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Abstract

Inspired by the biological entities’ ability to achieve reciprocity in the course of evolution, this paper

considers a conjecture-based distributed learning approach that enables autonomous nodes to indepen-

dently optimize their transmission probabilities in random access networks. We model the interaction

among multiple self-interested nodes as a game. It is well-known that the Nash equilibria in this game

result in zero throughput for all the nodes if they take myopic best-response, thereby leading to a

network collapse. This paper enables nodes to behave as intelligent entities which can proactively gather

information, form internal conjectures on how their competitors would react to their actions, and update

their beliefs according to their local observations. In this way, nodes are capable to autonomously “learn”

the behavior of their competitors, optimize their own actions, and eventually cultivate reciprocity in the

random access network. To characterize the steady-state outcome of this “evolution”, the conjectural

equilibrium is introduced. Inspired by the biological phenomena of “derivative action” and “gradient

dynamics”, two distributed conjecture-based action update mechanisms are proposed to stabilize the

random access network. The sufficient conditions that guarantee the proposed conjecture-based learning

algorithms to converge are derived. Moreover, it is analytically shown that all the achievable operating

points in the throughput region are essentially stable conjectural equilibria corresponding to different

conjectures. We also investigate how the conjectural equilibrium can be selected in heterogeneous

networks and how the proposed methods can be extended to ad-hoc networks. Numerical simulations

verify that the system performance significantly outperforms existing protocols, such as IEEE 802.11

Distributed Coordination Function (DCF) protocol and priority-based fair medium access control (P-

MAC) protocol, in terms of throughput, fairness, convergence, and stability.
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I. INTRODUCTION

Multi-user communication systems represent competitive environments, where networked devices com-

pete for the limited available resources and wireless spectrum. Most of these devices are autonomous, and

must adapt to the surrounding environment in a totally distributed and unsupervised manner. Recently, a

number of emerging approaches have been considered to better understand, analyze, and characterize the

dynamics of multi-user interactions among communication devices using biologically-inspired methods

[1]- [3]. The scientific rationale for this is that, as communication networks expand in size, the network

“entities” grow in their diversity and ability to gather and process information, and hence, networks will

increasingly come to resemble the models of interaction and self-organization of biological systems.

It is well-known that many biological species exhibit various levels of learning abilities, which enables

them to survive and evolve in the process of natural selection [4]- [6]. In particular, game theory has been

used for a long time as a descriptive tool for characterizing the interaction of biological agents learning

to improve their utility, e.g. the chance of “survival” for the selfish genes or organisms [4] [5]. Various

learning models have been developed, largely in response to observations by biologists about animal and

human behavior [4] [6]. Several particular dynamic adjustment processes have received specific attention

in the theory of learning and evolution. For example, replicator dynamics models how the share of

the population using a certain survival strategy grows at a rate proportional to that strategy’s current

payoff. In the partial best response dynamics, a fixed portion of the population switches during each time

period from their current action to a best response to the aggregate statistic of the population play in

the previous period. As a result, the cooperative or altruistic behavior may be favored and reciprocity is

therefore established in the course of evolution [7].

Several learning models have been applied to solve multi-user interaction problems in both wireline

and wireless network settings [1] [8]- [10]. For instance, appropriate learning solutions are studied in

distributed environments consisting of agents with very limited information about their opponents, such as

the Internet [8]. A class of no-regret learning algorithms is proposed in the stochastic game framework to

enable cognitive radio devices to learn from the environment and efficiently utilize the spectrum resource

[1]. A reinforcement learning algorithm is proposed in the repeated game setting to design power control

in wireless ad-hoc networks [9], where it is shown that the learning dynamics eventually converge to

Nash equilibrium (NE) and achieve satisfactory performance. A novel learning approach is proposed for

wireless users to dynamically and efficiently share spectrum resources by considering the time-varying

properties of their traffic and channel conditions [10].
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This paper is concerned with developing distributed learning mechanisms in random access communi-

cation networks from not only the biological, but also the game-theoretic perspective. It is well-known that

myopic selfish behavior is detrimental in random access communication networks [14]. To avoid a network

collapse and encourage cooperation, we adopt the conjecture-based model introduced by Wellman and

others [18] [19] and enable the cognitive communication devices to build belief models about how their

competitors’ reactions vary in response to their own action changes. The belief functions of the wireless

devices are inspired by the evolutionary biological concept of reciprocity, which refers to interaction

mechanisms in which the emergence of cooperative behavior is favored by the probability of future mutual

interactions [5] [7]. Specifically, by deploying such a behavior model, devices will no longer adopt myopic,

selfish, behaviors, but rather they will form beliefs about how their actions will influence the responses

of their competitors and, based on these beliefs, they will try to maximize their own welfare. The steady

state of such a play among belief-forming devices can be characterized as a conjectural equilibria (CE).

At the equilibrium, devices compensate for their lack of information by forming an internal representation

of the opponents’ behavior and preferences, and using these “conjectured responses” in their personal

optimization program [19]. More importantly, we show that the reciprocity among these self-interested

devices can be sustained.

In particular, the main contributions of this paper are as follows. First, to cultivate cooperation in random

access networks, we enable self-interested autonomous nodes to form independent linear beliefs about

how their rival actions vary as a function of their own actions. Inspired by two biological phenomena,

namely “derivative action” in biological motor control system [20] [21] and “gradient dynamics” in

biological mutation [22]- [24], we design two simple distributed learning algorithms in which all the

nodes’ beliefs and actions will be revised by observing the outcomes of past mutual interaction over

time. Both conjecture-based algorithms require little information exchange among different nodes and

the internal computation for each node is very simple. For both algorithms, we investigate the stability of

different operating points and derive sufficient conditions that guarantee their global convergence, thereby

establishing the connection between the dynamic belief update procedures and the steady-state CE. We

prove that all the operating points in the throughput region are stable CE and reciprocity can be eventually

sustained via the proposed bio-inspired evolution. We also provide an engineering interpretation of the

proposed bio-inspired design to clarify the similarities and differences between the proposed algorithms

and existing protocols, e.g. the IEEE 802.11 DCF.

Second, we investigate the relationship between the parameter initialization of beliefs and Pareto-

efficiency of the achieved CE. In the economic market context, it has been shown that adjustment processes
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based on conjectures and individual optimization may sometimes be driven to Pareto-optimality [25]. To

the best of our knowledge, this is the first attempt in investigating the Pareto efficiency of the conjecture-

based approach in communication networks. Importantly, it is shown that, regardless of the number of

nodes, there always exist certain belief configurations such that the proposed distributed bio-inspired

learning algorithms can operate arbitrarily close to the Pareto boundary of the throughput region while

approximately maintaining the weighted fairness across the entire network. Our investigation provides

useful insights that help to define convergent dynamic adaptation schemes that are apt to drive distributed

random access networks towards efficient, stable, and fair configurations.

The rest of this paper is organized as follows. Section II presents the system model of random access

networks, reviews the existing game theoretic solutions, and introduces the concept of CE. Based on

the intuition gained from “derivative action” and “gradient dynamics”, Section III develops two simple

distributed learning algorithms in which nodes form dynamic conjectures and optimize their actions

based on their conjectures. The stability of different CE and the condition of global convergence are

established. This section also shows that nodes’ conjectures can be configured to stably operate at any

point that is arbitrarily close to the Pareto frontier in throughput region. Section IV addresses the topics

of equilibrium selection in heterogeneous networks and presents possible extension to ad-hoc networks.

Numerical simulations are provided in Section V to compare the proposed algorithms with the IEEE

802.11 DCF protocol and P-MAC protocol. Conclusions are drawn in Section VI.

II. SYSTEM DESCRIPTION AND CONJECTURAL EQUILIBRIUM

In this section, we describe the system model of random access networks and define the investigated

random access game. We also discuss the existing game-theoretic solutions and introduce the concept of

conjectural equilibrium.

A. System Model of Random Access Networks

Following [12] [13], we model the interaction among multiple autonomous wireless nodes in random

access networks as a random access game.

As shown in Fig. 1, consider a set K = {1, 2, . . . , K} of wireless nodes and each node represents a

transmitter-receiver pair (link). We define Txk as the transmitter node of link k and Rxk as the receiver

node of link k. We first assume a single-cell wireless network, where every node can hear every other

node in the network, and we will address the ad-hoc network scenario in Section IV.B. The system

operates in discrete time with evenly spaced time slots [30] [33]. We assume that all nodes always have
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a data packet to transmit at each time slot (i.e. we investigate the saturated traffic scenario1), and the

network is noise free and packet loss occurs only due to collision. The action of a node in this game is

to select its transmission probability and a node k will independently attempt transmission of a packet

with transmit probability pk. The action set available to node k is Pk = [0, 1] for all k ∈ K2. Once the

nodes decide their transmission probabilities based on which they transmit their packets, an action profile

is determined. We denote the action profile in the random access game as a vector p = (p1, . . . , pK) in

P = P1 × · · · × PK . Then the throughput of node k is given by3

uk(p) = pk

∏

i∈K\{k}
(1− pi). (1)

To capture the performance tradeoff in the network, the throughput (payoff) region is defined as T =

{(u1(p), . . . , uK(p))| ∃ p ∈ P}. The random access game can be formally defined by the tuple Γ =

〈K, (Pk), (uk)〉 [26]. Denote the transmission probability for all nodes but k by p−k = (p1, . . . , pk−1, pk+1,

. . . , pK). From (1), we can see that node k’s throughput depends not only on its own transmission

probability pk, but also the other nodes’ transmission probabilities p−k.

B. Existing Solutions

The throughput tradeoff and stability of random access networks have been extensively studied from the

game theoretic perspective [11]- [17]. This subsection briefly reviews these existing results and highlights

the advantage and disadvantage of different approaches.

In the random access game, one of the most investigated problems is whether or not a Nash equilibrium

exists. The definition of Nash equilibrium is given as follows [26].

Definition 1: A profile p of actions constitutes a Nash equilibrium of Γ if uk(pk,p−k) ≥ uk(p′k,p−k)

for all p′k ∈ Pk and k ∈ K.

The NE of the investigated random access game has been addressed in the similar context of CSMA/CA

networks where selfish nodes deliberately control their random deferment by altering their contention

1This paper focuses on the saturated system because we are interested in throughput maximization. The analysis can be

extended to investigate the non-saturated networks where the incoming packets of the individual nodes’ queues arrive at finite

rates.
2The action set can be alternatively defined to be Pk = [Pmin

k , Pmax
k ] and the analysis in this paper still applies.

3This throughput model assumes that time is slotted and all packets are of equal length. We use this model for theoretic

analysis. The throughput of the scenarios in which packet lengths are not equal, e.g. the IEEE 802.11 DCF, will be addressed

in Section V.
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windows [14]. Specifically, the transmission probability pk in our model can be related to the contention

window CWk in the CSMA/CA protocol, where pk = 2
1+CWk

. It has been shown in [14] that at the

NE, at least one selfish node will set CWk = 1 (i.e. always transmit). If more than one selfish node sets

its contention window to 1, it will cause zero throughput for all the nodes in the system. This kind of

result is known as the tragedy of the commons. We can see that, myopic selfish behavior is detrimental in

random access scenarios and novel mechanisms are required to encourage cooperative behavior among

the self-interested devices. In addition, the existence of and convergence to the NE in random access

games have been studied also in other scenarios, where individual nodes have utility functions that are

different from (1) [11] [12]. For example, the nodes in [11] adjust their transmission probabilities in

an attempt to attain their desired throughputs. A local utility function is found for exponential backoff-

based MAC protocols, based on which these protocols can be reverse-engineered in order to stabilize the

network [12]. However, due to the inadequate coordination or feedback mechanism in these protocols,

Pareto optimality of the throughput performance cannot be guaranteed.

Several recent works also investigate how to design new distributed algorithms that provably converge to

the Pareto boundary of the network throughput region [14]- [16]. A distributed protocol is proposed in [14]

to guide multiple selfish nodes to a Pareto-optimal NE by including penalties into their utility functions.

However, the penalties must be carefully chosen. In [15], the utility maximization is solved using the

dual decomposition technique by enabling nodes to cooperatively exchange coordination information

among each other. Furthermore, it is shown in [16] that network utility maximization in random access

networks can be achieved without real-time message passing among nodes. The key idea is to estimate

the other nodes’ transmission probabilities from local observations, which in fact increases the internal

computational overhead of individual nodes.

As discussed before, the goal of this paper is to design a simple distributed random access algorithm

that requires limited information exchanges among nodes and also stabilizes the entire network. More

importantly, this algorithm should be capable of achieving high efficiency and of differentiating among

heterogeneous nodes carrying various traffic classes with different quality of service requirements. As we

will show later, the game-theoretic concept of conjectural equilibrium provides such an elegant solution.

C. Conjectural Equilibrium

In game-theoretic analysis, conclusions about the reached equilibria are based on assumptions about

what knowledge the players possess. For example, the standard NE strategy assumes that every player

believes that the other players’ actions will not change at NE. Therefore, it chooses to myopically



7

maximize its immediate payoff [26]. Therefore, the players operating at equilibrium can be viewed as

decision makers behaving optimally with respect to their beliefs about the strategies of other players.

To rigorously define CE, we need to include two new elements S and s and, based on this, reformulate

the random access game Γ′ =
(
K, (Pk), (uk), (Sk), (sk)

)
[18]. S = ×k∈KSk is the state space, where Sk

is the part of the state relevant to the node k. Specifically, the state in the random access game is defined

as the contention probability that nodes experience. The utility function uk is a map from the nodes’

state space to real numbers, uk : Sk × Pk → R. The state determination function s = ×k∈Ksk maps

joint action to state with each component sk : P → Sk. Each node cannot directly observe the actions

(transmission probabilities) chosen by the others, and each node has some belief about the state that

would result from performing its available actions. The belief function s̃k is defined to be s̃k : Pk → Sk

such that s̃k(pk) represents the state that node k believes it would result in if it selects action pk . Notice

that the beliefs are not expressed in terms of other nodes’ actions and preferences, and the multi-user

coupling in these beliefs is captured directly by individual nodes forming conjectures of the effects of

their own actions. Moreover, each node chooses the action pk ∈ Pk if it believes that this action will

maximize its utility.

Definition 2: In the game Γ′ defined above, a configuration of belief functions (s̃∗1, . . . , s̃
∗
K) and a joint

action p∗ = (p∗1, . . . , p
∗
K) constitute a conjectural equilibrium, if for each k ∈ K,

s̃∗k(p
∗
k) = sk(p∗1, . . . , p

∗
K) and p∗k = arg max

pk∈Pk

uk(s̃∗k(pk), pk).

From the above definition, we can see that, at CE, all nodes’ expectations based on their beliefs are

realized and each node behaves optimally according to its expectation. In other words, nodes’ beliefs are

consistent with the outcome of the play and they behave optimally with respect to their beliefs. The key

challenges are how to configure the belief functions such that reciprocal behavior is encouraged and how

to design the evolution rules such that the network can dynamically converge to a CE having satisfactory

performance. Section III provides bio-inspired solutions for these problems in random access games.

III. DISTRIBUTED BIO-INSPIRED LEARNING

In this section, to promote reciprocity, we design a prescribed rule for each node to configure its

belief about its expected contention of the wireless network as a linear function of its own transmission

probability. It is shown that all the achievable operating points in the throughput region T are CE by

deploying these belief functions. Furthermore, inspired by the biological mechanisms “derivative action”

and “gradient dynamics”, we propose two distributed learning algorithms for these nodes to dynamically
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achieve the CE. We provide the sufficient conditions that guarantee the stability and convergence of

the CE. We also discuss the similarities and differences between these bio-inspired algorithms and the

existing well-known protocols. Finally, it is proven that any Pareto-inefficient operating point is a stable

CE, i.e. we can approach arbitrarily close to the Pareto frontier of the throughput region T .

A. Individual Behavior

As discussed before, both the state space and belief functions need to be defined in order to investigate

the existence of CE. In the random access game, we define the state sk =
∏

i∈K\{k}(1 − pi) to be the

contention measure signal representing the probability that all nodes except node k do not transmit. This

is because besides its own transmission probability, its throughput only depends on the probability that

the remaining nodes do not transmit. We can see that state sk indicates the aggregate effects of the other

nodes’ joint actions on node k’s payoff. In practice, it is hard for wireless nodes to compute the exact

transmission probabilities of their opponents [16]. Therefore, we assume that sk is the only information

that node k has about the contention level of the entire network, because it is a metric that node k can

easily compute based on local observations. Specifically, from user k’s viewpoint, the probabilities of

experiencing an idle time slot is pidle
k = (1− pk)sk. Let nidle

k denote the number of time slots between

any two consecutive idle time slots. nidle
k has an independent identically distributed geometric distribution

with probability pidle
k . Therefore, we have pidle

k = 1/(1 + n̄idle
k ), where n̄idle

k is the mean value of nidle
k

and can be locally estimated by node k through its observation of the channel contention history. Since

node k knows its own transmission probability pk, it can estimate sk using sk = 1/(1 + n̄idle
k )(1− pk).

Notice that the action available to node k is to choose the transmission probability pk ∈ Pk. By the

definition of belief function, we need to express the expected contention measure s̃k as a function of its

own transmission probability pk. The simplest approach is to deploy linear belief models, i.e. node k’s

belief function takes the form

s̃k(pk) = s̄k − ak(pk − p̄k), (2)

for k ∈ K. The values of s̄k and p̄k are specific states and actions, called reference points [25] and ak

is a positive scalar. In other words, node k assumes that other nodes will observe its deviation from

its reference point p̄k and the aggregate contention probability deviates from the referent point s̄k by

a quantity proportional to the deviation of pk − p̄k. How to configure s̄k, p̄k, and ak will be addressed

in the rest of this paper. The reasons why we focus on the linear beliefs represented in (2) are two-

fold. First, the linear form represents the simplest model based on which a user can model the impact
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of its environment. As we will show later in Section III-E, building and optimizing over such simple

beliefs is sufficient for the network to achieve almost any operating point in the throughput region as a

stable CE. Second, the conjecture functions deployed by the wireless users are based on the concept of

reciprocity [5] [7], which was developed in evolutionary biology, and refers to interaction mechanisms in

which the evolution of cooperative behavior is favored by the probability of future mutual interactions.

Similarly, in single-hop wireless networks, the devices repeatedly interact when accessing the channel. If

they disregard the fact that they have a high probability to interact in the future, they will act myopically,

which will lead to a tragedy of commons (the zero-payoff Nash equilibrium). However, if they recognize

that their probability of interacting in the future is high, they will consider their impact on the network

state, which is captured in the belief function by the positive ak.

The goal of node k is to maximize its expected throughput pk ·s̃k(pk) taking into account the conjectures

that it has made about the other nodes. Therefore, the optimization a node needs to solve becomes:

max
pk∈Pk

pk

[
s̄k − ak(pk − p̄k)

]
, (3)

where the second term is the expected contention measure s̃k(pk) if node k transmits with probability pk.

The product of pk and s̃k(pk) gives the expected throughput for pk ∈ Pk. For ak > 0, node k believes that

increasing its transmission probability will increase its experienced contention probability. The optimal

solution of (3) is given by

p∗k = min
{ s̄k

2ak
+

p̄k

2
, 1

}
. (4)

In the following, we first show that forming simple linear beliefs in (2) can cause all the operating

points in the achievable throughput region to be CE.

Theorem 1: All the operating points in the throughput region T are conjectural equilibria.

Proof : For each operating point (τ1, . . . , τK) in the throughput region T , there exists at least a joint

action profile (p∗1, . . . , p
∗
K) ∈ P such that τk = uk(p∗), ∀k ∈ K. We consider setting the parameters in

the belief functions to be:

a∗k =

∏
i∈K\{k}(1− p∗i )

p∗k
. (5)

It is easy to check that, if the reference points are s̄k =
∏

i∈K\{k}(1− p∗i ), p̄k = p∗k, we have s̃k(p∗k) =

sk(p∗1, . . . , p
∗
K) and p∗k = arg maxpk∈Pk

uk(s̃k(pk), pk). Therefore, this configuration of the belief func-

tions and the joint action p∗ = (p∗1, . . . , p
∗
K) constitute the CE that results in the throughput (τ1, . . . , τK).4

4By the definition of CE, the configuration of the linear belief functions is a key part of CE. Since this paper focuses on the

linear belief functions defined in (2), we will simply state the joint action p∗ is a CE hereafter for the ease of presentation.
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¥

Theorem 1 establishes the existence of CE, i.e. for a particular p∗ ∈ P , how to choose the parameters

{s̄k, p̄k, ak}K
k=1 such that p∗ is a CE. However, it neither tells us how these CE can be achieved and

sustained in the dynamic setting nor clarifies how different belief configurations can result in various CE.

In distributed learning scenarios, nodes learn when they modify their conjectures based on their new

observations. Specifically, we first allow the nodes to revise their reference points based on their past

local observations. Let st
k, p

t
k, s̃

t
k, s̄

t
k, p̄

t
k be user k’s state, transmission probability, belief function, and

reference points at stage t5, in which st
k =

∏
i∈K\{k}(1 − pt

i). We propose a simple rule for individual

nodes to update their reference points. At stage t, node k set its s̄t
k and p̄t

k to be st−1
k and pt−1

k . In other

words, node k’s conjectured utility function at stage t is

ut
k(s̃

t
k(pk), pk) = pk

[ ∏

i∈K\{k}
(1− pt−1

i )− ak(pk − pt−1
k )

]
. (6)

The remainder of this paper will investigate the dynamic properties of the resulting operating points and

the performance trade-off among multiple competing nodes. In particular, for fixed {ak}K
k=1, Sections

III-B and C will embed the above individual optimization scheme in two different distributed learning

processes in which all the nodes update their transmission probabilities over time. Section III-E further

allows individual nodes adaptively update their parameters {ak}K
k=1 such that desired efficiency can be

attained. For given {ak}K
k=1, Section IV-A will derive a quantitative description of the resulting CE p∗.

B. A Best Response Learning Algorithm

Our first algorithm in establishing reciprocity through a evolution process is inspired by the “derivative

action”, which is a key component of biological motor control system models, e.g. cerebellar control over

arm, hand, truncal, and leg movements [20] [21]. Specifically, during limb movements, high frequency

differential (velocity-like) signals after filtering due to biological sensors are attributed to lateral cerebel-

lum as part of the input for cerebellar control. The classical control interpretation of “derivative action” is

that the first-order derivative term serves as a short term prediction of the measured zero-order variable.

For example, in a swing leg control, the velocity-like signals enable a cerebrocerebellar channel to better

5This paper assumes the persistence mechanism for contention resolution except in Section III.D. In the persistence mechanism,

each wireless node maintains a persistence probability and accesses the channel with this probability [37]. A stage contains

multiple time slots. The nodes estimate the contention level in the network and update their persistence probabilities in the

”stage-by-stage” manner. The superscript t in this paper represents the numbering of the stages unless specified.
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locate the ankle (or foot) position in front of the hip position during the swing phase. The conjecture-

based approach is very similar in spirit with the aforementioned biological motor control models and

the standard proportional integral derivative (PID) controllers in engineered systems [38]. In particular,

the derivative term is substituted by a node’s internal belief of how its own action will impact the other

nodes’ behavior. Our first learning algorithm adopts the simplest update mechanism in which each node

adjusts its transmission probability using the best response that maximizes its conjectured utility function

(6). Therefore, at stage t, node k chooses a transmission probability

pt
k = arg max

pk∈Pk

ut
k(s̃

t
k(pk), pk) = min

{pt−1
k

2
+

∏
i∈K\{k}(1− pt−1

i )

2ak
, 1

}
. (7)

In this regard, the use of “derivative action” by an agent can be interpreted as using the best response to

the forecasted effect of all the opponents’ strategies.

Algorithm 1 : A Distributed Best Response Learning Algorithm for Random Access
1: Initialize: t = 0, the transmission probability p0

k ∈ [0, 1], and the parameter ak > 0 in node k’s belief

function, ∀k ∈ K.

2: procedure

3: Locally at each node k, iterate through t:

4: Set t ← t + 1.

5: for all k ∈ K do

6: At stage t, pt
k ← min{pt−1

k /2 +
∏

i∈K\{k}(1− pt−1
i )/(2ak), 1}.

7: end for

8: Node k decides if it will transmit data with a probability pt
k (or equivalently, maintain a window

size of CW t
k = 2/pt

k − 1) for all the time slots during stage t.

9: end procedure

The detailed description of the entire distributed best response learning procedure is summarized in

Algorithm 1 and it is also pictorially illustrated in Fig. 2. Next, we are interested in deriving the limiting

behavior, e.g. stability and convergence, of this algorithm. For ease of illustration, the sufficient conditions

for stability and convergence throughout this paper are expressed in terms of {pk}K
k=1 and {ak}K

k=1,

respectively. The mapping from {pk}K
k=1 to {ak}K

k=1 is given in (5) and the mapping from {ak}K
k=1 to

{pk}K
k=1 will be addressed in Section IV-A.

1) Local Stability: Although Theorem 1 indicates that all the points in T are CE, they may not be

necessarily stable. An unstable equilibrium is not desirable, because any small perturbation might cause
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the sequence of iterates to move away from the initial equilibrium. The following theorem describes a

subset in P in which all the points are stable CE.

Theorem 2: For any p∗ = (p∗1, . . . , p
∗
K) ∈ P , if

K∑

k=1

p∗k < 1, or
∑

i∈K\{k}

p∗k
1− p∗i

< 1, ∀k ∈ K, (8)

p∗ is a stable CE for Algorithm 1.

Proof : To analyze the stability of different CE, we consider the Jacobian matrix of the self-mapping

function in (7). Let Jik denote the element at row i and column k of the Jacobian matrix J. If pt−1
k /2 +

∏
i∈K\{k}(1− pt−1

i )/(2ak) ≤ 1, the Jacobian matrix JBR of (7) is defined as:

JBR
ik =

∂pt
i

∂pt−1
k

=





1
2 , if i = k,

− 1
2ai

∏
j∈K\{i,k}(1− pt−1

j ), if i 6= k.
(9)

As proven in Theorem 1, for p∗ = (p∗1, . . . , p
∗
K) ∈ P to be a fixed point of the self-mapping function in

(7), ak must be set to be a∗k =
∏

i∈K\{k}(1− p∗i )/p∗k. It follows that

JBR
ik |p=p∗, a=a∗ =





1
2 , if i = k,

− p∗i
2(1−p∗k) , if i 6= k.

(10)

p∗ is stable if and only if the eigenvalues {λk}K
k=1 of matrix JBR in (10) are all inside the unit circle of

the complex plane, i.e. |λk| < 1,∀k ∈ K.

From Gersgorin circle theorem [27], all the eigenvalues {λk}K
k=1 of JBR are located in the region

K⋃

k=1

{
|λ− JBR

kk | 6
∑

i∈K\{k}
|JBR

ik |
}

and
K⋃

k=1

{
|λ− JBR

kk | 6
∑

i∈K\{k}
|JBR

ki |
}

.

Note that JBR
kk = 1/2, these regions can be further simplified as

K⋃

k=1

{
|λ− 1

2
| 6

∑

i∈K\{k}

p∗i
2(1− p∗k)

}
and

K⋃

k=1

{
|λ− 1

2
| 6

∑

i∈K\{k}

p∗k
2(1− p∗i )

}
.

If either condition in (8) is satisfied, all the eigenvalues of JBR must fall into the region |λ − 1
2 | < 1

2 ,

which is located within the unit circle |λ| < 1. Therefore, p∗ is a stable CE. ¥

Remark 1: p∗k/(1−p∗i ) can be interpreted as the worst case probability that node k occupies the channel

given that node i does not transmit. This metric reflects from node k’s perspective the impact that node i’s

evacuation has on the overall congestion of the channel. Therefore, the sufficient conditions in (8) means

that if the system is not overcrowded from all the nodes’ perspectives, the corresponding CE is stable. We

can see from Theorem 2 that lowering the transmission probabilities helps to stabilize the random access
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network. The system can accommodate a certain degree of individual nodes’ “aggressiveness” while

maintaining the network stability. For example, if a node sends its packets with a probability close to 1,

as long as the other nodes are conservative and they set their transmission probability small enough, the

entire network can still be stabilized. However, if too many “aggressive” nodes with large transmission

probabilities coexist, the system stability may collapse, leading to a tragedy of commons.

2) Global Convergence: Note that Theorem 2 only investigates the stability for different fixed points,

i.e. Algorithm 1 converges to these points when initial values are close enough to them. In addition to

local stability, we are also interested in characterizing the global convergence of Algorithm 1 when using

various ak to initialize the belief function s̃k.

Theorem 3: Regardless of any initial value chosen for {p0
k}K

k=1, if the parameters {ak}K
k=1 in the belief

functions {s̃k}K
k=1 satisfy

∑

i∈K\{k}

1
ai

< 1,∀k ∈ K, (11)

Algorithm 1 converges to a unique CE.

Proof : For ak > 1, the self-mapping function in (7) can be rewritten as

pt
k =

pt−1
k

2
+

∏
i∈K\{k}(1− pt−1

i )

2ak
. (12)

We can prove for Algorithm 1 the uniqueness of and the convergence to CE by showing that function

(12) is a contraction map if the condition in (11) is satisfied.

Let d(·) be the induced distance function by certain vector norm in the Euclidean space. Consider two

sequences of the transmission probability vectors {p0, . . . , pt−1, pt, . . .} and {p̂0, . . . , p̂t−1, p̂t, . . .}. We

have

d(pt, p̂t) = ‖pt − p̂t‖ ≤ ‖JBR‖ · ‖pt−1 − p̂t−1‖ = ‖JBR‖ · d(pt−1, p̂t−1). (13)

The matrix norm used here is induced by the same vector norm. Using ‖·‖1 for the Jacobian matrix of

(12) as given in (10), we have

‖JBR‖1 = max
k∈K

K∑

i=1

|JBR
ik | ≤ 1

2
+

1
2

max
k∈K

∑

i∈K\{k}

1
ai

. (14)

Therefore, if the condition in (11) is satisfied, there exist a constant q ∈ [0, 1) and a positive ε, such that

q = ‖JBR‖1 = 1 − ε < 1 and ‖pt − p̂t‖1 ≤ q‖pt−1 − p̂t−1‖1. From the contraction mapping theorem

[28], the self-mapping function in (7) has a unique fixed point and the sequence {pt}+∞
t=0 converges to

the unique fixed point. ¥
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Remark 2: We can also alternatively derive a sufficient condition using ‖·‖∞ for (13) to be a contraction

map. We have

‖JBR‖∞ = max
k∈K

K∑

i=1

|JBR
ki | ≤

1
2

+
1
2

max
k∈K

K − 1
ak

. (15)

Therefore, if ak > K − 1,∀k ∈ K, Algorithm 1 also globally converges. However, it is easy to verify

that it is a special case of the sufficient condition given by (11). In addition, we can see from (11) that,

if the accumulated “aggressiveness” of the nodes in the entire networks reaches a certain threshold, the

global convergence property may not hold. However, if all the nodes back off adequately by choosing

their algorithm parameters {ak}K
k=1 such that condition (11) is satisfied, Algorithm 1 globally converges.

Remark 3: Under the sufficient condition in (11), by substituting (5) into (11), the limiting points lie

in the set {
p∗ = (p∗1, . . . , p

∗
K)

∣∣∣
∑

i∈K\{k}

p∗i∏
l∈K\{i}(1− p∗l )

< 1,∀k ∈ K
}

. (16)

It is easy to check that this is a subset of {p∗ = (p∗1, . . . , p
∗
K)|∑K

k=1 p∗k < 1} for K > 2, which verifies

the intuition that the set that Algorithm 1 globally converges to should be a subset of the set of locally

stable CE.

C. A Gradient Play Learning Algorithm

The best-response based dynamics may lead to large fluctuations in the entire network, which may

not be desirable if we want to avoid temporary system-wide instability. Therefore, in this subsection, we

propose an alternative learning algorithm inspired by the gradient type dynamics, which has been well

studied in the field of evolutionary biology [22] [23]. For example, in population genetics, the evolutionary

dynamics resulting for a particular mutant’s invasion fitness, i.e. its growth rate, are primarily governed

by the fitness gradient. In other words, the population has a small probability of moving its phenotype [4]

in the direction in which fitness is increasing, and this probability is proportional to the fitness gradient

for possible mutants. This model has also been used to model fluid flow under a pressure gradient or the

motion of organisms towards sites of higher nutrient concentration [24].

Motivated by the gradient dynamics, we consider the gradient play learning algorithm. At each iteration,

each node updates its action gradually in the ascent direction of its conjectured utility function in (6).

Specifically, at stage t, node k chooses its transmission probability according to

pt
k =

[
pt−1

k + γk
∂ut

k(s̃
t
k(pk), pk)
∂pk

∣∣∣∣∣
pk=pt−1

k

]1

0

, (17)
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in which [x]ba means max{min{x, b}, a}. The engineering interpretation of this updating procedure is

that each node will “mutate”, i.e. update its transmission probability, along the gradient direction of

its conjectured utility function. As long as the stepsize γk is small enough, the entire network will

“evolve” smoothly and temporary system-wide instability will not occur. This algorithm also resembles

the technique of exponential smoothing in statistics [39]. In the following, we assume that all nodes use

the same stepsize γk = γ,∀k ∈ K and 0 < pt−1
k < 1. If γ is sufficiently small, substituting the utility

function (6) into (17), we have

pt
k = pt−1

k + γ
{ ∏

i∈K\{k}
(1− pt−1

i )− akp
t−1
k

}
. (18)

The detailed description of the distributed gradient play learning mechanism is summarized in Algorithm

2. As for Algorithm 1, we investigate the stability and convergence of this gradient play learning algorithm.

Algorithm 2 : A Distributed Gradient Play Learning Algorithm for Random Access
1: Initialize: t = 0, stepsize γ, the transmission probability p0

k ∈ [0, 1], and the parameter ak > 0 in

node k’s belief function, ∀k ∈ K.

2: procedure

3: Locally at each node k, iterate through t:

4: Set t ← t + 1.

5: for all k ∈ K do

6: At stage t, pt
k ←

[
pt−1

k + γ
{∏

i∈K\{k}(1− pt−1
i )− akp

t−1
k

}]1

0

.

7: end for

8: Node k decides if it will transmit data with a probability pt
k (or equivalently, maintain a window

size of CW t
k = 2/pt

k − 1) for all the time slots during stage t.

9: end procedure

1) Local Stability: First of all, the following theorem describes a stable CE set in P for Algorithm 2.

Theorem 4: For any p∗ = (p∗1, . . . , p
∗
K) ∈ P , if

K∑

k=1

p∗k < 1, or
∑

i∈K\{k}

p∗k
1− p∗i

< 1, ∀k ∈ K, (19)

and the stepsize γ is sufficiently small, p∗ is a stable CE for Algorithm 2.
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Proof : Consider the Jacobian matrix JGP of the self-mapping function in (18). We have JGP
ik =

∂pt
i/∂pt−1

k . As discussed above, for p∗ = (p∗1, . . . , p
∗
K) ∈ P to be a fixed point of the self-mapping

function in (18), ak must be set to be a∗k =
∏

i∈K\{k}(1− p∗i )/p∗k. It follows that

JGP
ik |p=p∗, a=a∗ =





1− γ/p∗k ·
∏

l∈K\{k}(1− p∗l ), if i = k,

−γ
∏

l∈K\{i,k}(1− p∗l ), if i 6= k.
(20)

p∗ is stable if and only if the eigenvalues {λk}K
k=1 of matrix JGP are all inside the unit circle of the

complex plane, i.e. |λk| < 1,∀k ∈ K. Recall that the spectral radius ρ(J) of a matrix J is the maximal

absolute value of the eigenvalues [27]. Therefore, it is equivalent to prove that ρ(JGP ) < 1.

To a vector www = (w1, · · · , wK) ∈ RK
+ with positive entries, we associate a weighted `∞ norm, defined

as

‖xxx‖www∞ = max
k∈K

|xk|
wk

. (21)

The vector norm ‖ · ‖www∞ induces a matrix norm, defined by

‖A‖www∞ = max
k∈K

1
wk

K∑

i=1

|aki|wi. (22)

According to Proposition A.20 in [31], ρ(JGP ) ≤ ‖JGP ‖www∞. Consider the vector www = (w1, · · · , wK) in

which wk = p∗k(1− p∗k). We have

1
wk

K∑

i=1

|JGP
ki |wi = 1−

γ
∏

l∈K\{k}(1− p∗l )

p∗k
+

∑

i∈K\{k}

γp∗i
∏

l∈K\{k}(1− p∗l )

p∗k(1− p∗k)

= 1−
γ

∏
l∈K\{k}(1− p∗l )

p∗k

[
1−

∑

i∈K\{k}

p∗i
1− p∗k

]
.

(23)

Therefore, if
∑

k∈K p∗k < 1, ∀k ∈ K, there exists some β > 0 such that
∏

l∈K\{k}(1− p∗l )

p∗k

[
1−

∑

i∈K\{k}

p∗i
1− pk

∗]
≥ β, ∀k ∈ K. (24)

If the stepsize γ satisfies 0 < γ < 1/β, we have

‖JGP ‖www∞ = max
k∈K

{
1−

γ
∏

l∈K\{k}(1− p∗l )

p∗k

[
1−

∑

i∈K\{k}

p∗i
1− p∗k

]}
≤ 1− γβ < 1. (25)

Since ρ(JGP ) ≤ ‖JGP ‖www∞ < 1, all the eigenvalues of JGP must fall into the unit circle |λ| < 1. Therefore,

p∗ is a stable CE. Similarly, by choosing www = [1, · · · , 1], we can show that, if

∑

i∈K\{k}

p∗k
1− p∗i

< 1, ∀k ∈ K, (26)

and γ is sufficiently small, p∗ is also stable. ¥
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2) Global Convergence: Similarly as in the previous subsection, we derive in the following theorem

a sufficient condition under which Algorithm 2 globally converges.

Theorem 5: Regardless of any initial value chosen for {p0
k}K

k=1, if the parameters {ak}K
k=1 in the belief

functions {s̃k}K
k=1 satisfy

∑

i∈K\{k}

1
ai

< 1,∀k ∈ K, (27)

and the stepsize γ is sufficiently small, Algorithm 2 converges to a unique CE.

Proof : For the self-mapping function in (18), the elements of its Jacobian matrix JGP satisfy

JGP
ik =





1− γak, if i = k,

−γ
∏

l∈K\{i,k}(1− pl), if i 6= k.
(28)

Consider the induced distance by weighted `∞ norm in the Euclidean space. We have

‖pt − p̂t‖www∞ ≤ ‖JGP ‖www∞ · ‖pt−1 − p̂t−1‖www∞. (29)

Using www = (1/a1, · · · , 1/aK) for (29), we have

‖JGP ‖www∞ = max
k∈K

{
1− γak +

∑

i∈K\{k}

∏

l∈K\{i,k}

γak(1− pl)
ai

}
≤ max

k∈K

{
1− γak

(
1−

∑

i∈K\{k}

1
ai

)}
. (30)

Therefore, if the condition in (27) is satisfied, there exists some β > 0 such that

ak

(
1−

∑

i∈K\{k}

1
ai

)
≥ β, ∀k ∈ K. (31)

If the stepsize γ satisfies 0 < γ < 1/β, we have

‖JGP ‖www∞ ≤ max
k∈K

{
1− γak

(
1−

∑

i∈K\{k}

1
ai

)}
≤ 1− γβ < 1. (32)

Therefore, there exist a constant q ∈ [0, 1) and a positive ε, such that q = ‖JGP ‖www∞ = 1 − ε < 1 and

‖pt− p̂t‖www∞ ≤ q‖pt−1− p̂t−1‖www∞. From the contraction mapping theorem [28], the self-mapping function

in (18) has a unique fixed point and the sequence {pt}+∞
t=0 converges to the unique fixed point. ¥

Remark 4: Compare Theorem 4 and 5 with Theorem 2 and 3. We can see that, given the same target

operating point p or parameters {ak}K
k=1, Algorithm 2 exhibits similar properties in terms of local stability

and global convergence, provided that its stepsize γ is sufficiently small. In other words, the limiting

behavior of these two distinct bio-inspired dynamic mechanisms are similar. However, we need to consider

some design trade-off for both algorithms and choose the desired learning algorithm based on the specific

system requirements about the speed of convergence and the performance fluctuation. Generally speaking,

the best response learning algorithm converges fast, but it may cause temporary large fluctuations during
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the convergence process, which is not desirable for transporting constant-bit-rate applications. On the

other hand, the gradient play learning algorithm with small stepsize will evolve smoothly at the cost of

sacrificing its convergence rate.

D. Alternative Interpretations of the Conjecture-based Learning Algorithms

In this section, we re-interpret the proposed algorithms using the the backoff mechanism model in which

the transmission probabilities change from time slot to time slot [37], which helps us to understand the

key difference between the proposed algorithms and 802.11 DCF. The superscript t in this subsection

represents the numbering of the time slots. We define T t
k and T t

−k as the events that node k transmits

data at time slot t and any node in K\{k} transmits data at time slot t, respectively. If ak > 1, the RHS

of (7) equals to pt−1
k

2 +
∏

i∈K\{k}(1−pt−1
i )

2ak
, and the best response update function in (7) can be rewritten as

pt
k =

1
2

E{pt−1
k 1{T t−1

−k =1}|pt−1}+ 1
2ak

E{1{T t−1
−k =0}1{T t−1

k =0}|pt−1}+1
2
(1+

1
ak

)E{1{T t−1
−k =0}1{T t−1

k =1}|pt−1},
(33)

where 1a is an indicator function of event a taking place, E{a|b} is the expected value of a given b,

E{1{T t−1
k =1}|pt−1} = pt−1

k , and E{1{T t−1
−k =1}|pt−1} = 1 −∏

i∈K\{k}(1 − pt−1
i ). According to (33), we

can provide an alternative interpretation of the best-response update algorithm as follows. Consider the

following update algorithm. At each time slot, if node k observes that any other node attempts to transmit,

i.e. it senses a busy channel, it reduces its transmission probability by a factor 1/2. If no transmission

attempt is made by any node in the system, node k sets its transmission probability to be 1/2ak. Otherwise,

if node k makes a successful transmission, it will transmit with probability 0.5(1 + 1/ak) in the next

time slot. We can see that equation (33) characterizes the expected trajectory of this alternative update

mechanism. Fig. 3 compares this new interpretation with the IEEE 802.11 DCF [12]. We can see that, node

k behaves similarly in the best response algorithm and the IEEE 802.11 DCF if it made a transmission

attempt in the previous time slot, and the fundamental difference between these two protocols is how

node k updates its action given that it did not transmit in the previous time slot. In DCF, pt
k is kept the

same as pt−1
k . However, as we can see from (33), the best response algorithm either performs back-off if

the channel is busy or sets pt
k to be 1/2ak if the channel is free. This can also be intuitively interpreted

from a biological perspective: if the channel is busy, meaning that other competitors are accessing the

resource (transmission opportunity), the node can avoid a confrontation by becoming less aggressive (i.e.

reducing its transmission probability); if on the other hand, the system is idle and the resource is wasted,

the node will consume the resource by increasing its transmission probability to 1/2ak.
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Remark 5: Both Equation (5) and (33) intuitively explain the meaning of the algorithm parameters

{ak}K
k=1. Note that the numerator of (5),

∏
i∈K\{k}(1 − p∗i ), represents the probability that transmitter

k experiences a contention-free environment at p∗. The value of 1/ak, i.e. the ratio between node k’s

transmission probability pk and its contention-free probability, indicates the “aggressiveness” of this

particular node at equilibrium. In addition, according to (33), the transmission probability 1/2ak also

reflects node k’s “aggressiveness” in selecting its transmission probability after it sensed a free channel.

It is straightforward to see the selection of {ak}K
k=1 introduces some trade-off between the stability

and throughput of the networks. First of all, large values of {ak}K
k=1 refrain nodes from transmitting

at a higher channel access probability, and hence, it stabilizes the system at the cost of reducing the

throughput. On the other hand, lowering {ak}K
k=1 increases the nodes’ transmission probability, which

may improve the throughput performance. However, it can cause the conditions in (8) and (19) to fail and

the system becomes unstable. Therefore, the problems which we will investigate in the next subsection

are which part of the throughput region can be achieved with stable CE and how the nodes can adaptively

update their {ak}K
k=1 such that the system can attain efficient and stable operating points.

Before proceeding to the next subsection, similarly as for the best response algorithm, we present an

reinterpretation of the gradient play. Equation (18) can be rewritten as

pt
k = (1− γak)pt−1

k E{1{T t−1
−k =1}|pt−1}+ [pt−1

k + γ(1− akp
t−1
k )]E{1{T t−1

−k =0}|pt−1}. (34)

If ak > 1, the interpretation of (34) is that at each time slot, if node k senses a busy channel, it reduces

its transmission probability by a factor 1− γak, otherwise it increases its transmission probability by an

amount γ(1 − akp
t−1
k ). We can see that, this interpretation of the gradient play learning resembles the

well-known AIMD (Additive Increase Multiplicative Decrease) control algorithm, which has been widely

applied in the context of congestion avoidance in computer networks due to its superior performance in

terms of convergence and efficiency [29].

E. Stability of the Throughput Region

The results in the previous subsections describe the values of {pk}K
k=1 and {ak}K

k=1 for which local

stability and global convergence can be guaranteed in both Algorithm 1 and 2. This subsection directly

investigates for both algorithms the stability of achievable operating points in the throughput region T .

Lemma 6: The Pareto boundary of the throughput region T is the set of all points τττ = (τ1, . . . , τK)

such that τk = pk
∏

i∈K\{k}(1−pi) where p = (p1, . . . , pK) is a vector satisfying p > 0 and
∑

k∈K pk = 1;

and each such τττ is determined by a unique such p.
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Proof : See Theorem 1 in [30]. ¥

Theorem 7: Regardless of the number of nodes in the network, for any Pareto-inefficient operating point

τττ∗ in the throughput region T , there always exists a belief configuration {ak}K
k=1 stabilizing Algorithm

1 and 2, and achieve the throughput τττ∗. If K > 2, any Pareto-optimal operating point {p∗k}K
k=1 in T

that satisfies p∗k > 0,∀k ∈ K is a stable CE for Algorithm 1 and 2.

Proof : From Theorem 2, we know that
∑

k∈K pk < 1 is sufficient to guarantee that the corresponding

CE is stable. Therefore, it is equivalent to check that any Pareto-inefficient operating point τττ∗ can be

achieved with a joint transmission probability p∗ ∈ P satisfying
∑

k∈K p∗k < 1.

Define the throughput region

T (t) = {(u1(p), . . . , uK(p))| ∃ p ∈ P,
∑

k∈K
pk ≤ t}, (35)

in which an additional constraint
∑

k∈K pk ≤ t is imposed. We denote the Pareto boundary of T (t) as

∂T (t) = {τττ | @ τττ ′ ∈ T (t) such that τ ′k ≥ τk, ∀k ∈ K and τ ′k > τk, ∃k ∈ K}. (36)

Following the proof of Lemma 6, we can draw a similar conclusion: all the points on ∂T (t) satisfy
∑

k∈K pk = t. By Lemma 6, ∂T (1) corresponds to the Pareto boundary of T . Note that ∂T (0) = 0. In

other words, varying t from 1 to 0 will cause ∂T (t) to continuously shrink from the Pareto boundary

of the throughput region T to the origin 0. Therefore, for any Pareto inefficient point τττ∗ ∈ T , there

exists 0 ≤ t′ < 1 such that τττ∗ lie on ∂T (t′), i.e. τττ∗ can be achieved with an action profile p∗ satisfying
∑

k∈K p∗k = t < 1.

To prove the Pareto boundary are stable CE when K > 2, we need to show that the eigenvalues

{ξBR
n }N

n=1 of the Jacobian matrices JBR and JGP are all inside the unit circle of the complex plane [28],

i.e. |ξn| < 1,∀n ∈ N . Take the best response dynamics for example. To determine the eigenvalues of
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JBR, we have

det(ξI − JBR) =

∣∣∣∣∣∣∣∣∣∣∣∣

ξ − 1
2

p1

2(1−p2)
. . . p1

2(1−pK)

p2

2(1−p1)
ξ − 1

2 . . . p2

2(1−pK)
...

...
. . .

...
pK

2(1−p1)
pK

2(1−p2)
. . . ξ − 1

2

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

ξ − 1
2

p1

2(1−p2)
. . . p1

2(1−pK)

p2

2(1−p1)
− p2

p1

(
ξ − 1

2

)
ξ − 1

2 − p2

2(1−p2)
. . . 0

...
...

. . .
...

pK

2(1−p1)
− pK

p1

(
ξ − 1

2

)
0 . . . ξ − 1

2 − pK

2(1−pK)

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
ξ − 1

2 − p1

2(1−p1)

) · [1 +
∑K

k=1

pk
2(1−pk)

ξ− 1
2
− pk

2(1−pk)

]
0 . . . 0

p2

2(1−p1)
− p2

p1

(
ξ − 1

2

)
ξ − 1

2 − p2

2(1−p2)
. . . 0

...
...

. . .
...

pK

2(1−p1)
− pK

p1

(
ξ − 1

2

)
0 . . . ξ − 1

2 − pK

2(1−pK)

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Therefore, we can see that, the eigenvalues of JBR are the roots of

[
1 +

K∑

k=1

pk

2(1−pk)

ξ − 1
2 − pk

2(1−pk)

] ·
K∏

k=1

(
ξ − 1

2
− pk

2(1− pk)
)

= 0. (37)

Denote f(ξ) =
∑K

k=1

pk
2(1−pk)

ξ− 1
2
− pk

2(1−pk)
. First, we assume that pi 6= pj ,∀i, j. Without loss of generality,

consider p1 < p2 < · · · < pK . In this case, the eigenvalues of JBR are the roots of f(ξ) = −1. Note that

f(ξ) is a continuous function and it strictly decreases in (−∞, 1
2 + p1

2(1−p1)
), (1

2 + p1

2(1−p1)
, 1

2 + p2

2(1−p2)
),

· · · , (1
2 + pK−1

2(1−pK−1)
, 1

2 + pK

2(1−pK)), and ( pK

2(1−pK) ,+∞). We also have limξ→( 1
2
+

pk
2(1−pk)

)− f(ξ) = −∞,

limξ→( 1
2
+

pk
2(1−pk)

)+ f(ξ) = +∞, n = 1, 2, · · · ,K, and limξ→−∞ f(ξ) = limξ→+∞ f(ξ) = 0. Therefore,

the roots of f(ξ) = −1 lie in (−∞, 1
2 + p1

2(1−p1)
), (1

2 + p1

2(1−p1)
, 1

2 + p2

2(1−p2)
), · · · , (1

2 + pK−1

2(1−pK−1)
, 1

2 +
pK

2(1−pK)) respectively.

For the operating points on the Pareto boundary, we have
∑K

k=1 pk = 1. It is easy to verify that

f(0) = −1, i.e. ξ1 = 0. Therefore,

ρ(JBR) = max
k
|ξk| = ξK ∈ (

1
2

+
pK−1

2(1− pK−1)
,
1
2

+
pK

2(1− pK)
). (38)

To see ξK < 1 for 0 ≤ p1 < p2 < · · · < pK and
∑K

k=1 pk = 1. We differentiate two cases:

1) If pK ≤ 0.5, we have ξK < 1
2 + pK

2(1−pK) ≤ 1;
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2) If pK > 0.5, we have 1
2 + pK−1

2(1−pK−1)
< 1 and 1

2 + pK

2(1−pK) > 1. Since f(ξ) strictly decreases in

(1
2 + pK−1

2(1−pK−1)
, 1

2 + pK

2(1−pK)), we have ρ(JBR) < 1 if and only if f(1) < −1. In fact,

f(1)− (−1) =
K∑

k=1

pk

1− 2pk
+ 1 =

K−1∑

k=1

pk

( 1
1− 2pk

− 1

1− 2
∑K−1

m=1 pm

)
< 0. (39)

The inequality holds because 1
1−2pk

< 1
1−2

∑K−1
m=1 pm

for k = 1, 2, . . . , K − 1 when pK > 0.5, 0 ≤ p1 <

p2 < · · · < pK , and
∑K

k=1 pk = 1.

Second, we consider the cases in which there exists pi = pj for certain i, j. Suppose that {pk}K
k=1

take M discrete values κ1, · · · , κM and the number of {pk}K
k=1 that equal to κm is nm. In this case,

Equation (37) is reduced to

[
1 +

K∑

k=1

pk

2(1−pk)

ξ − 1
2 − pk

2(1−pk)

] ·
M∏

m=1

(
ξ − 1

2
− κm

2(1− κm)
)nm = 0. (40)

Hence, equation f(ξ) = −1 has K + M −∑M
k=1 nm roots in total, and ξ = 1

2 + κm

2(1−κm) is a root of

multiplicity nm−1, ∀m. All these roots are the eigenvalues of matrix JBR. Similarly, the remaining roots

of f(ξ) = −1 lie in (−∞, 1
2 + κ1

2(1−κ1)
), (1

2 + κ1
2(1−κ1)

, 1
2 + κ2

2(1−κ2)
), · · · , (1

2 + κM−1

2(1−κM−1)
, 1

2 + κM

2(1−κM )).

If K > 2,
∑K

k=1 pk = 1 is still sufficient to guarantee that f(1) < −1. Therefore, |ξBR
k | < 1,∀k ∈ K. ¥

Fig. 4 compares the throughput performance among various game-theoretic solution concepts, including

Nash equilibria, Pareto frontier, locally stable conjectural equilibria, and globally convergent conjectural

equilibria, in random access games. As proven in Theorem 7, Fig. 4 shows that, the entire space spanning

between the Nash equilibria and Pareto frontier essentially consists of stable conjectural equilibria. In

addition, as discussed in Remark 3, the set of globally convergent CE is a subset of the stable CE set.

In practice, it is more important to construct algorithmic mechanisms to attain the desirable CE that

operate stably and closely to the Pareto boundary. To this end, we develop an iterative algorithm and

summarize it as Algorithm 3. Specifically, this algorithm has an inner loop and an outer loop. The inner

loop adopts either Algorithm 1 or 2 to achieve convergence for fixed {ak}K
k=1. This algorithm initializes

ak > |K| such that it initially globally converges. After converging to a stable CE, the outer loop adaptively

adjusts {ak}K
k=1 until desired efficiency is attained. The outer loop updates {ak}K

k=1 in the multiplicative

manner due to two reasons. First, reducing {ak}K
k=1 individually increases {pt

k}K
k=1 and

∑K
k=1 pk and

hence, moves the operating point towards the Pareto boundary. Second, multiplying {ak}K
k=1 by the same

discount factor can maintain weighted fairness among different nodes. Both reasons will be analytically

explained in the Section IV. It is also worth mentioning that individual nodes can measure the Pareto

efficiency in a fully distributed manner during the outer loop iteration. For example, individual nodes can

estimate the other nodes’ transmission probabilities {pt
k}K

k=1 based on its local observation and figure out
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whether the current operating point is close to the Pareto boundary by calculating
∑

k∈K pt
k [16]. When

the network size grows bigger, individually estimating different nodes’ transmission probabilities becomes

challenging. An alternative solution is that individual nodes can instead monitor their common observation

of the aggregate throughput
∑

k∈K ut
k and terminate the update of {ak}K

k=1 once the aggregate throughput

starts to decrease. Next, we discuss several implementation issues regarding Algorithm 3. First, it is not

necessary that all the nodes update their parameters {ak}K
k=1 synchronously. However, these nodes need

to maintain the same update frequency, e.g. each node will update its parameter after a certain number of

timeslots or seconds. As long as δ is small, the performance gap between the actual CE and the intended

one will not be large. Moreover, in order to guarantee fairness, the new incoming nodes need to know

the real-time parameters of the old nodes in the same traffic class. This initialization only needs to be

done once, when the new nodes enter the cell by tracking the evolution of the transmission probabilities

of the nodes in the same traffic class.

Algorithm 3 : Adaptive Distributed Learning Algorithm for Random Access
1: Initialize: stepsize γ and δ, the transmission probability p0

k ∈ [0, 1], and the parameter ak > |K| in

node k’s belief function, ∀k ∈ K.

2: procedure

3: outer loop: For each node k, ak ← ak(1− δ).

4: inner loop: Locally at each node k, use Algorithm 1 or 2 to update pt
k.

5: until it converges.

6: until the aggregate throughput is maximized or
∑

k∈K pt
k ≈ 1.

7: end procedure

IV. EXTENSIONS TO HETEROGENEOUS NETWORKS AND AD-HOC NETWORKS

In this section, we first investigate how users with different qualify-of-service requirements should

initialize their belief functions and interact in the heterogeneous network setting and show that the

conjecture-based approaches approximately achieve the weighted fairness. Furthermore, we discuss how

the single-cell solution can be extended to the general ad-hoc network scenario, where only the devices

within a certain neighborhood range will impact each other’s throughput.
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A. Equilibrium Selection for Heterogeneous Networks

Consider a network with N > 1 different classes of nodes. Let φn denote the parameter that class-n

nodes choose for their conjectured utility functions (i.e. the parameter ak if node k belongs to class-n)

and Fn denote the set of nodes that set their algorithm parameters to be φn, 1 ≤ n ≤ N . At equilibrium,

the transmission probabilities of the same class of nodes are equal, denoted as p̃n. Before we proceed, we

first define the weighted fairness for the random access game [32]. For each traffic class n, we associate

with a positive weight χn. Then the weighted fairness intended for the random access game satisfy

∀i, j ∈ {1, 2, · · · , N},∀s ∈ Fi,∀s′ ∈ Fj ,
E{1{T−s=0}1{Ts=1}}

χi
=

E{1{T−s′=0}1{Ts′=1}}
χj

, (41)

which means that the probability of an successful transmission attempt for traffic class n is proportional

to its weight χn. By simple manipulation, we have the equivalent form for equation (41) [32]:

∀i, j ∈ {1, 2, · · · , N}, pWF
i

(1− pWF
i )χi

=
pWF

j

(1− pWF
j )χj

. (42)

Recall that Theorem 1 showed how to choose {ak}K
k=1 given a desired operating point {p∗k}K

k=1 such

that it is a CE. The following theorem indicates the quantitative relationship between the chosen algorithm

parameters {φn}N
n=1, the sizes of different classes {Fn}N

n=1, and the resulting steady-state transmission

probabilities {p̃n}N
n=1. More importantly, it also shows that if the network size is large, the conjecture-

based algorithms approximately achieve weighted fairness.

Theorem 8: Suppose that φn ≥ 2, ∀1 ≤ n ≤ N . The achieved steady-state transmission probabilities

{p̃n}N
n=1 are given by

p̃n =
1
2

(
1−

√
1− 4%

φn

)
, (43)

where % satisfies

% =
1

2K

N∏

n=1

[(
1 +

√
1− 4%

φn

)|Fn|]
. (44)

Proof : As shown in Theorem 1, a∗kp
∗
k =

∏
i∈K\{k}(1− p∗i ). Denote % =

∏
i∈K(1− p̃i). Therefore, we

obtain

φnp̃n(1− p̃n) = %, ∀ 1 ≤ n ≤ N. (45)

Since φn > 2, we have p̃n < 0.5. Such a root of the quadratic equation in (45) is given in (43). Note

that % =
∏

i∈K(1− p̃i). Substituting (43) into this equality, we get (44).

We can verify that a unique % satisfying the equality in (44) exists if φn ≥ 2, ∀1 ≤ n ≤ N . This is

because the RHS of (44) is feasible for % ≤ min1≤n≤N{φn}/4 and it is a strictly decreasing function
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in %. Meanwhile, the LHS of (44) is strictly increasing on % ∈ [0, min1≤n≤N{φn}/4]. Note that when

% = min1≤n≤N{φn}/4,

LHS of (44) = min
1≤n≤N

φn

4
≥ 1

2
≥ RHS of (44). (46)

if φn ≥ 2. Therefore, a unique % ∈ [0, min1≤n≤N{φn}/4] satisfies (44) exists. ¥
Remark 6: There are several intuitions and observations that we can obtain from Theorem 8. First,

the multiplicative decreasing update in Algorithm 3 aims to move the operating points towards Pareto

boundary. A quantitative approximation between the steady-state transmission probability p̃n and the

algorithm parameter φn of each traffic class can be derived if a large number of nodes coexist. Since

% → 0 when |Fn| is large, using the Taylor expansion, p̃n can be approximated as %/φn, i.e. the steady-

state transmission probability p̃n decays as the inverse first power of parameter φn that indicates the

“aggressiveness” of traffic class n. Finally, we also observe from (45) that, if |Fn| is large, p̃n → 0 and

1− p̃n ≈ 1. Therefore,

∀i, j ∈ {1, 2, · · · , N}, φip̃i(1− p̃i) = φj p̃j(1− p̃j) ⇒ φip̃i

1− p̃i
≈ φj p̃j

1− p̃j
. (47)

Equation (47) indicates that Algorithm 1 and 2 approximately achieve weighted fairness given in (42)

with weight χn = 1/φn. Moreover, it is worth mentioning that the weighted fairness is purely an implicit

by-product of the conjecture-based approach and it can be sustained with stability. Therefore, Algorithm

3 chooses to multiply {ak}K
k=1 by the same discount factor 1− δ such that the weighted fairness can be

maintained.

B. Extension to Ad-hoc Networks

Consider a wireless ad-hoc network with a set K = {1, 2, . . . , K} of distinct node pairs in Fig. 5.

Each link (node pair) consists of one dedicated transmitter and one dedicated receiver. We assume that

the transmission of a link is interfered from the transmission of another link, if the distance between the

receiver node of the former and the transmitter node of the latter is less than some threshold Dth [9]

[15]. For any node i, we define Ii ⊆ K as the set of nodes whose transmitters cause interference to the

receiver of node i and Oi ⊆ K as the set of nodes whose receivers get interfered from the transmitter of

node i. For example, in Fig. 5, I1 = {K} and O1 = {2,K}. Then, the throughput of node i is

uk(p) = pk

∏

i∈Ik

(1− pi). (48)

In this scenario, the state, namely, the contention measure signal, can be redefined according to sk =
∏

i∈Ik
(1−pi). Applying the conjecture-based approach, we have the following conjectured utility function
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for node k:

ut
k(s̃

t
k(pk), pk) = pk

[∏

i∈Ik

(1− pt−1
i )− ak(pk − pt−1

k )
]
. (49)

Parallel to the theorems proven in Section III-B and C, we have the following theorems on the stability

and convergence of conjecture-based bio-inspired learning algorithms in ad-hoc networks. These theorems

can be shown similarly as in Section III, and hence, the proofs are omitted.

1) Stability and Convergence:

Theorem 9: For any p∗ = (p∗1, . . . , p
∗
K) ∈ P , if

∑

i∈Ok∪{k}
p∗i < 1, ∀k ∈ K, or

∑

i∈Ik

p∗k
1− p∗i

< 1, ∀k ∈ K, (50)

p∗ is a stable CE for Algorithm 1 and Algorithm 2 with sufficiently small γ.

Theorem 10: Regardless of any initial value chosen for {p0
k}K

k=1, if the parameters {ak}K
k=1 in the

belief functions {s̃k}K
k=1 satisfy

ak > |Ok|, ∀k ∈ K, or
∑

i∈Ik

1
ai

< 1,∀k ∈ K, (51)

Algorithm 1 and Algorithm 2 with sufficiently small γ converge to a unique CE.

Remark 7: We observe that the sufficient conditions in Theorem 9 and 10 are more relaxed compared

with the theorems in Section III. As opposed to the single-cell case, the mutual interference is reduced

in ad-hoc networks due to the large scale geographical distance, therefore, these nodes can potentially

improve their throughput by increasing their transmission probabilities while still maintaining the local

stability as well as global convergence.

Remark 8: In ad-hoc networks, the parameters {ak}K
k=1 can be determined in a distributed fashion

such that the sufficient conditions in Theorem 10 are satisfied. For example, consider the symmetric

case where transmitter i interferes with receiver j if and only if transmitter i can receive signals from

receiver j. Each transmitter can listen to the channel and estimate |Ok| by intercepting the ACK packets

sent by the receivers of the nodes in set Ok. An alternative distributed solution is that each transmitter

broadcasts its parameter ak, and receiver k calculates
∑

i∈Ik

1
ai

and notifies the nodes in set Ik to adjust

their parameters accordingly.

2) Stability of the Throughput Region: We also extend the stability analysis of the throughput region

from the single-cell scenario to the ad-hoc networks. The following lemma explicitly describes the Pareto

frontier of the throughput region.



27

Lemma 11: The Pareto boundary of the throughput region T can be characterized as the set of points

τττ = (τ1, . . . , τK) optimizing the weighted proportional fairness objective [33]:

max
p∈P

∑

k∈K
ωklogτk, (52)

in which τk = pk
∏

i∈Ik
(1− pi) for all possible sets of positive link “weights” {ωk}K

k=1. Specifically, for

a particular weight combination {ωk}K
k=1, the optimal p′ is given by

p′k =
ωk

ωk +
∑

i∈Ok
ωi

. (53)

Proof : See [33] for details.

Based on Lemma 11, we derive in the following theorem the necessary and sufficient condition under

which a particular Pareto-efficient operating point is a stable CE for Algorithm 1. Similar results can be

derived for Algorithm 2 with sufficiently small γ.

Theorem 12: Suppose p∗ = (p∗1, . . . , p
∗
K) ∈ P satisfies (53) and maximizes the problem in (52). The

elements of the Jacobi matrix J at p∗ satisfy

Jik =





1
2 , if i = k,

− p∗i
2(1−p∗k) , if k ∈ Ii,

0, otherwise.

(54)

If ρ(J) < 1, p is a stable CE for Algorithm 1.

Remark 9: Theorem 12 generalizes the result in Theorem 7 from the single-cell scenario to the ad-hoc

networks. Consider the l1 norm for J at p. We have

‖J‖1 = max
k∈K

ωk

ωk +
∑

i∈Ok
ωi

+
∑

i∈Ok

ωi

ωi +
∑

j∈Oi
ωj

. (55)

In the single-cell case, Ok = K\{k}, ∀k ∈ K, and ‖J‖1 equals to 1 for any Pareto-optimal operating point.

Therefore, any Pareto inefficient operating point can be achieved with stability due to ρ(J) ≤ ‖J‖1 < 1.

However, in ad-hoc networks, the form of the Jacobi matrix J depends on the actual network topology

and it is difficult to bound the spectral radius for a generic setting using certain matrix forms, such as l1

norm or l∞ norm. Alternatively, according to Theorem 12, we will numerically test the stability of the

Pareto-optimal operating points in the simulation section.

V. NUMERICAL SIMULATIONS

In this section, we numerically compare the performance of the existing 802.11 DCF protocol, the

P-MAC protocol [32] and the proposed algorithms in this paper.
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We first illustrate the evolution of transmission probabilities of Algorithm 1 and 2. We simulate a single-

cell network of 5 nodes. For each node, the initial transmission probability p0
k is uniformly distributed in

[0, 1] and ak is uniformly distributed between 5 and 10. The stepsize in the gradient play is γ = 0.02. Fig.

6 compares the trajectory of the transmission probability updates in both Algorithm 1 and 2 in a single

realization, under the assumption that node k can perfectly estimate the probability
∏

j∈K\{k}(1 − pj),

∀k ∈ K. The best response update converges in around 8 iterations and the gradient play experiences a

more smooth trajectory and the same equilibrium is attained after 35 iterations. In addition, to illustrate

how individual nodes can adaptively adjust their algorithm parameters and improve their throughput, we

simulate a scenario with two traffic classes. Each traffic class consists of 5 nodes and the initial algorithm

parameters of class 1 and 2 are φ1 = 30 and φ2 = 60, respectively. The discount factor in Algorithm

3 is δ = 0.05. The blue dotted curve in Fig. 7 indicates that the operating point moves towards the red

Pareto boundary until the outer loop detects that the desired efficiency is reached.

In practice, packet transmission over wireless links, e.g. IEEE 802.11 WLANs, involves extra protocol

overheads, such as inter-frame space and packet header. Assuming these realistic communication scenar-

ios, we compare various performance metrics, including throughput, fairness, convergence, and stability,

between our proposed conjecture-based algorithms, the P-MAC protocol in [32], and the IEEE 802.11

DCF. To evaluate these metrics, the physical layer parameters need to be specified. In the simulation, we

assume that each wireless device operates at the IEEE 802.11a PHY mode-8, and the key parameters

are summarized in Table I. We assume no transmission errors and the RTS/CTS mechanism is disabled.

The aggregate network throughput can be calculated using Bianchi’s model [35]

T =
PsLd

(1− Ptr)Tslot + PsTs + PtrTc − PsTc
, (56)

where Ps =
∑N

n=1 |Fn| · pn · (1 − pn)|Fn|−1 ·∏m6=n(1 − pm)|Fn| is the probability that a transmission

occurring on the channel is successful, Ptr = 1 −∏N
n=1(1 − pn)|Fn| is the probability that at least one

transmission attempt happens, Ts is the average time of a successful transmission, and Tc is the average

duration of a collision. The detailed derivation of Ts and Tc using the given network parameters in Table

I can be found in [32] [35]. The parameters in P-MAC are set according to [32]. The contention window

sizes in the IEEE 802.11 DCF are CWmin = 16 and CWmax = 1024. In Algorithm 3, individual nodes

monitor the aggregate throughput to determine whether to adjust the parameter ak. The numerical results

are obtained using a MAC simulation program in [35]. Our comparison results are summarized as follows.

First, the throughput of the three algorithms is compared. We vary the total number of nodes K from

4 to 50, in which dK/2e nodes carry class-1 traffic and the remaining nodes carry class-2 traffic. The



29

positive weights of class-1 and class-2 are χ1 = 1 and χ2 = 0.5. The initial parameters in Algorithm

3 are chosen to be φ1 = 3K/χ1 and φ2 = 3K/χ2. As shown in Fig. 8, both the conjecture-based

algorithm and P-MAC significantly outperform the IEEE 802.11 DCF. The IEEE 802.11 DCF achieves

the lowest throughput, because the lack of adaptation mechanism of the contention window size causes

more frequent packet collisions as the number of nodes increases. Surprisingly, the performance of the

conjectural equilibrium attained by Algorithm 3 achieves the maximum achievable throughput. It also

outperforms P-MAC, because P-MAC uses approximation to derive closed-form expressions for the

transmission probabilities of different traffic class.

Next, we evaluate the short-term fairness of different protocols using the quantitative fairness index

introduced in [32]

F =
µ(Tk/χn)

µ(Tk/χn) + σ(Tk/χn)
, k ∈ Fn (57)

in which Tk denote the throughput of node k that belongs to traffic class n, and µ and σ are, respectively,

the mean and the standard deviation of Tn/χn over all the active data traffic flows. We simulate a

transmission duration of 3 minutes. The stage duration in Algorithm 3 is set as 50 successful transmissions.

As shown in Fig. 9, we can see that Algorithm 3 and P-MAC are comparable in their fairness performance

and the achieved fairness index is always above 0.95 regardless of the network configuration. On the

other hand, the fairness performance of 802.11 DCF is much poorer than the previous two algorithms

because the DCF protocol provides no fairness guarantee.

Last, in order to compare the convergence and the stability of different protocols for time-varying

traffic, we simulate a network in which the number of active nodes fluctuates over time. In order to cope

with traffic fluctuation, we slightly modify the outer loop in Algorithm 3. Once some nodes join or leave

the network (this can be detected either by tracking the contention signal
∏

k∈K(1 − pk) or estimating

the total number of nodes in the network [36]), the adaptation of ak is activated. Specifically, if more

nodes join the network, ak ← ak(1+ δ), otherwise, ak ← ak(1− δ). At the beginning, |F1| = |F2| = 25.

At stage 200, 15 class-1 and 15 class-2 nodes join the network. These nodes leave the network at the

400th stage. The algorithm parameter ak is updated every 5 stages and the stepsize in the gradient

play is γ = 0.003. Fig. 10 and Fig. 11 show the variation of the transmission probabilities for both

traffic classes and the expected accumulative throughput over time. P-MAC does not converge due to the

lack of feedback control, which agrees with the observation about the instability of P-MAC reported in

[13]. In addition, the optimal transmission probabilities computed by P-MAC and the conjecture-based

algorithms are different under the same network parameters because of the approximation used in P-MAC.
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As shown in Fig. 10, nodes deploying P-MAC transmit with a higher probabilities than the conjecture-

based algorithms, which creates a more congested environment. As a result, the accumulative throughput

achieved by P-MAC is slightly lower than the optimal throughput. In contrast, the conjecture-based

algorithms enable the nodes adaptively tune their parameters ak to maximize the network throughput

while maintaining the weighted fairness as well as the system stability. As shown in Fig. 10 and Fig.

11, during stage [200,300] and [400,470], both the best response and the gradient play autonomously

adapt their parameter ak until it converges to the optimal operating point. As discussed before, the best

response learning converges faster than the gradient play learning. To give a quantitative measure of

the stability, the standard deviations of the expected accumulative throughput in Fig. 11 for different

algorithms satisfy σ(T Expected
P−MAC )/σ(T Expected

BIO ) ≈ 7 and the actual achieved accumulative throughput

satisfy σ(T Actual
P−MAC)/σ(T Actual

BIO ) ≈ 2. We can see that, thanks to the inherent feedback control mechanism,

both bio-inspired learning algorithm exhibit superior stability performance than P-MAC.

We also simulate the evolution trajectory of the transmission probabilities of the proposed Algorithm 1

and the algorithm in [16]. Both algorithms are essentially the best-response based algorithms. Specifically,

we consider a network with K = 6. The peak data rates for different nodes are r1 = 6, r2 = 36, r3 = 9,

r4 = 12, r5 = 18, and r6 = 54, all in Mbps. We apply the algorithm in [16] to solve the following

network utility maximization problem:

max
p∈P

∑

k∈K

1
1− α

[
rkpk

∏

j∈K\{k}
(1− pj)

]1−α
, (58)

in which α = 2. The optimal solution corresponds to the belief configuration a1 = 2.03, a2 = 3.93, a3 =

2.32, a4 = 2.55, a5 = 2.97, and a6 = 4.74. The trajectory of both algorithms are shown in Fig. 12. We can

see that, both algorithms converge very fast and oscillate around the neighborhood to the optimal solution

after several iterations. However, as we discussed before, the algorithm in [16] requires individual nodes

to decode all the received packet headers and estimate the transmission probabilities of the other nodes

individually, which introduces a great internal computational overhead when the network size grows large.

In contrast, nodes deploying Algorithm 1 only have to estimate the probability of having a free channel

without the need of decoding all the packets, which substantially reduces their computational efforts.

We simulate the performance of the proposed algorithms in an ad-hoc network contained in a 100m×
100m square area. Nodes in the square area are placed in the random manner. Two nodes can interfere

with each other if their distance is no more than 40m, i.e. Dth = 40m. We simulate three scenarios with

the node numbers K = {10, 20, 40}. The Pareto-efficient point that we select is the associated operating

point with the link weighted vector ωk = 1, 1 ≤ k ≤ K/2, and 0.5,K/2 < k ≤ K in (53). We can see
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from Fig. 13 that, ρ(JBR) ≤ 1 holds for all the simulated topologies. As shown in Fig. 13, in some

realizations, ρ(JBR) = 1, and hence, the associate operating points are not asymptotically stable. This

will occur when two nodes interfere with each other and they do not interfere and are not interfered

by the remaining nodes in the entire ad-hoc network. On the other hand, the stability improves as the

number of nodes increases. As long as the density of nodes is sufficiently large, the stability of the

conjecture-based algorithm on the Pareto-efficient operating point can be achieved. Fig. 14 and Fig. 15

show the evolution of transmission probabilities and accumulative throughput for the IEEE 802.11 DCF

and Algorithm 1 in a 10-node ad-hoc network with a randomly generated topology. The trajectory of the

IEEE 802.11 DCF is obtained using the model in [12]. The parameter ak in Algorithm 1 is chosen to be

|Ok|. The intuition behind is that, if |Ok| = 0, node k can transmit at the maximal probability without

interfering with any node. On the other hand, if |Ok| is large, node k should backoff adequately such that

the reciprocity can be established. As shown in the figures, Algorithm 1 converges faster and achieves

higher throughput than DCF. Similar results have been observed in the other simulated topologies.

VI. CONCLUSION

In this paper, we propose distributed learning solutions that enable autonomous nodes to improve their

throughput performance in random access networks. It is well-known that whenever biological entities

behave selfishly and myopically, a tragedy of commons might take place, which has also been observed

in the context of random access control. Hence, we investigate whether forming internal belief functions

and learning the impact of various actions can alter the interaction outcome among these intelligent nodes.

Specifically, two bio-inspired learning mechanisms are proposed to dynamically update individual nodes’

transmission probabilities. It is analytically proven that the entire throughput region essentially consist

of stable conjectural equilibria. In addition, we prove that the conjecture-based approach achieves the

weighted fairness for heterogeneous traffic classes and extend the distributed learning solutions to ad-hoc

networks. Simulation results have shown that the proposed algorithms achieve significant performance

improvement against existing protocols, including the IEEE 802.11 DCF and the P-MAC protocol, in

terms of not only fairness and throughput but also convergence and stability. A potential future direction

is to investigate how to detect and prevent misbehavior for these bio-inspired solutions.
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Fig. 3. Comparison between the best response learning and the IEEE 802.11 DCF (Pmax is specified in the DCF protocol).
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Fig. 4. Comparison among different solution concepts.

TABLE I

IEEE 802.11A PHY MODE-8 PARAMETERS

Parameters Value

Duration of an Idle Slot (Tslot) 9 µs

Duration of PHY Header (TPHY ) 20 µs

SIFS Time (TSIFS) 16 µs

DIFS Time (TDIFS) 34 µs

Propagation Delay (Td) 1 µs

MAC Header (LMAC ) 28 octets

Packet Payload Size (Ld) 2304 octets

ACK Frame Size (LACK ) 14 octets

Data Rate (Rt) 54 Mbps
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Fig. 9. Comparison of the achieved fairness of the IEEE 802.11 DCF, P-MAC, and Algorithm 3.
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39

0 100 200 300 400 500 600
31

31.5

32

32.5

33

33.5

34

34.5

35

35.5

36

Stage

E
xp

ec
te

d 
ac

cu
m

ul
at

iv
e 

th
ro

ug
hp

ut
 (

M
bp

s)

P−MAC 

Gradient Play 

Fig. 11. The dynamics of the accumulative throughput in P-MAC and Algorithm 3.
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Fig. 13. Cumulative distribution function of ρ(JBR) in ad-hoc networks.
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Fig. 15. Accumulative throughput of Algorithm 1 and the IEEE 802.11 DCF in ad-hoc networks.


