buffer initially fills. This observation is

corroborated by the data in Table X: The “Approx. & power” case does better in terms of power

consumption at the expense of lower utility gain, more buffer overflows, and higher rate-

distortion costs.

0 5 10

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time slot

C
um

ul
at

iv
e

av
er

ag
e

re
w

ar
d

Impact of initial action-value function on learning

Optimal
Zero
Upper bound
Approx.
Approx. & power

Fig. 9. Learning performance under different action-value function initial conditions.

Table X. Performance statistics under different action-value function initial conditions.

 Initial condition
 Zero Upper bound Approx. Approx. & power Optimal

Avg. Reward 0.2808 0.6001 0.6721 0.6681 0.7620
Avg. Power (W) 0.4297 0.5888 0.5523 0.5405 0.2427

Avg. Rate-Distortion 15.15 15.05 15.07 15.13 14.84

 36/37

Avg. Utility Gain 0.5341 0.8802 0.9461 0.9408 0.9788
No. Overflows 2872 600 325 344 0

REFERENCES
[1] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasubramanian, “Integrated

power management for video streaming to mobile handheld devices,” Proc. of the 11th
ACM international conference on Multimedia, pp. 582-591, 2003.

[2] R. Cornea, S. Mohapatra, N. Dutt, A. Nicolau, N. Venkatasubramanian, “Managing Cross-
Layer Constraints for Interactive Mobile Multimedia,” Proc. of the IEEE Workshop on
Constraint-Aware Embedded Software, 2003.

[3] S. Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim, N. Dutt, R. Gupta, A. Nicolau, S.
Shukla, N. Venkatasubramanian, “A cross-layer approach for power-performance
optimization in distributed mobile systems,” p. 218a, 19th IEEE International Parallel and
Distributed Processing Symposium, 2005.

[4] W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, R. H. Kravets, “Design and evaluation of
a cross-layer adaptation framework for mobile multimedia systems,” Proc. of SPIE
Multimedia Computing and Networking Conference, vol. 5019, pp. 1-13, Jan. 2003.

[5] W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, R. H. Kravets, “GRACE-1: cross-layer
adaptation for multimedia quality and battery energy,” IEEE Trans. on Mobile Computing,
vol. 5, no. 7, pp. 799-815, July 2006.

[6] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, “Power-rate-distortion analysis for
wireless video communication under energy constraints,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 15, no. 5, pp. 645-658, May 2005.

[7] Z. He, W. Cheng, X. Chen, “Energy minimization of portable video communication
devices based on power-rate-distortion optimization,” IEEE Trans. on Circuits and Systems
for Video Technology, vol. 18, no. 5, May 2008.

[8] D. G. Sachs, S. Adve, D. L. Jones, “Cross-layer adaptive video coding to reduce energy on
general-purpose processors,” in Proc. International Conference on Image Processing, vol.
3, pp. III-109-112 vol. 2, Sept. 2003.

[9] N. Mastronarde and M. van der Schaar, “Towards a general framework for cross-layer
decision making in multimedia systems,” IEEE Trans. on Circuits and Systems for Video
Technology, to appear.

[10] S. Irani, G. Singh, S. K. Shukla, R. K. Gupta, “An overview of the competitive and
adversarial approaches to designing dynamic power management strategies,” IEEE Trans.
on Very Large Scale Integration Systems, vol. 13, no. 12, pp. 1349-1361, Dec. 2005.

[11] L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli, “Policy optimization for
dynamic power management,” IEEE Trans. on computer-aided design of integrated
circuits, vol. 18, no. 6, June 1999.

[12] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G. De Micheli, “Dynamic power
management for nonstationary service requests,” IEEE Trans. on Computers, vol. 51, no.
11, Nov. 2002.

[13] Z. Ren, B. H. Krogh, R. Marculescu, “Hierarchical adaptive dynamic power management,”
IEEE Trans. on Computers, vol. 54, no. 4, Apr. 2005.

[14] R. S. Sutton, and A. G. Barto, “Reinforcement learning: an introduction,” Cambridge,
MA:MIT press, 1998.

 37/37

[15] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: a survey,”
Journal of Artificial Intelligence Research 4, pp. 237-285, May 2005.

[16] C. J. C. H. Watkins and P. Dayan, “Technical Note: Q-learning,” Machine Learning, vol. 8,
no. 3-4, pp. 279-292, May 1992.

[17] S. Russell and A. L. Zimdars, “Q-decomposition for reinforcement learning agents,” in
Proc. of the International Conference on Machine Learning, pp. 656-663, 2003.

[18] J. O. Kephart, H. Chan, R. Das, D. W. Levine, G. Tesauro, F. Rawson, and C. Lefurgy,
“Coordinating multiple autonomic managers to achieve specified power-performance
tradeoffs,” Proc. of the 4th International Conference on Autonomic Computer, 2007.

[19] Omer F. Rana and Jeffrey O. Kephart, "Building Effective Multivendor Autonomic
Computing Systems," IEEE Distributed Systems Online, vol. 7, no. 9, 2006, art. no. 0609-
o9003.

[20] D. S. Turaga and T. Chen, “Hierarchical modeling of variable bit rate video sources,”
Packet Video Workshop, May 2001.

[21] A. Ortega, K. Ramchandran, M. Vetterli, “Optimal trellis-based buffered compression and
fast approximations,” IEEE Trans. on Image Processing, vol. 3, no. 1, pp. 26-40, Jan.
1994.

[22] E. Akyol and and M. van der Schaar, "Complexity Model Based Proactive Dynamic
Voltage Scaling for Video Decoding Systems," IEEE Trans. Multimedia, vol. 9, no. 7, pp.
1475-1492, Nov. 2007.

[23] S. P. Sanner, “First-order decision-theoretic planning in structured relational
environments,” Ph.D. Thesis, University of Toronto, 2008.

[24] N. Nahrstedt, D. Xu, D. Wichadakul, and B. Li QoS-Aware Middleware for Ubiquitous
and Heterogeneous Environments, IEEE Communications Magazine, 2001.

[25] S. Mohapatra and N. Venkatasubramanian, “PARM: Power-aware reconfigurable
middleware,” Proc. 23rd Internat. Conf. on Distributed Computing Systems, 2003.

[26] J. Nieh, M.S. Lam, “The design, implementation and evaluation of SMART: a scheduler
for multimedia applications,” Proc. of the Sixteenth ACM Symposium on Operating
Systems Principles, pp. 184-197, Oct. 1997.

[27] P. Goyal, X. Guo, H.M. Vin, “A Hierarchical CPU Scheduler for Multimedia Operating
Systems,” Usenix 2nd Symposium on OS Design and Implementation, pp. 107-122, 1996.

[28] P. A. Dinda, and D. R. O’Hallaron, “An evaluation of linear models for host load
prediction,” Proc. IEEE Internat. Sympos. High Perf. Distrib. Comput., pp. 87-96, Aug.
1999.

[29] Y. Andreopoulos and M. van der Schaar, "Adaptive Linear Prediction for Resource
Estimation of Video Decoding," IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 6,
pp. 751-764, June 2007.

[30] Y. Shoham and K. Leyton-Brown, Multi-agent Systems: Algorithmic, Game Theoretic and
Logical Foundations, Cambridge University Press, 2008.

