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Abstract—Emerging stream mining applications require clas-
sification of large data streams generated by single or multi-
ple heterogeneous sources. Different classifiers can be used to
produce predictions. However, in many practical scenarios the
distribution over data and labels (and hence the accuracies of
the classifiers) may be unknown a priori and may change in
unpredictable ways over time. We consider data streams that
are characterized by their context information which can be
used as meta-data to choose which classifier should be used to
make a specific prediction. Since the context information can be
high dimensional, learning the best classifiers to make predictions
using contexts suffers from the curse of dimensionality. In this
paper, we propose a context-adaptive learning algorithm which
learns online what is the best context, learner, and classifier
to use to process a data stream. Learning is performed for
all the possible types of contexts simultaneously, in parallel,
rather than serially learning about different contexts at different
times. This learning framework works for both single and multi-
learner distributed data mining systems where each learner has
access to a different set of classifiers. We theoretically bound
the performance gap between our context-adaptive learning
algorithm and a benchmark policy that knows everything about
the accuracies of the classifiers and the arrival distribution of
data, labels, and contexts. We show that curse of dimensionality
can be avoided when classification decisions at each time instant
are made depending on the best context from the set of contexts
available at that time instant. Our numerical results illustrate that
our algorithm outperforms most prior online learning algorithms,
for which such online performance bounds have not been proven.
Keywords: Stream mining, context-adaptive learning, dis-
tributed multi-user learning, contextual bandits, regret bounds,
concept drift.

I. INTRODUCTION

A plethora of Big Data applications (network monitoring
[1], surveillance [2], health monitoring [3], stock market
prediction, intelligent driver assistance [4], etc.) are emerging
which require online classification of large data sets col-
lected from single or distributed sensors, monitors, multimedia
sources, etc. The data streams collected by such sources
are heterogeneous and dynamically evolving over time in
unknown and unpredictable ways. Hence, mining these data
streams online, at run-time, is known to be a very challenging
problem [5], [6]. For instance, it is well-known that such online
stream mining problems need to cope with concept drift [27].
In this paper, we tackle these online stream mining challenges
by exploiting the automatically generated meta-data, referred
to as ”contexts”, which is gathered or associated to the
data streams in the process of capturing or pre-processing
them. Contexts can represent any side-information related
to the input data stream such as the location at which the
data was captured, and/or data type information (e.g., data
features/characteristics/modality). We assume that each data
stream is processed by a decision maker/learner, which upon
receiving the data and associated contexts takes a classification
action (i.e. calls a local classifier or another learner), which
will return a prediction.

Classifiers can be anything ranging from separating hyper-
planes, naive Bayesian classifiers, random trees, etc., whose
expected accuracies are unknown a priori to the decision
maker/learner. The focus of this paper is to determine how to

learn online, based on the dynamically changing data and the
labels (feedback) received in the past, which type of contexts
are the most relevant given a vector of available contexts at
each time instance, and to choose the best classifier according
to its estimated performance for that particular context, jointly
at the same time. The goal of each learner is to maximize its
long term expected total reward, which is the expected number
of correct labels minus the costs of classification. In this paper
the cost is a generic term that can represent any known cost
such as processing cost, delay cost, communication cost, etc.
Similarly, data is used as a generic term. It can represent files
of several Megabytes size, chunks of streaming media packets
or contents of web pages.

If multiple learners are available in the system to capture
and process various data streams (possibly captured at different
locations), they can cooperate with each other to process the
streams. Each learner can then process (make a prediction
on) the incoming data in two different ways: either it can
exploit one of its own classifiers to make a prediction or it
can forward its input stream to another learner (possibly by
incurring some cost) to have it labeled. A learner learns the
accuracies of its own classifiers or other learners in an online
way, by comparing the result of the predictions with the true
label of its input stream which is revealed at the end of each
time slot. We consider cooperative learners which classify
other’s data when requested, such that the individual utility
(expected total reward) of each learner is maximized.

Each learner faces a sequential decision making problem of
what classification action to take based on its current contexts
and its history of observations and decisions. Therefore, our
focus in this paper is how to learn the best classifiers from
a given set of classifiers rather than designing the classifiers.
Since multi-armed bandit (or simply, bandit) [7]–[10] based
approaches are proven to be very effective for sequential
decision making problems, in this paper we propose a novel
bandit approach which adaptively learns to make decisions
based on the best contexts. Using this approach, we are able
to analytically bound the loss due to learning at any time
instant. This is much stronger than heuristic approaches or
other reinforcement learning based approaches in the literature
for which no such bounds exist.

A key differentiating feature of the approach proposed in
this paper is the focus on how the context information of
the data stream can be effectively utilized to maximize the
classification performance of an online data mining system.
The context information is usually correlated with the data
and the label, and can significantly improve the classification
performance if used smartly. However, when the number of
contexts associated with the data is large (i.e., dimension of the
context space is large), learning the best classification action
according to the entire set of contexts suffers from the curse
of dimensionality. In this paper we propose a new approach
in which the best classification action at each time instance is
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learned based on the best type of context in the current set of
contexts. We will show that this solution does not suffer from
the curse of dimensionality. The questions we aim to address
in this paper by using our approach are:

• Does using the context information help improve the
performance of the online stream mining system?

• The context information that comes along with the data
can be high dimensional (a vector of different types of
contexts). Should the decision of the learner depend on
the entire context vector or a particular type of context?
If the decision of the learner depends on a particular
type of context should it be chosen initially or should it
be adaptively learned over time, depending on the entire
context vector? How should the adaptivity be performed?

• In a distributed learning environment, where multiple
learners process different data, based on different con-
texts, how can these contexts be used? Can a learner
exploit what other learners have learned in previous time
slots?

• How should the learning process be performed when
there is concept drift? How does concept drift affect the
performance?

To optimize the run-time performance of the data mining
system, we design online learning algorithms whose long-term
average rewards converge to the best solution which can be
obtained for the classification problem given complete knowl-
edge of online data characteristics as well as their classifier
accuracies and costs when applied to this data. The benchmark
we compare against is a genie aided scheme, in which the
genie knows classification accuracies of each classifier of each
learner, and chooses the classifier which yields the highest
expected accuracy for the best context in the set of available
contexts at each time slot. We call the difference between the
expected total reward (correct predictions minus cost) of a
learner under the genie aided scheme and the expected total
reward of the online learning algorithm used by the learner as
the regret of the learner, and analytically derive a bound on the
regret of our online learning algorithm under mild assumptions
on the structure of the problem.

While we focus on adaptively learning the most relevant
single context, with a simple modification, our algorithm can
also be used to adaptively learn the best N > 0 contexts. The
novel context-adaptive learning which we propose in this paper
can be used for both single-learner stream mining systems
as well as distributed multi-learner systems. Since the multi-
learner system represents a super-set of the single-learner
system, we focus on the multi-learner system.

The remainder of the paper is organized as follows. In
Section II, we describe the related work. In Section III, we
describe the decentralized data classification problem and the
performance measure. Then, we consider the model with
unknown system statistics without concept drift and propose
a distributed online learning algorithm which learns to exploit
the most relevant context adaptively over time in Section IV.
In Section V, we extend our results such that our algorithm
can track the most relevant context even under concept drift.
Then, in Section VI, we give a detailed comparison of our

algorithms with our previous work which do not adaptively
learn the most relevant context. We provide numerical results
and comparisons on the performance of our online learning
algorithms in Section VII. Finally, the concluding remarks are
given in Section VIII.

II. RELATED WORK

Most of the prior work in stream mining is focused on
learning from the unique data stream characteristics [11]–
[19]. In this paper, we take a different approach: instead of
focusing on the characteristics of a specific data stream, we
focus on the characteristics of data streams having the same
context information. Importantly, we focus on learning what
type of context information should be taken into account when
choosing a classifier to make a prediction. Some context can
reveal a lot of information about the best action to take, while
some other context may be irrelevant.

We assume no prior knowledge of the data and context
arrival processes or the classifiers’ accuracies. The learning is
done in a non-Bayesian way, i.e., learners have no prior beliefs
about the accuracies of classifiers and they do not have any
distribution about the parameters of the system which they can
use to perform Bayesian updating. Learning in a non-Bayesian
way is appropriate in the considered stream mining systems
since learners often do not have correct beliefs about the data
dynamics.

Most of the prior work in (distributed) online stream min-
ing provides algorithms which are asymptotically converging
to an optimal or locally-optimal solution without providing
any rates of convergence. On the contrary, we do not only
prove convergence results, but we are also able to explicitly
characterize the performance loss incurred at each time slot
with respect to the optimal solution. In other words, we prove
regret bounds that hold uniformly over time.

Some of the existing solutions (including [13], [14], [20]–
[25]) propose ensemble learning techniques. In our work we
only consider choosing the best classifier (initially unknown)
from a set of classifiers that are accessible by learners.
However, our proposed distributed learning methods can easily
be adapted to perform ensemble learning. Interested readers
can refer to [26], in which ensemble learning is used together
with online learning with non-adaptive contexts. We provide
a detailed comparison to our work in Table I.

Our contextual framework can also deal with concept drift
[27]–[29]. In [27] a concept is formally defined as the proba-
bility distribution which generates the instances and the labels,
and a concept drift refers to a change in such distribution. In
this paper, we propose a new definition of concept drift: we
define the concept drift as a variation of the accuracy of the
classifiers. Notice that our definition is not completely different
from the definition of [27]; in fact, if the underlying generating
distribution varies, it is highly probable that the accuracies of
the classifiers vary as well. However, large (small) variations
of the generating distribution do not necessarily result in large
(small) variations of the classifiers accuracies. Hence, if the
classifiers represent an input of the stream mining problem (as
in our case), our definition is more suitable. Finally, notice that
our definition includes also situations in which the classifiers,
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instead of the generating distribution, change in time (e.g.,
online classifiers), whereas [27] does not consider this situation
as a concept drift.

Other than distributed data mining, our learning framework
can be applied to any problem that can be formulated as
a decentralized contextual bandit problem [30]. Contextual
bandits have been studied before in [9], [10] and other works
in a single agent setting. However our work is very different
from these because (i) we consider decentralized agents who
can learn to cooperate with each other, (ii) the set of actions
and realization of data and context arrivals to the agents can be
very different for each agent, (iii) instead of learning to take
the best action considering the entire D-dimensional context
vector, an agent learns to take the best action according to the
most relevant type of context among all D types of contexts.
Therefore, each agent should adaptively learn the most relevant
context.

Our prior work has shown that the performance of existing
learning algorithms usually depends on the dimension of the
context space [30], [31]. When the dimension of the context
space is large, the convergence rate of these algorithms to the
optimal average reward becomes very slow. However, in real-
time stream mining applications, short time performance is as
important as the long term performance. In addition to this,
although there may be many types of meta-data to exploit, the
types of meta-data that is highly correlated with the data and
label is usually small. In other words, although the number
and types of contexts that the learning algorithm can use may
be large, the relevant contexts represent at each time only
a small subset of the available/possible contexts. However,
the convergence speed of the algorithms we propose in this
paper is independent of this dimension. By learning the most
relevant context over time, in this paper, we are able to design a
learning algorithm for any D > 0 dimensional context space,
with a convergence rate as fast as the the convergence rate
of the algorithms in prior work in a one dimensional context
space.

III. PROBLEM FORMULATION

Even though the focus of this paper is to highlight the
importance of exploiting context and adaptively learning the
best context to exploit, we will present our results in the most
general form, involving multiple distributed learners operating
on different data and context streams. Then, both the algorithm
and the results for the centralized problem with a single learner
which learns about multiple classifiers follows by letting the
set of other learners be equal to the emptyset. Thus, we
will first give the formulation, learning algorithms and results
for multiple learners, and then we will explain how these
algorithms work when there is only one learner.

The system model is shown in Fig. 1 and 2. There are M
learners which are indexed by the set M := {1, 2, . . . ,M}.
The set of classifiers learner i has is Fi. The set of all
classifiers is F = ∪i∈MFi. Let M−i := M − {i} be the
set of learners learner i can choose from to send its data for
classification. The action set1 of learner i is Ki := Fi∪M−i.

1In sequential online learning literature [7], [8], an action is also called an
arm (or an alternative).

Throughout the paper we use index f to denote an element of
F , ji to denote learners in M−i, fi to denote an element of
Fi, and k to denote an element of Ki.

These learners work in a discrete time setting t =
1, 2, . . . , T , where the following events happen sequentially,
in each time slot: (i) data si(t) ∈ S with a specific D-
dimensional context vector xi(t) = (x1i (t), . . . , x

D
i (t)) arrives

to each learner i ∈M, where S is the data set, xdi (t) ∈ Xd for
d ∈ D := {1, . . . , D} and Xd is the set of type-d contexts, and
X = X1 × . . .× XD is the context space2, (ii) each learner i
chooses one of its own classifiers or another learner to send its
data and context, and produces a label ŷi(t) ∈ Y based on the
prediction of its own classifier or the learner to which it sent
its data and context, where Y is the set of possible labels, (iii)
the truth (true label) yi(t) ∈ Y is revealed, perhaps by events
or by a supervisor, only to the learner i where the data arrived,
(iv) the learner where the data arrived passes the true label to
the learner it had chosen to classify its data, if there is such
a learner. In the next two subsections we will define how the
data, label and context vector is generated, and then based on
this, define the classifier accuracies.
A. Stationary data, label and context with similarity property

In this subsection, we assume that at each time slot si(t),
yi(t) and xi(t) are drawn from an (unknown) joint distribution
J over S×Y×X independently from other time slots for each
learner i ∈M. We do not require this draw to be independent
among the learners. Since context vector xi(t) is revealed to
learner i at the beginning of time t, depending on J , there
exists a conditional distribution Gxi(t) over S ×Y . Similarly,
depending on J , there is a marginal distribution H over X
from which contexts are drawn.

Given context vector x, let πf (x) := E[I(f(si(t)) =
yi(t))] =

∫
(s,y)∈S×Y I(f(si(t)) = yi(t))dGx(s, y) be the

expected accuracy of classifier f ∈ F , where f(si(t)) is the
prediction of classifier f on the data, I(·) is the indicator
function which is equal to 1 if the statement inside is true and 0
otherwise, and the expectation E[·] is taken with respect to dis-
tribution Gx. Let x−d := (x1, . . . , xd−1, xd+1, . . . , xD) and
((x′)−d, xd) = (x′1, . . . , x′d−1, xd, x′d+1, . . . , x′D). Then, the
expected accuracy of f based only on type-d context is defined
as πdf (xd) :=

∫
(x′)−d

πf ((x′)−d, xd)dH((x′−d), xd).
We say that the problem instance involving joint distribution

over data, label and contexts, and the classifiers f ∈ F has
similarity property when each classifier has similar accuracies
for similar contexts.

Definition 1: Stationary distribution with similarity. If
the joint distribution J over S × Y ×X is such that for each
f ∈ F and d ∈ D, there exists a minimum α > 0 and a
minimum L > 0, such that for all xd, (x′)d ∈ Xd, we have
|πdf (xd) − πdf ((x′)d)| ≤ L|xd − (x′)d|α, then we call J , a
stationary distribution with similarity.

Although, our model assumes a continuous context space,
our algorithms will also work when the context space is
discrete. Note that Definition 1 does not require the context

2In our analysis, we will assume that Xd = [0, 1] for all d ∈ D. However,
our algorithms will work and our results will hold even when the context
space is discrete given that it is bounded.
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[13], [18], [23]–[25] [17], [19] [15] [26], [30], [31] This work
Aggregation non-cooperative cooperative cooperative no no
Message exchange none data training residual data and label (adaptively) data and label (adaptively)
Learning approach offline/online offline offline Non-Bayesian online Non-Bayesian online
Learning from other’s contexts N/A no no yes yes
Using other’s classifiers no all all sometimes-adaptively sometimes-adaptively
Data partition horizontal horizontal vertical both both
Bound on regret no no no yes - context dependent yes - context independent
Context adaptive no no no no yes

TABLE I
COMPARISON WITH RELATED WORK IN DISTRIBUTED DATA MINING.

space to be continuous. We assume that α is known by the
learners, while L does not need to be known. However, our
algorithms can be combined with estimation methods for α.
B. Data, label and context with gradual concept drift and
similarity property

In this subsection, we assume that the joint distribution
over data, label and contexts changes gradually over time,
hence denote the joint distribution at time t by Jt and
the corresponding conditional distribution over S × Y and
marginal distribution over X by Gx,t and Ht, respectively.
Classification accuracies are defined similarly to the previous
subsection. We have πf,t(x) := Et[I(f(si(t)) = yi(t))] =∫
(s,y)∈S×Y I(f(si(t)) = yi(t))dGx,t(s, y) and πdf,t(x

d) :=∫
(x′)−d

πf,t((x
′)−d, xd)dHt((x

′−d), xd), where Et[.] denotes
the expectation with respect to distribution Gx,t.

We say that the problem instance involving joint distribu-
tions J1, J2, . . . , JT over data, label and contexts, and the
classifiers f ∈ F have similarity property with gradual concept
drift when the distance between the accuracy of each classifier
for similar contexts between two time slots t and t′ is non-
decreasing in the distance between t and t′.

Definition 2: Gradual concept drift with similarity. If the
sequence of joint distributions J1, J2, . . . , JT over S ×Y ×X
are such that for each t, t′ ∈ {1, 2, . . . , T}, f ∈ F and d ∈ D,
there exists a minimum α > 0, and a minimum 0 < L <
τα such that for all xd, (x′)d ∈ Xd, we have |πdf,t(xd) −

πdf,t((x
′)d)| ≤ L

(
|xd − (x′)d|2 + | t

′

τ −
t
τ |

2
)α/2

, where τ >
0 is a parameter that quantifies the stability of the concept,
then we call J1, J2, . . . , JT , gradually drifting distributions
with similarity. When τ is large the concept is more stable.
We assume that the learners know τ , while our results will
also hold when learners only know a lower bound on τ .

In Definition 2, the upper bound on the value of L is needed
due to the fact that increments in time are discrete. Otherwise,
for any sequence of joint distributions J1, J2, . . . , JT which
can be very different from each other, if each individual
distribution satisfies the condition given in Definition 1, then
there exists an L large enough such that the condition in
Definition 2 is satisfied.

A simple example of sequence of distributions that is
gradually drifting with similarity is the following. Let S =
X = Y = {0, 1}. Assume that context is the data itself and
at each time data is independently drawn from a distribution
with P (si(t) = 1) = p1 and P (si(t) = 0) = 1 − p1. True
label is conditionally dependent on the data with distributions
P (yi(t) = 0|si(t) = 0) = g0(t) and P (yi(t) = 1|si(t) =
1) = g1(t), where g0 and g1 are such that |gl(t) − gl(t′)| ≤
L′(t− t′)α′/τα′ , l ∈ {0, 1}, L′ < τα

′
and α′ > 0. Let f be a

classifier such that when x = 0 it produces label y = 0, and
when x = 1 it produces label y = 1. Then, πf (x) satisfies the
condition given in Definition 2 with L = L′ and α = α′.

C. Unknowns, actions and rewards

In our problem, the unknowns for learner i when there is
no concept drift are (i) Fj , j ∈M−i, (ii) J , H , Gx, x ∈ X ,
(iii) πf (x), f ∈ Fi, x ∈ X , (iv) πdf (xd), f ∈ Fi, xd ∈ Xd,
d ∈ 1, . . . , D. When there is concept drift, some of these
unknowns are also a function of time. Learner i knows (i) the
functions in Fi and costs of calling them3, (ii) the set of other
learners M−i and costs of calling them, (iii) and an upper
bound on the number of classifiers that each learner has, i.e.,
Fmax ≥ |Fji |4, for all ji ∈M−i.

At each time slot t, learner i can either invoke one of its
classifiers or forward the data to another learner to have it
labeled. We assume that for learner i, calling each classifier
fi ∈ Fi incurs a cost cifi ≥ 0. For example, if the application
is delay critical this can be the delay cost, or this can represent
the computational cost and power consumption associated with
calling a classifier, or it can be zero if there is no cost. We
assume that a learner can only call one classifier for each
input data in order to label it. This is a reasonable assumption
when costs of calling classifiers are high. Our results can be
generalized to the case when multiple classifiers are called at
each time. However, for simplicity of analysis and analytical
tractability, we focus on the case of calling a single classifier.
A learner i can also send its data to another learner inM−i in
order to have it labeled. Because of the communication cost
and the delay caused by processing at the recipient, we assume
that whenever the data is sent to another learner ji ∈ M−i
a cost of ciji is incurred by learner i5. Since the costs are
bounded, without loss of generality we assume that costs are
normalized, i.e., cik ∈ [0, 1] for all k ∈ Ki6. The learners are
cooperative which implies that learner ji ∈ M−i will return
a prediction to i when called by i using its classifier with the
highest estimated accuracy for i’s context vector. Similarly,
when called by ji ∈ M−i, learner i will return a label to
ji. We do not consider the effect of this on i’s learning rate;

3Alternatively, we can assume that the costs are random variables with
bounded support whose distribution is unknown. In this case, the learners
will not learn the accuracy but they will learn accuracy minus cost.

4For a set A, let |A| denote the cardinality of that set.
5The cost for learner i does not depend on the cost of the classifier chosen

by learner ji. Since the learners are cooperative, ji will obey the rules of the
proposed algorithm when choosing a classifier to label i’s data. We assume
that when called by i, ji will select a classifier from Fji , but not forward i’s
data to another learner.

6If there is a classifier f such that it is both in Fi and Fj , we assume that
the cost of calling f ∈ Fi is smaller than the cost of calling learner j for
learner i.
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Fig. 1. Operation of learner i during a time slot when it chooses one of its
own classifiers.

Fig. 2. Operation of learner i during a time slot when it chooses learner j.

however, since our results hold for the case when other learners
are not helping i to learn about its own classifiers, they will
also hold when other learners help i to learn about its own
classifiers. If we assume that ciji also captures the cost to
learner ji to classify and send the label back to learner i, then
maximizing i’s own expected accuracy minus cost corresponds
to maximizing the sum of expected accuracy minus cost of all
learners.

We assume that each classifier produces a binary label7, thus
Y = {0, 1}. For a learner ji ∈ M−i its expected accuracy
for a type-d context xd is equal to the expected accuracy
of its best classifier, i.e., πdji(x

d) = maxkji∈Fji π
d
kji

(xd).
The goal of each learner i is to maximize its total expected
reward. This corresponds to minimizing the regret with respect
to the benchmark solution which we will define in the next
subsections.
D. Optimal Classification with Complete Information

Our benchmark when evaluating the performance of the
learning algorithms is the optimal solution which selects
the arm in Ki with the highest accuracy minus cost
(i.e., reward) for the best type of context for learner i
given the context vector xi(t) at time t. We assume that
the costs are normalized so the tradeoff between accu-
racy and cost is captured without using weights. Specif-
ically, the optimal solution we compare against is given
by k∗i (x) = arg maxk∈Ki

(
maxxd∈x π

d
k(xd)− cik

)
, ∀x ∈

X , when there is no concept drift, and by k∗i (x, t) =

arg maxk∈Ki

(
maxxd∈x π

d
k,t(x

d)− cik
)
, ∀x ∈ X , when

7In general we can assume that labels belong to R and define the
classification error as the mean squared error or some other metric. Our results
can be adapted to this case as well.

there is concept drift. Knowing the optimal solution means
that learner i knows the classifier in F that yields the highest
expected accuracy for each xd ∈ Xd, d ∈ D. Even when
everything is known, choosing the best classifier for each
context x requires to evaluate the accuracy minus cost for
each context and is computationally intractable, because the
context space X has infinitely many elements.

E. The Regret of Learning

Simply, the regret is the loss incurred due to the unknown
system dynamics. Regret of a learning algorithm α which
selects an action αt(xi(t)) ∈ Ki at time t for learner i is
defined with respect to the best arm k∗i (xi(t)) (k∗i (xi(t), t)
when there is concept drift) at time t. The regret of a learning
algorithm for learner i when there is no concept drift is
given by Ri(T ) :=

∑T
t=1

(
πk∗i (xi(t))(xi(t))− c

i
k∗i (xi(t))

)
−

E
[∑T

t=1(I(ŷit(αt(xi(t))) = yi(t))− ciαt(xi(t)))
]
, where

ŷit(.) denotes the prediction of the action selected by learner
i at time t, yi(t) denotes the true label of the data stream
that arrived to learner i in time slot t, and the expectation
is taken with respect to the randomness of the prediction.
Regret gives the convergence rate of the total expected reward
of the learning algorithm to the value of the optimal solution
k∗i (x), x ∈ X . Any algorithm whose regret is sublinear,
i.e., Ri(T ) = O(T γ) such that γ < 1, will converge to the
optimal solution in terms of the average reward. When there
is concept drift, the regret can be defined in a similar way
with respect to the optimal policy k∗i (xi(t), t). In general, the
regret is linear in T when there is concept drift.

IV. ADAPTIVE CONTEXTS WITH ADAPTIVE PARTITION
FOR STATIONARY DATA AND CONTEXT

In this section we propose an online learning algorithm
with sublinear regret when there is no concept drift and the
condition in Definition 1 holds. Different from prior explore-
exploit learning algorithms, our algorithm uses a three-phased
learning structure which includes training, exploration and
exploitation phases. The novel training phase helps a learner
to teach others how to choose good classifiers, so that when
asked to make predictions, they will learn to choose their
best classifiers. We name our algorithm Adaptive Contexts and
Adaptive Partitions (ACAP).

A. The ACAP algorithm

The basic idea behind ACAP is to adaptively divide the
context space into finer and finer regions over time such that
regions of the context space with a large number of arrivals
are trained and explored more accurately than regions of the
context space with small number of arrivals, and then only use
the observations in those sets when estimating the accuracy of
arms in Ki for contexts that lie in those sets. At each time slot,
ACAP chooses an arm adaptively based on the best context
from the context vector given to the learner at that time slot,
using the sample mean estimates of the expected accuracies
of the arms based on previous observations relevant to current
contexts, which are computed separately for each type of
context in the context vector. These sample mean accuracies
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are updated in parallel for each context in the context vector,
while the decision made at an exploitation step depends on
the context which offers the highest estimated accuracy for the
best arm for the context vector. We call the context which the
decision is based on at time t as the main context of that time.

For each type-d context, ACAP starts with a single hyper-
cube which is the entire context space Xd, then divides the
space into finer regions and explores them as more contexts
arrive. In this way, the algorithm focuses on parts of the space
in which there is large number of context arrivals, and does this
independently for each type of context. The learning algorithm
for learner i should zoom into the regions of space with large
number of context arrivals, but it should also persuade other
learners to zoom to the regions of the space where learner i has
a large number of context arrivals. Here zooming means using
past observations from a smaller region of context space to
estimate the rewards of actions for a context. The pseudocode
of ACAP is given in Fig. 3, and the initialization, training,
exploration and exploitation modules are given in Fig. 4 and
Fig. 5.

For each type-d context, we call an interval (a2−l, (a +
1)2−l] ⊂ [0, 1] a level l hypercube for a = 1, . . . , 2l − 18,
where l is an integer. Let Pdl be the partition of type-d
context space [0, 1] generated by level l hypercubes. Clearly,
|Pdl | = 2l. Let Pd := ∪∞l=0Pdl denote the set of all possible
hypercubes. Note that Pd0 contains only a single hypercube
which is Xd itself. At each time slot, ACAP keeps for
learner i a set of mutually exclusive hypercubes that cover
the context space of each type d ∈ D context. We call these
hypercubes active hypercubes, and denote the set of active
hypercubes for type-d context at time t by Adi (t). Let Ai(t) :=
(A1

i (t), . . . ,ADi (t)). Clearly, we have ∪C∈Adi (t)C = Xd.
Denote the active hypercube that contains xdi (t) by Cdi (t). Let
Ci(t) := (C1

i (t), . . . , CDi (t)) be the set of active hypercubes
that contains xi(t). The arm chosen by learner i at time t only
depends on the actions taken on previous context observations
which are in Cdi (t) for some d ∈ D. The number of such
actions and observations can be much larger than the number
of previous actions and observations in Ci(t). This is because
in order for an observation to be in Ci(t), it should be in
all Cdi (t), d ∈ D. Let N i,d

C (t) be the number of times type-
d contexts have arrived to hypercube C of learner i from
the activation of C till time t. Once activated, a level l
hypercube C will stay active until the first time t such that
N i,d
C (t) ≥ A2pl, where p > 0 and A > 0 are parameters

of ACAP. After that, ACAP will divide C into 2 level l + 1
hypercubes.

For each arm in Fi, ACAP have a single (deterministic) con-
trol function D1(t) which controls when to explore or exploit,
while for each arm in M−i, ACAP have two (deterministic)
control functions D2(t) and D3(t), where D2(t) controls when
to train or not, D3(t) controls when to explore or exploit when
there are enough trainings. When type-d context is selected
as the main context at time t, for an arm k ∈ Fi, all the
observations up to time t in hypercube Cdi (t) are used by
learner i to estimate the expected reward of that arm. This

8The first level l hypercube is defined as [0, 2−l].

Adaptive Contexts and Adaptive Partitions Algorithm (for
learner i):

1: Input: D1(t), D2(t), D3(t), p, A
2: Initialization: Ad

i = {[0, 1]}, d ∈ D. Ai = A1
i × . . .×AD

i .
Run Initialize(Ai)

3: Notation: r̄i
k = (r̄i,d

k,Cd(t)
)d∈D ,

r̄i = (r̄i
k)k∈Ki ,

lC : level of hypercube C,
N i

k = (N i,d

k,Cd(t)
)d∈D , k ∈ Ki,

N i
1,k = (N i,d

1,k,Cd(t)
)d∈D , k ∈M−i,

N i = (N i
k)k∈Ki .

4: while t ≥ 1 do
5: if ∃d ∈ D and ∃k ∈ Fi such that N i,d

k,Cd(t)
≤ D1(t)

then
6: Run Explore(t, k, N i

k, r̄i
k)

7: else if ∃d ∈ D and ∃k ∈M−i such that
N i,d

1,k,Cd(t)
≤ D2(t) then

8: Obtain Nk,d

Cd(t)
(t) from learner k.

9: if Nk,d

Cd(t)
(t) = 0 then

10: Ask k to create hypercube Cd(t) for its type-d
context, set N i,d

1,k,Cd(t)
= 0

11: else
12: Set N i,d

1,k,Cd(t)
= Nk,d

Cd(t)
(t)−N i,d

k,Cd(t)

13: end if
14: if N i,d

1,k,Cd(t)
≤ D2(t) then

15: Run Train(t, k, N i
1,k)

16: else
17: Go to line 7
18: end if
19: else if ∃d ∈ D and ∃k ∈M−i such that

N i,d

k,Cd(t)
≤ D3(t) then

20: Run Explore(t, k, N i
k, r̄i

k)
21: else
22: Run Exploit(t, N i, r̄i, Ki)
23: end if
24: N i,d

Cd(t)
= N i,d

Cd(t)
+ 1

25: for d ∈ D do
26: if N i,d

Cd(t)
≥ A2

pl
Cd(t) then

27: Create 2 level lCd(t) + 1 child hypercubes denoted
by ACd(t)

28: Run Initialize(ACd(t))
29: Ai = Ai ∪ ACd(t) − Cd(t)
30: end if
31: end for
32: t = t + 1
33: end while

Fig. 3. Pseudocode of the ACAP algorithm.

Initialize(A):
1: for C ∈ A do
2: Set N i,d

C = 0, N i,d
k,C = 0, r̄i,dk,C = 0 for k ∈ Ki, N i,d

1,k,C =
0 for k ∈M−i.

3: end for

Fig. 4. Pseudocode of the initialization module.

estimation is different for k ∈ M−i. This is because learner
i cannot choose the arm that is selected by learner k when
called by i. If the estimated rewards of arms of learner k are
inaccurate, i’s estimate of k’s reward will be very different
from the expected reward of k’s optimal arm for i’s context
vector. Therefore, learner i uses the rewards from learner
ji ∈ M−i to estimate the expected reward of learner ji only
if it believes that learner ji estimated the expected rewards of
its own arms accurately. In order for learner ji to estimate
the rewards of its own arms accurately, if the number of
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Train(t, k, N i
1,k):

1: Select arm k.
2: Send current data and context vector to learner k.
3: Receive prediction ŷk(si(t),xi(t)) from learner k.
4: Receive true label yi(t) (send this also to learner k).
5: Compute reward rk(t) = I(ŷk(si(t),xi(t)) = yi(t))− cik.
6: N i,d

k,Cd(t)
+ + for d ∈ D.

Explore(t, k, N i
k, r̄i

k):
1: Select arm k.
2: Receive prediction ŷk(si(t),xi(t)).
3: Receive true label yi(t) (if k ∈M−i, send this also to

learner k).
4: Compute reward rk(t) = I(ŷk(si(t),xi(t)) = yi(t))− cik.

5: r̄i,d
k,Cd(t)

=
N
i,d

k,Cd(t)
r̄
i,d

k,Cd(t)
+rk(t)

N
i,d

k,Cd(t)
+1

, d ∈ D.

6: N i,d

k,Cd(t)
+ +, d ∈ D.

Exploit(t, N i, r̂i, Ki):

1: Select arm k ∈ arg maxj∈Ki

(
maxd∈D r̄i,d

j,Cd(t)

)
.

2: Receive prediction ŷk(si(t),xi(t)).
3: Receive true label yi(t) (if k ∈M−i, send this also to

learner k).
4: Compute reward rk(t) = I(ŷk(si(t),xi(t)) = yi(t))− cik.

5: r̄i,d
k,Cd(t)

=
N
i,d

k,Cd(t)
r̄
i,d

k,Cd(t)
+rk(t)

N
i,d

k,Cd(t)
+1

, d ∈ D.

6: N i,d

k,Cd(t)
+ +, d ∈ D.

Fig. 5. Pseudocode of the training, exploration and exploitation modules.

context arrivals to learner ji in set Cdi (t) is small, learner
i trains learner ji by sending its context to ji, receiving back
the prediction of the classifier chosen by ji and sending the
true label at the end of that time slot to ji so that ji can
compute the estimated accuracy of the classifier (in Fji ) it
had chosen for i. In order to do this, learner i keeps two
counters N i,d

1,ji,C
(t) and N i,d

2,ji,C
(t) for each C ∈ Aid(t), which

are initially set to 0. At the beginning of each time slot for
which N i,d

1,ji,C
(t) ≤ D2(t), learner i asks ji to send it N ji,d

C (t)
which is the number of type-d context arrivals to learner ji in
C from the activation of C by learner ji to time t, including
the contexts sent by learner i and by other learners to learner
ji. If C has not been activated by ji yet, then it sends
N ji,d
C (t) = 0 and activates the hypercube C for its type-d

context. Then learner i sets N i,d
1,ji,C

(t) = N ji,d
C (t)−N i,d

2,ji,C
(t)

and checks again if N i,d
1,ji,C

(t) ≤ D2(t) for some d ∈ D. If
so, then it trains learner ji by sending its data and context
stream si(t),xi(t), receiving a prediction from learner ji,
and then sending the true label yi(t) to learner ji so that
learner ji can update the estimated accuracy of the classifier
in Fj it had chosen to make a prediction for learner i. If
N i,d

1,ji,C
(t) > D2(t), for all d ∈ D, this means that learner ji is

trained enough for all types of contexts so it will almost always
select its optimal arm when called by i. Therefore, i will only
use observations when N i,d

1,ji,C
(t) > D2(t) to estimate the

expected reward of learner ji for type-d contexts. To have
sufficient observations from ji before exploitation, i explores
ji when N i,d

1,ji,C
(t) > D2(t) and N i,d

2,ji,C
(t) ≤ D3(t), and

updates N i,d
2,ji,C

(t) and the sample mean accuracy of learner
ji, which is the ratio of the total number of correct predictions
to the total number of predictions ji has made for i for contexts
in hypercube C. For simplicity of notation in the pseudocode
of ACAP we let N i,d

ji,C
(t) := N i,d

2,ji,C
(t) for ji ∈ M−i.

Let Si,d
Cdi (t)

(t) := {ki ∈ Fi such that N i,d

ki,Cdi (t)
(t) ≤

D1(t) or ji ∈ M−i such that N i,d

1,ji,Cdi (t)
(t) ≤ D2(t) or

N i,d

2,ji,Cdi (t)
(t) ≤ D3(t)

}
, and SiCi(t)

(t) = ∪d∈DSi,dCdi (t)(t).
If SiCi(t)

(t) 6= ∅ then ACAP randomly selects an arm in
SiCi(t)

(t) to train or explore, while if SiCi(t)
(t) = ∅, ACAP se-

lects an arm in arg maxk∈Ki

(
maxd∈D r̄

i,d

k,Cdi (t)
(t)
)

to exploit,

where r̄i,d
k,Cdi (t)

(t) is the sample mean of the rewards collected
from arm k in time slots for which the type-d context is in
Cdi (t) from the activation of Cdi (t) by learner i to time t for
k ∈ Fi, and it is the sample mean of the rewards collected
from exploration and exploitation steps of arm k in time slots
for which the type-d context is in Cdi (t) from the activation
of Cdi (t) to time t for k ∈M−i.

B. Analysis of the regret of ACAP

In this subsection we analyze the regret of ACAP and derive
a sublinear upper bound on the regret. We divide the regret
Ri(T ) into three different terms. Rei (T ) is the regret due to
trainings and exploitations by time T , Rsi (T ) is the regret due
to selecting suboptimal actions at exploitation steps by time T ,
and Rni (T ) is the regret due to selecting near-optimal actions
in exploitation steps by time T . Using the fact that trainings,
explorations and exploitations are separated over time, and
linearity of expectation operator, we get Ri(t) = Rei (T ) +
Rsi (T )+Rni (T ). In the following analysis, we will bound each
part of the regret separately. Let β2 :=

∑∞
t=1 1/t2 = π2/6.

For a set A, Ac denotes the complement of that set. . We
start with a simple lemma which gives an upper bound on the
highest level hypercube that is active at any time t.

Lemma 1: A bound on the level of active hypercubes.
All the active hypercubes Adi (t) for type-d contexts at time t
have at most a level of (log2 t)/p+ 1.

Proof: Let l + 1 be the level of the highest level active
hypercube. We must have A

∑l
j=0 2pj < t, otherwise the

highest level active hypercube will be less than l + 1. We
have for t/A > 1, A 2p(l+1)−1

2p−1 < t ⇒ 2pl < t
A ⇒ l < log2 t

p .

The following lemma bounds the regret due to trainings and
explorations in a level l hypercube for a type-d context.

Lemma 2: Regret of trainings and explorations in a
hypercube. Let D1(t) = D3(t) = tz log t and D2(t) =
Fmaxt

z log t. Then, for any level l hypercube for type-d
context the regret due to trainings and explorations by time t
is bounded above by 2(|Fi|+(M−1)(Fmax+1))(tz log t+1).

Proof: This directly follows from the number of trainings
and explorations that are required before any arm can be
exploited (see definition of SiCi(t)

(t)). If the prediction at any
training or exploration step is incorrect or a high cost arm
is chosen, learner i loses at most 2 from the highest realized
reward it could get at that time slot, due to the fact an incorrect
prediction will result in one unit of loss and the cost of an
action can at most be one.

Lemma 2 states that the regret due to trainings and ex-
plorations increases exponentially with z, which controls the
rate of learning. For learner i let µdk(x) := πdk(x) − cik,
i.e., the expected reward of arm k ∈ Ki for type-d context
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xd ∈ Xd. For each set of hypercubes C = (C1, . . . , CD), let
k∗(C) ∈ Ki be the arm which is optimal for the center context
of the type-d hypercube which has the highest expected reward
among all types of contexts for C, and let d∗(C) be the type of
the context for which arm k∗(C) has the highest expected re-
ward. Let µdk,Cd := supx∈Cd µ

d
k(x), µd

k,Cd
:= infx∈Cd µ

d
k(x)

µk,C := maxd∈D µ
d
k,Cd , and µ

k,C
:= maxd∈D µ

d
k,Cd

, for
k ∈ Ki. When the set of active hypercubes of learner i
is C, the set of suboptimal arms is given by LiC,B :={
k ∈ Ki : µ

k∗(C),C
− µk,C > BL2−lmax(C)α

}
, where B >

0 is a constant and lmax(C) is the level of the highest level
hypercube in C. When the context vector is in C, any arm
that is not in LiC,B is a near-optimal arm. In the next lemma
we bound the regret due to choosing a suboptimal arm in the
exploitation steps.

Lemma 3: Regret due to suboptimal arm selections. Let
LiC,B , B = 12/(L2−α)+2 denote the set of suboptimal arms
for set of hypercubes C. When ACAP is run with parameters
p > 0, 2α/p ≤ z < 1, D1(t) = D3(t) = tz log t and D2(t) =
Fmaxt

z log t, the regret of learner i due to choosing suboptimal
arms in LiCi(t),B

at time slots 1 ≤ t ≤ T in exploitation steps,
i.e., Rsi (T ), is bounded above by 2(1 + D)β2|Fi| + 8(M −
1)Fmaxβ2T

z/2/z.

Proof: Let Ω denote the space of all possible outcomes,
and w be a sample path. The event that the ACAP exploits
when xi(t) ∈ C is given by Wi

C(t) := {w : SiC(t) =
∅,xi(t) ∈ C,C ∈ Ai(t)}. We will bound the probability
that ACAP chooses a suboptimal arm for learner i in an
exploitation step when i’s context vector is in the set of active
hypercubes C for any C, and then use this to bound the
expected number of times a suboptimal arm is chosen by
learner i in exploitation steps using ACAP. Recall that reward
loss in every step in which a suboptimal arm is chosen can be
at most 2.

Let Vik,C(t) be the event that a suboptimal arm k is chosen
for the set of hypercubes C by learner i at time t. For
k ∈ Ki ∩ Fi, let E ik,C(t) be the set of rewards collected
by learner i from arm k in time slots when the context
vector of learner i is in the active set C by time t. For
ji ∈ Ki ∩M−i, let E iji,C(t) be the set of rewards collected
from selections of learner ji in time slots t′ ∈ {1, . . . , t} for
which N i

1,ji,l
(t′) > D2(t′) and the context vector of learner i

is in the active set C by time t. Let Biji,C(t) be the event that
at most tφ samples in E iji,C(t) are collected from suboptimal
arms of learner ji. For k ∈ Ki ∩ Fi let Bik,C(t) := Ω.
In order to facilitate our analysis of the regret, we generate
two different artificial independent and identically distributed
(i.i.d.) processes to bound the probabilities related to deviation
of sample mean reward estimates r̄i,d

k,Cd
(t), k ∈ Ki, d ∈ D

from the expected rewards, which will be used to bound the
probability of choosing a suboptimal arm. The first one is the
best process in which rewards are generated according to a
bounded i.i.d. process with expected reward µdk,Cd , the other
one is the worst process in which the rewards are generated
according to a bounded i.i.d. process with expected reward
µd
k,Cd

. Let r̄b,i,d
k,Cd

(t) denote the sample mean of the t samples

from the best process and r̄w,i,d
k,Cd

(t) denote the sample mean
of the t samples from the worst process. We have for any
k ∈ LiC,B
P
(
Vik,C(t),Wi

C(t)
)

≤ P
(

max
d∈D

r̄b,i,d
k,Cd

(N i,d
k,Cd

(t)) ≥ µk,C +Ht,Wi
C(t)

)
+ P

(
max
d∈D

r̄b,i,d
k,Cd

(N i,d
k,Cd

(t)) ≥ r̄w,i,d
∗(C)

k∗(C),Cd∗(C)(N
i,d∗(C)

k∗(C),Cd∗(C)(t))

−2tφ−1,max
d∈D

r̄b,i,d
k,Cd

(N i,d
k,Cd

(t)) < µk,C + L2−lmax(C)α

+Ht + 2tφ−1, r̄
w,i,d∗(C)

k∗(C),Cd∗(C)(N
i,d∗(C)

k∗(C),Cd∗(C)(t))

> µ
k∗(C),C

− L2−lmax(C)α −Ht,Wi
C(t)

)
(1)

+ P
(
r̄
w,i,d∗(C)

k∗(C),Cd∗(C)(N
i,d∗(C)

k∗(C),Cd∗(C)(t)) ≤ µk∗(C),C
−Ht

+2tφ−1,Wi
C(t)

)
+ P ((Bik,C(t))c),

where Ht > 0. In order to make the probability in (1) equal
to 0, we need

4tφ−1 + 2Ht ≤ (B − 2)L2−lmax(C)α. (2)

By Lemma 1, (2) holds when

4tφ−1 + 2Ht ≤ (B − 2)L2−αt−α/p. (3)

For Ht = 4tφ−1, φ = 1 − z/2, z ≥ 2α/p and B =
12/(L2−α) + 2, (3) holds by which (1) is equal to zero. Also
by using a Chernoff-Hoeffding bound we can show that

P

(
max
d∈D

r̄b,i,d
k,Cd

(N i,d
k,Cd

(t)) ≥ µk,C +Ht,Wi
C(t)

)
≤ D/t2,

and

+ P
(
r̄
w,i,d∗(C)

k∗(C),Cd∗(C)(N
i,d∗(C)

k∗(C),Cd∗(C)(t)) ≤ µk∗(C),C
−Ht

+2tφ−1,Wi
C(t)

)
≤ 1/t2.

We also have P (Bik,C(t)c) = 0 for k ∈ Fi and
P (Biji,C(t)c) ≤ E[Xi

ji,C
(t)]/tφ ≤ 2Fmaxβ2t

z/2−1. for ji ∈
M−i, where Xi

ji,C
(t) is the number of times a suboptimal arm

of learner ji is selected when learner i calls ji in exploration
and exploitation phases in time slots when the context vector
of i is in the set of hypercubes C which are active by time
t. Combining all of these we get P

(
Viki,C(t),Wi

C(t)
)
≤

(1 + D)/t2, for k ∈ Fi and P
(
Viji,C(t),Wi

C(t)
)
≤ (1 +

D)/t2 + 2Fmaxβ2t
z/2−1, for ji ∈ M−i. We get the final

bound by summing these probabilities from t = 1 to T .

In the next lemma we bound the regret due to near optimal
learners choosing their suboptimal classifiers when called by
learner i in exploitation steps when the context vector of
learner i belongs to is C.

Lemma 4: Regret due to near-optimal learners choosing
suboptimal classifiers. Let LiC,B , B = 12/(L2−α)+2 denote
the set of suboptimal actions for set of hypercubes C. When
ACAP is run with parameters p > 0, 2α/p ≤ z < 1, D1(t) =
D3(t) = tz log t and D2(t) = Fmaxt

z log t, for any set of
hypercubes C that has been active and contained xi(t

′) for
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some exploitation time slots t′ ∈ {1, . . . , T}, the regret due to
a near optimal learner choosing a suboptimal classifier when
called by learner i is upper bounded by 4(M − 1)Fmaxβ2.

Proof: Let Xi
ji,C

(T ) denote the random variable which
is the number of times a suboptimal arm for learner ji ∈
M−i is chosen in exploitation steps of i when xi(t

′) is in
set C ∈ Ai(t′) for t′ ∈ {1, . . . , T}. It can be shown that
E[Xi

ji,C
(T )] ≤ 2Fmaxβ2. Thus, the contribution to the regret

from suboptimal arms of ji is bounded by 4Fmaxβ2. We get
the final result by considering the regret from all M − 1 other
learners.

The following lemma bounds the one-step regret to learner
i from choosing near optimal arms. This lemma is used later
to bound the total regret from near optimal arms.

Lemma 5: One-step regret due to near-optimal arms
for a set of hypercubes. Let LiC,B , B = 12/(L2−α) + 2
denote the set of suboptimal actions for set of hypercubes C.
When ACAP is run with parameters p > 0, 2α/p ≤ z < 1,
D1(t) = D3(t) = tz log t and D2(t) = Fmaxt

z log t, for any
set of hypercubes C, the one-step regret of learner i from
choosing one of its near optimal classifiers is bounded above
by BL2−lmax(C)α, while the one-step regret of learner i from
choosing a near optimal learner which chooses one of its near
optimal classifiers is bounded above by 2BL2−lmax(C)α.

Proof: At time t if xi(t) ∈ C ∈ Ai(t), the one-step
regret of any near optimal arm of any near optimal learner
ji ∈M−i is bounded by 2BL2−lmax(C)α by the definition of
LiC,B . Similarly, the one-step regret of any near optimal arm
k ∈ Fi is bounded by BL2−lmax(C)α.

The next lemma bounds the regret due to learner i choosing
near optimal arms by time T .

Lemma 6: Regret due to near-optimal arms. Let LiC,B ,
B = 12/(L2−α) + 2 denote the set of suboptimal actions
for set of hypercubes C. When ACAP is run with parameters
p > 0, 2α/p ≤ z < 1, D1(t) = D3(t) = tz log t and D2(t) =
Fmaxt

z log t, the regret due to near optimal arm selections in
LiCi(t),B

at time slots 1 ≤ t ≤ T in exploitation steps is

bounded above by 2BLA22(1+p−α)

21+p−α−1 T
1+p−α
1+p + 4Fmaxβ2.

Proof: At any time t for the set of active hypercubes
Ci(t) that the context vector of i belongs to, lmax(Ci(t)) is at
least the level of the active hypercube xdi (t) ∈ Cdi (t) for some
type-d context. Since a near optimal arm’s one-step regret at
time t is upper bounded by 2BL2−lmax(Ci(t))α, the total regret
due to near optimal arms by time T is upper bounded by

2BL

T∑
t=1

2−lmax(Ci(t))α ≤ 2BL

T∑
t=1

2−l(C
d
i (t))α.

Let lmax,u be the maximum level type-d hypercube when type-
d contexts are uniformly distributed by time T . We must have

A

lmax,u−1∑
l=1

2l2pl < T (4)

otherwise the highest level hypercube by time T will be
lmax,u − 1. Solving (4) for lmax,u, we get lmax,u < 1 +

log2(T )/(1 + p).
∑T
t=1 2−l(C

d
i (t))α takes its greatest value

when type-d context arrivals by time T is uniformly distributed

in Xd. Therefore we have

T∑
t=1

2−l(C
d
i (t))α ≤

lmax,u∑
l=0

2lA2pl2−αl <
A22(1+p−α)

21+p−α − 1
T

1+p−α
1+p .

From Lemma 6, we see that the regret due to choosing near
optimal arms increases with the parameter p that determines
how much each hypercube will remain active, and decreases
with α, which determines how similar is the expected accuracy
of a classifier for similar contexts. Next, we combine the
results from Lemmas 2, 3, 4 and 6 to obtain the regret bound
for ACAP.

Theorem 1: Let LiC,B , B = 12/(L2−α) + 2 denote the set
of suboptimal actions for set of hypercubes C. When ACAP
is run with parameters p = 3α+

√
9α2+8α
2 , z = 2α/p < 1,

D1(t) = D3(t) = tz log t and D2(t) = Fmaxt
z log t, the regret

of learner i by time T is upper bounded by

Ri(T ) ≤ T f1(α)
(

8DZi log T +
2BLA22+α+

√
9α2+8α

2
2+α+

√
9α2+8α
2 − 1

)
+ T f2(α)8(M − 1)Fmaxβ2(3α+

√
9α2 + 8α)/(4α)

+ T f3(α)(8DZi + 4(M − 1)Fmaxβ2) + 2(1 +D)|Fi|β2,

where Zi = |Fi| + (M − 1)(Fmax + 1), f1(α) = (2 + α +√
9α2 + 8α)/(2 + 3α +

√
9α2 + 8α), f2(α) = 2α/(3α +√

9α2 + 8α), f3(α) = 2/(2 + 3α+
√

9α2 + 8α).
Proof: For each hypercube of each type-d context, the

regret due to trainings and explorations is bounded by Lemma
2. It can be shown that for each type-d context there can be
at most 4T 1/(1+p) hypercubes that is activated by time T .
Using this we get a O(T z+1/(1+p) log T ) upper bound on the
regret due to explorations and trainings for a type-d context.
Then we sum over all types of contexts d ∈ D. We show in
Lemma 6 that the regret due to near optimal arm selections
in exploitation steps is O(T

1+p−α
1+p ). In order to balance the

time order of regret due to explorations, trainings and near
optimal arm selections in exploitations, while at the same
time minimizing the number of explorations and trainings, we
set z = 2α/p, and p = 3α+

√
9α2+8α
2 , which is the value

which balances these two terms. Notice that we do not need
to balance the order of regret due to suboptimal arm selections
since its order is always less than the order of trainings and
explorations. We get the final result by summing these two
terms together with the regret due to suboptimal arm selections
in exploitation steps which is given in Lemma 3.

From the result of Theorem 1, it is seen that the regret
increases linearly with the number of learners in the system
and their number of classifiers (which Fmax is an upper bound
on). We note that the regret is the gap between the total
expected reward of the optimal distributed policy that can
be computed by a genie which knows the accuracy functions
of every classifier, and the total expected reward of ACAP.
Since the performance of optimal distributed policy never
gets worse as more learners are added to the system or as
more classifiers are introduced, the benchmark we compare
our algorithm against with may improve. Therefore, the total
reward of ACAP may improve even if the regret increases
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with M , |Fi| and Fmax. Another observation is that the time
order of the regret does not depend on the number of types of
contexts, i.e., D. Therefore, the regret bound we have in this
paper and its analysis is significantly different from the regret
bounds we had in our prior work [30] for algorithms which
do not adaptively choose the type of the context to exploit,
whose time order approaches linear as D increases. More is
discussed about this in Section VI. Moreover, the regret bound
in Theorem 1 is a worst-case bound which holds for any
distribution over the data, label and context space satisfying
the condition in Definition 1. Depending on this distribution,
the number of trainings may be much smaller. However, this
will not change the time order of the regret but it will only
change the time-independent constants that multiplies the time
order.
C. A note on performance of ACAP for a single learner system

Although ACAP is developed such that multiple learners
can cooperate to receive higher rewards than the case they do
not cooperate, ACAP can also be used when there is only one
learner in the system with set of classifiers Fi. Then the action
set of the learner will be Ki = Fi, and the training phase is
no more needed since there are no other learners. An analysis
similar to the one in the previous subsection can be carried out
for ACAP with a single learner. This will give a result such that
the time order of the regret will be the same as in Theorem 1,
while the constants that multiply the time order will be much
smaller. Basically, instead of the multiplicative constants of
the form MFmax, we will have multiplicative constants of the
form |Fi|. Detailed numerical analysis of ACAP for a single
learner system is given in Section VII.
V. ADAPTIVE CONTEXTS WITH ADAPTIVE PARTITION FOR

CONCEPT DRIFT

When there is concept drift, accuracies of the classifiers can
change over time even for the same context. Because of this
the best context to exploit when the context vector is x at
time t, can be different from the best context to exploit when
the context vector is x at another time t′. ACAP should be
modified to take this into account. In this section we assume
that the concept drift is gradual as given in Definition 2. ACAP
can be modified in the following way to deal with gradual
concept drift. The idea is to use a time window of recent
observations to calculate the estimated rewards of the actions
in Ki and only use these observations when deciding to train,
explore or exploit. We call the modified algorithm ACAP with
time window (ACAP-W). This algorithm groups the time slots
into rounds ρ = 1, 2, . . . each having a fixed length of 2τh time
slots, where τh is an integer called the half window length. The
idea is to keep separate control functions and counters for
each round, and calculate the estimated accuracies for each
type of context in a round based only on the observations that
are made during the time window of that round. The control
functions for the initialization round of ACAP-W is the same
as the control functions D1(t), D2(t) and D3(t) of ACAP,
while the control functions for rounds ρ > 1 are Dτh

1 (t) =
Dτh

3 (t) = (t mod τh+1)z log(t mod τh+1) and Dτh
2 (t) =

Fmax(t mod τh + 1)z log(t mod τh + 1), for some 0 < z <
1. Each round ρ is divided into two sub-rounds. Except the

Fig. 6. Operation of ACAP-W showing the round structure and the different
instances of ACAP running for each round.

initialization round, i.e., ρ = 1, the first sub-round is called
the passive sub-round, while the second sub-round is called
the active sub-round. For the initialization round both sub-
rounds are active sub-rounds. In order to reduce the number
of trainings and explorations, ACAP-W has an overlapping
round structure as shown in Fig. 6. For each round except the
initialization round, passive sub-rounds of round ρ, overlaps
with the active sub-round of round ρ−1. ACAP-W operates in
the same way as ACAP in each round. Basically it starts with
the entire context space Xd as a single hypercube for each
type d ∈ D of context, and adaptively divides the context
space into smaller hypercubes the same as as ACAP. We can
view ACAP-W as running different instances of ACAP at each
round. Let the instance of ACAP that is run by ACAP-W at
round ρ be ACAPρ.

Hypercubes of ACAPρ are generated only based on the
context observations in round ρ. If time t is in the active sub-
round of round ρ, action of learner i ∈M is taken according
to ACAPρ. As a result of this action, sample mean rewards,
counters and hypercubes of both ACAPρ and ACAPρ+1 are
updated. Else if time t is in the passive sub-round of round
ρ, action of learner i ∈ M is taken according to ACAPρ−1
(see Fig. 6). As a result of this action, sample mean rewards,
counters and hypercubes of both ACAPρ−1 and ACAPρ are
updated. At the start of a round ρ, the accuracy estimates and
counters of that round is equal to zero. However, due to the
two sub-round structure, when the active sub-round of round ρ
starts, learner i already has some observations for the context
and actions taken in the passive sub-round of that round, hence
depending on the arrivals and actions in the passive sub-round,
the learner may even start the active sub-round by exploiting,
whereas it should have always spent some time in training
and exploration if it starts an active sub-round without any
past observations.

In Section IV, learner i’s regret was sublinear in T
because at any time t ≤ T , it had at least O(t2α/p log t)
observations for contexts similar to the context at time t,
so that in an exploitation step it guarantees to choose the
optimal action with a very high probability, where value
of p is given in Theorem 1. However, in this section due
to the concept drift, contexts that are similar to the context
at time t can only come from observations in the current
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round. Since round length is fixed, it is impossible to
have sublinear number of similar context observations for
every t. Thus, achieving sublinear regret under concept
drift is not possible. Therefore, in this section we focus
on the average regret which is given by Ravg

i (T ) :=

(1/T )
∑T
t=1

(
πk∗i (xi(t),t),t(xi(t))− c

i
k∗i (xi(t),t)

)
−

(1/T )E
[∑T

t=1(I(ŷit(αt(xi(t))) = yi(t))− ciαt(xi(t)))
]
,

The following theorem gives the average regret of ACAP-W.
.

Theorem 2: When ACAP-W is run with parameters p =
3α+
√
9α2+16α
2 , z = 2α/p, Dτh

1 (t) = Dτh
3 (t) = (t mod τh +

1)z log(t mod τh+1), Dτh
2 (t) = Fmax(t mod τh+1)z log(t

mod τh + 1), and τh = bτ (3α+1)/(3α+2)c9, where τ is
the stability of the concept which is given in Definition 2,
the average regret of learner i by time T is Ravg

i (T ) =

Õ
(
τ−2α/(4+3α+

√
9α2+16α)

)
, for any T > 0.

Proof: (Sketch) The basic idea is to choose τh smartly
such that the regret due to variation of expected accuracies
of classifiers and the regret due to variation of estimated
accuracies of classifiers due to limited number of observations
during a time window is balanced. The optimal value of
τh = bτ (3α+1)/(3α+2)c can be found by doing an analysis
similar to the analysis in the proof of Theorem 1 of [31]
which is done for finding the optimal uniform partition of
the entire context space. The difference here is that partition
over time is uniform while partition over each type-d context
is adaptive and independent of each other for different types
of contexts. In [31], it is shown that using a uniform partition
is at least as good as using an adaptive partition when the
realized context arrivals are uniformly spaced over the entire
space. Therefore using a uniform partition of time will perform
at least as good as using an adaptive partition for time.
Now consider a variation of ACAP in which we run a new
instance of ACAP for rounds of length τ , where both the
contexts and time is adaptively partitioned. Basically define a
new context vector z = (z1, . . . , zD), where zd = (xd, (t
mod τ + 1)/τ), for d ∈ D. We call zd a type-d pair of
contexts. The idea is to adaptively create two-dimensional
hypercubes for each type-d pairs of contexts, and exploit
according to estimated best type of pairs of contexts. An
analysis similar to the analysis of ACAP can be done for
this modification, with the control functions, p and z given
as in the statement of this theorem, which will give a regret
bound of Õ

(
τ (4+α+

√
9α2+16α)/(4+3α+

√
9α2+16α)

)
, for each

round of τ time slots (not for τh which is for the window
length). Since uniform partition of time is better than adaptive
partition of time, this will also be an upper bound on the regret
of ACAP-W for τ rounds. We get the result for time average
regret with dividing this by τ .

From the result of this theorem we see that the average
regret decays as the stability of the concept τ increases, and the
decay rate is independent of D. This is because, ACAP-W will
use a longer time window (round) when τ is large, and thus can
get more observations to estimate the sample mean rewards

9For a number b, bbc denotes the largest integer that is smaller than or
equal to b.

Fig. 7. Curse of dimensionality example with D = 2. Although contexts
arrived by t are sparse in X = X1 ×X2, they are dense in X1 and X2.

of actions in that round, which will result in better estimates
hence smaller number of suboptimal action selections. Another
reason is that the average number of trainings and explorations
required decrease with the round length.

VI. COMPARISON WITH WORK IN CONTEXTUAL BANDITS

As we mentioned in the introduction section, we have
considered the distributed online learning problem with non-
adaptive contexts previously [26], [30], [31]. The algorithms
proposed in these papers perform well when the dimension
of the context vector is small. This is the case either when
the types of meta-data a learner can exploit is scarce or each
learner has a priori knowledge (e.g., expert knowledge) about
which meta-data is the most relevant. However, neither of these
assumptions hold in most of the Big Data systems. Therefore,
in order to learn which classifiers yield the highest number of
correct predictions as fast as possible, learners need to learn
which contexts they should take into account when choosing
actions. Differences of this work from our previous work are
the following. First of all, the hypercubes in DCZA in [31]
are formed over the entire context space X , while ACAP
forms hypercubes over each Xd separately. This allows ACAP
to differentiate between arrival rates of different types of
contexts, thus it can perform type specific training, exploration
or exploitation. Moreover, ACAP will not suffer from the curse
of dimensionality (context vector arrivals to X may be sparse
even when projections of these context vectors to each dimen-
sion is not) as given in the example in Fig. 7, while DCZA will
suffer from it. Secondly, although ACAP exploits according
to the estimated most relevant context among all the contexts
at time t, in all three learning phases, it updates the estimated
accuracies of the chosen action for all contexts. Therefore,
learning is done in parallel for different types of contexts.
Thirdly, when calculating the regret, the optimal we compare
against to is different for DCZA and ACAP. Given a context
vector x, the optimal action for learner i according to the entire
context vector is k∗i,DCZA(x) = arg maxk∈Ki πk(x)−cik, while
the optimal action according to the best type of context is
k∗i (x) = arg maxk∈Ki

(
maxxd∈x π

d
k(xd)− cik

)
, ∀x ∈ X .

The following corollary gives a sufficient condition under
which these optimal actions coincide.

Corollary 1: When maxxd∈x π
d
k(xd) = πk(x) for all xd ∈

Xd, d ∈ D, we have k∗i (x) = k∗i,DCZA(x). Otherwise, we have
πk∗i (x)(x) ≤ πk∗i,DCZA(x)

(x). In other words, the optimal policy
given the entire context vector is at least as good as the optimal
policy given the best type of context.
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When the condition given in Corollary 1 does not hold,
the regret of ACAP with respect to k∗i,DCZA(x) may in-
crease linearly in time. Therefore, if we are only interested
in the asymptotic performance, it is better to use DCZA
in that case. However, due to requiring smaller number of
trainings and explorations, the performance of ACAP can
be better than DCZA for short time horizons. When the
condition in Corollary 1 holds, using ACAP, learner i can
achieve Õ

(
T (2+α+

√
9α2+8α)/(2+3α+

√
9α2+8α)

)
regret with

respect to the optimal policy, while DCZA will achieve
Õ
(
T (2D+α+

√
9α2+8αD)/(2D+3α+

√
9α2+8αD)

)
regret with re-

spect to the optimal policy which is worse for D > 1. This
is due to the fact that DCZA needs to train and explore in a
much larger number of hypercubes than ACAP since it creates
hypercubes over the entire context space. The worst case
number of activated hypercubes in DCZA is O(TD/(D+p))
while it is O(T 1/(1+p)) for ACAP. Whenever the total number
of arrivals into an active hypercube exceeds the threshold
value, DCZA splits that hypercube into 2D child hypercubes,
while ACAP only splits it into 2 child hypercubes. In summary,
ACAP is not affected from the curse of dimensionality because
it treats each type of context separately. CLUP in [31] is
similar to DCZA but it uses a non-adaptive uniform partition
of the entire context space.

The idea of adaptive partitioning of the context space is
also investigated in [9] but only in a single learner setting.
But the method of partitioning the context space is different
than DCZA and CLUP. However, the algorithm in [9] also
creates an adaptive partition over the entire context space,
hence suffers from the curse of dimensionality.

VII. NUMERICAL RESULTS

In this section, we numerically compare the performance of
our learning algorithms with state–of–the–art online ensemble
learning techniques and with other bandit-type schemes.
A. Data Sets

We consider seven data sets, described below. The first
four data sets, R1–R4, are well known in the data mining
community and refer to real–world problems. In particular, the
first three data sets are widely used by the literature dealing
with concept drift. For a more detailed description of these
data sets we refer the reader to the cited references. The last
three data sets, S1–S3, are synthetic data sets.
R1: Network Intrusion [28], [29], [33], [34]. The network
intrusion data set from UCI archive [33] consists of a series of
TCP connection records, labeled either as normal connections
or as attacks.
R2: Electricity Pricing [34]–[36]. The electricity pricing data
set holds information for the Australian New South Wales
electricity market. The binary label (up or down) identifies
the change of the price relative to a moving average of the
last 24 hours.
R3: Forest Cover Type [29], [36], [37]. The forest cover
type data set from UCI archive [33] contains cartographic
variables of four wilderness areas of the Roosevelt National
Forest in northern Colorado. Each instance is classified with
one of seven possible classes of forest cover type. Our task

is to predict if an instance belong to the first class or to the
other classes.
R4: Credit Card Risk Assessment [34], [38]. In the credit
card risk assessment data set, used for the PAKDD 2009 Data
Mining Competition [38], each instance contains information
about a client that accesses to credit for purchasing on a
specific retail chain. The client is labeled as good if he was
able to return the credit in time, as bad otherwise.
S1: Piecewise Linear Classifiers. In this data set we consider
a 4–dimensional feature space. In each time step t, the data
s1(t) =

(
s11(t), s21(t), s31(t), s41(t)

)
is drawn uniformly from

the interval [−1, 1]4. The labels are such that y1(t) = 1 if
s41(t) > max

(
h1(s11(t)), h2(s21(t))

)
, otherwise y1(t) = 0.

Notice that the label is independent from the third fea-
ture. h1(·) and h2(·) can be generic functions. We consider
h1(s11(t)) = 1

10s11(t)
and h2(s21(t)) = (s21(t))2. We will adopt

linear classifiers trained in different intervals of the feature
space, in this way the non–linear functions h1(·) and h2(·)
will be approximated by piecewise linear classifiers [39].
S2: Piecewise Linear Classifiers, abrupt concept drift. This
data set is similar to S1, the only difference is that in the
testing phase we have h2(s21(t)) = w2 · (s21(t))2. The weight
w2 is set to 1 for the first half of the testing set, and then it
is set to 0, i.e., in the second part of the testing set the label
is independent from the second feature.
S3: Piecewise Linear Classifiers, gradual concept drift.
Similarly to S2, we consider h2(s21(t)) = w2 · (s21(t))2 and
we initialize w2 = 1, but in this case we gradually decrease
w2 at each step by an amount 1

Ntest
, where Ntest represents

the number of instances in the testing set.

B. Comparison with ensemble schemes

In this subsection we compare the performance of our learn-
ing algorithms with state–of–the–art online ensemble learning
techniques, listed in Table II. Different from our algorithms
which makes a prediction based on a single classifier at each
time step, these techniques combine the predictions of all clas-
sifiers to make the final prediction. For a detailed description of
the considered online ensemble learning techniques, we refer
the reader to the cited references.

For each data set we consider a set of 8 logistic regression
classifiers [46]. Each local classifier is pre–trained using an
individual training data set and kept fixed for the whole
simulation (except for OnAda, Wang, and DDD, in which
the classifiers are retrained online). The training and testing
procedures are as follows. From the whole data set we select
8 training data sets, each of them consisting of Z sequential
records. Z is equal to 5, 000 for the data sets R1, R3, S1,
S2, S3, and 2, 000 for R2 and R4. For S1, S2, and S3, each
classifier c of the first 4 classifiers is trained for data such
that s11(t) ∈ [ c−14 , c4 ]. whereas each classifier c of the last 4
classifiers is trained for data such that s21(t) ∈ [ c−14 , c4 ]. In this
way each classifier is trained to predict accurately a specific
interval of the feature space. Then we take other sequential
records (20, 000 for R1, R3, S1, S2, S3, and 8, 000 for R2
and R4) to generate a set in which the local classifiers are
tested, and the results are used to train Adaboost. Finally, we
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Abbreviation Name of the Scheme Reference Performance
R1 R2 R3 R4 S1 S2 S3

AM Average Majority [28] 3.07 41.8 29.5 34.1 35.4 27.7 25.5
Ada Adaboost [40] 3.07 41.8 29.5 34.1 35.4 27.7 25.5

OnAda Fan’s Online Adaboost [41] 2.25 41.9 39.3 19.8 32.7 27.1 26.2
Wang Wang’s Online Adaboost [42] 1.73 40.5 32.7 19.8 17.8 14.3 13.6
DDD Diversity for Dealing with Drifts [34] 1.15 44.0 23.9 19.9 43.0 38.0 37.9
WM Weighted Majority algorithm [43] 0.29 22.9 14.1 67.4 39.2 30.7 29.5
Blum Blum’s variant of WM [44] 1.64 40.3 22.6 68.1 39.3 31.7 30.2

TrackExp Herbster’s variant of WM [45] 0.52 23.0 14.8 22.0 31.9 25.0 23.0
ACAP Adaptive Contexts with Adaptive Partition our work 0.71 5.8 19.2 19.9 6.9 7.2 7.9

ACAP–W ACAP with Time Window our work 0.91 19.4 20.2 20.2 8.0 6.8 7.8
TABLE II

COMPARISON AMONG ACAP AND OTHER ENSEMBLE SCHEMES: PERCENTAGES OF MIS–CLASSIFICATIONS IN THE DATA SETS R1–R4 AND S1–S3.

select other sequential records (20, 000 for R1 and R3, S1,
S2, S3, 21, 000 for R2, and 26, 000 for R4) to generate the
testing set that is used to run the simulations and test all the
considered schemes.

For our schemes (ACAP and ACAP-W) we consider 4
learners, each of them possessing 2 of the 8 classifiers. For
a fair comparison among ACAP and the considered ensemble
schemes that do not deal with classification costs, we set cik
to 0 for all k ∈ Ki. In all the simulations we consider a
3–dimensional context space. For the data sets R1–R4 the
first two context dimensions are the first two features whereas
the last context dimension is the preceding label. For the
data sets S1–S3 the context vector is represented by the first
three features. Each context dimension is normalized such that
contexts belong to [0, 1].

Table II lists the considered algorithms, the corresponding
references, and their percentages of mis–classifications in the
considered data sets. Importantly, in all the data sets ACAP
is among the best schemes. This is not valid for the ensem-
ble learning techniques. For example, WM is slightly more
accurate than ACAP in R1 and R3, it is slightly less accurate
than ACAP in R2, but performs poorly in R4, S1, S2, and
S3. ACAP is far more accurate than all the ensemble schemes
in the data sets S1–S3. In these data sets each classifier is
expert to predict in specific intervals of the feature space.
Our results prove that, in these cases, it is better to choose
smartly a single classifier instead of combining the predictions
of all the classifiers. Notice that ACAP is very accurate also
in presence of abrupt concept drift (S2) and in presence of
gradual concept drift (S3). However, in these cases the sliding
window version of our scheme, ACAP-W, performs (slightly)
better than ACAP because it is able to adapt quickly to changes
in concept.

Now we investigate how ACAP and ACAP-W learn the
optimal context for the data sets S2 and S3. Fig. 8 shows the
cumulative number of times ACAP and ACAP-W use context
1, 2, and 3 to decide the classifier or the learner to sent the
data to. The top–left subfigure of Fig. 8 refers to the data set
S2 and to the decisions made by ACAP. ACAP learns quickly
that context 3 is not correlated to the label; in fact, for its
decisions it exploits context 3 few times. Until time instant
10, 000 ACAP selects equally among context 1 and 2. This
means that half the times the contextual information x1i (t)
is more relevant than the contextual information x2i (t), and
in these cases ACAP selects a classifier/learner that is expert
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Fig. 8. Cumulative number of times ACAP and ACAP-W use context 1, 2,
and 3 to take decisions, for the datasets S2 and S3.

Abbreviation Reference Performance
S1 S2 S3

UCB1 [8] 18.3 20.0 23.8
Adap1 [31] 9.6 11.4 9.2
Adap2 [31] 11.8 19.1 17.4
Adap3 [31] 19.9 23.5 20.0
ACAP our work 7.4 7.7 7.9

ACAP–W our work 9.1 7.5 7.6
TABLE III

COMPARISON AMONG ACAP AND OTHER BANDIT–TYPE SCHEMES:
PERCENTAGES OF MIS–CLASSIFICATIONS IN THE DATA SETS S1–S3.

to predict data with contextual information similar to x1i (t)
(notice that such classifier/learner is automatically learnt by
ACAP). At time instant 10, 000 an abrupt drift happens and
context 2 becomes suddenly irrelevant, as context 3. ACAP
automatically adapts to this situation, decreasing the number
of times context 2 is exploited. However, this adaptation is
slow because of the large sample mean reward obtained by
context 2 during the first part of the simulation. ACAP-W,
whose decisions for data set S2 are depicted in the top–right
subfigure of Fig. 8, helps to deal with this issue. In fact, the
rewards obtained in the past are set to 0 at the beginning of a
new window, and the scheme is able to adapt quickly to the
abrupt drift. The bottom–left and bottom–right subfigures of
Fig. 8 refer to the decisions made by ACAP and ACAP-W,
respectively, for data set S3, which is affected by gradual drift.
Both ACAP and ACAP-W adapt gradually to the concept drift,
but also in this scenario ACAP-W adapts faster than ACAP.

C. Comparison with bandit-type schemes

In this subsection we compare the performance of our
learning algorithms with other bandit–type schemes, listed in
Table II. UCB1 [8] is a bandit scheme which does not exploit
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the contextual information, hence it must learn the best single
classifier to exploit. Adap1, Adap2, and Adap3 are the DCZA
scheme proposed in [31], they use only the first, second, and
third dimensions of the context, respectively, instead of using
all three dimensions at the same time. We used the same
training and testing procedures described in Subsection VII-B,
but we consider a single learner scenario (i.e., a unique learner
possesses all the classifiers).

The results show that the bandit schemes that adopt adaptive
contextual information are more accurate than UCB1 that does
not exploit the context. However, it is extremely important to
learn the right context to use in different situations. In fact, the
accuracy of Adap3 is very low because context 3 is irrelevant.
Moreover, the performance of Adap1 and Adap2, that exploit
relevant contexts, are not as good as the performance of our
schemes. In fact, ACAP and ACAP-W are able to learn the
best contexts to exploit for each possible context vector and, in
addition to it, since they update the sample mean reward of all
the contexts in parallel, they learn as fast as a bandit scheme
that uses only a single dimension of the context vector.

VIII. CONCLUSION

In this paper we considered the problem of adaptively
learning which contexts to exploit in Big Data stream mining.
We proposed a novel learning framework and answered the
following questions: Does using the context information help
improve the performance of the online stream mining system?
What is the best way to choose which context to consider
when making decisions? How should the learning process be
performed when there is concept drift? Our numerical results
show that the proposed framework significantly improves the
performance of Big Data systems.
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