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Abstract—Recent research efforts have shown that the popular riding [8]-[10], due to the optimistic unchoke mechanism
Bit-Torrent protocol does not provide fair resource reciprocation currently used in BitTorrent. This enables peers to continu
and allows free-riding. In this paper, we propose a noveffore- g1y discover better leechers to reciprocate resourcés wi

sighted resource reciprocation mechanism that replaces the peer H it ¢ . tunity f to obtai
selection mechanism with a reinforcement learning mechasm owever, It creales a major opportunity for peers 1o obtain

that adopts a foresighted resource reciprocation policy. W data, without uploading in return. Moreover, it may induce
model the peer interactions in the BitTorrent-like network as unfairness in the system, as it forces high-capacity peers t

a stochastic-game, where we explicitly consider the strategic jnteract with low-capacity ones.

behavior peers. The peers can observe partial historic infna- Reputation-based schemes that are based on the propagation
tion of associated peers’ statistical reciprocal behavia, through :

which the peers can estimate the impact on their expected Uity of global hllst(.)ry.(e.g., [11]_[1_3]) have been proposed terev

and then adopt their best response. The policy determines ¢h come the limitations of pure tit-for-tat and optimistic tnake
peer's optimal resource reciprocations, and enables the ge to mechanisms. However, these approaches require significant
maximize the long-term performance. The mechanism improve communication overhead to maintain the global history s&ro
fairness as it relies on long-term history. Moreover, it hutts the peers. Moreover, the reliability of global history is uredeas

Lrgfc;gc(ij ?gsfrigﬁgzr;mce foresighted peers are discourged to peers may exhibit different reciprocation behaviors wiffed-

We have implemented the proposed mechanism in an existing €Nt peers. Alternatively, in other reputation-based apgines
BitTorrent client. We have also performed extensive expernents such as [7], [14]-[16], peers make peer selection decisions
on a .controlled PlanetLab tested to evaluate .the mechanism pased on long-term local (or private) history of associaterg
effectiveness. Our results confirm that the foresighted ramirce 51559 pehaviors. However, the focus of these systems is on
reciprocation mechanism promotes fairness, improves theystem N . L . .
robustness, and discourages free-riding in compare to thesgular ~Maximizing |_m_med|ateutlllty, _V\_’h'Ch may be less desirable
BitTorrent. than maximizinglong-term utility, as peers can repeatedly

interact with each other in a long period of time.
. INTRODUCTION In this chapter, we model the peer interactions in the

In P2P content distribution systems, fairness among pe®isTorrent-like network as astochastic — game [1] — A
participating in content distribution is an important factas repeated interaction (i.e., reciprocating resourcesyvéet
it encourages peers to actively collaborate in dissenmigatiseveral participants (i.e., peers) in which the underhstage
content, which can lead to improved system performanad.the environment changes stochastically, and is depénden
However, even BitTorrent [2], one of the most popular protan the decisions of the participants. Stochastic gameséxte
cols used in P2P content distribution, does not provide fale single participant Markov decision process (MDP) [17]
resource reciprocation, especially in node populationth wito include multiple participants whose actions all impdu t
heterogeneous upload bandwidths [3]-[6]. This is becaduse tesulting utility and next state. In our model, we expligitl
tit-for-tat strategy, that is implemented in BitTorrerg,hased consider the strategic behavior peers, which can obsertialpa
on short-term history, i.e., upload decisions are madedad@storic information of associated peers statistical pe®i
on most recent resource reciprocation observation. M@&meoeation behaviors, through which the peers can estimate the
the decision is based on backward looking and not forwamtipact on their future rewards and then adopt their best
looking. Thus, a peer can follow the tit-for-tat policy orify response. The estimation of the impact on the expectedefutur
it continuously upload pieces of a particular file and as lomgward can be performed using different types of interactiv
as it receives pieces of interest in return. However, thisois learning [18]. We use reinforcement learning method [19], a
always possible, as peers can have no pieces in which thallows the peers to improve their peer selection strategy
other peers are interested in, regardless of their willdsgrto using only knowledge of their own past received payoffs,
cooperate [7]; yet, this behavior is still perceived as & lat without knowing the complete reciprocation behaviors & th
cooperation. peers in the network. Thus, we propose to replace the peer

Additionally, it has been shown that BitTorrent systems dgelection policy with a reinforcement learning foresighte-
not effectively cope with selfish peer behaviors, such as-fresource reciprocation policy. The resource reciprocatiolicy
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is calculated by forecasting the impact of the current peeontent downloading process. The metainfo file includes the
selection actions on the expected utility (i.e., futureamig) address of theracker, a coordinator which facilitates peer
and maximizing it. discovery.

Thus, each peer can maximize its long-term utility based A client downloads the metainfo file before joiningarent
on the foresighted resource reciprocation policy. This cdar swarm) —a group of peers interested in a particular eante
also provide an improved fairness, discourages freegijdinThen, it connects the tracker to receivepaer set which
and enhances the system robustness. The foresightedaesotwnsists of randomly selected peers currently exchandiag t
reciprocation policy can replace both the tit-for-tat amg t same content. The peer set may include Hetithers peers
optimistic unchoke mechanisms in the regular BitTorrew prthat are still downloading content pieces, aegdspeers that
tocol. In this chapter, we propose a BitTorrent-like pratoc have the entire content and upload it to others. The client ca
that applies the reinforcement learning foresighted egat then connect and exchange (mciprocatg its content pieces
Specifically, the protocol consists of three main processes with its associated peers the peers in its peer set.

« A learning process, which provides an updated informa- While reciprocating content pieces, each leecher detesnin

tion about statistical behaviors of the associated peefs’set of peers among its peer set that can download its

resource reciprocation; content pieces. The peer selection is determineahnking
« A policy finding process, which computes the foresighte@€chanismsind represented bghoking decisionsBitTorrent
policy using the reinforcement-learning algorithm. leechers apply two choking mechanisms: titefor-tat re-

« A decision process, which determines the associated pe¥§rce reciprocation mechanism, and gptimistic unchoke
that will be unchoked and choked in every rechoke peridgechanism. The tit-for-tat mechanism prefers the peers tha
based on the foresighted policy. upload their data at the highest rate among the associated

We implemented our proposed protocol on top of a BitTorreRFgrs' SﬁJeC|fr|]caIIy,h|n Evetrﬁechoke ptegodtylplcglly th sfec- it
client, and performed extensive experiments on a control|@MYS: @ leecher checks the current download rates from its
PalnetLab testbed. We evaluate and quantify the performar"flésoc'ated peers and selects the peers that are uploaeing th
of the proposed protocol, and compare its performance wi ta at the hlghes_t rates. Then, the Ieecr_]er uploads only to
the regular BitTorrent protocol. Based on the experimengal the selected associated peers, while choking the rest of the

sults, the proposed protocol provides the following adages d;thirr:g the _Irekc):lholge p;}ri%?r'] ';hetl;ploao: arg_ount Is a func_i_t:]qn
against the regular BitTorrent protocol: of the avariable bandwi or the uploading process. 1his

. . _ available bandwidth is divided equally among the unchoked
1) It improves the faimess. The peers that contribute MO@a s The optimistic unchoke mechanism reserves a portion
resources (i.e., higher upload capacities) can achi€yfe ayajlable upload bandwidth in order to provide pieces
higher download rates. I-_lowe\./er., the peers that contnb%a randomly selected peers. The purpose of this mechanism
less resources may a}chleve I|m|t§d download rates. s o enable the leechers to continuously discover better
2) It p_romotes coopera_thn among _h_|gh—capaC|ty PEers. partners, and bootstrap newly joining leechers into the tit
3) It discourages free-riding by limiting the upload to NN, 1o+ mechanism. Optimistic unchokes are randomly eatat

coc_)peratlve pﬁers. b b . among the associated peers, typically once every threekech
4) It improves the system robustness by minimizing the.,qs allowing enough time for leechers to demonsthetie t
impact of free-riding on contributing peers’ performanc

ooperative behaviors. The number of unchoked peers )slots
The rest of this paper is organized as follows. In Section thay vary depending on specific implementation, and it might

we briefly describe the BitTorrent. In Section Il we brieflype fixed or changed dynamically as a function of the available

define the stochastic games and describe the reinforcemgstbad bandwidth.

learning foresighted resource reciprocation strateggti®®  Seeds deploy different choking mechanism as they already

IV presents the design of our foresighted resources recipgmpleted to download content. The most common implemen-

cation protocol. Details of our protocol implementatiore artation is based on the round-robin that aims to distributa da

discussed in Section V. The experiment results are preseni@iformly. This implementation is applied in our experirten
in Section VI. Finally, we discuss related works in Sectidh V
and the conclusions are drawn in Section VIII. I1l. FORESIGHTEDRESOURCERECIPROCATIONSTRATEGY

Peers in BitTorrent-like systems have to make a repeated
peer selection decision given their dynamically changing

In this section, we briefly overview the BitTorrent protocolenvironment which they experience. The evolution of the
The BitTorrent protocol is a peer-to-peer content distidhu peers’ interactions across the various rechoke periods can
protocol that scales efficiently with large number of particbe modeled as repeated stochastic interaction. Whereas the
pating clients. Markov Decision Process (MDP) is a decision problem for

Before the content distribution process begins, the canteme participant (i.e., peer) in an (unknown) environmegj,[2
provider divides the possessed data content into multipihen multiple participants interact with each other in such
pieces or chunks Then, the provider createsmaetainfo file an environment, this becomes a stochastic game [1], [21]
which contains information that is necessary to initiate thproblem (i.e., n-participant MDP). The time is discretelie t

Il. BITTORRENTOVERVIEW
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stochastic game, and at each time slot (i.e., rechoke periagpbloading behavior of the associated peers at im& state
every participant has its own state and its own action spaca&n be described usiny bits, and thus, the cardinality of the
for that state. Every time slot the participants chooserthaitate space 8" .
own actions independently and simultaneously. After ttre,
participants are rewarded and transit to the next states. Th The Action Space of a PeerA;
reward (received by each of the participants), and the state _ _ ]
transition also is contingent upon other participantsestand AN action of peer; represents a set of its peer selection
actions. Specifically to our model, during the repeated imulf€cisions. The peer selection decision of pgeo peer: at
peer interaction, the peers can observe partial histofear-in ime ¢ is denoted byu;;, and is defined as
mation of associated peers reciprocation behaviors, trou
which the peers can estimate the impact on their future asvar aji(t) = {
and then adopt their best response. The estimation of the
impact on the expected future reward can be performed usifigys ., can be expressed with one bit. The action space of
dnfferent types of |_nteract|ve learning _[18]. Here, we USBeer; can be expressed as
reinforcement learning method [19], as it allows the peers t
improve their peer selection strategy using only knowleofge A; = {(aj1,...,a;5)|ajr € {0,1} for all k € C;}, (4)
their own past received payoffs, without knowing the cortgple
reciprocation behavior of the peers in the network. In thidence, an action;(t) € A; is a vector that consists of peer
learning framework of stochastic-game, the learning peers peer selection decisions to its associated peers atttime
attempt to maximize their expected rewards. Thus, an action of peej for its NV associated peers can be
Formally, a stochastic game is a tuplé],S, A, P,R), described withN bits. In the proposed protocol, we assume
where! is a set of participants (peers), i.é.= (1,...,M), S that peer;j is able to unchoke a limited number of peers, de-
is the set of state profiles of all peers, i8.= 51 x ... x Siy  noted byN,, (< N), implying that the cardinality of the action
with S; being the state space of pegrand A is the joint space is(%u). Note that in order to reduce the complexity,
action spaceA = A; x ... x Ay, with A; being the action peer; allocates the same amount of upload bandwidths to all
(peer selection) space for pegrP : S x A xS — [0,1] is a unchoked peers. Thus, the bandwidth allocated to an undhoke
state transition probability function that maps from sgatgfile  peeri by peer; at timet is determined by/L; ;(t) = B; /N,
S(t) € S at timet into the next state profil§(t + 1) € S at whereB; is the maximum upload bandwidth available to peer
time ¢t + 1 given corresponding joint actioné(t) € A. Note ;.
that t here is discrete and measured in time slots. Finally,
R:8x A — Ry is areward vector function defined a3 state Transition Probability in a Peer
a mapping from the state profilé(t) € S at time ¢, and - _. .
corresponding joint actiong(t) € A to an M —dimensional A state transition probability represents the probabtfitgt
real vector with each element being the reward to a particuR) actionA;(t) € A; of peerj in stateS;(¢) € S; at time¢
participant. will lead to another stat&;(t + 1) € S; at¢ + 1. Thus,
1) State Spac®;: A state of peerj represents a set of
resources received from the peer<ln whereC; denotes the  £4;((S;(t), 5;(t + 1)) = Pr(8;(t +1)[5;(1), 4; (1)) (5)
set of peers associating with pegerThus, it may represent the
uploading behavior of its associated peers, or equivaieintl

can capture peei's download rates from its associated peer Y i ; o
. . : i(t+1), which may be stored in a transition table. Thus, the
The upload rates from peérec C; to peerj at timet¢ are i o S .
P P J 10 peet) ansition table size is in order @((§ ) - 2V - 2%). While

denoted byU L; ;(t). In our proposed protocol, an uploading{:/ o ; .
. e . - e deploy an empirical frequency based algorithm to esémat
behavior of peer observed by peef is denoted bys;, and the state transition probability function, which is presehin

defined
elined as _ Section IV-A, other algorithms (e.g., [22]) can also be used
1, if ULi_’j > 93' ,
Sij = 0’ (1)

otherwise

0, if peerj chokes peef ,
1, otherwise

®3)

The state transition probability functions can be estihate
@ particular peeyj based on the history of;(t), A;(t) and

C. The Reward of a PeerR;
whered; is a pre-determined threshold of peert Thus, s;;

can be expressed with one bit and the state space ofjpee
can be expressed as

The reward of a peer in a state is its total estimated
ownload rate in the state. Thus, a reward of a peer in a state i
the sum of the estimated download rates from all its assextiat
S; ={(s15,---,5n;) sk €{0,1} forall k € Cj}, (2) peers. More specifically, a reward of pgefrom stateS; € S;

where N denotes the number of pegis associated peers,Can be expressed as

i.e.,|C;| = N. Therefore, a stat®;(t) € S, can capture the

<l OB R;(S;) = (S, [ULiliec;) (6)
in order to minimize the computational complexity, we coesis;; € ) .

{0, 1} in this paper. However, the granularity of state can beasilended. where(-) denotes the inner-product operation.
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Learning Reciprocation | Policy Finding Choking Decision

pap Network\Goosafas o] Process | remeion. | Process | fumy, | Process the course of each rechoke period. More details about these
UL Section IV.A |p, (5..5"). SectionIV.B | 7, Section IV.C H
o | SectnVA P, (5,5,).8)  Secton IV i processes are discussed next.
(Fig. 3)

f I A. The Learning Process

' As discussed in Section Ill, in order to find the foresighted
Fig. 1. The Main Processes in Proposed Protocol Design resource reciprocation policy, each peer needs to know othe
peers’ states, their rewards, and their state transitiabagr
bilities in order to derive its own optimal policy. However,

1) Resource Reciprocation Policy 77: We a peer cannot exactly know the other peers information,
define a  history of the stochastic game ague to information that is kept private, network scalapilit
ht = {S° A° RO, .. St A1 R-1} < H!, which -constraints, the time-varying network dynamic, and more.

summarizes all states, actions and rewards of the peergin Tius, to improve the peer selection policy, a peer can only
network up to timet — 1, where’H! is the set of all possible predict the impacts of dynamics(uncertainties) causechby t
histories up to timet. Nevertheless, during the stochasticompeting peers based on its observations from the pass Thu
game, each peej cannot observe the entire history, bueach peer needs to update the above information regularly
rather a portion of the history. The observation of pgds through the learning process, while downloading contesrhfr
denoted as} € 0% ando’ C h'. Note that the current stateits associated peers.
st can be always observed, i.€. € o'. Thus a peer selection The learning process consists of two main methods (see
policy 7r.§ : (’)§ — A, for peerj at the timet is defined as Fig. 2) that compute the estimated reward and state transiti
a mapping from the observations up to the timénto the probability.
specific action, i.ea); = 7}(0}). Furthermore, a policy profile 1) Reward CalculationThe reward of peej represents its
w; for peer;j aggregates the peer selection policies over tld®wnload rates from its associated peers (or equivalethity,
entire course of the stochastic game, e = (Wl?, ...,7r§, ...). total upload rates of its associated peers) estimated by pee
The policy profile for all the peers at time slotis denoted j. In the rewards calculation method, the associated peers ar
by 7t = (i, ..., 7h,) = (7%, 7" ;). classified into two types based on the available information
The policy of peerj is calculated using reinforcement-about their resource reciprocation history.
learning algorithm that maximizes the cumulative discednt For associated peers that have reciprocated their resource
expected reward. The expected reward is defined for a peewith peerj, referred to ageers with reciprocation history
in stateS;(t) at timet = t. given a discount factof; as peer; estimates their upload rates based on weighted average
- of the past upload rate samples. This can reduce the fluatuati
R'}C(Sj () = th " "yj(-t_(t“ﬂ)) “R;(S;(t)). (7) induced by the protocol and network dynamics in the sampled
‘ upload rates of the associated peers. Specifically, peer
The policym; maps each stat€;(t) € S; into an action, i.e., estimates the upload ratés; of peeri € C; based on recently

j (Sj) =A; (t) such that each action maximiz%‘ (Sj (t.)). observed resource reciprocatibil; ; as
The policy can be deployed as a peer selection algorithnh, suc
that each peer can maximize its long-term utility. While the Pij g ULij+ (1 —a;)fi (8)
policy m; can be obtained using well-known methods such ggheren; denotes the weight for most recent resource recip-
value iteration and policy iteration [17], these algoriimay qcation.
require very high computational complexity if the number of gor 5550ciated peers whom hawet reciprocated their
associated peers is significantly large. Hence, itis ingpafd  resoyrces with peef, referred to apeers without resource
reduce the computational complexity of the policy caldolt reciprocation history peer; assumes their upload rates. Peer
such that_the rel_nforcement learning foresighted straiegy ; optimistically initiates the information about such pebys
deployed in practice. assuming that they reciprocate their resources with high-pr
ability and high upload rate. This enables pgdo efficiently
discover additional peers, and bootstrap newly joiningrpee
In this section, we describe the proposed protocol desigrich is important for the efficiency of the system. Whenever
that replaces the peer selection tit-for-tat and optimisti- peer; uploads to a peer without resource reciprocation history
choke mechanisms deployed in regular BitTorrent systeraad the peer do not upload tpin return, peer; reduces
with a foresighted resource reciprocation mechanism. the peer's presumed upload rate, as this provjdesth more
The protocol design is summarized in Fig. 1. The protocebnfidence that the particular peer may not actively reciat®
consists of three main processes running in parallel:itiig¢) its data. This also prevents the associated peers fromgtakin
learning processwhich provides an updated information abouadvantage through optimistic initialization and possityke-
statistical behaviors of the associated peers’ resourcip-re riding.
rocation; (2)the policy finding processwvhich computes the  2) State Transition Probability CalculationThe state tran-
foresighted resource reciprocation policy; (3) dhd decision sition probabilities are updated every rechoke period,thod,
process which determines the peer selection decisions duriegich peer can capture the time-varying resource recipoocat

IV. THE PROTOCOLDESIGN
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Learning Process Policy Finding Process Choking Decision Process
Reward
" s Calculation . . . . Peer Set X Associated Peers| Initialization Phase
Ajs&:ztc;dageg@ _ RemprocgatloIn ReCIprocgtlon Reduction Optimal Upload Rate toj( Foresighted Phase Unchoked
_—ploadRatefo/ | State | | Information: Information: ! Policy s has
UL e Table P, (S.5).R > C — UL ta.te ction ‘ Peers‘
i Transition 1, (95:95): 8 P, (S S') R J _® b Monitor | § Finder A
Unchoked peers Probability AN\ T j i
A Calculation MDP Solver Optimal Policy
~/

Fig. 2. The Learning Process Fig. 3. The Policy Finding Process Fig. 4. The Decision Process

behaviors of its associated peers. Every rechoke peribg gt Algorithm 1 Peer-Set Reduction Algorithm
peer; stores a 3-bit triple(S;(¢), 4;(¢), S;(t +1)). Peerj  1: INPUT :

stores the triplets to the associated peers that are iniayart - C; - set of associated peers of pger
peer set referred to as reduce peer set, which will be discuss - T' - target output set size (constant)
later in this section or peers that uploaded to peat timet - R; ; - estimated rewards of peer

or t + 1. In this paper, we assume that the state transition - P(S;) - the probability to be in stat®

probability functions are computed based on the empirical - Pr(Z,j) the resource reciprocation probability of péer
frequency, and the state transition of each peer is indepegnd - 1, ¢co - constants such th&t >> ¢; > ¢y

Thus, the probabilityPr(s;, a;i, si;), wheres;;, sj; € S;, can  2: OUTPUT : A reduced set of peels; C C; s.t.[Cj| =T
be expressed as

3: forall i € C; do
N 4: Ki,j = Ri,j X PT(i,j);
P, 1)(S;(t), St +1)) = HPr(sij (t+1)]s4(t), aji(t)) 5. orderC; in a non-decreasing order of the; ;;
i=1 6: C; =Cy;
B. The Policy Finding Process 7: while |C}|>T do
The policy finding process runs in parallel with the learning®: G= gca/'p v CJ’-Q
process, while computing the foresighted resource reciprd®: calculater ., the optimal policy for the sefr;
cation policies based on the information obtained from th&o: forall i € G do
learning process. This process is depicted in Fig. 3. 1L Pu; =0
Finding the foresighted policy by solving the MDP may /ICalculate Pu;, the probability
require significantly high computational complexity if the /lthat j unchokesi using 7 ., policy;
number of the associated peers becomes large. Hence, ¥ér forall s; € 5; do
practical implementation of the foresighted resource preci13: if 77 ¢ (s,j)) =1 then
rocation mechanism, it is critical to reduce the number of+ Pu; = Pu; + P(s;);
peers that needs to be considered (see Section IlIl). Thds; orderG in a non-decreasing order of thfeu; values;
this process begins with reducing the set of associateds pedi: if co > |C}| =T then
and then, finds the foresighted resource reciprocatiorcyolil’: e = [C)| =T
7; by maximizing the cumulative discounted expected rewark$: Cf — Cj— < Gr,...,Ge, >,
(Equation 7) in the reduced peer set. 19: return  C;

1) Reducing Associated Peer S@ass discussed, it is impor-
tant for peerj to reduce the set of associated peers to find
while keeping the peers that reciprocate their resourcés wi

higher probability and with higher upload rate in the rediic . .
peer set. Specifically, pegr computes the expected reward(lOOIO (lines 7- 18) that reduces the peer sethpeers in every

. ' iteration. In the loop, the algorithm selects peers with the
K;,; from each peer € C';, defined as smallestk; ; values denoted by (line 8), from the reduced
Ki;=Ri; x Pr(i, ), (9) group of peer<’]. It then obtains policyr; ¢ for the peers in
) G. (line 9). Based o, ¢, it calculates the probabilities for
where R; ; and Pr(i,j) denote the estimated reward frompe peers to be unchoked (lines 10-14). Given the calculated
peeri and the probability of resource reciprocation with peg§ropapility, it removes the, peers with the lowest probability

i, respectively. Based on computéd,;, peer;j reduces ifs to pe unchoked (18). The algorithm runs unél;| = 7' (line
associated peer set by iteratively consider eliminating tl7)_

peers with the smallesk; ; in its associated peer set. The

algorithm for peer set reduction is presented in Algorithm 1 2) Scaling: Scaling of the rewards is considered in cases,

The algorithm computes; ; in (9) for ¢ € C; (lines 3,4). when the number of reciprocation samples is small in com-

Then, the associated peers are ordered based on compptatson to the difference between the highest and the lowest
K, ; (line 5). The peer set reduction is performed in whileipload rates that are expressed in the P2P network.
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C. The Decision Process Section VI), we can verify that the smallestachieves less
The decision process includes two phases: the initiacb'atiﬂucw‘"}“o”_0‘c the reward. Thus, we setto 0.5 + ¢ where
phase and the foresighted phase (see Fig. 4). € = 15- Fig. 5 shows the sampled upload ratés; of a

1) Initialization Phase: Since no information about as-Peeri having 9KB/sec upload bandwidth (that simultaneously
sociated peers is available for a newly joined pgepeer uploads to 4 peers) and the correspondlngly estimated dewar
j begins with adopting the regular BitTorrent mechanisnig.; @ measured by another peer in the network. Clearly, we
(i.e., the tit-for-tat mechanism and the optimistic unolokcan observe less variations of the.; ; in the computation of
mechanism) in the initialization phase. This enables ttrer péhe Tij
to collect information such as the rewards and state tiansit FOr & peeri without reciprocation history, a leecher
probabilities with respect to its associated peers. Dutitig optimistically initializes the information about the renda
phase,j discovers new peers, i.e., downloads from peers fgpd the reciprocation probabilities of its associated qeer
the first time. Oncej’s peer discovery is slowed down (SeeSpecificaIIy, the initial estimated upload rate is set to be
Section V for more details), it replaces the regular Bitgotr the highest upload rat&7"/* that is pre-determined in the
mechanisms with the foresighted resource reciprocatiashme P2P network, i.e.R;; — R/, and the probability of
anism, and operates in the foresighted phase. reciprocation withj is initiated to 1, i.e., Pr(i,j) « L.

2) Foresighted PhaseOnce the foresighted resource reThis optimistic initialization enables newly joined leech to
ciprocation policy is available, peer determines the peerdownload almost immediately. Pegmeeds to keep updating
selection decisions based on the foresighted policy obtairih€ initially assumed reward in every non-reciprocatechéve
from the policy finding process in every rechoke period. Pebir®-» Peerj uploads resources to peewhile peer: does not
j first determines its current stagg and then finds an optimal Upload resources to pegy. When peey estimates the reward
action A; mapped by the policyr;, i.e., A; = m;(S;). A, is for peeri, peerj can assume that (i), ; satisfies
a set of peers that pegrunchokes. Fij(n—1) #5.5(n) 10)

V. IMPLEMENTATION Fij(n) fij(n+1)’

In this section, we discuss the implementation of the foresheren denotes the number of non-reciprocated events. This
sighted resource reciprocation protocol prototype andystumeans that the ratio of the estimated rate of two consecu-
how to determine several design parameters. tive events is an increasing function af This implies the

Our P2P client is implemented based on Enhanced CTorrémdreasing uncertainty about pegs reciprocation behavior.
client, version 3.2 [23]. We enhances the original clierghsu Moreover, (ii)#; j(n) decreases exponentially such that it ap-
that our client can operate iforesighted modewhere it proaches 0 after several attempts, in order to prevent the no
reciprocates its resources based on the proposed foredighéciprocated behavior including free-riding. Thus, a fiow
resource reciprocation mechanism, orégular mode where satisfying (i) and (ii) can have a form, such as
it reciprocates its resources based on the regular Bitfbrre
peer selection mechanisms. We add functionality for the r(n) = B9 x Ry, (11)
foresighted mode to maintain the new protocol requestseMar

- . . wheref(< 1) is a constant angl(n) > 1,Vn > 1 is a function
speu_ﬂcally, we_lmplemented the three different proceisats that grows faster than a linear function. In our implemeatat
are discussed in Section IV.

we use functionr(n) = 0.95%" x R"#*, as the function
A. The Learning Process satisfies properties (i) and (ii) as shown in Fig. 6.

The learning process consists of two methods, the rewaéd
calculation method and the state transition probabilitguda- '
tion method. We now discuss the reward calculation method.AS shown in Section 1V, in every iteration of the policy

1) Reward Calculation Method:The reward calculation finding process, the associated peer set is first reduceddBas
method can be applied differently depending on the assmtiaPn our experiments, we observe that when the reduced size of
peer types: peers with or without reciprocation history. ~ P€er set is more than 7 peers, finding the foresighted syrateg

While calculating the reward of a peer with resource recifequires significant computational complexity. Thus, inr ou
rocation history, obviously the samples®f.; ; will fluctuate implementation, we set the size of the reduced peer set to
over rechoke period time due to P2P network dynamick. i-€.,7 =7 in Algorithm 1.

Because of this ﬂuctua‘[iorULiJ Samp|es may be atypicaL The pOllcy is calculated and holds for up to additional three
Thus, a typical upload rate of a peer with reciprocationdnist rechoke periods, which is determined based on the tradeoff
can be estimated based on weighted average of the sample2éd¢een the time for enough reciprocation and the time for
in (8). This is the estimated reward of pegiobtained from capturing the network dynamics.

peeri. As recent resource reciprocation is considered more .
important than the previous reciprocations, > 0.5. Based C. The Decision Process

on several trials fory such that.5+¢ < o < 1 — ¢ for small The initialization phase and the foresighted phase in the
e > 0, on various sets of our experiments (see more detailsdecision process are implemented as follows.

The Policy Finding Process
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- Initialization Phase:In the initialization phase, peei for optimistic unchokes that are rotated every three reehok
makes peer selection decisions based on the regular Biforrperiods.
mechanisms, as it does not have enough information to calcu-
late the foresighted policy. The leechers determine thathur V1. EXPERIMENTAL EVALUATION
of the initialization phase individually. We study exterssi ~We perform extensive experiments on a controlled testbed,
experiment results, which include both flash crowd scesarith order to evaluate the properties of the proposed protocol
as well as steady state scenarios. In these e_XperimemS'Ahq\/lethodology
number of peers that have not uploaded to pgérom the )
beginning of the downloading process is counted every re-'AfII of our experiments are perfqrmed on the PlanetLab ex-
choke period. Fig. 7 shows the median of the counted numb &nmental platform [24], which utilizes the nodes (mam)ﬁ
of peers collected from all the leechers in the network ovijcated across the globe. We execute all the experiments con
time (rechoke periods) for several experiments of flashvdro Sec“_“?’e'y in time on t_he same set_ of nodes. Unless otherW|s_e
scenarios. The Figure shows that the peer counted valué%c'f'ed’_ the default implementations of leecher and seed |
exponentially decreasing and stabilized fast. Then, pemm regular BitTorrent sy§t.ems are deployed. .
switch from the initialization phase to the foresighted ggha Th_e upload capacmgs of Fhe_ ners are a_rt|f|C|aI_Iy set ac-
In our implementation, a peer counts the number of peersCordlng to the banc_iwu_jth _d|str|but|on .Of typical BitTorfen
without reciprocation history within every rechoke periOCJJe_e_Chers [3]. The d|str|but|pn was estlmated_ base_d on em-
Once the count reduces by one in duration of three recho%ICaI measurements (_)f BitTorrent swarms including more
periods and for two consecutive durations (i.e., six reehol{mln 300,000 unique BitTorrent IPs. Since seygral nodes_are
periods), peer switches to the continuous phase and starf¥! capable to_ matqh t_he t.arget upload capacities detedmne
to adopt the foresighted strategy. Based on our experimerp[)é the bandwidth dlstrlbu_tlon, we scale the upload CaPaC't_y
peers switch from initialization phase to continuous pha d other relevant experimental parame_ter; such as file size
approximately 60 rechoke periods later in the flash-cro 1/20th. However, we have not set limitation on download

scenarios and approximately 36 rechoke periods later in %ndW|dth. . .
steady-state scenarios. However, different network regsti All peers start the download process.s[njultaneously, which
might lead to different durations of the initialization siea emulates a flash crowd scenario. The initial seeds are stayed

. ) connected through the whole experiments. To provide syn-
- Foresighted Phase: . : ! . )
thetic churn with constant capacity, leechers disconneet i

In the foresighted phase, the choking decisions are maglgiately after completion of downloading the entire file,
based on the foresighted policy, in every 10 seconds (asgfy reconnect immediately while requesting the entire file
regular BitTorrent). The selected peers will be unchoked fgyqin This enables our experiments to have the same upload
the entire 10 seconds rechoke period. The minimum numhgl, qyidth distribution during the entire experiment time.
of unchoked peers is 4. The number of unchoked peersypjess otherwise specified, our experiments host 54 Planet-

can increase if (1) the peer that makes the peer selectiat), noges, 50 leechers and 4 seeds with combined capacity
decision does not saturate its upload capacity, or, (2)phead ¢ 158 kp/s serving a 100 MB file.
bandwidth of the peer that makes the peer selection decision

is higher in comparison to most of the peers it interacts witB. Experiment Results: Performance of Leechers in Network
We compare the performance of our protocol to the pefithout Free-Riders

formance of the regular BitTorrent implemented with the We compare a system consisting of all leechers adopting

Enhanced CTorrent code. The minimum number of unchocktee regular BitTorrent protocol, to a system consisting of

slots in the regular BitTorrent implementation is 4. The them all leechers adopting the proposed protocol based on the

of slots can increase if a peer’s upload capacity is notatgdr foresighted strategy. In this section, we assume that there

In this implementation, one unchoke slot is always reservedno free-rider in the networks. Fig. 8 shows the download
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Fig. 8. Download completion time for leechers Fig. 10. download rate vs. upload rate
completion time of leechers. For each group of leechersigavi Lo FreeRuespownoadTine
. . ) O Foresighted Strateg
the same upload capacity, separate boxplots are depicid [2
for the different scenarios. The top and the bottom of the * on |
boxes represent th&sth and the25th percentile sample of 2 — —

download time, respectively, over all 5 runs of the experitae
The markers inside the boxes represent the median, while the
vertical lines extending above and below the boxes reptesen
the maximum and minimum of samples of download time :
within the ranges ofl.5 time the box height from the box !
boarder. Outliers are marked individually witR-* mark. . T -
TThe results show the clear performance difference among Number of Free-Riders in the System

high-capacity leechers, which are the fastest 20% leecheds

low-capacity leechers, which are the slowest 80% leechers.
High-capacity leechers can significantly improve their dew
load completion time — leechers having the upload capa€ity
at least 18kB/sec improve their download completion time
up to 33% in median. Unlike in the regular BitTorrent syste
where leechers determine their peer selection decisiosedb
on the myopic tit-for-tat that uses only the last reciprarat
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Fig. 11. Download completion time for free-riders

rotocol suffers from unfairness particularly for high aajty
gechers. In Fig. 10, we compare the upload rates and the
n?:tverage download rates of the leechers. The ratio of these
Qalues can indicate the degree of fairness in the system.
. . . The results in Fig. 10 show that fairness is improved as the
history, the leechers adopting the foresighted stratedgrde leechers adopt the foresighted strategy, since high-itgpac

mine thelr_peer selection decisions basgd on the Iong—tg SBchers increased their download rate getting closerdo th
history. This enables the leechers to estimate the behawa load rate, in spite of the restriction of limited seedsloagl

of their associated peers more accgrately. Moreover, Sfi e. On the other hand, in the system where leecher adopts
part of the peer selection dec_|5|ons_ IS ra”d"”?!y de_termm foresighted strategy, the download rates of low-ca&paci

in the _regular BitTorrent, there 'S a high pr_obablhty thagh leechers decrease, getting close by at 6%t to their upload
capacity leechers need to reciprocate with the IOW'CapaCf'E\tes, compare to the regular BitTorrent system. Howeler, a

Ieec_h_e 's [3]. quey_e r, the randomly-determined peer S’.'ehaCtthe peers that are slowed down by the foresighted stratégy st
decisions are significantly reduced in the proposed apmoaﬁownload faster than their upload rate

as the random decisions are taken only in the initialization
phase or in order to collect the reciprocation history of lyewC. Experiment Results: Performance of Leechers in Network
joined peers. As a result, the high-capacity leechers asere with Free-Riders
the pr_obability to reciprocate resources with the othehhig |, this section, we investigate how effectively the progbse
capacity leechers. protocol can prevent selfish behaviors such as free-ridings
This is confirmed in the results of Fig. 9, which shows thRlote that the foresighted strategy shows a similar perfamea
unchoking percentage among &% high-capacity leechers, for the leechers that upload their content in the network tha
comparing the two different systems. It is clearly observedcludes free-riders (i.e., shows the improved fairness,).e
that the collaboration among high-capacity leechers ivgB0 Hence, in this section, our focus is on studying how the free-
when leechers adopt the foresighted strategy. Thus, we ¢gfers are punished due to their selfish behaviors. Fig. tvsh
conclude that the foresighted strategy improves the inentthe time that the free-riders complete downloading 100MB
mechanisms in BitTorrent networks: as a leecher contributle in a network consists of 50 contributing leechers, and
more to the network, it achieves higher download rate. increasing number of free-riders (i.e., 5, 10, and 15 free-
Recent studies [3]-[5], [15] show that the regular BitTatre riders). It compares the results of the foresighted styateg



UCLA/CSD TR-10-0014

Percenrage of Upload Given to Free-Rider

@

@

IS

w

+

Percentage

L=

N

-

s

=

|
|
.

O Foresighted Strategy
©  Regular BitTorrent

0
+ ~
- T O
T I
.

- |
s

15

consistent with other existing works such as [3], [5], [12]]
the choking mechanism in BitTorrent may fail to attain faiss
for a realistic swarms. Fagt al. [28] characterized the design
space of BitTorrent-like protocols capturing the fundataén
tradeoff between performance and fairness. We also stuzly su
tradeoff and show that the foresighted strategy improves th
fairness in the system for the cost of reduced download odtes
low-capacity leechers. This encourages leechers to boibdri
more resources (i.e., maximize their upload rate).

Other researchers have studied the feasibility of freigid

5 10
Number of Free-Riders in the System

behavior, Shneidmaet al. [29] showed that it is possible

to free-ride in BitTorrent systems. They identified forms of
strategic manipulation that are based on Sybil attacks and
uploading garbage data. Liogkatal. [8] implemented three

. ) _exploits that allow free-riders to obtain higher downloates
system to the regular BitTorrent system. The Figure confirmg e, specific circumstances. Lochedral. [9] with BitThief

that the foresighted_ strategy gnables the Ieeghers totietiye extended this work by showing that free-riders can achieve
penalize the free-riders, as it takes longer time for the-frey;par qownload rate, even in the absence of seeds. Sipilarl
riders to complete their downloads (requires 8%-20% MOEgjianoset al. [10] showed that free-rider that can maintain
tw_ne as measured by the median, in comparison to the reglﬁa\’arger-than-normal view of the system has much higher
BitTorrent protocol). . probability to receive data from seeds and via optimistic
When leechers adopt the foresighted strategy, they cgRchoke. Our protocol replaces the optimistic unchokes, th
efficiently capture the selfish behavior of the free-riderg,,st important vulnerability identified in these studiesthw
Thus, they unchoke the free-riders with a significantly lowgy,o foresighted policy based unchokes.
probability. Hence, the free-riders can download theirteoh  E5irness in BitTorrent systems was studied as well. 6o
mainly from seeds not from the leechers. The results showngn 51 showed the lack of fairmess in BitTorrent systems. Riate
Fig. 12 also confirm th:?\t the leechers m_the regular BitTarreq 4 [3], observed the presence of significant altruism in
system upload approximately 2.8-3.7 times more data 10 tB@torrent, where peers make contributions that do notdlye
free-riders compared to the leechers in the system whege, o e their performance. They proposed a new choking
foresighted strategy is adopted. This also shows that te Rgachanism that reallocates upload bandwidth to maximize
networks consist of the leechers adopting the foreS|ghtﬁgerS, download rates. Izhak-Ratzin in [15] identified the

strategy are more robust to the selfish behaviors of peens t%tential of significant different between leecher's uploa

the networks operating with the regular BitTorrent proloco,,q qownload rates and proposed the Buddy protocol that

For example, in the network with 15 free-riders, the leesheg, 5iches peers with similar bandwidth. Legetial. [6] studied
in the regular BitTorrent systems upload 4.5% of their tOt%Ilustering of peers having similar upload bandwidth. They
upload capacity to free-riders, while they only upload 1.6 qerved that when the seed is underprovisioned, all pesds t
their upload capacity in the foresighted strategy system. 4 complete their downloads approximately at the same time,
Therefore, our experiment results confirm that the for‘?égardless of their upload rates. Moreover, high-capgeiars
sighted strategy provides more incentives for leechers iqgist the seed to disseminate data to low-capacity pekis. T
maximize their upload rate by enabling the leechers to diSCO .4y happen because the tit-for-tat strategy is based ot shor
age non-cooperative behaviors such as free-riding, iMg®0\erm history. A peer can benefit from the tit-for-tat strateg
fairness, and enhances the robustness of the network. only if it can continuously upload pieces and as long as it
receives pieces of interest in return. Piatgkal. [7] showed
that this is not always possible as peers can have no piece
Extensive research has focused on modeling and analyziogoffer. Our work also considers the unfairness in BitTotre
the performance of the BitTorrent systems, since the magstems, and shows that the proposed approach can improve
mechanisms and the design rationale of the BitTorrent pobto the fairness by using a long-term history based strategy.
first described [2]. In order to reduce free-riding and encourage collaboration
Qiu and Srikant [26] studied a fluid analytical model of/arious reputation systems have been proposed. Payment sys
BitTorrent systems. They analytically studied the chokingms (e.g., [30], [31]) which enables peers to earn credits
mechanism and how it affects the peer performance. Thagcording to their uploads to other peers have been proposed
showed that the optimistic unchoke mechanism may alladowever, in practice these systems require a centralizgty en
free-riding. They also claimed that the system with tit-forto prevent cheating, and thus, they have arguably scaiabili
tat strategy eventually converges to a Nash equilibriumreshdimitation. To overcome such weaknesses in payment systems
fairness is achieved and all peers download at their uploaarious design of reputation systems has been proposed (e.g
capacities. However, as shown in our results, which are [if], [11]-[13], [32]). In these systems, peers can make @tk

Fig. 12. Percentage of free-riders’ download from contiity leechers

VII. RELATED WORK
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decisions base on private history as well as globally shargd] M. Bowling and M. Veloso, “Rational and convergent leiag in
history. However, these reputation systems require signifi ~Stochastic games,” Master's thesis, Seventeenth IntenaatJoint Con-

.. head . in th lobal hi ference on Artificial Intelligence (IJCAI), 2001.
cant communication overneads to maintain the globa WStO[‘lg] J. Hu and P. Wellman, “Multiagent reinforcement leamitheorectical

Moreover, there is no guarantee that each peer expresses theframework and an algorithm”
same behavior to different peers with different attributes [20] R. G. Gallager, “Discrete stochastic processes,” 1996

.. . . . . [21] L. S. Shapley, “Stochastic games,” vol. 39, 1095-11Pfceedings of
addition, all these systems aim to maximize the 'mmedla?e the National Academy of Sciences of the United States of Acaer

utility but not the long-term utility, which can show only 1953.

suboptimal performance. To the best of our knowledge, we dfgl H. Park and M. van der Schaar, "A framework for foresgghresource
reciprocation in P2P networkslEEE Trans. Multimediavol. 11, no. 1,

the first to propose the foresighted strategy that can refifee pp. 101-116, Jan. 2009.
existing mechanisms deployed in BitTorrent protocol, whil[23] http://iwww.rahul.net/dholmes/ctorrent, “Enhancgdiorrent.”
maximizing long-term utility of participating leechers. [24] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. idu

. . L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak, “@ieg
Finally, the theoretical aspects of the MDP-based fore- System Support for Planetary-Scale Network ServicesN&DI'04

sighted strategy are discussed in our prior work [22]. Thegs] J. W. T. Robert McGill and W. A. Larsen, “Variations of bglots,”
results motivate us to design the resource reciprocaticchme __ The American Statisticianvol. 32, pp. 12-16, 1978.

. . L 26] D. Qiu and R. Srikant, “Modeling and Performance Anay®f
anism that replaces the tit-for-tat and optimistic uncholle] BitTerrent-Like Peer-to-Peer Networgks" BIGCOMM04 4

mechanisms that exist in BitTorrent. [27] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharje&ittorrent is
an auction: analyzing and improving bittorrent’s inceesy Sigcomm
VIII. CONCLUSION 2008.

) ) _ [28] B.Fan, D.-M. Chiu, and J. C. Lui, “The Delicate Tradewffi BitTorrent-
In this paper, we propose the foresighted resource recipro- like File Sharing Protocol Design,” ifCNP, 2006.
i ; A iie [29] J. Shneidman and D. C. Parkes, “Rationality and Se#rbst in Peer
cation mechamsm to re_plac_e the tit-for-tat and the optimis 1o Peer Networks,” iHPTPS 2003
unchoke mechanisms n BltTorrerjt. The_ pro.posed strate@y) B. wilcox-O'Hearn, “Experiences Deploying A Largee Emergent
enables the peers to utilize the reciprocation historyh ghat Network,” in IPTPS 2002. _
they can efficiently capture the behaviors of their assediat[31l V- Vishnumurthy, S. Chandrakumar, and E. G. Sirer, "KAR: A

. . Secure Economic Framework for Peer-to-Peer Resource rgtiain
peers. Hence, the peers can improve their performance. Our papgcon 2003.

experiment results show that the proposed protocol imsrov@2] Qiao Lian, Yu Peng, Mao Yang, Zheng Zhang, Yafei Dai, &i@bming
the fairness. thus provides more incentives to collabpeatd Li , “Robust incentives via multi-level tit-for-tat,” inlPTPS 2006.
enhances the robustness of the P2P networks by effectively

discouraging free-riding.
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