
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 1

Big-Data Streaming Applications Scheduling
Based on Staged Multi-armed Bandits

Karim Kanoun, Cem Tekin, Member, IEEE, David Atienza, Fellow, IEEE,
and Mihaela van der Schaar, Fellow, IEEE

Abstract—Several techniques have been recently proposed to adapt Big-Data streaming applications to existing many core platforms.
Among these techniques, online reinforcement learning methods have been proposed that learn how to adapt at run-time the
throughput and resources allocated to the various streaming tasks depending on dynamically changing data stream characteristics and
the desired applications performance (e.g., accuracy). However, most of state-of-the-art techniques consider only one single stream
input in its application model input and assume that the system knows the amount of resources to allocate to each task to achieve a
desired performance. To address these limitations, in this paper we propose a new systematic and efficient methodology and
associated algorithms for online learning and energy-efficient scheduling of Big-Data streaming applications with multiple streams on
many core systems with resource constraints. We formalize the problem of multi-stream scheduling as a staged decision problem in
which the performance obtained for various resource allocations is unknown. The proposed scheduling methodology uses a novel
class of online adaptive learning techniques which we refer to as staged multi-armed bandits (S-MAB). Our scheduler is able to learn
online which processing method to assign to each stream and how to allocate its resources over time in order to maximize the
performance on the fly, at run-time, without having access to any offline information. The proposed scheduler, applied on a face
detection streaming application and without using any offline information, is able to achieve similar performance compared to an
optimal semi-online solution that has full knowledge of the input stream where the differences in throughput, observed quality, resource
usage and energy efficiency are less than 1%, 0.3%, 0.2% and 4% respectively.

Index Terms—Scheduling, Machine learning, Many-core platforms, Data mining, Big-Data, Multiple streams processing, Concept drift.

F

1 INTRODUCTION

B IG-DATA streaming applications are now widely used
in several domains such as social media analysis, fi-

nancial analysis, video annotation, surveillance and medical
services. These applications are characterized with stringent
delay constraints, increasing parallel computation require-
ment and a highly variable stochastic input data stream
which have direct impact on the application complexity and
the final Quality of Service QoS (e.g., throughput and output
quality) [12]. For instance, stream mining applications [1],
one of the main emerging Big-Data stream computing ap-
plications, are used to classify a high input of variable data
stream and are in general modeled using a chain of stages
of classifiers and features-extraction tasks (e.g., Figure 1).
Different types of dynamically changing data are collected
from various heterogeneous sources and multiple types of
classifiers are applied on these data to uncover hidden
patterns or extract knowledge required for prediction and

. This work has been partially supported by the YINS RTD project
(no. 20NA21 150939), funded by Nano-Tera.ch with Swiss Confed-
eration Financing and scientifically evaluated by SNSF, and the EC
H2020 MANGO project (Agreement No. 671668). This research was
also supported by NSF grant ECCS-1407712.

Karim Kanoun and David Atienza are with the Embedded Systems
Laboratory, Ecole Polytechnique Federale de Lausanne, Lausanne 1015,
Switzerland (e-mail: karim.kanoun@epfl.ch; david.atienza@epfl.ch).
Cem Tekin is with the Department of Electrical and Electron-
ics Engineering, Bilkent University, Ankara, 06800, Turkey (e-
mail:cemtekin@ee.bilkent.edu.tr). Mihaela van der Schaar is with
the Department of Electrical Engineering, University of California
at Los Angeles, Los Angeles, CA 90095-1594 USA (e-mail: mi-
haela@ee.ucla.edu).

actionable intelligence applications. In order to adapt to the
heterogeneous nature of the data, each stage may integrate
different type of classifiers or quality levels and a selection
of the processing method is realized at run-time with respect
to the predicted type of data. Figure 1 illustrates an example
of facial detection application using this application model.
The complexity of each task in each stage of the chain may
change at run-time with respect to the type of processed
input data which is unknown by the application.

Numerous hardware and software solutions have been
proposed in order to cope with the increasing complexity
and computation requirement of modern streaming applica-
tions. At the hardware layer, several many core architectures
[9], [20], [21], [22] have been developed to increase the
parallelization level and to support the streaming appli-
cation model. At the software layer, approaches based on
load-shedding techniques have been proposed to reduce
the workload by selecting the percentage of data that will
be processed while other approaches control the processing
method of the data streams to adapt to the given allo-
cated resources. However, the majority of state-of-the-art
solutions do not handle multiple streams at the same time.
Moreover, even in the single stream case, without the sup-
port of a proper online smart scheduler that knows how to

Eyes
Detection

Nose
detection

Stream	1	
Stream	m	

…	 Mouth
Detection

Stage	1	 	Stage	2	 Stage	3	 Stage	4	

Mul&ple	choices	of	
processing	methods	

per	stage					

Face
Detection

t1
0

t1
1

t1
2

t2
0

t2
1

t3
0

t3
1

t3
2

t4
0

t4
1

Many	Core	Pla9orm	

Fig. 1. A stream mining application with multiple tasks per stage [8].

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 2

efficiently coordinate these software optimizations with the
real capacity of existing hardware solutions and the dynami-
cally changing application needs, these many core platforms
are not able to efficiently handle real time requirements and
characteristics of Big-Data streaming application which are
dynamically changing at run-time. In fact, existing online
scheduling approaches have very limited considerations to
the dynamic characteristics of the data streams, which may
experience concept drift [11] and thus require continuous
adaptation. Approaches that rely on offline information are
not able to adapt to these concept drifts online.

Finally, energy consumption in many core architectures
is becoming a major concern as the cost of powering these
type of platforms is significantly increasing [13]. Software
techniques presented in the previous paragraph adapt the
complexity of stream mining applications at run-time. How-
ever, such workload reduction solutions are usually imple-
mented at the application layer which is often oblivious to
the system architecture, available system resources or avail-
able power management features. Therefore, by combining
these software techniques with energy saving features such
as Dynamic Power Management (DPM) to switch on and
off cores, the energy consumption can be reduced without
having an impact on the quality of service of the application.
In fact, by allocating the proper amount of resources to each
task, only required cores are activated. Moreover, the slack
time between different application stages can be exploited
with DPM when it is detected. Therefore, it is essential that
the operating system layer combines techniques from both
application and hardware layers in order to maximize the
QoS while minimizing the energy consumption.

To address these challenges, we propose a new system-
atic and efficient methodology and associated algorithms for
online learning and energy-efficient scheduling of Big-Data
streaming applications with multiple streams on many core
systems with resources constraints. The key contributions of
this work are as follows:
•We formalize the problem of multi-streams scheduling

as a staged decision problem in which the performance
obtained for various resource allocations is unknown a
priori but learned over time.
• The proposed scheduling methodology uses a novel

class of online adaptive learning techniques which we refer
to as staged multi-armed bandits. Our scheduler is able
to learn online which processing method to assign to each
stream and how to allocate resources over time in order to
maximize the performance on the fly, at run-time, without
having access to any offline information.
• Unlike standard multi-armed bandit problem formula-

tion where each outcome depends only on the latest previ-
ous scheduling decision, in our formulation the outcome of
each scheduling action depends on a sequence of previous
scheduling decisions and feedbacks that are taken at a
certain stage (window) of time.
•The regret (i.e., the difference in performance compared

to a scheduler that acts optimally from the beginning) of
the proposed algorithm increases only logarithmically in the
number of rounds.

The proposed scheduler, applied on a multi-stage face
detection streaming application in a dynamically changing
environment and without using any offline information, is

able to achieve similar performance compared to an optimal
semi-online solution that has full knowledge of the input
stream where the differences in throughput, observed qual-
ity, resource usage and energy efficiency are less than 1%,
0.3%, 0.2% and 4% respectively. We also compare our results
to a scheduling solution [19] with online learning and con-
cept drift detection. Our scheduler significantly outperforms
the solution proposed in [19] in terms of observed quality,
obtained throughput, memory usage and complexity.

The remainder of this paper is organized as follows.
In Section 2, we describe related work and the benefits of
Staged Multi-Armed Bandits. In Section 3, we model our
environment including the application, the Big-Data and the
platform models. In Section 4, we describe our novel class of
online adaptive learning techniques (i.e., our scheduler). In
Section 6, we present our experimental results. Finally, we
summarize the main conclusions in Section 7.

2 MOTIVATION

2.1 Related Work
Our approach targets a specific type of applications where
the QoS depends on both the throughput and the quality
observed for each task in the application with a dynamic
Big-Data stream under constrained resources. Therefore, we
only discuss techniques that have been proposed to adapt
Big-Data streaming applications to resource constraints.

The first set of approaches relies on load-shedding [6] [7],
where designed algorithms determine when, where, what,
and how much data to discard given the desired QoS re-
quirements and the available resources. In [6], the impact of
load shedding is known a-priori and the load shedder was
decoupled from the scheduler assuming that an external
scheduler will handle the assignment of freed resources. In
[7], a load shedding scheme ensures that dropped load has
minimal impact on the benefits of mining and dynamically
learns a Markov model to predict feature values of unseen
data. Instead of deciding on what fraction of the data to
process, as in load shedding, the second set of approaches
[5] [2] [3] [4] [1] determine how the available data should
be processed given the underlying resource allocation. In
these works, individual tasks operate at a different perfor-
mance level given the resources allocated to them. They
assume a fixed model complexity for each classifier and
the variation of the output quality is known a-priori. The
problem was formulated as a network optimization problem
and solved with sequential quadratic programming. These
solutions assume stationary environment while, in reality,
data streams are dynamic. Therefore, they may experience
a concept drift that requires a continuous online adaptation
of the amount of allocated resources to each task and the
output quality to maximize the QoS, especially when the re-
sources are constrained. In [11], a survey has been published
recently, which categorizes most of the existing concept drift
approaches. None of these approaches have been proposed
for scheduling Big-Data streaming applications and resource
management problems. Recently, in [19], the authors model
the scheduling problem as a Stochastic Shortest Path prob-
lem and propose a reinforcement learning algorithm to learn
the environment dynamics to solve this problem even in
the presence of concept drift. However the allocation of the
computing resources to each streaming task was not realized

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 3

by the algorithm. Instead, it assumes that the system knows
the amount of resources to allocate to each task to achieve
the desired throughput. Moreover, they do not provide a
systematic way for the task selection. In section 6.2.4, we
compare our results to the scheduler proposed in [19].

To summarize, the above two set of solutions are usually
implemented at the application layer and are agnostic to
the system constraints and capabilities. Instead, our online
learning solution is implemented at the operating system
level and it is responsible for resources allocation and pro-
cessing method selection for each available stream.

2.2 Benefits of Staged Multi-Armed Bandits
In this paper, we model the multi-stream scheduling prob-
lem as an online learning problem. Many online learning
problems can be formalized using multi-armed bandits
(MABs) [15] [14] [17] and efficient algorithms with provable
performance guarantees can be developed for these prob-
lems. A common assumption in all these problems is that
each decision step involves taking a single action after which
the reward is observed. Unlike these problems in multi-
task scheduling, each decision step (amount of resource to
allocate, quality level, etc.) involves taking multiple actions
in series corresponding to different types of processing ap-
plied on a single data stream and multiple actions in parallel
corresponding to different data streams at each stage.

Another class of MAB problems in which the reward at
a particular stage depends on the sequence of actions that
are taken are the C-MAB problems [16]. However, in these
problems it is assumed that (i) all the actions in the sequence
are selected simultaneously; hence, no feedback is available
between the actions, (ii) the global reward function has a
special additive form which is equal to a weighted sum of
the individual rewards of the selected actions. Other MAB
problems which involve large action sets are [18] where at
each time step the learner chooses an action in a metric space
and obtains a reward that is a function of the chosen action.
Again, no intermediate feedback about the chosen sequence
of actions is available before the reward is revealed.

MABs are also used in solving decentralized sequential
decision making problems involving multiple learners [31],
[32], [33]. However, unlike multi-stream scheduler in which
there is a centralized learner, in these problems there are
multiple decentralized learners that act on different data
streams. The resources are shared among the learners, hence
they should carefully select the actions in order to maximize
the total reward. But the settings considered in these works
are not applicable to multi-stream scheduling because (i)
there are no stages; (ii) they cannot adapt based on inter-
mediate feedbacks provided within each stage; (iii) their
complexity grows linearly in the size of the action space
which is combinatorial in the multi-stream scheduling appli-
cation. While our staged bandits approach can be extended
to involve decentralized decision making, we leave this
tedious task as a future research direction and focus on
the novel stage decomposition which allows us to learn fast
under large number of data streams and concept drift.

Finally, methods such as Q-learning do not fit well into
our multi-stream application model. For instance, in Q-
learning the feedback space is fixed, and convergence takes
place only asymptotically conditional on the fact that every

feedback-action pair is sampled infinitely often. One of the
most closely related work in Q-learning [37] derives sample
complexity bounds on the performance of two variants of
Q-learning, by assuming a general discounted Markov De-
cision Process (MDP) structure. However, the assumptions
on the rewards (and the discount factor) are very different
from ours. For instance, in the standard MDP model, the
reward depends only on the current state and the current
action, and is collected after every taken action. In our work,
the reward depends on the past sequence of feedbacks and
actions, and is collected only at the end of the round.

One of the most famous variant of the sequential deci-
sion making problems is the restless MAB problem [31] [36].
Although logarithmic strong regret bounds [36] are proven
for the restless MAB problem, algorithms that achieve log-
arithmic strong regret cannot be computationally efficient
[41]. For this reason, we choose to learn a myopic bench-
mark, which can be computed efficiently, and the regret only
depends linearly on the number of stages in a round.

3 SYSTEM MODEL

We consider a streaming application with multiple streams
from different sources. We use sk to refer to the kth stream
and there are Nstream streams in total. Processing of these
data streams is carried out in a chain of stages [8] [1].

There are lmax dependent processing stages i ∈ G with
deadlines di, where G := {1, 2, . . . , lmax}. Each stage i is
composed of a set of tasks Ti (processing methods). In order
to optimize the processing of the incoming data of each
stream on the fly, at each stage i, we have multiple tasks
to choose from the set Ti. Each task tji ∈ Ti at stage i
implements a specific processing method that is optimized
for a specific characteristics of data with non-deterministic
workload. Let N i

task denote the number of tasks in Ti. In
our model, the inputs and outputs of stage i depends on the
outputs of stage i−1. An illustrative system model showing
an application with multiple input streams, stages and tasks
for a face detection application is given in Figure 1.

The performance of the processing of sk in stage i is
measured by the output quality qki and the amount of
workload wki which depends on tji and the characteristic
of sk. In general the data streams can exhibit Big-Data char-
acteristics such as high velocity and high dimensionality so
that it is not possible in general to process all the data on
time. Therefore, the amount of data that is processed within
its deadline gets to the next task in the chain while the
remaining unprocessed data are simply discarded. While
the majority of prior work assumes stationary data streams,
our model is able to work under concept drift.

Finally, our many core platform model is composed of
Ncore cores with idle power saving states C-states feature
support [23], [24]. C-states are core power states that define
the degree to which the processor is ”sleeping”.C0 indicates
a normal operation (i.e., full leakage power consumption).
All other C-states (C1-Cn) describe states where the proces-
sor clock is inactive (cannot execute instructions) and differ-
ent parts of the processor are powered down (i.e., reduced
leakage power consumption). Deeper C-states have longer
wake-up latenciesXck

switch (the time to transition back toC0)
but save more power. An efficient use of the C-states may
then significantly reduce the energy consumption.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 4

Hardware	
feedback	

a=(a0	,…, am)	

S-MAB

Applica0on	
feedback	

M A N Y C O R E P L A T F O R M

Buffer Stage 2 Stage 3 0	 n1	...	
Stage	1	

s0 s1 sm
a0 a1 am

Hardware	
feedback	

a=(a0	,…, am)	

S-MAB

Applica0on	
feedback	

M A N Y C O R E P L A T F O R M

Buffer Stage 3

f0 f1 fm
a0 a1 am

Stage 1 0	 n2	...	
Stage	2	

f0 f1 fm
Hardware	
feedback	

a=(a0	,…, am)	

S-MAB

Applica0on	
feedback	

M A N Y C O R E P L A T F O R M

Buffer

f0 f1 fm
a0 a1 am

Stage 2 0	 n3	...	
Stage	3	

f0 f1 fm

m	Streams	
Stage 1

m	Streams	 m	Streams	

Time	slot	
t	

Time	slot	t	+	1	 Time	slot	t	+	2	Time	slot	t	+		

Fig. 2. Example of the execution of the S-MAB during a full round on a 3 stages streaming application

4 A STAGED ONLINE LEARNING FRAMEWORK

4.1 Problem formulation

Figure 2 illustrates staged processing of the input streams.
The system operates in rounds (ρ = 1, 2, . . .). At the be-
ginning of each round, multiple data instances arrives from
each input stream to the many core platform. The processing
of the Nstream streams are performed in parallel, as follows.
At the beginning of a round, each input stream is assigned
to one of the processing methods available in stage 1. After
the processing of these data instances are completed or
the allowed processing time is consumed, processed data
instances of each input stream are assigned to the processing
methods of stage 2, and so on. The processing time of
an instance at a stage depends on the computing resource
allocation, requested quality level and the execution time
related to the selected processing task at that stage. We refer
to these quantities as actions, and the joint action vector1 at
stage i of round ρ is denoted by aρi = (aρi,1, . . . , a

ρ
i,Nstream

),
where aρi,k represents the action taken for the data of stream
k at stage i of round ρ. The set of feasible actions for a data
stream at stage i is denoted by Ai.2 For instance, the total
amount of resources allocated to all tasks should be less than
or equal to the sum of available resources at each stage.

The number of actions in Ai is denoted by N i
action. For

our application, an action a ∈ Ai can be represented as a
tuple a = (t, c), where t is the task selected at stage i and
c is the amount of resource allocated to that task. Without
loss of generality we assume that this holds for the rest of
the paper. The set of feasible joint action vectors at stage i is
denoted by Āi :=

∏Nstream
k=1 Ai.

After each action aρi,k is taken for data stream k in stage
i of round ρ, a feedback fρi,k is observed. Let Fi be the
set of feedbacks that can be observed at stage i at any
round for a data stream. We have ∅ ∈ Fi. Depending
on the stage index (i.e., either the first stage or remaining
stages), the feedback observed from each stage i can be
composed of one or multiple of these particular elements:
(i) Occupancy of the input buffer of each stream k; (ii)
The estimated percentage of minimum resources required
per task to process a fixed amount of data from stream
k; (iii) The selected processing path of the stream k until
stage i; (iv) The amount of resources used to process the
data of stream k; An explicit definition of the feedbacks for
our stream mining application is given in Section 5.2. The
joint feedback from all data streams at stage i of round
ρ is denoted by fρi = (fρi,1, . . . , f

ρ
i,Nstream

). The set of all
joint feedbacks at stage i is denoted by F̄i =

∏Nstream
k=1 Fi.

1. When clear from the context, we will refer to joint action vector as
the action.

2. Ai also includes the null action, which implies that no action is
taken for the stream. The null action is denoted by null.

In addition, fρ0 denotes the joint initial feedback that is
available at the beginning of round ρ before any action is
taken. The set of all joint initial feedbacks is denoted by F̄0.
For our streaming application, this initial feedback used for
the task selection in the first stage is different from other
feedbacks used for following stages as it is more related
to the status of the buffer rather than a previous stage
execution.

Given an action aρi,k for data stream k at stage i of round
ρ, let dρi,k(aρi,k) be the random variable which denotes the
execution time of task t ∈ aρi,k for data stream k at round ρ.
The deadline of stage i denoted by di > 0 represents a delay
constraint and effects the processing of the data streams in
the following way. If dρi,k(aρi,k) > di, then unprocessed data
from the data instance corresponding to data stream k is
discarded. Only the processed data gets to the next stage.
Therefore, for any round ρ and stage i the set of data streams
which do not have any dropped data instance is denoted by
Bρi := {k : dρi′,k(aρi′,k) ≤ di, ∀ 1 ≤ i′ < i}. Hence, the set Bρi
only depends on both the actions and the feedbacks before
stage i of round ρ.

Our proposed algorithm select the action in the current
stage of the current round based on the feedbacks and
actions of past stages in the current round and the feedbacks
and actions of the past rounds. In our framework, the
joint action to be taken at stage i of round ρ may depend
on the set of previously selected actions and observed
feedbacks. The set of all sequences of actions is denoted
by Aall :=

∏lmax

i=1 Āi. For any sequence of action vectors
a ∈ Aall, let F(a) be the set of sequences of feedbacks
that may be observed, and F all :=

⋃
a∈Aall

F(a). The
sequence of actions chosen in round ρ is denoted by aρall :=
(aρ1,a

ρ
2, . . . ,a

ρ
lmax

). Let aρ[i] := (aρ1, . . . ,a
ρ
i , null, . . . , null)

represent the sequence of actions chosen in the first i
stages of round ρ. Similarly, fρall := (fρ0,f

ρ
1, . . . ,f

ρ
lmax

)
denotes the sequence of all feedbacks observed in round
ρ, and fρ[i] := (fρ0,f

ρ
1, . . . ,f

ρ
i , null, . . . , null) denotes the

sequence of feedbacks observed at the first i stages of round
ρ. Given a sequence of actions a ∈ Aall and sequence
of feedbacks f ∈ F(a) in a round, the reward is drawn
from an unknown distribution Fa,f independently from
the other rounds. The expected reward is given by ra,f .
For our Big Data stream mining application, the reward
function takes into account the observed quality qi,k, the
observed throughput thi,k for each stream k in the stage
i executing the task in Ti that is given as an element of
aρi,k, and finally the amount of unused allocated resources.
For our theoretical analysis, we assume that the expected
reward is normalized to lie in [0, 1] for all sequences of
feedbacks and actions. However, our results will continue
to hold (with a constant scaling factor) for any expected
reward function that is bounded. An explicit definition of

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 5

the reward function for our stream mining application is
given in Section 5.3.

At stage i of round ρ, the action that is taken for k /∈ Bρi
is the null action (since the instance that belongs to any data
stream k /∈ Bρi is already discarded in one of the previous
stages of that round.) Hence, we only need to select the ac-
tion for data streams k ∈ Bρi . Let this constrained action space
at stage i of round ρ be denoted by Aρi (B

ρ
i) :=

∏
k∈Bρi

Ai.
Given the deadline constraint, an algorithm only needs to
select actions (tasks selection and allocations) for instances
of data streams that are in Bρi .3

Every action and feedback sequence is encoded into a
state by the rule φ : Aall × F all → X , where X is a finite
set. For instance, if X is taken to be the set of subsets of all
data streams, then φ(aρ[i− 1],fρ[i− 1]) := Bρi will denote
the set of data streams that do not have any dropped data
instance at stage i of round ρ. The probability that feedback
f is observed when action a is chosen in stage t when
state is x is given by pt,a,x(f), which is unknown. Since
the state is a function of the feedback and action, the state
transition probabilities are stage dependent. Due to this, the
proposed state model is different than the stationary MDP
model assumed in prior works in reinforcement learning
[34], [35].

4.2 Myopic benchmark
Since the number of possible sequences of actions and
feedbacks that can be taken/observed in a particular round
is exponential in lmax, it is very inefficient to learn the best
sequence of actions by trying each of them separately to
estimate ra,f for every a ∈ Aall and f ∈ F(a). In this
section we propose an oracle benchmark called the Best
First (BF) benchmark whose action selection strategy can be
learned quickly by the learner. The pseudocode for the BF
benchmark is given in Algorithm 1.

Algorithm 1 Pseudocode for the BF benchmark.
1: while ρ ≥ 1 do
2: Select action aρ∗1 = arg maxa∈Aρ1(B

ρ
1) ya,fρ0

3: Observe feedback fρ∗1
4: while 1 < i ≤ lmax do
5: aρ∗i = arg maxa∈Aρi (B

ρ
i)

(y(aρ∗[i−1],a),fρ∗[i−1])
6: i = i+ 1
7: end while
8: ρ = ρ+ 1

9: end while

Let A[i] ⊂ Aall be the set of sequences of actions taken
in the first i stages of any round. We will also use fa[i′] to
denote the sequence of feedbacks to the subset of the actions
in a that are taken in the first i′ stages of any round. Let
ya[i],fa[i][i−1] := Ef [ra[i],(fa[i][i−1],f)] be the ex-ante reward
given the sequence of actions a[i] before the feedback for the
action vector ai of stage i is observed, where the expectation
is taken with respect to the distribution of the feedback for
action vector ai and state x = φ(a[i− 1],f [i− 1]).

3. The algorithms we propose in this paper will select the best actions
in Aρi (Bρi) according to an optimality criterion that will be defined
later. Since Bρi can be computed using the past sequence of actions
and feedbacks, the learner knows that the best action in Āi is always
in Aρi (Bρi). Hence, given the past sequence of actions and feedbacks,
taking the action that maximizes the reward over Aρi (Bρi) is equivalent
to taking the action that maximizes the reward over Āi.

The BF benchmark incrementally selects the next action
based on the sequence of feedbacks observed for the actions
of the previous stages. The action that it selects at the initial
stage of round ρ is aρ∗1 = arg maxa∈Aρ1(B

ρ
1)
ya,fρ0 .

Let aρ∗all = (aρ∗1 ,a
ρ∗
2 , . . . ,a

ρ∗
lmax

) be the sequence of
actions selected and fρ∗all = (fρ∗0 ,f

ρ∗
1 , . . . ,f

ρ∗
lmax

) be the
sequence of feedbacks observed by the BF benchmark in
round ρ. In general aρ∗i , depends on both aρ∗[i − 1] and
fρ∗[i− 1].

At any stage i of round ρ the BF benchmark selects the
action in a ∈ Aρi (B

ρ
i) that maximizes y(aρ∗[i−1],a),fρ∗[i−1].

The total expected reward summed over all data streams
up to round n by using the BF benchmark is equal to
RWBF(n) :=

∑n
ρ=1 E [YAρ∗,F ρ∗], where Aρ∗ is the random

variable that represents the sequence of actions selected in
round ρ by the BF benchmark, F ρ∗ is the random variable
that represents the sequence of feedbacks observed for the
actions selected in round ρ, and YAρ∗F ρ∗ is the random
variable that represents the reward obtained in round ρ.

Definition of the Regret: Consider any learning algorithm
which selects a sequence of actions Aρ based on the ob-
served sequence of feedbacks F ρ. The regret of this learning
algorithm with respect to the BF benchmark in the first n
rounds is given by

E[R(n)] := RWBF(n)−
n∑
ρ=1

E [YAρ,F ρ] (1)

where YAρ,F ρ is the random variable that represents the
reward obtained in round ρ. The regret is defined as the total
loss incurred on all data streams up to round n with respect
to the BF benchmark. Hence, minimizing the regret implies
maximizing the total performance on all data streams. Any
algorithm whose regret increases at most sublinearly, i.e.,
O(nγ), 0 < γ < 1, in the number of rounds will converge in
terms of the average reward to the average reward of the BF
benchmark as n → ∞. In the next section we will propose
an algorithm whose regret increases only logarithmically in
the number of rounds.

The definition of regret given in (1) is with respect to
the BF benchmark, and hence, is not the strongest notion
of regret. Numerous other works such as [36] considered
stronger notions of regret, but the algorithms that achieve
sublinear strong regret are computationally intractable.
Other approaches such as [31] considered weaker notions
of regret, in which the regret is computed with respect to
the best fixed action. In contrast to these works, the action
sequence selected by the BF benchmark depends on the set
of observed feedbacks, hence is not fixed. Compared to these
two definitions, the use of BF benchmark as the benchmark
for regret provides substantial improvements in the learning
speed and algorithm complexity. Moreover, there are several
important cases in which the BF benchmark is proven to
be approximately optimal. For instance, it is shown in [40]
that for adaptive submodular reward functions, a simple
adaptive greedy policy (which our BF benchmark reduces
into under mild assumptions) is 1 − 1/e approximately
optimal. Hence, any learning algorithm that has sublinear
regret with respect to the greedy policy is guaranteed to be
approximately optimal. This work is extended to an online
setting in [39], where the prior distribution over the states

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 6

is unknown and only the reward of the chosen sequence of
actions is observed. However, an independence assumption
is imposed over actions and states to estimate the prior in a
fast manner. Using the results in [40], we can show that our
BF benchmark is approximately optimal when the reward
function is adaptive monotone submodular, an action can
only be selected in a single stage and the feedback related
with each action is realized at the beginning of each round
before action selection takes place. Hence, work on adaptive
submodular learning can be viewed as a special case of the
S-MAB problem.

5 FEEDBACK ADAPTIVE LEARNING (FAL): A
LEARNING ALGORITHM FOR THE S-MAB PROBLEM

In this section, we propose Feedback Adaptive Learning (FAL)
(pseudocode given in Algorithm 2), which learns the se-
quence of actions to select based on the observed feedbacks
to the previous actions (as shown in Figure 2). FAL learns to
select actions in the way that BF benchmark selects actions,
hence its regret is measured with respect to BF benchmark.

Let Yaρ[i],fρ[i] denote the random reward obtained in the
first i stages of round ρ. In order to minimize the regret
given in (1), FAL balances exploration and exploitation
when selecting the actions. Consider the ith stage in round
ρ. FAL keeps the following sample mean reward estimates:
ŷf ,i,a(ρ) which is the sample mean estimate of the rewards
Y(aj [i−1],a),(fj [i−2],f ,f ′), 1 ≤ j < ρ, f ′ ∈ F̄i in the first
ρ− 1 rounds corresponding to stage i for which action a is
explored after observing feedback f from the action chosen
at stage i− 1. In addition to these, FAL keeps the following
counters: Tf ,i,a(ρ) which counts the number of times action
a is explored at stage i after feedback f is observed from
the action selected at stage i− 1 in the first ρ− 1 rounds.

Next, we explain how exploration and exploitation is
performed. Let f denote the feedback observed at stage
i − 1, 1 ≤ i ≤ lmax of round ρ. At the beginning of
stage i of round ρ, FAL checks if Uρi := {a ∈ Aρi (B

ρ
i) :

Tf ,i,a(ρ) < D log(ρ/δ)} is non-empty, where D > 0 and
δ > 0 are constants that are input parameters of FAL
whose values will be specified later. If this holds, then
FAL explores by randomly selecting an action a ∈ Uρi
and observes its reward (after observing the feedback f ′ ∈
F̄i) Y (ρ) := Y(aρ[i−1],a),(fρ[i−1],f ′), by which it updates
ŷf ,i,a(ρ + 1) = (Tf ,i,a(ρ)ŷf ,i,a(ρ) + Y (ρ))/(Tf ,i,a(ρ) + 1).
For a round in which FAL explores at stage i, the actions
for stage i + 1, ..., lmax can be taken arbitrarily or with
respect to a predetermined rule (such as the action with the
highest reward so far) (cf. Section 5.1). If Uρi = ∅, then FAL
exploits at stage i by choosing the action that maximizes the
estimated reward: aρi = arg maxa∈Aρi (B

ρ
i)
ŷf ,i,a(ρ). Then,

the same procedure repeats for the next stage i+ 1.
Setting the parameters of FAL: The number of explorations

increases in D (lines 5 and 18), hence setting a larger D
results in more accurate reward estimates which leads to
better action selections in exploitations. However, this also
results in an increase in the reward loss due to explorations.
A similar observation can also be made for δ (lines 5 and 18).
When δ is small, the probability of choosing a suboptimal
action in exploitations is small. However, the number of
explorations increases as δ becomes smaller.

Algorithm 2 FAL
1: Input D > 0, δ > 0, Aall, F all, lmax.
2: Initialize: ŷf ,i,a = 0, Tf ,i,a = 0, ∀a ∈ Āi, i = 1, . . . , lmax,

f ∈ F̄i, i = 0, . . . , lmax. aρ[0] = ∅, ∀ρ = 1, 2, . . .
3: while ρ ≥ 1 do
4: Find the set of available actions (cf. Section 5.1):Aρ1(Bρ1) =∏

k∈Bρ1
Ai

5: U1 = {a ∈ Aρ1(Bρ1) : Tf
ρ
0 ,1,a

< D log(ρ/δ)}
6: if U1 6= ∅ then
7: Select aρ1 randomly from U1, observe fρ1
8: Get reward Y (ρ) := Ya

ρ
1 ,f

ρ[1]

9: Actions for the remaining stages are selected according
to a predefined rule (cf. Section 5.1)

10: i∗ = 1, //BREAK
11: else
12: Select aρ1 = arg maxa∈Aρ1(B

ρ
1) ŷfρ0 ,1,a and observe fρ1

13: end if
14: i = 2
15: while 2 ≤ i ≤ lmax do
16: Find the set of streams whose instances are not dropped

yet, i.e., Bρi
17: Find the set of available actions (cf. Section 5.1):

Aρi (B
ρ
i) =

∏
k∈Bρi

Ai
18: Ui = {a ∈ Aρi (B

ρ
i) : Tf

ρ
i−1,i,a

< D log(ρ/δ)}
19: if Ui 6= ∅ then
20: Select aρi randomly from Ui and observe the feedback

fρi
21: Get reward Y (ρ) := Yaρ[i],fρ[i]

22: Actions for the remaining stages are selected accord-
ing to a predefined rule (cf. Section 5.1)

23: i∗ = i //BREAK
24: else
25: Select aρi = arg maxa∈Aρi (B

ρ
i)
ŷfρi−1,i,a

and get the
feedback fρi

26: end if
27: i = i+ 1
28: end while
29: if Explored (remaining actions are selected according to a

predefined rule) then
30: Update ŷfρ

i∗−1
,i∗,aρ

i∗
using Y (ρ) (sample mean update)

31: Tf
ρ
i∗−1

,i∗,aρ
i∗

+ +

32: end if
33: ρ = ρ+ 1
34: end while

The regret of FAL: The regret of FAL can be bounded
under two assumptions on the reward structure, which are
stated below. The first assumption states that the optimal
action is a function of the state x ∈ X , which is equal to the
most recent feedback.

Assumption 1. We have φ(aρ[i],fρ[i]) = fρi . For any two
length i sequences of action-feedback pairs (a[i],f [i])
and (a′[i],f ′[i]), if φ(a[i],f [i]) = φ(a′[i],f ′[i]),
then we have arg maxa∈A′i+1

y(a[i],a),f [i] =

arg maxa∈A′i+1
y(a′[i],a),f ′[i] for any A′i+1 ⊂ Āi+1.

The second assumption states that the optimal action
for every history of sequence of actions and feedbacks is
unique.

Assumption 2. Let Q∗1(A′1,f0) := arg maxa∈A′1 ya,f0
and

Q∗i+1(A′i+1,a[i],f [i]) = arg maxa∈A′i+1
{y(a[i],a),f [i]}.

We assume that |Q∗1(A′1,f0)| = 1 for all A′1 ⊂ Ā1

and f0 ∈ F̄0, and |Q∗i+1(A′i+1,a[i],f [i])| = 1 for
all a[i] ∈ A[i], f [i] ∈ F(a[i]) and A′i+1 ⊂ Āi+1,
1 ≤ i ≤ lmax − 1.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 7

The following theorem, whose proof is given in the
supplemental material, shows that the regret of FAL with
respect to the BF benchmark grows logarithmically in the
number of rounds.
Theorem 1. Assume that Assumptions 1 and 2 hold. Let

∆min be the minimum of the difference between the
expected reward of the best sequence of actions and
the second best sequence of actions,4 where the mini-
mum is taken over all possible feedbacks. When FAL
runs with the set of parameters D = 4/∆2

min and
δ = (2βFmaxAmaxlmaxn)−1/2 we have

E[R(n)] ≤ 1 + lmaxFmaxAmaxDX log(2βFmaxAmaxlmax)

+ 3lmaxFmaxAmaxDX log n

where X = |X |, Amax = max1≤i≤lmax
|Āi|, Fmax =

max0≤i≤lmax
|F̄i|, β =

∑∞
t=1 1/t2, and E[R(n)] is the

regret given in (1). Hence, limn→∞ E[R(n)]/n = 0.

5.1 Online management of the action space definition
Each stage of a stream mining application may integrate dif-
ferent type of tasks that differ with their required workload
and quality level with respect to the input data in order
to adapt to the heterogeneous and dynamic nature of the
data (cf. Section 3). To cope with this highly dynamic en-
vironment, our FAL algorithm (lines 4, 17) builds its action
space on the fly based on the observed feedbacks. The key
idea is to have a database that stores all observed feedbacks
for each stage and an action space that is built online and
customized for each feedback and assigned to it all along
the execution. Moreover, these action spaces are retrieved
and merged with new actions (if any) generated online each
time their corresponding feedbacks are observed again. As
demonstrated in Sections 5, the FAL algorithm guarantees a
logarithmic increase of the regret in the number of rounds
for a defined action space. Therefore, whenever the action
spaces of observed feedbacks are stabilized (i.e., when no

4. Precise definition of ∆min is given in the supplemental material.

Retrieve Feedback ID from
feedback database

Add feedback to the
Database

Feedback

 found

Discovery action space

Action space with Ntask
discovery actions
Blocking actions

Follow the rest of FAL algorithm

Candidate action space
Add candidate actions to

 the existing action space set
(Action Space Manager – Figure 5)

Non-blocking actions

Were all the blocking
actions tried at least once?

Feedback not found

No Yes

Action Space
Definition

(Algorithm 2 – lines 4, 17)

FAL algorithm 2

Observed feedback

Select an action
maximizing reward

Select an action
randomly

Select an action
randomly

Discard	all	
processed	data	

Forward	processed	
data	to	the	next	stage	

FAL	in		
explora.on	mode	

Algorithm	2		
lines:7-10,	20-23	

FAL	in	
exploita.on	mode	

Algorithm	2	
	lines:12,	25	

Forward	processed	
data		to	the	next	stage	

Fig. 3. Action space definition: Switching between discovery action
space and candidate action space

more new actions are added online), the FAL algorithm
executes as expected. Figure 3 and Figure 4 depict the full
flow that we apply to generate and maintain a coherent
action space all along the execution of the application.
In the following, we explain the flow illustrated in these
two figures namely, how the exploration mode of the FAL
algorithm behaves with respect to the defined action space
and how the action space is updated before the execution of
each stage.

Each time a new feedback is observed (i.e., not found
in the feedback database), the FAL action space switches
to discovery mode. As shown in the right part of Figure
3, we initialize the action space related to the newly ob-
served feedback withNtask discovery actions. In this actions
set, each action ai = ((tj,0i , cj,0i), .., (tj,Nstreami , cj,Nstreami))
executes all the streams at stage i with the same task tji
(i.e., tj,ki = tji) and the number of cores cj,ki is equally
allocated to each stream k. These actions are mainly used
to explore the behavior of each task on each available
input data stream for new detected feedbacks. The observed
workload wj,ki and output quality qj,ki are then recorded in a
dedicated structure that keeps track of the observed quality
and measured workload of each selected task j for each
stream k after each time a stage i is executed. An example
of this structure is illustrated in Figure 5. As indicated
previously in the FAL Algorithm 1, in exploration mode,
actions for the remaining stages are selected according to a
predefined rule. In the case where at least one action in the
discovery action space remains unexplored, processed data
are not forwarded to the next stage. We call these actions
blocking actions as the data is discarded immediately after
being processed in order to avoid wasting resources on
suboptimal tasks selections in the next remaining stages.
Once all the blocking actions were tried at least once for
the observed feedback, the data structure that holds the
measured workload and obtained quality is filled/updated.
An action space exploiting these newly recorded data can be
safely generated. The FAL action space manager generates
then a set of candidate actions based on previous records (cf.
next paragraph). Figure 3 illustrates the flow that we use for
the selection of action space for each observed feedback. The
FAL algorithm enters the exploration mode even with an
action space containing generated candidates actions as they
were not explored yet. In this case, these actions are non-
blocking and the processed data are forwarded to the next
stage. This helps minimizing the loss of data and keeps a
good overall quality and throughput even in the exploration
mode as the generated candidate tasks were already tuned
for previous observed feedbacks. In the next paragraph, we
explain how we handle the generation of candidate actions.

Our action space manager, responsible for the generation
of a dedicated action space on the fly for each observed
feedback, exploits the quality/workload data structure (Fig-
ure 5) built during the exploration mode and which is also
continuously updated during the exploitation mode as well.
As showed in the flow presented in Figure 4 (steps 1, 2, 3
and 4), we start by finding the r first tasks providing at least
the minimum required output quality with the minimum
workload for each stream based on previous observations.
However, if the minimum output quality is not found then

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 8

Stream	1	 Stream	2	 …	 Stream	m	

Task	1	 …	

Task	2	 …	

…	 …	 …	 …	 …	

Task	ni	 `…	

S T A G E i

Qi
1,1, wi

1,1()
Qi
2,1, wi

2,1()

Qi
n,1, wi

n,1()

Qi
1,2, wi

1,2()

Qi
2,2, wi

2,2()

Qi
n, 2, wi

n, 2()

Qi
1,m, wi

1,m()

Qi
2,m, wi

2,m()

Qi
n,m, wi

n,m()

Analyze	and	select	
candidate	tasks	

(quality)		
Algorithm	3	

Select	candidate	
combina<ons	

	of	resources	alloca<ons	
Algorithm	4	

Candidate	ac<on	
dedicated	for	
exploita<on	

Tracking of observed quality and workload values

Ac<on	space	for	stage	i	in	round	t	

Feedback	ID	
Database	

Retrieve	ac<on	
space	built	so	far	
for	currently	

observed	feedback	

Previously	
explored	
ac<ons	

Merged	Ac<on		
Space	

Store	new	ac<on	
space	for	the	
corresponding	
feedback	ID	

1
2 3 4 567

8 9

Fig. 4. Action space manager: Online update of the action space before the execution of each stage during each round

we select r tasks with the r first maximum output quality.
Algorithm 3 illustrates the pseudocode for the candidate
tasks selection for r = 1. Once candidate tasks of each
stream are selected, we select candidate of combinations of
resources allocation. Algorithm 4 illustrates a pseudocode of
the algorithm that we use to generate candidate cores alloca-
tion for the pre-selected candidate tasks. First, we compute
the total number of cores required for all the streams (lines
1-7). Then, we assign a minimum number of cores for each
stream based on the percentage of its workload with respect
to the total workload (lines 7-9). However, it may happen
that the real schedule would require more than the pre-
selected cores allocation as the workload of data are differ-
ent. Moreover, the processing of one single data cannot be
divided between the cores. Thus, in line 10, we generate all
combinations of cores allocations satisfying the previously
computed estimated cores allocation plus 1, 2, ..., h cores for
each stream. Among all generated candidate actions, we
discard those with allocations that exceed Ncores (line 11).
Then in steps (5) (6) and (7), we retrieve the action space
built in previous rounds (if any) for the observed feedback.
Finally, in steps (8) and (9), we merge this action space
with the newly generated action space. The action space is
now fully updated and ready to be processed by the rest of
the FAL algorithm. Unlike discovery actions, the candidate
action space guarantees a minimum amount of quality and
throughput which allows the processed data to be safely
forwarded to the next stage even when the FAL algorithm is
in exploration mode. These actions are non-blocking actions.

5.2 Feedback space definition: Exploiting feedbacks
for concept drifts detection
In reality, data streams are dynamic. They may then ex-
perience a concept drift that requires a continuous online
adaptation of the task selections and the amount of allo-
cated resources to each task to maximize the QoS especially
when the resources are constrained. Therefore, the observed
feedbacks parameters should be selected in a way that they
reflect these variations at run-time to the FAL algorithm. To
track the characteristics of the buffer of stream k continu-
ously at run-time, we chose two feedback parameters f0,kbuff
and f1,kbuff . The first parameter f1,kbuff indicates the occupancy
of the buffer of each stream k to illustrate the number of
data in the buffer. The second parameter f1,kbuff indicates the
estimated percentage of minimum resources required per
task to process a fixed amount of data from stream k. This
estimated percentage can be computed using the recorded
average workload in previous rounds, a fixed number of
data (e.g., half size of the buffer) and the capacity of the core.
The first feedback parameter triggers a new feedback when

Algorithm 3 Candidate tasks selection

1: Input wi, qi, Nstream, Ntask, qmin.
2: for k in Nstream streams do
3: selTask[i] = arg min0≤j≤Ntask (wj,ki | qj,ki ≥ q

min,k
i)

4: if selTask[i] not initialized then
5: selTask[i] = arg max0≤j≤Ntask (qj,ki)
6: end if
7: end for

Algorithm 4 Generating candidate core allocations

1: Input wj,ki , dj,ki , Ncore, Nstream, h.
2: for k in Nstream streams do
3: total workload + = wj,ki ∗ d

j,k
i

4: #cores + = d w
j,k
i ∗d

j,k
i

core capacity
e

5: end for
6: #cores = min(Ncore,#cores)
7: for k in Nstream streams do
8: #cores[i] =

w
j,k
i ∗d

j,k
i

total workload
∗#cores

9: end for
10: Generate all combinations of allocations where each stream i

core allocation action ranges from #cores[i] to #cores[i]+h
11: Discard actions with allocations that exceed Ncore cores

Stream 1
Stream 2

…
Stream M

	Stage	2	 Stage	3		Stage	1	

	Streams	
Q1
1,1,w1

1,1()
Q1
2,1,w1

2,1()

Q2
1,1,w2

1,1()
Q2
2,1,w2

2,1()

Q2
1,1,w2

1,1()
Q2
2,1,w2

2,1()

Q3
1,1,w3

1,1()
Q3
2,1,w3

2,1()

Q3
1,1,w3

1,1()
Q3
2,1,w3

2,1()

Q3
1,1,w3

1,1()
Q3
2,1,w3

2,1()

Q3
1,1,w3

1,1()
Q3
2,1,w3

2,1()

Stage	4	

Fig. 5. Example of a quality/workload tracking structure for an application
with 2 tasks per stage

the number of data changes while the second parameter
triggers a new feedback when the type of data changes. An
additional feedback illustrating the observed quality can be
also applied as well to detect new observations. Then, the
FAL algorithm guarantees that each task in the first stage
is tried at least once for the new detected feedback before
forwarding the processed data to the next stage.

A concept drift may also appear in one of the stages of
the chain. The concept of detecting these variations in these
stages is also similar to what we have described previously
for the buffers. However, we change the feedback parame-
ters that we observe as these feedbacks are now related to
the results of their previous processing stages rather than a
buffer status. In fact for a stage i, we observe 2 parameters
f0,ki and f1,ki (with 0 ≤ i ≤ lmax) for each stream k namely,
the selected processing path of the stream k until stage i
and the amount of resources used to process the data of

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 9

stream k. For the first parameter f0,ki , the processed path
can be computed using the selected task indices in previous
stage, this parameters allows the reward value (we discuss
the reward in the next Section) to be a performance indicator
of the different available processing paths. For the second
parameter f1,ki , we only take into account the resources that
were actively used. In other words, if the scheduler decides
to allocate M cores and these cores were active 70% of the
duration of the time slot, then the amount of resources used
is 0.7 ∗ M . This parameter allows to trigger new feedbacks
when the number of input data from previous stage or the
required workload has changed. Moreover, a variation in the
workload can be highly implied by a variation in the type of
input data. Finally, our feedback parameters are then fully
independent from the nature of the application and can be
applied on any streaming applications that adopts a chain
model with multiple tasks per stage.
5.3 Reward: quality and throughput maximization and
energy consumption minimization
The process of selecting the action space on the fly provides
an estimated lower bound and upper bound of the total
required resources as described in Algorithm 4. Moreover,
the size of action space of each feedback is increasing
online. Therefore a meaningful metric is required by the FAL
algorithm in order to guide the algorithm to choose the right
actions among all available actions. This metric is the reward
that is attributed for each action taken for each feedback.
In other words, when a quality qki and throughput thki are
observed for taking action aρi for feedback fρi−1 a reward ri
is assigned for the tuplet (fρi−1 , aρi). These reward values
are used by the FAL algorithm before an action decision
is taken (lines 12 and 25). Our reward function takes into
account the observed quality qki , the observed throughput
thki for each stream sk in the stage i executing the action
aρi,k and finally the amount of unused allocated resources.
We define ri = (

∑Nstream
k=0 qki)<< 6 digits + (

∑m
k=0 th

k
i)<<

3 digits+ ucores, where ucores represents the number of re-
maining unallocated cores. Each 3 digits in the final reward
value represents an integer reward value related to one of
the considered metrics to optimize (i.e., quality, throughput,
resource usage). Since we can only have one single integer
reward value to represent all the three metrics at a time,
we sum the value of the quality (shifted by 6 digits), the
throughput (shifted by 3 digits) and the resource usage
as showed in Figure 6. Recalling that the primary goal of
the FAL algorithm is to maximize the obtained reward,
therefore by setting these values in this order, the reward
function guides the FAL algorithm to first maximize the
quality then the throughput and finally to minimize the
amount of unused allocated resources. In fact, two actions
with different resources allocations may generate the same
quality and throughput, however in this case, a higher
reward is assigned to the action that allocate less resources

Digit
 9

Digit
 8

Digit
 7

Digit
 6

Digit
 5

Digit
 4

Digit
 3

Digit
 2

Digit
 1

Total Reward Value

Quality Value Throughput Value Unallocated
resources value

Fig. 6. Illustrating the observed quality, throughput and resource usage
in one single reward integer value

(due to the least 3 significant digits of the reward function,
i.e., the number of unallocated cores). The leakage energy
consumption is then reduced.

6 EXPERIMENTS

6.1 Experiments setup

We implemented both our S-MAB scheduler agent and
environment in C. We also developed a stream mining
application for face detection similar to the model presented
in Figure 1 and Section 3. We use Haar feature-based cascade
classifiers [26] in OpenCV [25]. The developed face detection
application is composed of 4 stages. Stage 1 detects the face,
stage 2 detects the eyes, stage 3 detects the nose, and stage
4 detects the mouth. Each stage executes a Haar classifier
trained to detect its object of interest. Several parameters can
be tuned in the Haar classifier in order to control the false
detection rate and its computational complexity. Moreover
detecting these objects sequentially increases the overall
classification accuracy and decreases the required execution
time. For instance, when a face is detected in Stage 1, in
Stage 2 it is more efficient to look for the eyes only inside
the detected face (instead of the full image) reducing then
the complexity and false alerts. The same idea/concept can
be applied for the remaining stages. In our experiments,
we use 4 databases [27] [28] [29] [30]. These databases have
different characteristics (e.g., image size, face size...), which
impact the workload intensity and the required tuning of the
classifier for each stage. For instance, by specifying to the
classifier the minimum possible object size for each stage,
where objects smaller than that size are ignored, both the
output quality and the workload can be controlled. More-
over, there are correlations between the size of the face, the
eyes, the nose and the mouth that can be exploited to select
the right minimum size for each stage. Thus, we generate
multiple configurations of Haar classifiers for each stage
and we select a subset of images from each database to use
for our experiments. We model then Ntask tasks of a stage
i with Ntask configurations of Haar classifiers. We choose
these configurations such that for each images database,
there is at least one path that produces 100% of accurate
results and which is unknown by the S-MAB scheduler.

Figure 8 shows the variation of the workload and the
observed quality for stage 1 with respect to the selected
task and the database serving the image. For instance, DB3
has maximum quality for each possible task in stage 1.
However, the workload measured for Task 3 for DB3 is sig-
nificantly less than the one measured for Task 1. Therefore,
the scheduler has to first learn how and when to explore
all the tasks (since the data characteristics are dynamically
changing over the time) and then to exploit it by choosing
the task with the minimum workload and providing the best
required quality. Following the same previous explanation,
an efficient processing of DB1, DB2, DB3 and DB4 would
require their execution with tasks 2, 2, 3 and 1 respectively.

3 choices of
Haar classifiers

per stage

t0
0

t0
1

t0
2

t1
0

t1
1

t1
2

t2
0

t2
1

t2
2

t3
0

t3
1

t3
2

Face Detection Eyes Detection Nose Detection Mouth Detection

Fig. 7. 81 processing paths in our face processing application with 4
stages and 3 tasks/stage.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 10

0.15

0.06
0.03

0.13

0.07
0.03

0.25

0.12

0.06 0.05
0.01 0

1 2 3

Se
co
nd

s	

Task	selected	(a)	

DB1 DB2 DB3 DB4

100% 100%

75%

100% 100%

75%

100% 100% 100% 100%

60%

0%

1 2 3

Q
ua
lit
y	

Task	selected	(b)	

DB1 DB2 DB3 DB4

Fig. 8. Stage 1: workload and quality variation with respect to the se-
lected tasks and the image database. (a) Average measured execution
time for processing 10 images at stage 1. (b) Average observed quality
(i.e., percentage of the detection of the object of interest in 20 images)
at stage 1.

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Se
co
nd

s	

Paths	(a)	

DB1	 DB2	 DB3	 DB4	

0%

20%

40%

60%

80%

100%

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70	 75	 80	

Q
ua
lit
y	

Paths	(b)	

Fig. 9. Workload and quality variation with respect to each full process-
ing path and the image database. (a) Average measured execution time
for fully processing 10 images. (b) Minimum average observed quality
(i.e., percentage of the detection of the object of interest in 20 images in
the stage having the minimum percentage value)

In stream mining applications, the workload and quality
of each task in each stage depend on selected tasks in pre-
vious stages. Therefore, the selection of the tasks becomes
less trivial when the application has several stages. Figure 9
depicts the measured workload and observed quality varia-
tion with respect to each full processing path in the case of
our face recognition application with 81 possible processing
paths (i.e., 4 stages with 3 tasks/stages). Figure 9 (a) shows
the measured workload accumulated among the 4 stages
while Figure 9 (b) shows the quality (here the quality is the
percentage of the detection of the object of interest) for the
stage that recorded the minimum quality level during the
full processing path. All these informations are unknown
by the scheduler and have to be learned online.

Finally, in order to simulate concept drifts, in Figure
10, we show how the input streams of our application are
mapped to the 4 different databases all along the execution
of 900 rounds. We also specify how big is the buffer of
each stream compared to each other. In our experiments,
we simulate a platform of 64 homogeneous cores with the

Stream	1	

Stream	2	
Stream	3	

DB1	
DB2	
DB3	

DB3	
DB2	
DB1	

DB4	
DB3	
DB2	

Rounds	
	1	-300	

Rounds	
	301	-600	

Rounds	
	601	-900	

Number	of	data	in	the	
buffer	&	varia=ons	

Varia=on	of	the	input	during	the	execu=on	

Fig. 10. Experimental setup: mapping 4 different databases to 3 input
data stream for 900 rounds.

same capacity C . For the sake of clarity of the experimental
section we fix the deadline of each stage at design time.
Stage 1, 3 and 4 are given loose deadlines, while Stage 2
is given a very short deadline in a way that it will not be
possible to process all the data at that stage (to simulate
the workload intensity of Big-Data). The goal of our exper-
iments is then to show that our S-MAB scheduler is able
to find the correlations between the different stages and
to exploit its sequential model to find the right processing
path for each stream even when the databases change on
the fly (i.e., in the presence of concept drift) and to select
the right resources allocation strategies that fit the targeted
minimum quality and without any prior knowledge on the
relation between the processing stages, the used databases
characteristics and the buffer sizes.

6.2 Experiments results
In the following, first we explain in details the experimental
results obtained for stage 1 namely, exploration and ex-
ploitation phases, actions selections, obtained throughput,
observed quality and allocated resource usage (Figure 11).
Then, we generalize our results for the remaining stages of
the application (Figure 12). Another feature of our schedul-
ing algorithm is the possibility for the user to select which
minimum processing output quality is required. Therefore,
we also provide experimental results with a minimum
output quality set to 80% (Figure 13) and we compare
the selected resource allocation for each stream with the
previous results (Figure 14). Next, we compare our results
with an existing Big-Data stream mining applications sched-
uler [19] that adopts a reinforcement learning technique
and integrates a concept drift detection feature (Figure 15
and 16). Finally, we compare our results with a second
scheduling solution that has full knowledge of the streams,
workload and tasks quality at design time. We then compare
the amount of saved leakage energy, the throughput, and
observed quality for the face recognition application (Figure
17) and for a set of different configurations of a synthetic
application (Figure 18) modeling Big Data stream mining
applications.

6.2.1 Illustrating S-MAB scheduler main features with ex-
perimental results observed in Stage 1
As already discussed in the theory part (Section 5.2), the
feedback used for the task selection in the first stage is
different from other feedbacks used for following stages as

0	
2	
4	
6	
8	

1	 101	 201	 301	 401	 501	 601	 701	 801	

ta
sk
	se

le
ct
ed

	
(s
ta
xk
ed

)	

(a)	

selected	task	(str3)	 selected	task	(str2)	 selected	task	(str1)	

40%	

60%	

80%	

100%	

Throughput	 Observed	quality	 Allocated	resource	 Alloc.	res.	usage	

Stage	1	

(c)	

Rounds	1-300	 Rounds	301-600	 Rounds	601-900	

0	

5	

10	

(b)	

#unexplored	

Fig. 11. Stage 1 execution results: (a) Evolution of the task selection
for each stream (stacked). (b) Evolution of the number of unexplored
actions. (c) Evolution of the obtained throughput, observed quality, allo-
cated resource, and allocated resource usage.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 11

it is more related to the status of the buffer rather than a pre-
vious stage execution. Figure 11 (a) shows the selected task
index (stacked) at stage 1 for each stream during each round.
The figure shows then that each time the scheduler detects
a variation in the characteristic of the input stream, the
scheduler goes into exploration mode for few rounds. Once
all the tasks are (re-)explored for this stage, the scheduler
goes back into exploitation mode. This concept is illustrated
around rounds 1, 300 and 600 which exactly corresponds to
where we have generated concept drifts in our experimental
setup as showed before in Figure 10. The idea of switch-
ing between exploration mode and exploitation mode with
respect to the detected input stream characteristics is also
illustrated in Figure 11 (b) which shows the evolution of the
number of unexplored actions. In Figure 11 (b), there are two
types of unexplored actions. First, unexplored discovery
actions, appearing in (b) when new tasks are explored in
(a), are the actions that block the data at this stage since
not all the tasks were explored yet. Second, the unexplored
actions that appear even when the task selection is stabilized
in (a), are the candidate actions that are added at run-time
to the action space of the already explored feedbacks. These
candidate actions only add new resource allocation config-
uration without changing the selected task. Moreover, these
candidate actions do not block the stream (the processed
stream is forwarded to the next processing stage) when the
FAL algorithm is in exploration mode. Therefore and as
showed in Figure 11 (a) and (b), a feedback is considered
explored once the number of unexplored discovery actions
is 0 (i.e., tasks selection optimized) and fully explored once
the number of unexplored discovery and candidate actions
is 0 (i.e., resource allocation optimized).

Finally, Figure 11 (c) depicts the evolution of the overall
(i.e., all streams accumulated) obtained throughput, ob-
served quality, allocated resources and allocated resources
usage with respect to the data variation phases (i.e., with
respect to the round index). For Stage 1, the deadline is
set in a way that is possible to process all the data in the
buffer. Moreover, only 3 processing paths are available in
Stage 1. Therefore, the adaptation of the throughput and
the quality to the different simulated data variations is
straight forward. Figure 11 (c) shows that the throughput
and the observed quality were kept over 99% with a usage
around 90% of the allocated resources (e.g., for rounds 1-300,
allocated resources = 58.9% and used resources = 52.3%). In
fact, in the exploitation mode, the scheduler chooses for each
stream the task that provides the maximum reward obtained
during the exploration phase (i.e., maximum quality with
the least amount of workload and minimum resources). For
instance from rounds 1 to 300, tasks 1, 1, and 3 are selected
for stream 1, 2 and 3 respectively (as shown in Figure 11
(a)) which is also in reality the optimal selection for DB1,
DB2 and DB3 respectively for this stage (as shown in Figure
10 (a) and (b)). We validate the optimality of the resources
allocation later in Section 6.2.5 by comparing to a scheduling
solution that has full knowledge of the streams, workload
and tasks quality at design time.

6.2.2 Generalizing the results to the remaining stages

Figures 12 (a), (b) and (c) illustrate the evolution of the
throughput, observed quality, allocated resources and allo-

40%	
60%	
80%	

100%	

Throughput	 Observed	quality	 Allocated	resource	 Alloc.	res.	usage	

Stage	2	

(a)	

Rounds	1-300	 Rounds	301-600	 Rounds	601-900	

40%	
60%	
80%	

100%	

Throughput	 Observed	quality	 Allocated	resource	 Alloc.	res.	usage	

Stage	3	

(b)	

Rounds	1-300	 Rounds	301-600	 Rounds	601-900	

40%	
60%	
80%	

100%	

Throughput	 Observed	quality	 Allocated	resource	 Alloc.	res.	usage	

Stage	4	

(c)	

Rounds	1-300	 Rounds	301-600	 Rounds	601-900	

Fig. 12. Evolution of the obtained throughput, observed quality, allocated
resource and allocated resource usage in: (a) Stage 2, (b) Stage 3 and
(c) Stage 4.

cated resources usage obtained for stage 2, 3 and 4 respec-
tively and using the same experimental setup applied in
the previous Section. We only discuss the results that are
different from the one obtained in the first stage. In our
steam mining application model, the output quality and
the workload of each stage depends on selected tasks in its
previous stages. Therefore, now there are 9, 27, 81 possible
processing paths for stage 2, 3, 4 respectively. In these stages,
a feedback is characterized by the path index taken by the
data stream and the amount of its resources usage. In stage
2 (i.e., Figure 12 (a)), the deadline is set in a way that it is
not possible to process all the data in the buffer, therefore
our scheduler reduces the throughput to a value between
60% and 80% depending on the characteristic input stream
while the observed quality, allocated resources and resource
usage are kept around 100%. After the exploration phase
(i.e., around rounds 0, 301 and 601) the scheduler decides
to lower the throughput in order to maximize the output
quality. The decrease of the overall throughput observed
in rounds 301-600 (Figure 12 (a)) is due to the increase in
the overall workload of stream 3 when assigned to DB1. In
stage 3 and 4, the quality is kept over 99% most of the times
while the allocation usage is around 90% which minimizes
the waste of leakage energy (experimental results related to
energy consumption are presented in Section 6.2.5). Even
though the average allocated resource is less than 80% in
Stage 3 and Stage 4, the throughput shown in the figures did
not reach its maximum value. This is due to the blocking
actions that were taken in previous stages for exploration
purpose. In fact, when a blocking action is taken, the stream
is discarded in the following stage and a throughput value
of zero is recorded for the remaining stages in that round.
However, when measuring the throughput only for rounds
where the streams are not discarded, then we obtain a
throughput value over 99%.
6.2.3 Synchronizing with minimum user quality require-
ments
In this experiments set, we show how our scheduler can
adapt its scheduling decision to the minimum required
quality output. For instance, if the user is satisfied with only
80% of the possible maximum quality, the scheduler adapts
its scheduling decision in a way that it finds the processing
path that gives a quality level between 80% and 100%
while providing the maximum possible throughput. In fact,
a lower output quality does not imply less workload. For
instance, decreasing the minimum possible object size pa-

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 12

rameter in a Haar feature-based cascade classifier for object
detection increases the classifier sensitivity and more impor-
tantly its workload. However an increase in the sensitivity
may imply an increase in false detections thus providing
an output quality less than 100% with a higher workload.
Figure 10 illustrates this concept. In fact, the figure shows
that for DB3, the maximum quality is obtained for path 81,
while other paths provide lower quality but with a higher
workload. The scheduler should not then lower the quality
of stream mapped to DB3 even if the user allows it as it
will decrease the throughput. To validate this feature of our
scheduler, we run the same experiment setup as in previous
section but with a minimum quality set to 80%. Figure 13 de-
picts full details of observed quality per stream. The figure
shows that in fact DB3 (i.e., stream 3 round [1, 300]; stream
1 round [301, 600]; stream 2 round [601, 900]) was kept at its
maximum quality in order to maximize the throughput. DB4
(stream1 round [601, 900]) was also kept at its maximum
quality as based on Figure 10, the only quality that can
be observed above 80% is 100% (i.e., path 1). Finally, the
quality of remaining streams were successfully decreased to
between 80% and 90%. Figures 14 compares the resource
allocation realized for experiments with minimum quality
100% and 80% respectively. The figure shows that, the new
task selection and resource management actions applied
by our scheduler allowed to keep the processing quality
level of each stream above 80% (as allowed by the user)
while keeping the maximum throughput and allocating less
resources than the experiment realized in previous Section
(i.e., compared to minimum quality of 100%). Finally, in
Figure 13 streams that kept an output quality of 100% were
allocated the same amount of resources when compared to
previous experiments while other streams were assigned
with less resource.

6.2.4 Comparison with an existing Big-Data stream mining
solution

In this last experiments set, we compare the results of our
scheduling approach to a recent Big-Data stream mining
scheduling solution [19] from the literature. In [19], the
scheduling problem was formalized as a Stochastic Shortest
Path (SSP) problem and a reinforcement learning algorithm
was proposed to learn the environment dynamics. However,
the allocation of the computing resources to each streaming
task was not realized by the algorithm. Instead, it assumes
that the system knows the amount of resources to allocate to
each task to achieve the desired throughput. Moreover, the
SSP solution was applied on a single stream and it does not
provide a clear and systematic way to chose the tasks of each
stage in exploration mode. To adapt [19] to our experimental
setup, we have applied the following modifications:

First, for the cores allocation, we allocate the number of
minimum required cores given the input size, the desired
throughput and the average measured workload of the
selected task from previous rounds. Second, to handle the
multi-stream model, we assign a dedicated SSP optimizer to
each stream. Since there are no priorities among the streams,
we divide the resources equally among the streams. For
instance if the platform has 60 cores, and 3 stream inputs,
then, each SSP will have 20 cores to use for the whole chain
of tasks for its own stream. It is coherent to assume that for

60%	
70%	
80%	
90%	

100%	

Rounds	1-300	 Rounds	301-600	 Rounds	601-900	

O
bs
er
ve
d	
Q
ua
lit
y	 Stream	1	 Stream	2	 Stream	3	

Fig. 13. Evolution of the observed quality for each stream in stage 4
when the minimum required quality set by the user is 80%.

0%	

20%	

40%	

60%	

80%	

100%	 80%	 100%	 80%	 100%	 80%	

Rounds	1-300	 Rounds	301-600	 Rounds	601-900	

Al
lo
ca
te
d	
re
so
ur
ce
s	 Stream	1	 Stream	2	 Stream	3	

Fig. 14. Comparison of the allocated resources per stream (stacked) in
stage 4 between an execution with a minimum quality = 100% and an
execution with a minimum quality = 80%).

each stream, there are always enough data to process as we
work in Big-Data environment. Third, for the task selection
of each stage in exploration mode (or as the authors call it
the quality check module), when the observed quality of a
stage decreases, a different task is selected for exploration.
Once the observed quality of the first stage is optimized,
the following stage is then optimized and so on. This last
modification is only related to the quality check module as a
clear systematic methodology for selecting the tasks was not
provided in the literature. Finally, in the reward function, a
higher priority is given to the quality.

Since the results obtained for stream 1, 2 and 3 are similar
to each other, we only illustrate the results obtained for
stream 3. Figure 16 compares the throughput and quality
(average value of all the stages accumulated) between our
S-MAB and SSP [19]. The figure shows that our solution
outperforms the SSP solution in terms of obtained through-
put and observed quality. To understand why [19] fails to
provide the same level of performance as our proposed
solution, in figure 16, we illustrate in details the results
obtained for each stage and each data variation phase for
stream 3 scheduled with [19]. The SSP algorithm fails for
the following reasons:

The algorithm may fall in a local maxima. In fact, the

0%	
25%	
50%	
75%	
100%	

Rounds	
1-300	

Rounds	
301-600	

Rounds	
601-900	

Th
ro
ug
hp

ut
	

Stream	3	

(a)	

S-MAB	 SSP	[19]	

0%	
25%	
50%	
75%	
100%	

Rounds	
1-300	

Rounds	
301-600	

Rounds	
601-900	

Av
g.
	Q
ua

lit
y	

Stream	3	

(b)	

S-MAB	 SSP	[19]	

Fig. 15. Performance comparison between S-MAB and SSP [19] for
stream 3. (a) The obtained global throughput. (b) The observed average
quality (all stages).

0%	
25%	
50%	
75%	

100%	

Rounds	1-300	 Rounds	301-600	 Rounds	601-900	

Th
ro
ug
hp

ut
	

Stream	3	

(a)	

Stage	1	 Stage	2	 Stage	3	 Stage	4	

0%	
25%	
50%	
75%	

100%	

Rounds	1-300	 Rounds	301-600	 Rounds	601-900	

Q
ua

lit
y	

Stream	3	

(b)	

Stage	1	 Stage	2	 Stage	3	 Stage	4	

Fig. 16. Evolution of the obtained (a) throughput and (b) quality for
stream 3 scheduled with SSP [19].

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 13

exploration may find the task that provides the maximum
quality for stage 1 but the output of that task is not opti-
mized for the remaining stages. Thus, the algorithm keeps
continuously tuning the remaining stages to optimize the
quality without reaching the target quality as the first stage
is stuck at a local maxima. This is illustrated in Figure 16
(b) in all data variation phases. However, when the task
selection is tuned, it may have high impact on the workload
resulting in a significant throughput drop. In fact, if selected
task in stage 2 is adjusted and requires a higher number
of cores than the initial action, then remaining stages may
end up with zero core, and data in stage 3 and 4 are
discarded. This is illustrated in the results of Figure 16
(b) especially for rounds 300-900. This problem is due to
the fact that the scheduler proposed in [19] only controls
the throughput but not the cores allocation unlike our new
proposed solution which instead learns the cores allocation
based on the observed throughput. The throughput has to
be a metric that is observed but not controlled.

In terms of the resources required for the execution of
[19], the algorithm uses a significant amount of memory
compared to our proposed FAL algorithm. In fact, our
solution requires only few megabytes to store the observed
feedback database, generated action database and the struc-
ture holding the different counters. However, in [19], for
each action in the action set, a reward matrix and a transition
probability matrix of the size of the number of states are al-
located. For instance for the setting used in this experiment,
there are 75 actions (i.e., 25 throughput values x 3 tasks
options) and around 1000 states observed which result in
150 matrices each with a size of 1000x1000 for each stream.
Each value in each matrix is stored on 8 bytes (Double
precision). Therefore, the total space required to store at
least these matrices is over 1GB for each stream. This space
can significantly increase when more states are observed or
more actions are added. Finally, the algorithm responsible
for computing the scheduling policy suffers from a high
complexity as the value iteration algorithm goes through all
these stored data in order to compute the scheduling policy.

6.2.5 Energy consumption: comparison with an optimal
scheduling solution
Since the solution proposed in [19] failed to provide the
same level of performance as our proposed solution, we
compare our S-MAB algorithm to a second scheduling so-
lution that we have developed and has full knowledge of
all the tasks qualities and the workload of each input data

60	

70	

80	

90	

100	

Stage	1	 Stage	2	 Stage	3	 Stage	4	

%
	

(a)	

Throughput	

S-MAB	

OPT	

97	

98	

99	

100	

Stage	1	 Stage	2	 Stage	3	 Stage	4	

%
	

(b)	

Quality	

S-MAB	

OPT	

0	

16	

32	

48	

64	

Stage	1	 Stage	2	 Stage	3	 Stage	4	

#C
or
es
	

(d)	

Cores	
Usage	

S-MAB	

OPT	

0	

16	

32	

48	

64	

Stage	1	 Stage	2	 Stage	3	 Stage	4	

#C
or
es
	

(c)	

Cores		
Alloca;on	

S-MAB	

OPT	

Fig. 17. Performance comparison between S-MAB and a scheduler
with full knowledge of the input steams. (a) Obtained throughput. (b)
Observed quality. (c) Number of allocated cores. (d) Resource usage.

-4%	
-2%	
0%	
2%	
4%	
6%	

Low	workload	 High	workload	 Low	workload	 High	workload	

4	tasks	/	stage	 6	tasks	/	stage	

Throughput	 Quality	 Core	Usage	

Fig. 18. Synthetic application with different workload and stage con-
figurations: performance comparison of the S-MAB versus a scheduler
having full knowledge of the input steams.

for each task in each stage before any scheduling decision
is taken. This scheduler provides an optimal solution that
guarantees highest quality with the minimum workload
and the minimum cores allocations. We call it the optimal
scheduler. Figure 17 compares the performance of our S-
MAB scheduler to the optimal scheduler namely, (a) the
obtained throughput, (b) the observed quality, (c) number
of allocated cores and (c) the amount of resource usage.

Figure (a) shows that the throughput value obtained
with S-MAB is at most 0.6% less than the obtained optimal
value while Figure (b) shows that the observed quality is at
most 0.3% less than the obtained optimal value. Moreover,
Figure (c) and (d) shows that our algorithm is also energy
efficient as it allocates the minimum number of cores re-
quired for optimal throughput and optimal quality. In fact
Figure (c) shows that the S-MAB algorithm allocates around
4% more resources (i.e, 1 to 3 cores in total) compared to
the optimal solution, which is mainly due to the variation of
the workload of the photos in each of the 3 input streams.
Finally the resource usage is kept at a similar level to the
optimal scheduler which confirm the optimized selection of
the processing tasks at each stage.

Finally, in order to generalize our obtained results, we
have added new synthetic applications with different con-
figurations of processing paths to model multiple types
of workloads and different quality requirements. We have
generated them following a set of predefined rules to cover
exhaustively the possible options of the design space of Big
Data applications. Figure 18 shows how far is S-MAB from
the optimal solution when varying the number of tasks
per stage and the workload intensity. The figure shows
a difference in quality around 2%. Moreover, the average
throughput obtained with S-MAB can be higher (i.e., neg-
ative values in the figure) because of the exploration part
(also less quality may generate higher throughput). Finally,
the difference in core usage (percentage of used allocated
cores) is around 4%.

7 CONCLUSION
In this paper, we have proposed a new systematic and
efficient methodology and associated algorithms for on-
line learning and energy-efficient scheduling of Big-Data
streaming applications with multiple streams on many core
systems with resources constraints. The key contributions of
this work are as follows: (1) We formalized the problem of
multi-streams scheduling as a staged decision problem in
which the performance obtained for various resource allo-
cations is unknown a priori but learned over time. (2) Our
scheduler is able to determine which processing method to
assign to each stream and how to allocate resources over
time in order to maximize the performance on the fly, at
run-time, without having access to any offline information.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, MONTH 20XX 14

(3) Unlike other online learning methods such as standard
multi-armed bandits and reinforcement learning, in our for-
mulation the outcome of each scheduling action depends on
a sequence of previous scheduling decisions and feedbacks
that are taken at a certain stage (window) of time.
REFERENCES

[1] R. Ducasse, et al., “Adaptive topologic optimization for large-scale
stream mining,” in IEEE JSTSP, vol. 4, no. 3, pp. 620–636, June 2010.

[2] F. Fu, et al., “Configuring competing classifier chains in distributed
stream mining systems,” in IEEE JSTSP, vol. 1, no. 4, pp. 548–563,
December 2007.

[3] B. Foo, et al., “A distributed approach for optimizing cascaded
classifier topologies in teal-time stream mining systems,” in IEEE
TIP, vol. 19, no. 11, pp. 3035–3048, November 2010.

[4] B. Foo, et al., “Configuring trees of classifiers in distributed multi-
media stream mining systems,” in IEEE TCSVT, vol. 21, no. 3, pp.
245–258, March 2011.

[5] D.S. Turaga, et al., “Resource management for networked classifiers
in distributed stream mining systems,” in Proc. ICDM, 2006.

[6] N. Tatbul, et al., “Load shedding in a data stream manager,” in Proc.
VLDB, 2003.

[7] Y. Chi, et al., “Loadstar: Load shedding in data stream mining,” in
Proc. VLDB, 2005.

[8] J. Xu, et al., “Learning optimal classifier chains for real-time Big-
Data mining,” in Proc. Annual Allerton Conference, 2013.

[9] K. Kanoun, et al., “Low power and scalable many-core architecture
for Big-Data stream computing,” in Proc. ISVLSI, 2014.

[10] M. L. Puterman, “Markov decision processes: Discrete stochastic
dynamic programming,” John Wiley and Sons, New York, NY, 1994.

[11] J. Gama, et al., “A survey on concept drift adaptation,” ACM
Computing Surveys, 2014.

[12] C. Ballard, et al., “IBM InfoSphere streams. Harnessing data in
motion,” IBM Redbooks 2010.

[13] J. G. Koomey, et al., “Estimating total power consumption by
servers in the U.S. and the world,” Stanford Univ. Press, 2007.

[14] P. Auer, et al., “Finite-time analysis of the multiarmed bandit
problem,” in Machine Learning, vol. 47, pp. 235–256, May-June 2002.

[15] T. Lai, et al., “Asymptotically efficient adaptive allocation rules,”
in Advances in Applied Mathematics, vol. 6, pp. 4–22, 1985.

[16] Y. Gai, et al., “Combinatorial network optimization with unknown
variables: Multi-armed bandits with linear rewards and individual
observations,” in IEEE TON, vol. 20, no. 5, pp. 1466–1478, 2012.

[17] A. Slivkins, “Contextual bandits with similarity information,” in
Proc. COLT, 2011.

[18] N. Cesa-Bianchi, et al., “Combinatorial bandits,” in JCSS, vol. 78,
no. 5, pp. 1404–1422, 2012.

[19] K. Kanoun, et al., “Big-Data streaming applications scheduling
with online learning and concept drift detection” in Proc. DATE,
2015.

[20] Y. Matsumoto, et al., “Manycore processor for video mining appli-
cations,” in Proc. ASP-DAC, 2013.

[21] L. Schor, et al., “Reliable and efficient execution of multiple stream-
ing applications on Intels SCC processor,” in Proc. ROME, 2013.

[22] Tilera TILE-Gx72. http://www.tilera.com
[23] R. Schöne, et al., “Wake-up latencies for processor idle states on

current x86 processors,” in CSRD, 2014.
[24] Intel Xeon Processor 5500 series datasheet, http://www.intel.com
[25] “OpenCV,” http://opencv.org
[26] P. Viola, et al., “Rapid object detection using a boosted cascade of

simple features,” in Proc. IEEE CVPR, 2001.
[27] A.S. Georghiades, et al.,“From few to many: Illumination Cone

models for face recognition under variable lighting and pose,” in
IEEE TPAMI vol. 23, no. 6, pp. 643–660, 2001.

[28] S. Milborrow, et al.,“The MUCT landmarked face database,” in
Proc. PRASA, 2010.

[29] “Faces 1999 (Front),” http://www.vision.caltech.edu/archive.html
[30] “The BioID face database,” https://www.bioid.com/About/BioID-

Face-Database
[31] C. Tekin, et al., “Online learning of rested and restless bandits,” in

IEEE Trans. Inf. Theory vol. 58, no. 8, pp. 5588–5611, 2012.
[32] K. Liu, et al., “Distributed learning in multi-armed bandit with

multiple players,” in IEEE Trans. Signal Process. vol. 58, no. 11, pp.
5667–5681, 2010.

[33] A. Anandkumar, et al., “Distributed algorithms for learning and
cognitive medium access with logarithmic regret,” in IEEE JSAC
vol. 29, no. 4, pp. 731–745, 2011.

[34] A. Tewari and P. Bartlett, “Optimistic linear programming gives
logarithmic regret for irreducible MDPs,” in Advances in Neural
Information Processing Systems vol. 20, pp. 1505–1512, 2008.

[35] P. Auer, et al., “Near-optimal regret bounds for reinforcement
learning,” in Advances in Neural Information Processing Systems pp.
89–96, 2009.

[36] R. Ortner, et al., “Regret bounds for restless Markov bandits,” in
Algorithmic Learning Theory pp. 214–228, 2012.

[37] E. Even-Dar, Y. Mansour, “Learning rates for Q-learning,” in The
Journal of Machine Learning Research vol. 5, pp. 1–25, 2004.

[38] M. Brezzi, T.Z. Lai, “Optimal learning and experimentation in
bandit problems,” in Journal of Economic Dynamics and Control
vol. 27, no. 1, pp. 87–108, 2002.

[39] V. Gabillon, et al., “Adaptive submodular maximization in bandit
setting,” in Advances in Neural Information Processing Systems pp.
2697–2705, 2013.

[40] D. Golovin, A. Krause, “Adaptive submodularity: A new ap-
proach to active learning and stochastic optimization,” in COLT,
pp. 333–345, 2010.

[41] C.H. Papadimitriou, J.N. Tsitsiklis, “The complexity of optimal
queuing network control,” in Math. Oper. Res., vol. 24, no. 2, pp.
293-305, 1999.

Karim Kanoun received his Ph.D. degree in
Electrical Engineering at École Polytechnique
Fédérale de Lausanne (EPFL), Switzerland in
2015 and his MSc degree in Computer Science
from the ENSIMAG school of engineering in in-
formatics and applied mathematics in Grenoble,
France in 2009. He is currently a Post-Doctoral
Researcher in the Embedded Systems Labo-
ratory (ESL) at EPFL. His research interests
include machine learning and energy efficient
schedulers for Big-Data stream mining applica-

tions on mobile many-core platforms and large scale systems.

Cem Tekin (S’09-M’13) is an Assistant Profes-
sor in Electrical and Electronics Engineering De-
partment at Bilkent University, Turkey. From 2013
to 2015, he was a Postdoctoral Scholar at UCLA.
He received Ph.D. degree in electrical engineer-
ing: systems from the University of Michigan,
Ann Arbor, in 2013. His research interests in-
clude machine learning and data mining.

David Atienza (M’05-SM’13-F’16) is an asso-
ciate professor of EE, and director of the ESL
at EPFL. His research interests include system-
level design methodologies for both high- and
low-end multi-processor system-on-chip (MP-
SoC) and embedded systems, including new
2-D/3-D thermal-aware design for MPSoCs,
ultra-low power system architectures for wire-
less body sensor nodes, HW/SW reconfigurable
systems, dynamic memory optimizations, and
network-on-chip design. He is a co-author of

more than 200 publications, and five U.S. patents. He was Technical
Programme Chair of IEEE/ACM DATE 2015, and received the IEEE
CEDA Early Career Award in 2013, the ACM SIGDA Outstanding New
Faculty Award in 2012 and has been Distinguished Lecturer (period
2014-2015) of IEEE CASS. He is an IEEE Fellow and Senior Member
of ACM.

Mihaela van der Schaar is Chancellor’s Pro-
fessor of Electrical Engineering at University of
California, Los Angeles. She is an IEEE Fellow,
was a Distinguished Lecturer of the Communi-
cations Society (2011-2012), the Editor in Chief
of IEEE Transactions on Multimedia (2011-2013)
and a member of the Editorial Board of the
IEEE Journal on Selected Topics in Signal Pro-
cessing (2011). Her research interests include
engineering economics and game theory, multi-
agent learning, online learning, decision theory,

network science, multi-user networking, Big data and real-time stream
mining, and multimedia.

