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Abstract—Recent research efforts have shown that the popular
Bit-Torrent protocol does not provide fair resource reciprocation
and allows free-riding. In this paper, we propose a novelfore-
sighted resource reciprocation mechanism that replaces the peer
selection mechanism with a reinforcement learning mechanism
that adopts a foresighted resource reciprocation policy. We
model the peer interactions in the BitTorrent-like network as
a stochastic-game, where we explicitly consider the strategic
behavior peers. The peers can observe partial historic informa-
tion of associated peers’ statistical reciprocal behaviors, through
which the peers can estimate the impact on their expected utility
and then adopt their best response. The policy determines the
peer’s optimal resource reciprocations, and enables the peer to
maximize the long-term performance. The mechanism improves
fairness as it relies on long-term history. Moreover, it hurts the
free-riders directly since foresighted peers are discouraged to
upload to free-riders.

We have implemented the proposed mechanism in an existing
BitTorrent client. We have also performed extensive experiments
on a controlled PlanetLab testbed to evaluate the mechanism
effectiveness. Our results confirm that the foresighted resource
reciprocation mechanism promotes fairness, improves the system
robustness, and discourages free-riding in compare to the regular
BitTorrent.

I. I NTRODUCTION

In P2P content distribution systems, fairness among peers
participating in content distribution is an important factor, as
it encourages peers to actively collaborate in disseminating
content, which can lead to improved system performance.
However, even BitTorrent [2], one of the most popular proto-
cols used in P2P content distribution, does not provide fair
resource reciprocation, especially in node populations with
heterogeneous upload bandwidths [3]–[6]. This is because the
tit-for-tat strategy, that is implemented in BitTorrent, is based
on short-term history, i.e., upload decisions are made based
on most recent resource reciprocation observation. Moreover
the decision is based on backward looking and not forward
looking. Thus, a peer can follow the tit-for-tat policy onlyif
it continuously upload pieces of a particular file and as long
as it receives pieces of interest in return. However, this isnot
always possible, as peers can have no pieces in which the
other peers are interested in, regardless of their willingness to
cooperate [7]; yet, this behavior is still perceived as a lack of
cooperation.

Additionally, it has been shown that BitTorrent systems do
not effectively cope with selfish peer behaviors, such as free-

riding [8]–[10], due to the optimistic unchoke mechanism
currently used in BitTorrent. This enables peers to continu-
ously discover better leechers to reciprocate resources with.
However, it creates a major opportunity for peers to obtain
data, without uploading in return. Moreover, it may induce
unfairness in the system, as it forces high-capacity peers to
interact with low-capacity ones.

Reputation-based schemes that are based on the propagation
of global history (e.g., [11]–[13]) have been proposed to over-
come the limitations of pure tit-for-tat and optimistic unchoke
mechanisms. However, these approaches require significant
communication overhead to maintain the global history across
peers. Moreover, the reliability of global history is unclear as
peers may exhibit different reciprocation behaviors with differ-
ent peers. Alternatively, in other reputation-based approaches
such as [7], [14]–[16], peers make peer selection decisions
based on long-term local (or private) history of associate peers’
upload behaviors. However, the focus of these systems is on
maximizing immediateutility, which may be less desirable
than maximizinglong-term utility, as peers can repeatedly
interact with each other in a long period of time.

In this chapter, we model the peer interactions in the
BitTorrent-like network as astochastic − game [1] – A
repeated interaction (i.e., reciprocating resources) between
several participants (i.e., peers) in which the underlyingstate
of the environment changes stochastically, and is dependent
on the decisions of the participants. Stochastic games extend
the single participant Markov decision process (MDP) [17]
to include multiple participants whose actions all impact the
resulting utility and next state. In our model, we explicitly
consider the strategic behavior peers, which can observe partial
historic information of associated peers statistical recipro-
cation behaviors, through which the peers can estimate the
impact on their future rewards and then adopt their best
response. The estimation of the impact on the expected future
reward can be performed using different types of interactive
learning [18]. We use reinforcement learning method [19], as
it allows the peers to improve their peer selection strategy
using only knowledge of their own past received payoffs,
without knowing the complete reciprocation behaviors of the
peers in the network. Thus, we propose to replace the peer
selection policy with a reinforcement learning foresighted re-
source reciprocation policy. The resource reciprocation policy
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is calculated by forecasting the impact of the current peer
selection actions on the expected utility (i.e., future rewards)
and maximizing it.

Thus, each peer can maximize its long-term utility based
on the foresighted resource reciprocation policy. This can
also provide an improved fairness, discourages free-riding,
and enhances the system robustness. The foresighted resource
reciprocation policy can replace both the tit-for-tat and the
optimistic unchoke mechanisms in the regular BitTorrent pro-
tocol. In this chapter, we propose a BitTorrent-like protocol
that applies the reinforcement learning foresighted strategy.
Specifically, the protocol consists of three main processes:

• A learning process, which provides an updated informa-
tion about statistical behaviors of the associated peers’
resource reciprocation;

• A policy finding process, which computes the foresighted
policy using the reinforcement-learning algorithm.

• A decision process, which determines the associated peers
that will be unchoked and choked in every rechoke period
based on the foresighted policy.

We implemented our proposed protocol on top of a BitTorrent
client, and performed extensive experiments on a controlled
PalnetLab testbed. We evaluate and quantify the performance
of the proposed protocol, and compare its performance with
the regular BitTorrent protocol. Based on the experimentalre-
sults, the proposed protocol provides the following advantages
against the regular BitTorrent protocol:

1) It improves the fairness. The peers that contribute more
resources (i.e., higher upload capacities) can achieve
higher download rates. However, the peers that contribute
less resources may achieve limited download rates.

2) It promotes cooperation among high-capacity peers.
3) It discourages free-riding by limiting the upload to non-

cooperative peers.
4) It improves the system robustness by minimizing the

impact of free-riding on contributing peers’ performance.

The rest of this paper is organized as follows. In Section II
we briefly describe the BitTorrent. In Section III we briefly
define the stochastic games and describe the reinforcement
learning foresighted resource reciprocation strategy. Section
IV presents the design of our foresighted resources recipro-
cation protocol. Details of our protocol implementation are
discussed in Section V. The experiment results are presented
in Section VI. Finally, we discuss related works in Section VII,
and the conclusions are drawn in Section VIII.

II. B ITTORRENT OVERVIEW

In this section, we briefly overview the BitTorrent protocol.
The BitTorrent protocol is a peer-to-peer content distribution
protocol that scales efficiently with large number of partici-
pating clients.

Before the content distribution process begins, the content
provider divides the possessed data content into multiple
pieces, or chunks. Then, the provider creates ametainfo file,
which contains information that is necessary to initiate the

content downloading process. The metainfo file includes the
address of thetracker, a coordinator which facilitates peer
discovery.

A client downloads the metainfo file before joining atorrent
(or swarm) – a group of peers interested in a particular content.
Then, it connects the tracker to receive apeer set, which
consists of randomly selected peers currently exchanging the
same content. The peer set may include bothleechers, peers
that are still downloading content pieces, andseeds, peers that
have the entire content and upload it to others. The client can
then connect and exchange (or,reciprocate) its content pieces
with its associated peers– the peers in its peer set.

While reciprocating content pieces, each leecher determines
a set of peers among its peer set that can download its
content pieces. The peer selection is determined bychoking
mechanismsand represented bychoking decisions. BitTorrent
leechers apply two choking mechanisms: thetit-for-tat re-
source reciprocation mechanism, and theoptimistic unchoke
mechanism. The tit-for-tat mechanism prefers the peers that
upload their data at the highest rate among the associated
peers. Specifically, in everyrechoke period, typically 10 sec-
onds, a leecher checks the current download rates from its
associated peers and selects the peers that are uploading their
data at the highest rates. Then, the leecher uploads only to
the selected associated peers, while choking the rest of them
during the rechoke period. The upload amount is a function
of the available bandwidth for the uploading process. This
available bandwidth is divided equally among the unchoked
peers. The optimistic unchoke mechanism reserves a portion
of the available upload bandwidth in order to provide pieces
to randomly selected peers. The purpose of this mechanism
is to enable the leechers to continuously discover better
partners, and bootstrap newly joining leechers into the tit-
for-tat mechanism. Optimistic unchokes are randomly rotated
among the associated peers, typically once every three rechoke
periods, allowing enough time for leechers to demonstrate their
cooperative behaviors. The number of unchoked peers (slots)
may vary depending on specific implementation, and it might
be fixed or changed dynamically as a function of the available
upload bandwidth.

Seeds deploy different choking mechanism as they already
completed to download content. The most common implemen-
tation is based on the round-robin that aims to distribute data
uniformly. This implementation is applied in our experiments.

III. F ORESIGHTEDRESOURCERECIPROCATIONSTRATEGY

Peers in BitTorrent-like systems have to make a repeated
peer selection decision given their dynamically changing
environment which they experience. The evolution of the
peers’ interactions across the various rechoke periods can
be modeled as repeated stochastic interaction. Whereas the
Markov Decision Process (MDP) is a decision problem for
one participant (i.e., peer) in an (unknown) environment [20],
when multiple participants interact with each other in such
an environment, this becomes a stochastic game [1], [21]
problem (i.e., n-participant MDP). The time is discrete in the
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stochastic game, and at each time slot (i.e., rechoke period),
every participant has its own state and its own action space
for that state. Every time slot the participants choose their
own actions independently and simultaneously. After that,the
participants are rewarded and transit to the next states. The
reward (received by each of the participants), and the state
transition also is contingent upon other participants’ states and
actions. Specifically to our model, during the repeated multi-
peer interaction, the peers can observe partial historic infor-
mation of associated peers reciprocation behaviors, through
which the peers can estimate the impact on their future rewards
and then adopt their best response. The estimation of the
impact on the expected future reward can be performed using
different types of interactive learning [18]. Here, we use
reinforcement learning method [19], as it allows the peers to
improve their peer selection strategy using only knowledgeof
their own past received payoffs, without knowing the complete
reciprocation behavior of the peers in the network. In this
learning framework of stochastic-game, the learning peers
attempt to maximize their expected rewards.

Formally, a stochastic game is a tuple,〈I,S,A, P, R〉,
whereI is a set of participants (peers), i.e.,I = 〈1, ..., M〉, S

is the set of state profiles of all peers, i.e.,S = S1× ...× SM

with Sj being the state space of peerj, andA is the joint
action spaceA = A1 × ... × AM , with Aj being the action
(peer selection) space for peerj. P : S×A×S→ [0, 1] is a
state transition probability function that maps from stateprofile
S(t) ∈ S at time t into the next state profileS(t + 1) ∈ S at
time t + 1 given corresponding joint actionsA(t) ∈ A. Note
that t here is discrete and measured in time slots. Finally,
R : S × A → R+ is a reward vector function defined as
a mapping from the state profileS(t) ∈ S at time t, and
corresponding joint actionsA(t) ∈ A to an M−dimensional
real vector with each element being the reward to a particular
participant.

1) State SpaceSj : A state of peerj represents a set of
resources received from the peers inCj , whereCj denotes the
set of peers associating with peerj. Thus, it may represent the
uploading behavior of its associated peers, or equivalently, it
can capture peerj’s download rates from its associated peers.
The upload rates from peeri ∈ Cj to peerj at time t are
denoted byULi,j(t). In our proposed protocol, an uploading
behavior of peeri observed by peerj is denoted bysij , and
defined as

sij =

{

1, if ULi,j > θj ,
0, otherwise,

(1)

whereθj is a pre-determined threshold of peerj. 1 Thus,sij

can be expressed with one bit and the state space of peerj
can be expressed as

Sj = {(s1j , . . . , sNj)| skj ∈ {0, 1} for all k ∈ Cj} , (2)

where N denotes the number of peerj’s associated peers,
i.e., |Cj | = N . Therefore, a stateSj(t) ∈ Sj can capture the

1In order to minimize the computational complexity, we consider sij ∈
{0, 1} in this paper. However, the granularity of state can be easily extended.

uploading behavior of the associated peers at timet. A state
can be described usingN bits, and thus, the cardinality of the
state space is2N .

A. The Action Space of a Peer -Aj

An action of peerj represents a set of its peer selection
decisions. The peer selection decision of peerj to peeri at
time t is denoted byaji, and is defined as

aji(t) =

{

0, if peer j chokes peeri ,
1, otherwise,

(3)

Thus,aji can be expressed with one bit. The action space of
peerj can be expressed as

Aj = {(aj1, . . . , ajN )| ajk ∈ {0, 1} for all k ∈ Cj} , (4)

Hence, an actionAj(t) ∈ Aj is a vector that consists of peer
j’s peer selection decisions to its associated peers at timet.
Thus, an action of peerj for its N associated peers can be
described withN bits. In the proposed protocol, we assume
that peerj is able to unchoke a limited number of peers, de-
noted byNu(≤ N), implying that the cardinality of the action
space is(N

Nu
). Note that in order to reduce the complexity,

peerj allocates the same amount of upload bandwidths to all
unchoked peers. Thus, the bandwidth allocated to an unchoked
peeri by peerj at timet is determined byULj,i(t) = Bj/Nu,
whereBj is the maximum upload bandwidth available to peer
j.

B. State Transition Probability in a Peer

A state transition probability represents the probabilitythat
an actionAj(t) ∈ Aj of peerj in stateSj(t) ∈ Sj at time t
will lead to another stateSj(t + 1) ∈ Sj at t + 1. Thus,

PAj(t)(Sj(t), Sj(t + 1)) = Pr(Sj(t + 1)|Sj(t), Aj(t)). (5)

The state transition probability functions can be estimated at
a particular peerj based on the history ofSj(t), Aj(t) and
Sj(t+1), which may be stored in a transition table. Thus, the
transition table size is in order ofO((N

Nu
) · 2N · 2N ). While

we deploy an empirical frequency based algorithm to estimate
the state transition probability function, which is presented in
Section IV-A, other algorithms (e.g., [22]) can also be used.

C. The Reward of a Peer -Rj

The reward of a peer in a state is its total estimated
download rate in the state. Thus, a reward of a peer in a state is
the sum of the estimated download rates from all its associated
peers. More specifically, a reward of peerj from stateSj ∈ Sj

can be expressed as

Rj(Sj) =
〈

Sj , [ULi,j ]i∈Cj

〉

(6)

where〈·〉 denotes the inner-product operation.
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Fig. 1. The Main Processes in Proposed Protocol Design

1) Resource Reciprocation Policy π∗

j : We
define a history of the stochastic game as
ht = {S0, A0, R0, ...,St−1, At−1, Rt−1} ∈ Ht, which
summarizes all states, actions and rewards of the peers in the
network up to timet− 1, whereHt is the set of all possible
histories up to timet. Nevertheless, during the stochastic
game, each peerj cannot observe the entire history, but
rather a portion of the history. The observation of peerj is
denoted asot

j ∈ O
t
j and ot

j ⊂ ht. Note that the current state
st

j can be always observed, i.e.st
j ∈ ot

j . Thus a peer selection
policy πt

j : Ot
j → Aj for peerj at the timet is defined as

a mapping from the observations up to the timet into the
specific action, i.e.at

j = πt
j(o

t
j). Furthermore, a policy profile

πj for peerj aggregates the peer selection policies over the
entire course of the stochastic game, i.e.πj = (π0

j , ..., πt
j , ...).

The policy profile for all the peers at time slott is denoted
by πt = (πt

1, ..., π
t
M ) = (πt

j , π
t
−j).

The policy of peerj is calculated using reinforcement-
learning algorithm that maximizes the cumulative discounted
expected reward. The expected reward is defined for a peerj
in stateSj(t) at time t = tc given a discount factorγj as

Rf
j (Sj(tc)) ,

∑∞

t=tc+1
γ

(t−(tc+1))
j · Rj(Sj(t)). (7)

The policyπj maps each stateSj(t) ∈ Sj into an action, i.e.,
πj(Sj) = Aj(t) such that each action maximizesRf

j (Sj(tc)).
The policy can be deployed as a peer selection algorithm, such
that each peer can maximize its long-term utility. While the
policy πj can be obtained using well-known methods such as
value iteration and policy iteration [17], these algorithms may
require very high computational complexity if the number of
associated peers is significantly large. Hence, it is important to
reduce the computational complexity of the policy calculation,
such that the reinforcement learning foresighted strategyis
deployed in practice.

IV. T HE PROTOCOL DESIGN

In this section, we describe the proposed protocol design
that replaces the peer selection tit-for-tat and optimistic un-
choke mechanisms deployed in regular BitTorrent systems
with a foresighted resource reciprocation mechanism.

The protocol design is summarized in Fig. 1. The protocol
consists of three main processes running in parallel: (1)the
learning process, which provides an updated information about
statistical behaviors of the associated peers’ resource recip-
rocation; (2)the policy finding process, which computes the
foresighted resource reciprocation policy; (3) andthe decision
process, which determines the peer selection decisions during

the course of each rechoke period. More details about these
processes are discussed next.

A. The Learning Process

As discussed in Section III, in order to find the foresighted
resource reciprocation policy, each peer needs to know other
peers’ states, their rewards, and their state transition proba-
bilities in order to derive its own optimal policy. However,
a peer cannot exactly know the other peers information,
due to information that is kept private, network scalability
constraints, the time-varying network dynamic, and more.
Thus, to improve the peer selection policy, a peer can only
predict the impacts of dynamics(uncertainties) caused by the
competing peers based on its observations from the past. Thus
each peer needs to update the above information regularly
through the learning process, while downloading content from
its associated peers.

The learning process consists of two main methods (see
Fig. 2) that compute the estimated reward and state transition
probability.

1) Reward Calculation:The reward of peerj represents its
download rates from its associated peers (or equivalently,the
total upload rates of its associated peers) estimated by peer
j. In the rewards calculation method, the associated peers are
classified into two types based on the available information
about their resource reciprocation history.

For associated peers that have reciprocated their resources
with peer j, referred to aspeers with reciprocation history,
peerj estimates their upload rates based on weighted average
of the past upload rate samples. This can reduce the fluctuation
induced by the protocol and network dynamics in the sampled
upload rates of the associated peers. Specifically, peerj
estimates the upload ratesr̂i,j of peeri ∈ Cj based on recently
observed resource reciprocationULi,j as

r̂i,j ← αj · ULi,j + (1− αj)r̂i,j (8)

whereαj denotes the weight for most recent resource recip-
rocation.

For associated peers whom havenot reciprocated their
resources with peerj, referred to aspeers without resource
reciprocation history, peerj assumes their upload rates. Peer
j optimistically initiates the information about such peersby
assuming that they reciprocate their resources with high prob-
ability and high upload rate. This enables peerj to efficiently
discover additional peers, and bootstrap newly joining peers,
which is important for the efficiency of the system. Whenever
peerj uploads to a peer without resource reciprocation history
and the peer do not upload toj in return, peerj reduces
the peer’s presumed upload rate, as this providesj with more
confidence that the particular peer may not actively reciprocate
its data. This also prevents the associated peers from taking
advantage through optimistic initialization and possiblefree-
riding.

2) State Transition Probability Calculation:The state tran-
sition probabilities are updated every rechoke period, andthus,
each peer can capture the time-varying resource reciprocation
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behaviors of its associated peers. Every rechoke period att+1,
peer j stores a 3-bit triplet(Sj(t), Aj(t), Sj(t + 1)). Peerj
stores the triplets to the associated peers that are in a particular
peer set referred to as reduce peer set, which will be discuss
later in this section or peers that uploaded to peerj at time t
or t + 1. In this paper, we assume that the state transition
probability functions are computed based on the empirical
frequency, and the state transition of each peer is independent.
Thus, the probability,Pr(sij , aji, s

′

ij), wheresij , s
′

ij ∈ Sj , can
be expressed as

PAj(t)(Sj(t), Sj(t + 1)) =

N
∏

i=1

Pr(sij(t + 1)|sij(t), aji(t))

B. The Policy Finding Process

The policy finding process runs in parallel with the learning
process, while computing the foresighted resource recipro-
cation policies based on the information obtained from the
learning process. This process is depicted in Fig. 3.

Finding the foresighted policy by solving the MDP may
require significantly high computational complexity if the
number of the associated peers becomes large. Hence, for
practical implementation of the foresighted resource recip-
rocation mechanism, it is critical to reduce the number of
peers that needs to be considered (see Section III). Thus,
this process begins with reducing the set of associated peers,
and then, finds the foresighted resource reciprocation policy
πj by maximizing the cumulative discounted expected reward
(Equation 7) in the reduced peer set.

1) Reducing Associated Peer Set:As discussed, it is impor-
tant for peerj to reduce the set of associated peers to findπj ,
while keeping the peers that reciprocate their resources with
higher probability and with higher upload rate in the reduced
peer set. Specifically, peerj computes the expected rewards
Ki,j from each peeri ∈ Cj , defined as

Ki,j = Ri,j × Pr(i, j), (9)

where Ri,j and Pr(i, j) denote the estimated reward from
peeri and the probability of resource reciprocation with peer
i, respectively. Based on computedKi,j , peer j reduces its
associated peer set by iteratively consider eliminating the
peers with the smallestKi,j in its associated peer set. The
algorithm for peer set reduction is presented in Algorithm 1.
The algorithm computesKi,j in (9) for i ∈ Cj (lines 3,4).
Then, the associated peers are ordered based on computed
Ki,j (line 5). The peer set reduction is performed in while

Algorithm 1 Peer-Set Reduction Algorithm
1: INPUT :
· Cj - set of associated peers of peerj
· T - target output set size (constant)
· Ri,j - estimated rewards of peeri
· P (Sj) - the probability to be in stateSj

· Pr(i, j) the resource reciprocation probability of peeri
· c1, c2 - constants such thatT � c1 > c2

2: OUTPUT : A reduced set of peersC′

j ⊆ Cj s.t. |C′

j | = T

3: for all i ∈ Cj do
4: Ki,j = Ri,j × Pr(i, j);
5: orderCj in a non-decreasing order of theKi,j ;
6: C′

j = Cj ;
7: while |C′

j | > T do

8: G =
〈

C′

j1
, ..., C′

jc1

〉

;
9: calculateπ∗

j,G the optimal policy for the setG;
10: for all i ∈ G do
11: Pui = 0

//CalculatePui, the probability
//that j unchokesi usingπ∗

j,G policy;
12: for all sj ∈ Sj do
13: if π∗

j,G(s(i,j)) = 1 then
14: Pui = Pui + P (sj);
15: orderG in a non-decreasing order of thePui values;
16: if c2 > |C′

j | − T then
17: c2 = |C′

j | − T ;
18: C′

j ← C′

j− < G1, ..., Gc2
>;

19: return C′

j

loop (lines 7- 18) that reduces the peer set byc2 peers in every
iteration. In the loop, the algorithm selectsc1 peers with the
smallestKi,j values denoted byG (line 8), from the reduced
group of peersC′

j . It then obtains policyπj,G for the peers in
G. (line 9). Based onπj,G, it calculates the probabilities for
the peers to be unchoked (lines 10-14). Given the calculated
probability, it removes thec2 peers with the lowest probability
to be unchoked (18). The algorithm runs until|C′

j | = T (line
7).

2) Scaling: Scaling of the rewards is considered in cases,
when the number of reciprocation samples is small in com-
parison to the difference between the highest and the lowest
upload rates that are expressed in the P2P network.
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C. The Decision Process

The decision process includes two phases: the initialization
phase and the foresighted phase (see Fig. 4).

1) Initialization Phase: Since no information about as-
sociated peers is available for a newly joined peerj, peer
j begins with adopting the regular BitTorrent mechanisms
(i.e., the tit-for-tat mechanism and the optimistic unchoke
mechanism) in the initialization phase. This enables the peer
to collect information such as the rewards and state transition
probabilities with respect to its associated peers. Duringthis
phase,j discovers new peers, i.e., downloads from peers for
the first time. Oncej’s peer discovery is slowed down (see
Section V for more details), it replaces the regular BitTorrent
mechanisms with the foresighted resource reciprocation mech-
anism, and operates in the foresighted phase.

2) Foresighted Phase:Once the foresighted resource re-
ciprocation policy is available, peerj determines the peer
selection decisions based on the foresighted policy obtained
from the policy finding process in every rechoke period. Peer
j first determines its current stateSj and then finds an optimal
actionAj mapped by the policyπj , i.e., Aj = πj(Sj). Aj is
a set of peers that peerj unchokes.

V. I MPLEMENTATION

In this section, we discuss the implementation of the fore-
sighted resource reciprocation protocol prototype and study
how to determine several design parameters.

Our P2P client is implemented based on Enhanced CTorrent
client, version 3.2 [23]. We enhances the original client such
that our client can operate inforesighted mode, where it
reciprocates its resources based on the proposed foresighted
resource reciprocation mechanism, or inregular mode, where
it reciprocates its resources based on the regular BitTorrent
peer selection mechanisms. We add functionality for the
foresighted mode to maintain the new protocol requests. More
specifically, we implemented the three different processesthat
are discussed in Section IV.

A. The Learning Process

The learning process consists of two methods, the reward
calculation method and the state transition probability calcula-
tion method. We now discuss the reward calculation method.

1) Reward Calculation Method:The reward calculation
method can be applied differently depending on the associated
peer types: peers with or without reciprocation history.

While calculating the reward of a peer with resource recip-
rocation history, obviously the samples ofULi,j will fluctuate
over rechoke period time due to P2P network dynamics.
Because of this fluctuation,ULi,j samples may be atypical.
Thus, a typical upload rate of a peer with reciprocation history
can be estimated based on weighted average of the samples as
in (8). This is the estimated reward of peerj obtained from
peer i. As recent resource reciprocation is considered more
important than the previous reciprocations,αj > 0.5. Based
on several trials forα such that0.5+ ε ≤ α ≤ 1− ε for small
ε > 0, on various sets of our experiments (see more details in

Section VI), we can verify that the smallestα achieves less
fluctuation of the reward. Thus, we setα to 0.5 + ε where
ε = 1

16 . Fig. 5 shows the sampled upload ratesUi,j of a
peeri having 9KB/sec upload bandwidth (that simultaneously
uploads to 4 peers) and the correspondingly estimated rewards
r̂i,j as measured by another peer in the network. Clearly, we
can observe less variations of theULi,j in the computation of
the r̂i,j .

For a peeri without reciprocation history, a leecherj
optimistically initializes the information about the rewards
and the reciprocation probabilities of its associated peers.
Specifically, the initial estimated upload rate is set to be
the highest upload rateRmax

i,j that is pre-determined in the
P2P network, i.e.,Ri,j ← Rmax

i,j , and the probability of
reciprocation withj is initiated to 1, i.e., Pr(i, j) ← 1.
This optimistic initialization enables newly joined leechers to
download almost immediately. Peerj needs to keep updating
the initially assumed reward in every non-reciprocated event
(i.e., peerj uploads resources to peeri while peeri does not
upload resources to peerj). When peerj estimates the reward
for peeri, peerj can assume that (i)̂ri,j satisfies

r̂i,j(n− 1)

r̂i,j(n)
<

r̂i,j(n)

r̂i,j(n + 1)
, (10)

wheren denotes the number of non-reciprocated events. This
means that the ratio of the estimated rate of two consecu-
tive events is an increasing function ofn. This implies the
increasing uncertainty about peeri’s reciprocation behavior.
Moreover, (ii) r̂i,j(n) decreases exponentially such that it ap-
proaches 0 after several attempts, in order to prevent the non-
reciprocated behavior including free-riding. Thus, a function
satisfying (i) and (ii) can have a form, such as

r(n) = βg(n) ×Rmax
i,j , (11)

whereβ(< 1) is a constant andg(n) > 1, ∀n ≥ 1 is a function
that grows faster than a linear function. In our implementation,
we use functionr(n) = 0.952n

× Rmax
i,j , as the function

satisfies properties (i) and (ii) as shown in Fig. 6.

B. The Policy Finding Process

As shown in Section IV, in every iteration of the policy
finding process, the associated peer set is first reduced. Based
on our experiments, we observe that when the reduced size of
peer set is more than 7 peers, finding the foresighted strategy
requires significant computational complexity. Thus, in our
implementation, we set the size of the reduced peer set to
7, i.e.,T = 7 in Algorithm 1.

The policy is calculated and holds for up to additional three
rechoke periods, which is determined based on the tradeoff
between the time for enough reciprocation and the time for
capturing the network dynamics.

C. The Decision Process

The initialization phase and the foresighted phase in the
decision process are implemented as follows.
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- Initialization Phase: In the initialization phase, peerj
makes peer selection decisions based on the regular BitTorrent
mechanisms, as it does not have enough information to calcu-
late the foresighted policy. The leechers determine the duration
of the initialization phase individually. We study extensive
experiment results, which include both flash crowd scenarios
as well as steady state scenarios. In these experiments, the
number of peers that have not uploaded to peerj from the
beginning of the downloading process is counted every re-
choke period. Fig. 7 shows the median of the counted numbers
of peers collected from all the leechers in the network over
time (rechoke periods) for several experiments of flash-crowd
scenarios. The Figure shows that the peer counted value is
exponentially decreasing and stabilized fast. Then, peerj can
switch from the initialization phase to the foresighted phase.
In our implementation, a peerj counts the number of peers
without reciprocation history within every rechoke period.
Once the count reduces by one in duration of three rechoke
periods and for two consecutive durations (i.e., six rechoke
periods), peerj switches to the continuous phase and starts
to adopt the foresighted strategy. Based on our experiments,
peers switch from initialization phase to continuous phase
approximately 60 rechoke periods later in the flash-crowd
scenarios and approximately 36 rechoke periods later in the
steady-state scenarios. However, different network settings
might lead to different durations of the initialization phase.

- Foresighted Phase:
In the foresighted phase, the choking decisions are made

based on the foresighted policy, in every 10 seconds (as in
regular BitTorrent). The selected peers will be unchoked for
the entire 10 seconds rechoke period. The minimum number
of unchoked peers is 4. The number of unchoked peers
can increase if (1) the peer that makes the peer selection
decision does not saturate its upload capacity, or, (2) the upload
bandwidth of the peer that makes the peer selection decision
is higher in comparison to most of the peers it interacts with.

We compare the performance of our protocol to the per-
formance of the regular BitTorrent implemented with the
Enhanced CTorrent code. The minimum number of unchocke
slots in the regular BitTorrent implementation is 4. The number
of slots can increase if a peer’s upload capacity is not saturated.
In this implementation, one unchoke slot is always reserved

for optimistic unchokes that are rotated every three rechoke
periods.

VI. EXPERIMENTAL EVALUATION

We perform extensive experiments on a controlled testbed,
in order to evaluate the properties of the proposed protocol.

A. Methodology

All of our experiments are performed on the PlanetLab ex-
perimental platform [24], which utilizes the nodes (machines)
located across the globe. We execute all the experiments con-
secutively in time on the same set of nodes. Unless otherwise
specified, the default implementations of leecher and seed in
regular BitTorrent systems are deployed.

The upload capacities of the nodes are artificially set ac-
cording to the bandwidth distribution of typical BitTorrent
leechers [3]. The distribution was estimated based on em-
pirical measurements of BitTorrent swarms including more
than 300,000 unique BitTorrent IPs. Since several nodes are
not capable to match the target upload capacities determined
by the bandwidth distribution, we scale the upload capacity
and other relevant experimental parameters such as file size
by 1/20th. However, we have not set limitation on download
bandwidth.

All peers start the download process simultaneously, which
emulates a flash crowd scenario. The initial seeds are stayed
connected through the whole experiments. To provide syn-
thetic churn with constant capacity, leechers disconnect im-
mediately after completion of downloading the entire file,
and reconnect immediately while requesting the entire file
again. This enables our experiments to have the same upload
bandwidth distribution during the entire experiment time.

Unless otherwise specified, our experiments host 54 Planet-
Lab nodes, 50 leechers and 4 seeds with combined capacity
of 128 KB/s serving a 100 MB file.

B. Experiment Results: Performance of Leechers in Network
without Free-Riders

We compare a system consisting of all leechers adopting
the regular BitTorrent protocol, to a system consisting of
all leechers adopting the proposed protocol based on the
foresighted strategy. In this section, we assume that there
is no free-rider in the networks. Fig. 8 shows the download
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completion time of leechers. For each group of leechers having
the same upload capacity, separate boxplots are depicted [25]
for the different scenarios. The top and the bottom of the
boxes represent the75th and the25th percentile sample of
download time, respectively, over all 5 runs of the experiments.
The markers inside the boxes represent the median, while the
vertical lines extending above and below the boxes represent
the maximum and minimum of samples of download time
within the ranges of1.5 time the box height from the box
boarder. Outliers are marked individually with “+” mark.

TThe results show the clear performance difference among
high-capacity leechers, which are the fastest 20% leechers, and
low-capacity leechers, which are the slowest 80% leechers.
High-capacity leechers can significantly improve their down-
load completion time – leechers having the upload capacity of
at least 18kB/sec improve their download completion time by
up to 33% in median. Unlike in the regular BitTorrent system,
where leechers determine their peer selection decisions based
on the myopic tit-for-tat that uses only the last reciprocation
history, the leechers adopting the foresighted strategy deter-
mine their peer selection decisions based on the long-term
history. This enables the leechers to estimate the behaviors
of their associated peers more accurately. Moreover, since
part of the peer selection decisions is randomly determined
in the regular BitTorrent, there is a high probability that high-
capacity leechers need to reciprocate with the low-capacity
leechers [3]. However, the randomly determined peer selection
decisions are significantly reduced in the proposed approach,
as the random decisions are taken only in the initialization
phase or in order to collect the reciprocation history of newly
joined peers. As a result, the high-capacity leechers increase
the probability to reciprocate resources with the other high-
capacity leechers.

This is confirmed in the results of Fig. 9, which shows the
unchoking percentage among the20% high-capacity leechers,
comparing the two different systems. It is clearly observed
that the collaboration among high-capacity leechers improves
when leechers adopt the foresighted strategy. Thus, we can
conclude that the foresighted strategy improves the incentive
mechanisms in BitTorrent networks: as a leecher contributes
more to the network, it achieves higher download rate.

Recent studies [3]–[5], [15] show that the regular BitTorrent
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protocol suffers from unfairness particularly for high capacity
leechers. In Fig. 10, we compare the upload rates and the
average download rates of the leechers. The ratio of these
values can indicate the degree of fairness in the system.
The results in Fig. 10 show that fairness is improved as the
leechers adopt the foresighted strategy, since high-capacity
leechers increased their download rate getting closer to their
upload rate, in spite of the restriction of limited seeds’ upload
rate. On the other hand, in the system where leecher adopts
the foresighted strategy, the download rates of low-capacity
leechers decrease, getting close by at most36% to their upload
rates, compare to the regular BitTorrent system. However, all
the peers that are slowed down by the foresighted strategy still
download faster than their upload rate.

C. Experiment Results: Performance of Leechers in Network
with Free-Riders

In this section, we investigate how effectively the proposed
protocol can prevent selfish behaviors such as free-ridings.
Note that the foresighted strategy shows a similar performance
for the leechers that upload their content in the network that
includes free-riders (i.e., shows the improved fairness, etc.).
Hence, in this section, our focus is on studying how the free-
riders are punished due to their selfish behaviors. Fig. 11 shows
the time that the free-riders complete downloading 100MB
file in a network consists of 50 contributing leechers, and
increasing number of free-riders (i.e., 5, 10, and 15 free-
riders). It compares the results of the foresighted strategy
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system to the regular BitTorrent system. The Figure confirms
that the foresighted strategy enables the leechers to effectively
penalize the free-riders, as it takes longer time for the free-
riders to complete their downloads (requires 8%-20% more
time as measured by the median, in comparison to the regular
BitTorrent protocol).

When leechers adopt the foresighted strategy, they can
efficiently capture the selfish behavior of the free-riders.
Thus, they unchoke the free-riders with a significantly lower
probability. Hence, the free-riders can download their content
mainly from seeds not from the leechers. The results shown in
Fig. 12 also confirm that the leechers in the regular BitTorrent
system upload approximately 2.8-3.7 times more data to the
free-riders compared to the leechers in the system where
foresighted strategy is adopted. This also shows that the P2P
networks consist of the leechers adopting the foresighted
strategy are more robust to the selfish behaviors of peers than
the networks operating with the regular BitTorrent protocol.
For example, in the network with 15 free-riders, the leechers
in the regular BitTorrent systems upload 4.5% of their total
upload capacity to free-riders, while they only upload 1.6%of
their upload capacity in the foresighted strategy system.

Therefore, our experiment results confirm that the fore-
sighted strategy provides more incentives for leechers to
maximize their upload rate by enabling the leechers to discour-
age non-cooperative behaviors such as free-riding, improves
fairness, and enhances the robustness of the network.

VII. R ELATED WORK

Extensive research has focused on modeling and analyzing
the performance of the BitTorrent systems, since the main
mechanisms and the design rationale of the BitTorrent protocol
first described [2].

Qiu and Srikant [26] studied a fluid analytical model of
BitTorrent systems. They analytically studied the choking
mechanism and how it affects the peer performance. They
showed that the optimistic unchoke mechanism may allow
free-riding. They also claimed that the system with tit-for-
tat strategy eventually converges to a Nash equilibrium where
fairness is achieved and all peers download at their upload
capacities. However, as shown in our results, which are in

consistent with other existing works such as [3], [5], [15],[27]
the choking mechanism in BitTorrent may fail to attain fairness
for a realistic swarms. Fanet al. [28] characterized the design
space of BitTorrent-like protocols capturing the fundamental
tradeoff between performance and fairness. We also study such
tradeoff and show that the foresighted strategy improves the
fairness in the system for the cost of reduced download ratesof
low-capacity leechers. This encourages leechers to contribute
more resources (i.e., maximize their upload rate).

Other researchers have studied the feasibility of free-riding
behavior, Shneidmanet al. [29] showed that it is possible
to free-ride in BitTorrent systems. They identified forms of
strategic manipulation that are based on Sybil attacks and
uploading garbage data. Liogkaset al. [8] implemented three
exploits that allow free-riders to obtain higher download rates
under specific circumstances. Locheret al. [9] with BitThief
extended this work by showing that free-riders can achieve
higher download rate, even in the absence of seeds. Similarly,
Sirivianoset al. [10] showed that free-rider that can maintain
a larger-than-normal view of the system has much higher
probability to receive data from seeds and via optimistic
unchoke. Our protocol replaces the optimistic unchokes, the
most important vulnerability identified in these studies, with
the foresighted policy based unchokes.

Fairness in BitTorrent systems was studied as well. Geoet
al. [5] showed the lack of fairness in BitTorrent systems. Piatek
et al. [3], observed the presence of significant altruism in
BitTorrent, where peers make contributions that do not directly
improve their performance. They proposed a new choking
mechanism that reallocates upload bandwidth to maximize
peers’ download rates. Izhak-Ratzin in [15] identified the
potential of significant different between leecher’s upload
and download rates and proposed the Buddy protocol that
matches peers with similar bandwidth. Legoutet al. [6] studied
clustering of peers having similar upload bandwidth. They
observed that when the seed is underprovisioned, all peers tend
to complete their downloads approximately at the same time,
regardless of their upload rates. Moreover, high-capacitypeers
assist the seed to disseminate data to low-capacity peers. This
can happen because the tit-for-tat strategy is based on short-
term history. A peer can benefit from the tit-for-tat strategy
only if it can continuously upload pieces and as long as it
receives pieces of interest in return. Piateket al. [7] showed
that this is not always possible as peers can have no piece
to offer. Our work also considers the unfairness in BitTorrent
systems, and shows that the proposed approach can improve
the fairness by using a long-term history based strategy.

In order to reduce free-riding and encourage collaboration,
various reputation systems have been proposed. Payment sys-
tems (e.g., [30], [31]) which enables peers to earn credits
according to their uploads to other peers have been proposed.
However, in practice these systems require a centralized entity
to prevent cheating, and thus, they have arguably scalability
limitation. To overcome such weaknesses in payment systems,
various design of reputation systems has been proposed (e.g.,
[7], [11]–[13], [32]). In these systems, peers can make choking
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decisions base on private history as well as globally shared
history. However, these reputation systems require signifi-
cant communication overheads to maintain the global history.
Moreover, there is no guarantee that each peer expresses the
same behavior to different peers with different attributes. In
addition, all these systems aim to maximize the immediate
utility but not the long-term utility, which can show only
suboptimal performance. To the best of our knowledge, we are
the first to propose the foresighted strategy that can replace the
existing mechanisms deployed in BitTorrent protocol, while
maximizing long-term utility of participating leechers.

Finally, the theoretical aspects of the MDP-based fore-
sighted strategy are discussed in our prior work [22]. These
results motivate us to design the resource reciprocation mech-
anism that replaces the tit-for-tat and optimistic unchoke
mechanisms that exist in BitTorrent.

VIII. C ONCLUSION

In this paper, we propose the foresighted resource recipro-
cation mechanism to replace the tit-for-tat and the optimistic
unchoke mechanisms in BitTorrent. The proposed strategy
enables the peers to utilize the reciprocation history, such that
they can efficiently capture the behaviors of their associated
peers. Hence, the peers can improve their performance. Our
experiment results show that the proposed protocol improves
the fairness, thus provides more incentives to collaborate, and
enhances the robustness of the P2P networks by effectively
discouraging free-riding.

REFERENCES

[1] D. Fudenberg and D. K. Levine, “The theory of learning in games,”
Master’s thesis, Cambridge, MA: MIT Press, 1999.

[2] B. Cohen, “Incentives Build Robustness in BitTorrent,”in P2PEcon’03.
[3] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-

mani, “Do incentives build robustness in BitTorrent?” inNSDI’07.
[4] A. Bharambe and C. Herley and V. Padmanabhan, “Analyzingand im-

proving a bittorrent network’s performance mechanisms,” in INFOCOM,
2006.

[5] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measure-
ments, analysis, and modeling of BitTorrent-like systems,” in IMC05.

[6] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and Sharing
Incentives in BitTorrent Systems,” inSIGMETRICS’07.

[7] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “One hop
reputations for peer to peer file sharing workloads,” inNSDI, 2008.

[8] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, “Exploiting BitTorrent
For Fun (But Not Profit),” inIPTPS’06.

[9] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free Riding in
BitTorrent is Cheap,” inHotNets-V (2006).

[10] M. Sirivianos, J. H. Park, R. Chen, and X. Yang, “Free-riding in
BitTorrent Networks with the Large View Exploit,” inIPTPS’07.

[11] S. Buchegger and J.-Y. le Boudec, “A Robust Reputation System for P2P
and Mobile Ad-hoc Networks,” inEconomics of P2P Systems, 2004.

[12] L. Xiong and L. Liu, “PeerTrust: Supporting Reputation-Based Trust
for Peer-to-Peer Electronic Communities.” inIEEE Transactions on
Knowledge and Data Engineering, 16(7)., 2004.

[13] M. Yang, Z. Zhang, X. Li, and Y. Dai, “An Empirical Study of Free-
Riding Behavior in the Maze P2P File-Sharing System.” inIPTPS, 2005.

[14] http://www.edonkey2000.com/, “edonkey.”
[15] Rafit Izhak-Razin, “Collaboration in bittorrent systems,” in Networking

2009.
[16] Rafit Izhak-Razin, Nikitas Liogkas, and Rupak Majumdar, “Team incen-

tives in bittorrent systems,” inICCCN 2009.
[17] D. P. Bertsekas,Dynamic Programming and Stochastic Control. Aca-

demic P, 1976.

[18] M. Bowling and M. Veloso, “Rational and convergent learning in
stochastic games,” Master’s thesis, Seventeenth International Joint Con-
ference on Artificial Intelligence (IJCAI), 2001.

[19] J. Hu and P. Wellman, “Multiagent reinforcement learning: theorectical
framework and an algorithm.”

[20] R. G. Gallager, “Discrete stochastic processes,” 1996.
[21] L. S. Shapley, “Stochastic games,” vol. 39, 1095-1100,Proceedings of

the National Academy of Sciences of the United States of America,
1953.

[22] H. Park and M. van der Schaar, “A framework for foresighted resource
reciprocation in P2P networks,”IEEE Trans. Multimedia, vol. 11, no. 1,
pp. 101–116, Jan. 2009.

[23] http://www.rahul.net/dholmes/ctorrent, “EnhancedCTorrent.”
[24] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,

L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak, “Operating
System Support for Planetary-Scale Network Services,” inNSDI’04.

[25] J. W. T. Robert McGill and W. A. Larsen, “Variations of box plots,”
The American Statistician, vol. 32, pp. 12–16, 1978.

[26] D. Qiu and R. Srikant, “Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks,” inSIGCOMM’04.

[27] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee, “Bittorrent is
an auction: analyzing and improving bittorrent’s incentives,” Sigcomm,
2008.

[28] B. Fan, D.-M. Chiu, and J. C. Lui, “The Delicate Tradeoffs in BitTorrent-
like File Sharing Protocol Design,” inICNP, 2006.

[29] J. Shneidman and D. C. Parkes, “Rationality and Self-Interest in Peer
to Peer Networks,” inIPTPS 2003.

[30] B. Wilcox-O’Hearn, “Experiences Deploying A Large-Scale Emergent
Network,” in IPTPS, 2002.

[31] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer, “KARMA: A
Secure Economic Framework for Peer-to-Peer Resource Sharing.” in
P2PEcon, 2003.

[32] Qiao Lian, Yu Peng, Mao Yang, Zheng Zhang, Yafei Dai, andXiaoming
Li , “Robust incentives via multi-level tit-for-tat,” inIPTPS, 2006.


